IDT5T915PAI [IDT]

2.5V DIFFERENTIAL 1:5 CLOCK BUFFER TERABUFFER; 2.5V差分1 : 5时钟缓冲器TERABUFFER
IDT5T915PAI
型号: IDT5T915PAI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

2.5V DIFFERENTIAL 1:5 CLOCK BUFFER TERABUFFER
2.5V差分1 : 5时钟缓冲器TERABUFFER

时钟驱动器 逻辑集成电路 光电二极管
文件: 总19页 (文件大小:127K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
2.5V DIFFERENTIAL  
IDT5T915  
1:5 CLOCK BUFFER  
TERABUFFER™  
DESCRIPTION:  
FEATURES:  
The IDT5T915 2.5V differential (DDR) clock buffer is a user-selectable  
single-endedordifferentialinputtofivedifferentialoutputsbuiltonadvanced  
metalCMOStechnology. Thedifferentialclockbufferfanoutfromasingleor  
differentialinput tofivedifferentialorsingle-endedoutputsreducesloadingon  
theprecedingdriverandprovidesanefficientclockdistributionnetwork. The  
IDT5T915canactasatranslatorfromadifferentialHSTL,eHSTL,1.8V/2.5V  
LVTTL,LVEPECL,orsingle-ended1.8V/2.5VLVTTLinputtoHSTL,eHSTL,  
1.8V/2.5VLVTTLoutputs. Selectableinterfaceiscontrolledby3-levelinput  
signalsthatmaybehard-wiredtoappropriatehigh-mid-lowlevels.  
• Guaranteed Low Skew < 25ps (max)  
• Very low duty cycle distortion < 300ps (max)  
• High speed propagation delay < 2ns (max)  
• Up to 250MHz operation  
• Very low CMOS power levels  
• Hot insertable and over-voltage tolerant inputs  
• 3-level inputs for selectable interface  
• Selectable HSTL, eHSTL, 1.8V / 2.5V LVTTL, or LVEPECL input  
interface  
• Selectable differential or single-ended inputs and five differen-  
tial outputs  
The IDT5T915 true or complementary outputs can be asynchronously  
enabled/disabled. Multiple power and grounds reduce noise.  
• 2.5V VDD  
• Available in TSSOP package  
APPLICATIONS:  
• Clock and signal distribution  
FUNCTIONALBLOCKDIAGRAM  
TxS  
GL  
OUTPUT  
CONTROL  
G(+)  
Q1  
OUTPUT  
CONTROL  
Q1  
OUTPUT  
CONTROL  
Q2  
RxS  
A
OUTPUT  
CONTROL  
Q2  
A/VREF  
OUTPUT  
CONTROL  
Q3  
G(-)  
OUTPUT  
CONTROL  
Q3  
OUTPUT  
CONTROL  
Q4  
OUTPUT  
CONTROL  
Q4  
OUTPUT  
CONTROL  
Q5  
OUTPUT  
CONTROL  
Q5  
TheIDTlogoisaregisteredtrademarkofIntegratedDeviceTechnology,Inc.  
INDUSTRIAL TEMPERATURE RANGE  
FEBRUARY 2003  
1
© 2003 Integrated Device Technology, Inc.  
DSC-5893/21  
IDT5T915  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
INDUSTRIALTEMPERATURERANGE  
PINCONFIGURATION  
ABSOLUTEMAXIMUMRATINGS(1)  
Symbol  
VDD  
VDDQ  
VI  
Description  
Power Supply Voltage(2)  
Output Power Supply(2)  
Input Voltage  
Max  
–0.5 to +3.6  
–0.5 to +3.6  
–0.5 to +3.6  
–0.5 to VDDQ +0.5  
–0.5 to +3.6  
–65 to +165  
150  
Unit  
V
V
GL  
VDD  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
GND  
VDDQ  
VDDQ  
GND  
GND  
GND  
VDDQ  
Q2  
V
2
VO  
Output Voltage(3)  
V
VDD  
3
VREF  
TSTG  
TJ  
Reference Voltage(3)  
Storage Temperature  
Junction Temperature  
V
GND  
GND  
G(+)  
VDDQ  
Q1  
4
°C  
°C  
5
NOTES:  
6
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
2. VDDQ and VDD internally operate independently. No power sequencing requirements  
need to be met.  
3. Not to exceed 3.6V.  
7
8
Q1  
9
Q2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
GND  
VDDQ  
Q3  
GND  
VDDQ  
A/VREF  
A
Q3  
VDDQ  
GND  
Q5  
VDDQ  
GND  
Q4  
CAPACITANCE(1,2) (TA = +25°C, F = 1.0MHz)  
Symbol  
Parameter  
Min  
Typ.  
Max.  
Unit  
CIN  
Input Capacitance  
3.5  
pF  
Q5  
Q4  
NOTES:  
1. This parameter is measured at characterization but not tested.  
2. Capacitance applies to all inputs except RxS and TxS.  
VDDQ  
G(-)  
VDDQ  
VDDQ  
GND  
GND  
VDDQ  
GND  
TxS  
GND  
GND  
VDD  
VDD  
RxS  
TSSOP  
TOP VIEW  
RECOMMENDEDOPERATINGRANGE  
Symbol  
Description  
Min.  
–40  
2.4  
Typ.  
+25  
2.5  
Max.  
+85  
2.6  
Unit  
°C  
V
TA  
AmbientOperatingTemperature  
InternalPowerSupplyVoltage  
VDD(1)  
HSTL Output Power Supply Voltage  
Extended HSTL and 1.8V LVTTL Output Power Supply Voltage  
1.4  
1.65  
1.5  
1.8  
1.6  
1.95  
V
V
VDDQ(1)  
VT  
2.5VLVTTLOutputPowerSupplyVoltage  
TerminationVoltage  
VDD  
V
V
VDDQ / 2  
NOTE:  
1. All power supplies should operate in tandem. If VDD or VDDQ is at maximum, then VDDQ or VDD (respectively) should be at maximum, and vice-versa.  
2
IDT5T915  
INDUSTRIALTEMPERATURERANGE  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
PINDESCRIPTION  
Symbol  
A
I/O  
Type  
Description  
I
I
Adjustable(1) Clock input. A is the "true" side of the differential clock input. If operating in single-ended mode, A is the clock input.  
A/VREF  
Adjustable(1) Complementaryclockinput. A/VREF isthe"complementary"sideofAiftheinputisindifferentialmode. Ifoperatinginsingle-ended  
mode,A/VREF isconnectedtoGND. Forsingle-endedoperationindifferentialmode, A/VREF shouldbesettothedesiredtoggle  
voltage for A:  
2.5VLVTTL  
VREF = 1250mV  
1.8VLVTTL,eHSTL VREF = 900mV  
HSTL  
VREF = 750mV  
VREF = 1082mV  
LVEPECL  
G(+)  
G(-)  
GL  
I
I
I
LVTTL(5)  
LVTTL(5)  
LVTTL(5)  
Gate control for "true", Qn, outputs. When G(+) is LOW, the "true" outputs are enabled. When G(+) is HIGH, the "true" outputs are  
asynchronouslydisabledtotheleveldesignatedbyGL(4).  
Gate control for "complementary", Qn, outputs. When G(-) is LOW, the "complementary" outputs are enabled. When G(-) is HIGH,  
