IDT7005L55GI [IDT]

Dual-Port SRAM, 8KX8, 55ns, CMOS, CPGA68, 1.180 X 1.180 INCH, 0.160 INCH HEIGHT, CERAMIC, PGA-68;
IDT7005L55GI
型号: IDT7005L55GI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 8KX8, 55ns, CMOS, CPGA68, 1.180 X 1.180 INCH, 0.160 INCH HEIGHT, CERAMIC, PGA-68

静态存储器 内存集成电路
文件: 总20页 (文件大小:228K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
IDT7005S/L  
8K x 8 DUAL-PORT  
STATIC RAM  
one device  
Features  
M/S = H for BUSY output flag on Master,  
M/S = L for BUSY input on Slave  
Interrupt Flag  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
Devices are capable of withstanding greater than 2001V  
electrostatic discharge  
Battery backup operation—2V data retention  
TTL-compatible, single 5V (±10%) power supply  
Available in 68-pin PGA, quad flatpack, PLCC, and a 64-pin  
thin quad flatpack  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
– Military:20/25/35/55/70ns(max.)  
– Industrial: 35/55ns (max.)  
– Commercial:15/17/20/25/35/55ns(max.)  
Low-power operation  
– IDT7005S  
Active: 750mW (typ.)  
Standby: 5mW (typ.)  
– IDT7005L  
Active: 700mW (typ.)  
Standby: 1mW (typ.)  
IDT7005 easily expands data bus width to 16 bits or more  
using the Master/Slave select when cascading more than  
Industrial temperature range (-40°C to +85°C) is available  
for selected speeds  
FunctionalBlockDiagram  
OER  
OEL  
CEL  
CER  
R/WL  
R/WR  
I/O0L- I/O7L  
I/O0R-I/O7R  
I/O  
I/O  
Control  
Control  
(1,2)  
BUSYL  
(1,2)  
BUSYR  
A12R  
A12L  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A0L  
A0R  
13  
13  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CEL  
OEL  
CER  
OER  
WR  
R/  
R/WL  
SEMR  
INTR  
SEML  
INTL  
M/S  
(2)  
(2)  
2738 drw 01  
NOTES:  
1. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
2. BUSY outputs and INT outputs are non-tri-stated push-pull.  
JUNE 1999  
1
DSC 2738/11  
©1998 Integrated Device Technology, Inc.  
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Description  
a very low standby power mode.  
The IDT7005 is a high-speed 8K x 8 Dual-Port Static RAM. The  
IDT7005isdesignedtobeusedasastand-alone64K-bitDual-PortRAM  
orasacombinationMASTER/SLAVEDual-PortRAMfor16-bit-or-more  
wordsystems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproach  
in16-bitorwidermemorysystemapplicationsresultsinfull-speed,error-  
freeoperationwithouttheneedforadditionaldiscretelogic.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typically operate on only 750mW of power. Low-power (L)  
versionsofferbatterybackupdataretentioncapabilitywithtypicalpower  
consumptionof500µWfroma2Vbattery.  
The IDT7005 is packaged in a ceramic 68-pin PGA, 68-pin quad  
flatpack,68-pinPLCCanda64-pinthinquadflatpack,(TQFP).Military  
gradeproductismanufacturedincompliancewiththelatestrevisionofMIL-  
PRF-38535QMLmakingitideallysuitedtomilitarytemperatureapplica-  
tionsdemandingthehighestlevelofperformanceandreliability.  
This device provides two independent ports with separate control,  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
reads or writes to any location in memory. An automatic power down  
featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
PinConfigurations(1,2,3)  
INDEX  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
60  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
GND  
I/O6L  
I/O7L  
VCC  
GND  
I/O0R  
I/O1R  
I/O2R  
VCC  
A5L  
A4L  
A3L  
A2L  
A1L  
A0L  
INTL  
BUSY  
GND  
M/S  
BUSYR  
INTR  
A0R  
A1R  
A2R  
A3R  
A4R  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
59  
58  
57  
56  
55  
IDT7005J or F  
J68-1(4)  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
F68-1(4)  
L
68 Pin PLCC / FLATPACK  
Top View(5)  
,
I/O3R  
I/O4R  
I/O5R  
I/O6R  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
2738 drw 02  
INDEX  
1
2
3
4
5
6
48  
47  
46  
A4L  
I/O2L  
A3L  
3L  
4L  
I/O  
A2L  
I/O  
A1L  
45  
44  
43  
I/O5L  
GND  
I/O6L  
I/O7L  
VCC  
A0L  
7005PF  
PN-64(4)  
INTL  
BUSY  
L
7
8
9
42  
41  
40  
GND  
64-Pin TQFP  
Top View(5)  
M/S  
GND  
I/O0R  
I/O1R  
I/O2R  
.