the"complementary"outputsareasynchronouslydisabledtotheoppositelevelasGL(4).  
Specifies output disable level. If HIGH, "true" outputs disable HIGH and "complementary" outputs disable LOW. If LOW, "true"  
outputsdisableLOWand"complementary"outputsdisableHIGH.  
Qn  
Qn  
RxS  
O
O
I
Adjustable(2) Clockoutputs  
Adjustable(2) Complementaryclockoutputs  
3 Level(3)  
3 Level(3)  
Selectssingle-ended2.5VLVTTL(HIGH),1.8VLVTTL(MID)clockinputordifferential(LOW)clockinput  
TxS  
I
Sets the drive strength of the output drivers to be 2.5V LVTTL (HIGH), 1.8V LVTTL (MID) or HSTL (LOW) compatible. Used in  
conjuctionwithVDDQ tosettheinterfacelevels.  
VDD  
PWR  
PWR  
PWR  
Power supply for the device core and inputs  
VDDQ  
Powersupplyforthedeviceoutputs. Whenutilizing2.5VLVTTLoutputs, VDDQ shouldbeconnectedtoVDD.  
Power supply return for all power  
GND  
NOTES:  
1. Inputs are capable of translating the following interface standards. User can select between:  
Single-ended 2.5V LVTTL levels  
Single-ended 1.8V LVTTL levels  
or  
Differential 2.5V/1.8V LVTTL levels  
Differential HSTL and eHSTL levels  
Differential LVEPECL levels  
2. Outputs are user selectable to drive 2.5V, 1.8V LVTTL, eHSTL, or HSTL interface levels when used with the appropriate VDDQ voltage.  
3. 3-level inputs are static inputs and must be tied to VDD or GND or left floating. These inputs are not hot-insertable or over voltage tolerant.  
4. Because the gate controls are asynchronous, runt pulses are possible. It is the user's responsibility to either time the gate control signals to minimize the possibility of runt  
pulses or be able to tolerate them in down stream circuitry.  
5. Pins listed as LVTTL inputs will accept 2.5V signals when RxS = HIGH or 1.8V signals when RxS = LOW or MID.  
3
IDT5T915  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
INDUSTRIALTEMPERATURERANGE  
INPUT/OUTPUTSELECTION(1)  
Input  
Output  
Input  
Output  
2.5VLVTTL  
2.5V LVTTL SE  
1.8V LVTTL SE  
2.5V LVTTL DSE  
1.8V LVTTL DSE  
LVEPECL DSE  
eHSTL DSE  
eHSTL  
2.5V LVTTL SE  
1.8V LVTTL SE  
2.5V LVTTL DSE  
1.8V LVTTL DSE  
LVEPECL DSE  
eHSTL DSE  
HSTL DSE  
HSTL DSE  
2.5V LVTTL DIF  
1.8V LVTTL DIF  
LVEPECL DIF  
eHSTL DIF  
2.5V LVTTL DIF  
1.8V LVTTL DIF  
LVEPECL DIF  
eHSTL DIF  
HSTL DIF  
HSTL DIF  
2.5V LVTTL SE  
1.8V LVTTL SE  
2.5V LVTTL DSE  
1.8V LVTTL DSE  
LVEPECL DSE  
eHSTL DSE  
HSTL  
2.5V LVTTL SE  
1.8V LVTTL SE  
2.5V LVTTL DSE  
1.8V LVTTL DSE  
LVEPECL DSE  
eHSTL DSE  
1.8VLVTTL  
HSTL DSE  
HSTL DSE  
2.5V LVTTL DIF  
1.8V LVTTL DIF  
LVEPECL DIF  
eHSTL DIF  
2.5V LVTTL DIF  
1.8V LVTTL DIF  
LVEPECL DIF  
eHSTL DIF  
HSTL DIF  
HSTL DIF  
NOTE:  
1. The INPUT/OUTPUT SELECTION Table describes the total possible combinations of input and output interfaces. Single-Ended (SE) inputs in a single-ended mode require the  
A/VREF pin to be connected to GND. Differential Single-Ended (DSE) is for single-ended operation in differential mode, requiring a VREF. Differential (DIF) inputs are used only in  
differential mode.  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGE  
Symbol  
VIHH  
Parameter  
Test Conditions  
Min.  
Max  
Unit  
V
Input HIGH Voltage Level(1)  
Input MID Voltage Level(1)  
InputLOWVoltageLevel(1)  
3-Level Inputs Only  
3-Level Inputs Only  
3-Level Inputs Only  
VIN = VDD  
VDD – 0.4  
VIMM  
VDD/2 – 0.2 VDD/2 + 0.2  
V
VILL  
0.4  
200  
+50  
V
HIGH Level  
MID Level  
LOW Level  
I3  
3-Level Input DC Current (RxS, TxS)  
VIN = VDD/2  
–50  
–200  
µA  
VIN = GND  
NOTE:  
1. These inputs are normally wired to VDD, GND, or left floating. Internal termination resistors bias unconnected inputs to VDD/2.  
4
IDT5T915  
INDUSTRIALTEMPERATURERANGE  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFORHSTL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(7)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current(9)  
InputLOWCurrent(9)  
VDD = 2.6V  
VDD = 2.6V  
VI = VDDQ/GND  
VI = GND/VDDQ  
±5  
±5  
µA  
VIK  
ClampDiodeVoltage  
VDD = 2.4V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
VIN  
VDIF  
VCM  
VIH  
VIL  
DCInputVoltage  
- 0.3  
0.2  
V
DCDifferentialVoltage(2,8)  
DC Common Mode Input Voltage(3,8)  
DC Input HIGH(4,5,8)  
DC Input LOW(4,6,8)  
Single-EndedReferenceVoltage(4,8)  
V
680  
750  
750  
900  
mV  
mV  
mV  
mV  
VREF + 100  
VREF - 100  
VREF  
OutputCharacteristics  
VOH  
VOL  
Output HIGH Voltage  
IOH = -8mA  
IOH = -100µA  
IOL = 8mA  
VDDQ - 0.4  
VDDQ - 0.1  
V
V
V
V
OutputLOWVoltage  
0.4  
0.1  
IOL = 100µA  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode  
only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching  
to a new state.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
4. For single-ended operation, in differential mode, A/VREF is tied to the DC voltage VREF.  
5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.  
6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.  
7. Typical values are at VDD = 2.5V, VDDQ = 1.5V, +25°C ambient.  
8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be  
referenced.  
9. For differential mode (RxS = LOW), A and A/VREF must be at the opposite rail.  
POWERSUPPLYCHARACTERISTICSFORHSTLOUTPUTS(1)  
Symbol  
Parameter  
Test Conditions(2)  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current  
VDDQ = Max., Reference Clock = LOW(3)  
Outputsenabled,Alloutputsunloaded  
VDDQ = Max., Reference Clock = LOW(3)  
Outputsenabled,Alloutputsunloaded  
VDD = Max., VDDQ = Max., CL = 0pF  
20  
30  
mA  
IDDQQ  
IDDD  
IDDDQ  
ITOT  
Quiescent VDDQ Power Supply Current  
0.1  
20  
0.3  
30  
mA  
µA/MHz  
µA/MHz  
mA  
Dynamic VDD Power Supply  
CurrentperOutput  
Dynamic VDDQ Power Supply  
CurrentperOutput  
VDD = Max., VDDQ = Max., CL = 0pF  
30  
50  
Total Power VDD Supply Current  
VDDQ = 1.5V, FREFERENCE CLOCK = 100MHz, CL = 15pF  
VDDQ = 1.5V, FREFERENCE CLOCK = 250MHz, CL = 15pF  
VDDQ = 1.5V, FREFERENCE CLOCK = 100MHz, CL = 15pF  
VDDQ = 1.5V, FREFERENCE CLOCK = 250MHz, CL = 15pF  
20  
35  
35  
60  
40  
50  
ITOTQ  
Total Power VDDQ Supply Current  
70  
mA  
120  
NOTES:  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.  
2. The termination resistors are excluded from these measurements.  
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.  
5
IDT5T915  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
INDUSTRIALTEMPERATURERANGE  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR HSTL  
Symbol  
VDIF  
Parameter  
Value  
Units  
V
InputSignalSwing(1)  
1
VX  
DifferentialInputSignalCrossingPoint(2)  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
750  
mV  
V
VTHI  
CrossingPoint  
1
tR, tF  
V/ns  
NOTES:  
1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the  
VDIF (AC) specification under actual use conditions.  
2. A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the VX specification  
under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFOReHSTL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(7)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current(9)  
InputLOWCurrent(9)  
VDD = 2.6V  
VDD = 2.6V  
VI = VDDQ/GND  
VI = GND/VDDQ  
±5  
±5  
µA  
VIK  
ClampDiodeVoltage  
VDD = 2.4V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
VIN  
VDIF  
VCM  
VIH  
VIL  
DCInputVoltage  
- 0.3  
0.2  
V
DCDifferentialVoltage(2,8)  
DC Common Mode Input Voltage(3,8)  
DC Input HIGH(4,5,8)  
DC Input LOW(4,6,8)  
Single-EndedReferenceVoltage(4,8)  
V
800  
900  
900  
1000  
mV  
mV  
mV  
mV  
VREF + 100  
VREF - 100  
VREF  
OutputCharacteristics  
VOH  
VOL  
Output HIGH Voltage  
IOH = -8mA  
IOH = -100µA  
IOL = 8mA  
VDDQ - 0.4  
VDDQ - 0.1  
V
V
V
V
OutputLOWVoltage  
0.4  
0.1  
IOL = 100µA  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode  
only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching  
to a new state.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
4. For single-ended operation, in a differential mode, A/VREF is tied to the DC voltage VREF.  
5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.  
6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.  
7. Typical values are at VDD = 2.5V, VDDQ = 1.8V, +25°C ambient.  
8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be  
referenced.  
9. For differential mode (RxS = LOW), A and A/VREF must be at the opposite rail.  
6
IDT5T915  
INDUSTRIALTEMPERATURERANGE  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
POWERSUPPLYCHARACTERISTICSFOReHSTLOUTPUTS(1)  
Symbol  
Parameter  
Test Conditions(2)  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current  
VDDQ = Max., Reference Clock = LOW(3)  
Outputsenabled,Alloutputsunloaded  
VDDQ = Max., Reference Clock = LOW(3)  
Outputsenabled,Alloutputsunloaded  
VDD = Max., VDDQ = Max., CL = 0pF  
20  
30  
mA  
IDDQQ  
IDDD  
IDDDQ  
ITOT  
Quiescent VDDQ Power Supply Current  
0.1  
20  
0.3  
30  
mA  
µA/MHz  
µA/MHz  
mA  
Dynamic VDD Power Supply  
CurrentperOutput  
Dynamic VDDQ Power Supply  
CurrentperOutput  
VDD = Max., VDDQ = Max., CL = 0pF  
40  
60  
Total Power VDD Supply Current  
VDDQ = 1.8V, FREFERENCE CLOCK = 100MHz, CL = 15pF  
VDDQ = 1.8V, FREFERENCE CLOCK = 250MHz, CL = 15pF  
VDDQ = 1.8V, FREFERENCE CLOCK = 100MHz, CL = 15pF  
VDDQ = 1.8V, FREFERENCE CLOCK = 250MHz, CL = 15pF  
20  
35  
40  
80  
40  
50  
ITOTQ  
Total Power VDDQ Supply Current  
80  
mA  
160  
NOTES:  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.  
2. The termination resistors are excluded from these measurements.  
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR eHSTL  
Symbol  
VDIF  
Parameter  
Value  
Units  
InputSignalSwing(1)  
1
V
mV  
V
VX  
DifferentialInputSignalCrossingPoint(2)  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
900  
VTHI  
CrossingPoint  
1
tR, tF  
V/ns  
NOTES:  
1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the  
VDIF (AC) specification under actual use conditions.  
2. A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the VX specification  
under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFOR  
LVEPECL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(2)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current(6)  
InputLOWCurrent(6)  
VDD = 2.6V  
VDD = 2.6V  
VDD = 2.4V, IIN = -18mA  
VI = VDDQ/GND  
±5  
±5  
µA  
VI = GND/VDDQ  
VIK  
ClampDiodeVoltage  
- 0.7  