10  
11  
12  
BUSYR  
INTR  
A0R  
39  
38  
37  
CC  
V
13  
14  
15  
16  
A1R  
36  
35  
34  
33  
NOTES:  
I/O3R  
A2R  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
4R  
I/O  
A3R  
I/O5R  
A4R  
3. J68-1 package body is approximately .95 in x .95 in x .12 in.  
F68-1 package body is approximately .97 in x .97 in x .08 in.  
PN64 package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate oriention of the actual part-marking  
2738 drw 03  
6.42  
2
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
51  
A5L  
52  
50  
A4L  
48  
A2L  
46  
A0L  
44  
BUSY  
42  
M/S  
40  
INT  
38  
36  
A3R  
11  
10  
09  
08  
07  
1R  
L
R
A
53  
A7L  
49  
A3L  
47  
A1L  
45  
INTL  
43  
GND  
41  
BUSYR  
39  
37  
35  
A4R  
34  
A5R  
A0R A2R  
6L  
A
55  
54  
A8L  
56  
32  
A7R  
33  
A6R  
9L  
A
57  
A
30  
A9R  
31  
A8R  
11L  
A10L  
58  
59  
28  
A11R  
29  
A10R  
VCC  
A12L  
60  
N/C  
62  
IDT7005G  
G68-1(4)  
61  
26  
GND  
27  
A12R  
06  
05  
N/C  
63  
68-Pin PGA  
Top View(5)  
24  
N/C  
25  
N/C  
SEML  
L
CE  
65  
64  
22  
SEMR  
23  
CE  
04  
03  
02  
R
L
OE  
R/WL  
66  
67  
I/O0L  
20  
OE  
21  
R/WR  
.
R
N/C  
1
3
5
7
9
68  
11  
13  
VCC  
15  
18  
I/O7R  
19  
N/C  
GND  
GND  
I/O7L  
I/O1L  
I/O4L  
I/O2L  
I/O1R  
I/O4R  
2
4
6
8
10  
12  
14  
16  
17  
01  
I/O5L  
I/O0R I/O2R I/O3R I/O5R I/O6R  
VCC  
E
I/O6L  
I/O3L  
A
B
C
D
F
G
H
J
K
L
INDEX  
2738 drw 04  
NOTES:  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 1.18in x 1.18in x .16in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate oriention of the actual part-marking  
PinNames  
Left Port  
Right Port  
Names  
CEL  
CER  
Chip Enable  
WL  
WR  
R/  
R/  
Read/Write Enable  
Output Enable  
Address  
OEL  
OER  
0L  
12L  
0R  
12R  
A
- A  
A
- A  
0L  
0R  
7R  
I/O - I/O7L  
SEML  
I/O - I/O  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
Busy Flag  
SEMR  
INTR  
BUSYR  
S
INTL  
BUSYL  
M/  
Master or Slave Select  
Power  
CC  
V
GND  
Ground  
2738 tbl 01  
6.42  
3
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
R/W  
X
I/O0-7  
Mode  
CE  
H
OE  
X
SEM  
H
High-Z  
DATAIN  
Deselected: Power-Down  
Write to Memory  
L
L
X
H
L
H
L
H
DATAOUT Read Memory  
High-Z Outputs Disabled  
X
X
H
X
2738 tbl 02  
NOTE:  
1. A0L – A12L is not equal to A0R – A12R  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs(1)  
Outputs  
R/W  
I/O0-7  
Mode  
CE  
H
OE  
L
SEM  
H
L
L
L
DATAOUT Read in Semaphore Flag Data Out  
H
X
DATAIN  
Write I/Oo into Semaphore Flag  
Not Allowed  
____  
L
X
X
2738 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from I/O0 - I/O7. These eight semaphores are addressed by A0 - A2.  