- 1.2  
3.6  
V
VIN  
VCM  
VREF  
VIH  
VIL  
DCInputVoltage  
- 0.3  
915  
V
DC Common Mode Input Voltage(3,5)  
Single-EndedReferenceVoltage(4,5)  
DC Input HIGH  
1082  
1082  
1248  
mV  
mV  
mV  
mV  
1275  
555  
1620  
875  
DC Input LOW  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. Typical values are at VDD = 2.5V, +25°C ambient.  
3. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
4. For single-ended operation while in differential mode, A/VREF is tied to the DC Voltage VREF.  
5. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should  
be referenced.  
6. For differential mode (RxS = LOW), A and A/VREF must be at the opposite rail.  
7
IDT5T915  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
INDUSTRIALTEMPERATURERANGE  
DIFFERENTIALINPUTACTESTCONDITIONSFORLVEPECL  
Symbol  
VDIF  
Parameter  
Value  
Units  
mV  
mV  
V
InputSignalSwing(1)  
732  
VX  
DifferentialInputSignalCrossingPoint(2)  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
1082  
CrossingPoint  
1
VTHI  
tR, tF  
V/ns  
NOTES:  
1. The 732mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet  
the VDIF (AC) specification under actual use conditions.  
2. A 1082mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the VX specification  
under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 1V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFOR2.5V  
LVTTL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(8)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current(10)  
InputLOWCurrent(10)  
ClampDiodeVoltage  
DCInputVoltage  
VDD = 2.6V  
VDD = 2.6V  
VI = VDDQ/GND  
VI = GND/VDDQ  
±5  
±5  
µA  
VIK  
VIN  
VDD = 2.4V, IIN = -18mA  
- 0.7  
- 1.2  
+3.6  
V
V
- 0.3  
Single-Ended Inputs(2)  
VIH  
DC Input HIGH  
DC Input LOW  
1.7  
V
V
VIL  
0.7  
DifferentialInputs  
VDIF  
VCM  
VIH  
DCDifferentialVoltage(3,9)  
DC Common Mode Input Voltage(4,9)  
DC Input HIGH(5,6,9)  
DC Input LOW(5,7,9)  
Single-EndedReferenceVoltage(5,9)  
0.2  
1150  
1350  
V
1250  
1250  
mV  
mV  
mV  
mV  
VREF + 100  
VIL  
VREF - 100  
VREF  
OutputCharacteristics  
VOH  
VOL  
Output HIGH Voltage  
IOH = -12mA  
IOH = -100µA  
IOL = 12mA  
IOL = 100µA  
VDDQ - 0.4  
VDDQ - 0.1  
V
V
V
V
OutputLOWVoltage  
0.4  
0.1  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. For 2.5V LVTTL single-ended operation, the RxS pin is tied HIGH and A/VREF is tied to GND.  
3. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode  
only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching  
to a new state.  
4. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
5. For single-ended operation, in differential mode, A/VREF is tied to the DC voltage VREF.  
6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.  
7. Voltage required to maintain a logic LOW, single-ended operation in differential mode.  
8. Typical values are at VDD = 2.5V, VDDQ = VDD, +25°C ambient.  
9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be  
referenced.  
10. For differential mode (RxS = LOW), A and A/VREF must be at the opposite rail.  
8
IDT5T915  
INDUSTRIALTEMPERATURERANGE  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
POWERSUPPLYCHARACTERISTICSFOR2.5VLVTTLOUTPUTS(1)  
Symbol  
Parameter  
Test Conditions(2)  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current  
VDDQ = Max., Reference Clock = LOW(3)  
Outputsenabled,Alloutputsunloaded  
VDDQ = Max., Reference Clock = LOW(3)  
Outputsenabled,Alloutputsunloaded  
VDD = Max., VDDQ = Max., CL = 0pF  
20  
30  
mA  
IDDQQ  
IDDD  
IDDDQ  
ITOT  
Quiescent VDDQ Power Supply Current  
0.1  
25  
0.3  
40  
mA  
µA/MHz  
µA/MHz  
mA  
Dynamic VDD Power Supply  
CurrentperOutput  
Dynamic VDDQ Power Supply  
CurrentperOutput  
VDD = Max., VDDQ = Max., CL = 0pF  
45  
70  
Total Power VDD Supply Current  
VDDQ = 2.5V., FREFERENCE CLOCK = 100MHz, CL = 15pF  
VDDQ = 2.5V., FREFERENCE CLOCK = 200MHz, CL = 15pF  
VDDQ = 2.5V., FREFERENCE CLOCK = 100MHz, CL = 15pF  
VDDQ = 2.5V., FREFERENCE CLOCK = 200MHz, CL = 15pF  
25  
45  
40  
70  
ITOTQ  
Total Power VDDQ Supply Current  
40  
80  
mA  
100  
200  
NOTES:  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.  
2. The termination resistors are excluded from these measurements.  
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR 2.5V LVTTL  
Symbol  
VDIF  
Parameter  
Value  
VDD  
Units  
InputSignalSwing(1)  
V
V
VX  
DifferentialInputSignalCrossingPoint(2)  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
VDD/2  
VTHI  
CrossingPoint  
2.5  
V
tR, tF  
V/ns  
NOTES:  
1. A nominal 2.5V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must  
meet the VDIF (AC) specification under actual use conditions.  
2. A nominal 1.25V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the  
VX specification under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 2.5V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
SINGLE-ENDED INPUT AC TEST CONDITIONS FOR 2.5V LVTTL  
Symbol  
VIH  
Parameter  
Value  
VDD  
0
Units  
V
Input HIGH Voltage  
VIL  
InputLOWVoltage  
V
VTHI  
InputTimingMeasurementReferenceLevel(1)  
InputSignalEdgeRate(2)  
VDD/2  
2
V
tR, tF  
V/ns  
NOTES:  
1. A nominal 1.25V timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.  
2. The input signal edge rate of 2V/ns or greater is to be maintained in the 10% to 90% range of the input waveform.  
9
IDT5T915  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
INDUSTRIALTEMPERATURERANGE  
DCELECTRICALCHARACTERISTICSOVEROPERATINGRANGEFOR1.8V  
LVTTL(1)  
Symbol  
Parameter  
Test Conditions  
Min.  
Typ.(8)  
Max  
Unit  
InputCharacteristics  
IIH  
IIL  
Input HIGH Current(12)  
InputLOWCurrent(12)  
ClampDiodeVoltage  
DCInputVoltage  
VDD = 2.6V  
VDD = 2.6V  
VI = VDDQ/GND  
VI = GND/VDDQ  
±5  
±5  
µA  
VIK  
VIN  
VDD = 2.4V, IIN = -18mA  
- 0.7  
- 1.2  
V
V
- 0.3  
VDDQ + 0.3  
Single-Ended Inputs(2)  
VIH  
DC Input HIGH  
DC Input LOW  
1.073(11)  
0.683(11)  
V
V
VIL  
DifferentialInputs  
VDIF  
VCM  
VIH  
DCDifferentialVoltage(3,9)  
DC Common Mode Input Voltage(4,9)  
DC Input HIGH(5,6,9)  
DC Input LOW(5,7,9)  
Single-EndedReferenceVoltage(5,9)  
0.2  
825  
975  
V
900  
900  
mV  
mV  
mV  
mV  
VREF + 100  
VIL  
VREF - 100  
VREF  
OutputCharacteristics  
VOH  
VOL  
Output HIGH Voltage  
IOH = -6mA  
IOH = -100µA  
IOL = 6mA  
VDDQ - 0.4  
VDDQ - 0.1  
V
V
V
V
OutputLOWVoltage  
0.4  
0.1  
IOL = 100µA  
NOTES:  
1. See RECOMMENDED OPERATING RANGE table.  
2. For 1.8V LVTTL single-ended operation, the RxS pin is allowed to float or tied to VDD/2 and A/VREF is tied to GND.  
3. VDIF specifies the minimum input differential voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level. Differential mode  
only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching  
to a new state.  
4. VCM specifies the maximum allowable range of (VTR + VCP) /2. Differential mode only.  
5. For single-ended operation in differential mode, A/VREF is tied to the DC voltage VREF. The input is guaranteed to toggle within ±200mV of VREF when VREF is constrained within  
+600mV and VDDI-600mV, where VDDI is the nominal 1.8V power supply of the device driving the A input. To guarantee switching in voltage range specified in the JEDEC 1.8V  
LVTTL interface specification, VREF must be maintained at 900mV with appropriate tolerances.  
6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.  
7. Voltage required to maintain a logic LOW, single-ended operation in differential mode.  
8. Typical values are at VDD = 2.5V, VDDQ = 1.8V, +25°C ambient.  
9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be  
referenced.  
10. This value is the worst case minimum VIH over the specification range of the 1.8V power supply. The 1.8V LVTTL specification is VIH = 0.65 • VDD where VDD is 1.8V ± 0.15V.  
However, the LVTTL translator is supplied by a 2.5V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated  
worst case value ( VIH = 0.65 • [1.8 - 0.15V]) rather than reference against a nominal 1.8V supply.  
11. This value is the worst case maximum VIL over the specification range of the 1.8V power supply. The 1.8V LVTTL specification is VIL = 0.35 • VDD where VDD is 1.8V ± 0.15V.  
However, the LVTTL translator is supplied by a 2.5V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated  
worst case value ( VIL = 0.35 • [1.8 + 0.15V]) rather than reference against a nominal 1.8V supply.  
12. For differential mode (RxS = LOW), A and A/VREF must be at the opposite rail.  
10  
IDT5T915  
INDUSTRIALTEMPERATURERANGE  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
POWERSUPPLYCHARACTERISTICSFOR1.8VLVTTLOUTPUTS(1)  
Symbol  
Parameter  
Test Conditions(2)  
Typ.  
Max  
Unit  
IDDQ  
Quiescent VDD Power Supply Current  
VDDQ = Max., Reference Clock = LOW(3)  
Outputsenabled,Alloutputsunloaded  
VDDQ = Max., Reference Clock = LOW(3)  
Outputsenabled,Alloutputsunloaded  
VDD = Max., VDDQ = Max., CL = 0pF  
20  
30  
mA  
IDDQQ  
IDDD  
IDDDQ  
ITOT  
Quiescent VDDQ Power Supply Current  
0.1  
20  
0.3  
40  
mA  
µA/MHz  
µA/MHz  
mA  
Dynamic VDD Power Supply  
CurrentperOutput  
Dynamic VDDQ Power Supply  
CurrentperOutput  
VDD = Max., VDDQ = Max., CL = 0pF  
55  
80  
Total Power VDD Supply Current  
VDDQ = 1.8V., FREFERENCE CLOCK = 100MHz, CL = 15pF  
VDDQ = 1.8V., FREFERENCE CLOCK = 200MHz, CL = 15pF  
VDDQ = 1.8V., FREFERENCE CLOCK = 100MHz, CL = 15pF  
VDDQ = 1.8V., FREFERENCE CLOCK = 200MHz, CL = 15pF  
25  
40  
40  
60  
ITOTQ  
Total Power VDDQ Supply Current  
50  
100  
240  
mA  
120  
NOTES:  
1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.  
2. The termination resistors are excluded from these measurements.  
3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.  
DIFFERENTIAL INPUT AC TEST CONDITIONS FOR 1.8V LVTTL  
Symbol  
VDIF  
Parameter  
Value  
VDDI  
Units  
InputSignalSwing(1)  
V
mV  
V
VX  
DifferentialInputSignalCrossingPoint(2)  
InputTimingMeasurementReferenceLevel(3)  
InputSignalEdgeRate(4)  
VDDI/2  
VTHI  
CrossingPoint  
1.8  
tR, tF  
V/ns  
NOTES:  
1. VDDI is the nominal 1.8V supply (1.8V ± 0.15V) of the part or source driving the input. A nominal 1.8V peak-to-peak input pulse level is specified to allow consistent, repeatable  
results in an automatic test equipment (ATE) environment. Compliant devices must meet the VDIF (AC) specification under actual use conditions.  
2. A nominal 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the  
VX specification under actual use conditions.  
3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.  
4. The input signal edge rate of 1.8V/ns or greater is to be maintained in the 20% to 80% range of the input waveform.  
SINGLE-ENDED INPUT AC TEST CONDITIONS FOR 1.8V LVTTL  
Symbol  
VIH  
Parameter  
Value  
VDDI  
0
Units  
V
Input HIGH Voltage(1)  
VIL  
InputLOWVoltage  
V
VTHI  
InputTimingMeasurementReferenceLevel(2)  
InputSignalEdgeRate(3)  
VDDI/2  
2
mV  
V/ns  
tR, tF  
NOTES:  
1. VDDI is the nominal 1.8V supply (1.8V ± 0.15V) of the part or source driving the input.  
2. A nominal 900mV timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.  
3. The input signal edge rate of 2V/ns or greater is to be maintained in the 10% to 90% range of the input waveform.  
11  
IDT5T915  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
INDUSTRIALTEMPERATURERANGE  
ACELECTRICALCHARACTERISTICSOVEROPERATINGRANGE(5)  
Symbol  
SkewParameters  
tSK(O)  
Parameter  
Min.  
Typ.  
Max  
Unit  
ps  
Same Device Output Pin-to-Pin Skew(1)  
Inverting Skew(2)  
Single-EndedandDifferentialModes  
Single-EndedinDifferentialMode(DSE)  
Single-EndedandDifferentialModes  
Single-EndedinDifferentialMode(DSE)  
Single-EndedandDifferentialModes  
Single-EndedinDifferentialMode(DSE)  
Single-EndedandDifferentialModes  
Single-EndedinDifferentialMode(DSE)  
25  
25  
tSK(INV)  
tSK(P)  
300  
ps  
300  
Pulse Skew(3)  
300  
ps  
300  
tSK(PP)  
Part-to-PartSkew(4)  
300  
ps  
300  
VOX  
HSTLandeHSTLDifferentialTrueandComplementaryOutputCrossingVoltageLevel  
VDDQ/2 - 200 VDDQ/2 VDDQ/2 + 200 mV  
PropagationDelay  
tPLH  
tPHL  
tR  
Propagation Delay A to Qn/Qn  
Output Rise Time (20% to 80%)  
Output Fall Time (20% to 80%)  
2.5V / 1.8V LVTTL Outputs  
HSTL / eHSTL Outputs  
2.5V / 1.8V LVTTL Outputs  
HSTL / eHSTL Outputs  
2.5V / 1.8V LVTTL Outputs  
HSTL / eHSTL Outputs  
2.5  
2
ns  
ps  
350  
350  
350  
350  
1050  
1350  
1050  
1350  
250  
200  
tF  
ps  
fO  
FrequencyRange(HSTL/eHSTLoutputs)  
FrequencyRange(2.5V/1.8VLVTTLoutputs)  
MHz  
OutputGateEnable/DisableDelay  
tPGE  
OutputGateEnabletoQn/Qn  
OutputGateEnabletoQn/QnDriventoGLDesignatedLevel  
3.5  
3
ns  
ns  
tPGD  
NOTES:  
1. Skew measured between all outputs or output pairs under identical input and output interfaces, transitions and load conditions on any one device. For single ended and differential  
LVTTL outputs, this measurement is made when each output voltage passes through VDDQ/2. For differential LVTTL outputs, the true outputs are compared only with other true  
outputs and the complementary outputs are compared only with other complementary outputs. For differential HSTL outputs, the measurement takes place at the crossing point  
of the true and complementary signals.  
2. For operating with either 1.8V or 2.5V LVTTL output interfaces with both true and complementary outputs enabled. Inverting skew is the skew between true and complementary  
outputs switching in opposite directions under identical input and output interfaces, transitions and load conditions on any one device.  
3. Skew measured is the difference between propagation delay times tPHL and tPLH of any output or output pair under identical input and output interfaces, transitions and load conditions  
on any one device. For single ended and differential LVTTL outputs, this measurement is made when each output voltage passes through VDDQ/2. The measurement applies  
to both true and complementary signals. For differential HSTL outputs, the measurement takes place at the crossing point of the true and complementary signals.  
4. Skew measured is the magnitude of the difference in propagation times between any outputs or output pairs of two devices, given identical transitions and load conditions at identical  
VDD/VDDQ levels and temperature.  
5. Guaranteed by design.  
12  
IDT5T915  
INDUSTRIALTEMPERATURERANGE  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
ACDIFFERENTIALINPUTSPECIFICATIONS(1)  
Symbol  
Parameter  
Min.  
1.73  
2.17  
Typ.  
Max  
Unit  
t W  
Reference Clock Pulse Width HIGH or LOW (HSTL/eHSTL outputs)(2)  
Reference Clock Pulse Width HIGH or LOW (2.5V / 1.8V LVTTL outputs)(2)  
ns  
HSTL/eHSTL/1.8V LVTTL/2.5V LVTTL  
VDIF  
VIH  
ACDifferentialVoltage(3)  
AC Input HIGH(4,5)  
AC Input LOW(4,6)  
400  
Vx + 200  
mV  
mV  
mV  
VIL  
Vx - 200  
LVEPECL  
VDIF  
ACDifferentialVoltage(3)  
AC Input HIGH(4)  
AC Input LOW(4)  
400  
1275  
mV  
mV  
mV  
VIH  
VIL  
875  
NOTES:  
1. For differential input mode, RxS is tied to GND.  
2. Both differential input signals should not be driven to the same level simultaneously. The input will not change state until the inputs have crossed and the voltage range defined  
by VDIF has been met or exceeded.  
3. Differential mode only. VDIF specifies the minimum input voltage (VTR - VCP) required for switching where VTR is the "true" input level and VCP is the "complement" input level.  
The AC differential voltage must be achieved to guarantee switching to a new state.  
4. For single-ended operation, A/VREF is tied to DC voltage (VREF). Refer to each input interface's DC specification for the correct VREF range.  
5. Voltage required to switch to a logic HIGH, single-ended operation only.  
6. Voltage required to switch to a logic LOW, single-ended operation only.  
13  
IDT5T915  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
INDUSTRIALTEMPERATURERANGE  
DIFFERENTIALACTIMINGWAVEFORMS  
1/fo  
tW  
tW  
VIH  
VTHI  
VIL  
A
VIH  
VTHI  
VIL  
A
tPHL  
tPLH  
VOH  
VOX  
VOL  
Qn  
Qn  
tSK(O)  
tSK(O)  
Qm  
VOH  
VOX  
VOL  
Qm  
HSTL and eHSTL Output Propagation and Skew Waveforms  
1/fo  
tW  
tW  
VIH  
VTHI  
VIL  
A
A
VIH  
VTHI  
VIL  
tPHL  
tPLH  
VOH  
VTHO  
VOL  
Qn  
Qn  
Qm  
Qm  
comp tPHL  
comp tPLH  
VOH  
VTHO  
VOL  
tSK(O)  
tSK(O)  
VOH  
VTHO  
VOL  
tSK(O)  
tSK(O)  
VOH  
VTHO  
VOL  
1.8V or 2.5V LVTTL Output Propagation and Skew Waveforms  
NOTES:  
1. For the HSTL and eHSTL outputs, tPHL and tPLH are measured from the input passing through VTHI or input pair crossing to the crossing point of each Qn and Qn.  
2. For 1.8V and 2.5V LVTTL outputs, tPHL and tPLH are measured from the input passing through VTHI or input pair crossing to the slower of Qn or Qn passing through VTHO.  
3. Pulse skew is calculated using the following expression:  
tSK(P) = | tPHL - tPLH |  
where tPHL and tPLH are measured on the controlled edges of any one output from the rising and falling edges of a single pulse. Note that the tPHL and tPLH shown above are  
not valid measurements for this calculation because they are not taken from the same pulse.  
14  
IDT5T915  
INDUSTRIALTEMPERATURERANGE  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
VIH  
VTHI  
VIL  
A
A
VIH  
VTHI  
VIL  
VIH  
VTHI  
VIL  
GL  
tPLH  
VIH  
VTHI  
VIL  
G(+)  
tPGE  
tPGD  
Qn  
VOH  
VTHO  
VOL  
Qn  
Differential Gate Disable/Enable Showing Runt Pulse Generation  
NOTES:  
1. The waveforms shown only gate "true" output, Qn.  
2. As shown, it is possible to generate runt pulses on gate disable and enable of the outputs. It is the user's responsibility to time their Gx signals to avoid this problem.  
15  
IDT5T915  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
INDUSTRIALTEMPERATURERANGE  
SDR AC TIMING WAVEFORMS  
1/fo  
tW  
tW  
VIH  
VTHI  
VIL  
A
VIH  
VTHI  
VIL  
A
tPHL  
tPLH  
VOH  
VTHO  
VOL  
Qn  
Qm  
tSK(O)  
tSK(O)  
VOH  
VTHO  
VOL  
Propagation and Skew Waveforms  
NOTES:  
1. tPHL and tPLH signals are measured from the input passing through VTHI or input pair crossing to Qn passing through VTHO.  
2. Pulse Skew is calculated using the following expression:  
tSK(P) = | tPHL - tPLH |  
where tPHL and tPLH are measured on the controlled edges of any one output from rising and falling edges of a single pulse. Please note that the tPHL and tPLH shown are not  
valid measurements for this calculation because they are not taken from the same pulse.  
VIH  
VTHI  
VIL  
A
A
VIH  
VTHI  
VIL  
VIH  
VTHI  
VIL  
GL  
Gx  
Qn  
tPLH  
VIH  
VTHI  
VIL  
tPGD  
tPGE  
VOH  
VTHO  
VOL  
SDR Gate Disable/Enable Showing Runt Pulse Generation  
NOTE:  
As shown, it is possible to generate runt pulses on gate disable and enable of the outputs. It is the user's responsibility to time their Gx signals to avoid this problem.  
16  
IDT5T915  
INDUSTRIALTEMPERATURERANGE  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
TESTCIRCUITSANDCONDITIONS  
VDDI  
R1  
R2  
3 inch, ~50  
Transmission Line  
VIN  
VDDQ  
VDD  
VDDI  
A
D.U.T.  
Pulse  
Generator  
R1  
R2  
A
3 inch, ~50Ω  
Transmission Line  
VIN  
Test Circuit for Differential Input(1)  
DIFFERENTIALINPUTTESTCONDITIONS  
Symbol  
VDD = 2.5V ± 0.1V  
Unit  
R1  
100  
R2  
100  
VDDI  
VCM*2  
V
HSTL: Crossing of A and A  
eHSTL: Crossing of A and A  
LVEPECL: Crossing of A and A  
1.8V LVTTL: VDDI/2  
2.5V LVTTL: VDD/2  
VTHI  
V
NOTE:  
1. This input configuration is used for all input interfaces. For single-ended testing,  
the VIN input is tied to GND. For testing single-ended in differential input mode,  
the VIN is left floating.  
17  
IDT5T915  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
INDUSTRIALTEMPERATURERANGE  
VDDQ  
VDDQ  
R1  
VDDQ  
VDD  
VDDQ  
VDD  
R1  
R2  
R2  
CL  
D.U.T.  
VDDQ  
Qn  
Qn  
D.U.T.  
R1  
R2  
CL  
Qn  
CL  
Test Circuit for SDR Outputs  
Test Circuit for Differential Outputs  
DIFFERENTIALOUTPUTTEST  
CONDITIONS  
SDROUTPUTTESTCONDITIONS  
Symbol  
VDD = 2.5V ± 0.1V  
VDDQ = Interface Specified  
15  
Unit  
Symbol  
VDD = 2.5V ± 0.1V  
Unit  
VDDQ = Interface Specified  
CL  
R1  
pF  
V
CL  
R1  
15  
100  
pF  
V
100  
R2  
100  
R2  
100  
VOX  
HSTL: Crossing of Qn and Qn  
eHSTL: Crossing of Qn and Qn  
1.8V LVTTL: VDDQ/2  
2.5V LVTTL: VDDQ/2  
VTHO  
VDDQ / 2  
VTHO  
V
18  
IDT5T915  
INDUSTRIALTEMPERATURERANGE  
2.5VDIFFERENTIAL1:5CLOCKBUFFERTERABUFFER  
ORDERINGINFORMATION  
XX  
X
XXXXX  
IDT  
Package Process  
Device Type  
I
-40°C to +85°C (Industrial)  
PA  
Thin Shrink Small Outline Package  
2.5V Differential 1:5 Clock Buffer Terabuffer™  
5T915  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
for Tech Support:  
logichelp@idt.com  
(408) 654-6459  
19  

相关型号:

IDT5T915PAI8

Low Skew Clock Driver, 5T Series, 5 True Output(s), 0 Inverted Output(s), CMOS, PDSO48, TSSOP-48
IDT

IDT5T929

PRECISION CLOCK GENERATOR OC-48 APPLICATIONS
IDT

IDT5T929-10NLGI8

PLL Based Clock Driver, 5T Series, 2 True Output(s), 0 Inverted Output(s), PQCC28, GREEN, PLASTIC, VFQFN-28
IDT

IDT5T929-10NLI

PLL Based Clock Driver, 5T Series, 2 True Output(s), 0 Inverted Output(s), PQCC28, PLASTIC, VFQFN-28
IDT

IDT5T929-29NLI

PRECISION CLOCK GENERATOR OC-48 APPLICATIONS
IDT

IDT5T929-30NLI

PRECISION CLOCK GENERATOR OC-48 APPLICATIONS
IDT

IDT5T929-30NLI8

PLL Based Clock Driver, 5T Series, 2 True Output(s), 0 Inverted Output(s), PQCC28, PLASTIC, VFQFN-28
IDT

IDT5T9304

LVDS, 1:4 Clock Buffer Terabuffer?
IDT

IDT5T9304PG

LVDS, 1:4 Clock Buffer Terabuffer?
IDT

IDT5T9304PGG

LVDS, 1:4 Clock Buffer Terabuffer?
IDT

IDT5T9304PGGI

Low Skew Clock Driver, 5T Series, 4 True Output(s), 0 Inverted Output(s), PDSO24, GREEN, TSSOP-24
IDT

IDT5T9304PGI

Low Skew Clock Driver, 5T Series, 4 True Output(s), 0 Inverted Output(s), PDSO24, TSSOP-24
IDT