AbsoluteMaximumRatings(1)  
MaximumOperatingTemperature  
andSupplyVoltage(1,2)  
Commercial  
& Industrial  
Symbol  
Rating  
Military  
Unit  
Ambient  
(2)  
Grade  
Temperature  
-55OC to+125OC  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
Vcc  
VTERM  
Terminal Voltage  
with Respect to  
GND  
-0.5 to +7.0  
-0.5 to +7.0  
V
Military  
5.0V + 10%  
5.0V + 10%  
5.0V + 10%  
Temperature Under  
Bias  
-55 to +125  
-55 to +125  
50  
-65 to +135  
-65 to +150  
50  
oC  
oC  
Commercial  
Industrial  
0V  
TBIAS  
TSTG  
IOUT  
OV  
Storage  
Temperature  
2738 tbl 05  
NOTES:  
1. This is the parameter TA.  
mA  
DC Output Current  
2
Industrial temperature: for specific speeds, packages and powers contact  
your sales office.  
2738 tbl 04  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS  
may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may  
affect reliability.  
RecommendedDCOperating  
Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
5.5  
Unit  
V
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10%  
maximum, and is limited to < 20mA for the period of VTERM > Vcc + 10%.  
VCC  
Supply Voltage  
4.5  
5.0  
GND  
VIH  
Ground  
0
0
0
V
Capacitance(1) (TA = +25°C, f = 1.0MHz)  
Input High Voltage  
Input Low Voltage  
2.2  
6.0(2)  
0.8  
V
____  
-0.5(1)  
V
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2)  
Max.  
Unit  
____  
VIL  
2738 tbl 06  
CIN  
VIN = 3dV  
9
pF  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
COUT  
VOUT = 3dV  
10  
pF  
2738 tbl 07  
NOTES:  
1. These parameters are determined by device characterization but are not  
production tested (TQFP Package only).  
2. 3dV references the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
6.42  
4
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the 0perating  
Temperature and Supply Voltage Range (VCC = 5.0V ± 10%)  
7005S  
7005L  
Symbol  
|ILI|  
Parameter  
Input Leakage Current(1)  
Output Leakage Current  
Output Low Voltage  
Test Conditions  
Min.  
Max.  
10  
Min.  
Max.  
Unit  
µA  
µA  
V
___  
___  
VCC = 5.5V, VIN = 0V to VCC  
5
5
___  
___  
___  
___  
|ILO|  
IH  
OUT  
CC  
10  
CE = V , V = 0V to V  
VOL  
IOL = +4mA  
0.4  
0.4  
___  
___  
VOH  
Output High Voltage  
IOH = -4mA  
2.4  
2.4  
V
2738 tbl 08  
NOTE:  
1. At Vcc < 2.0V input leakages are undefined.  
Data Retention Characteristics Over All Temperature RangeS  
(L Version Only) (VLC = 0.2V, VHC = VCC - 0.2V)  
Symbol  
VDR  
ICCDR  
Parameter  
Test Condition  
Min.  
Typ.(1)  
Max.  
Unit  
V
___  
___  
VCC for Data Retention  
VCC = 2V  
2.0  
___  
Data Retention Current  
Mil. & Ind.  
Com'l.  
100  
4000  
µA  
CE > VHC  
___  
VIN > VHC or < VLC  
100  
1500  
(3)  
___  
___  
tCDR  
Chip Deselect to Data Retention Time  
Operation Recovery Time  
0
ns  
SEM > VHC  
(3)  
(2)  
___  
___  
tR  
tRC  
ns  
2738 tbl 09  
NOTES:  
1. TA = +25°C, VCC = 2V, and are not production tested.  
2. tRC = Read Cycle Time  
3. This parameter is guaranteed by characterization, but is not production tested.  
Data Retention Waveform  
DATA RETENTION MODE  
VDR >  
4.5V  
4.5V  
tR  
VCC  
2V  
tCDR  
VIH  
VDR  
CE  
VIH  
2738 drw 05  
6.42  
5
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1,6) (VCC = 5.0V ± 10%)  
7005X15  
7005X17  
7005X20  
Com'l &  
Military  
7005X25  
Com'l &  
Military  
Com'l Only  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
CC  
I
Dynamic Operating Current  
(Both Ports Active)  
S
L
170  
160  
310  
260  
170  
160  
310  
260  
160  
150  
290  
240  
155  
145  
265  
220  
mA  
IL  
CE = V , Outputs Open  
IH  
SEM = V  
(3)  
MAX  
f = f  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
160  
150  
370  
320  
155  
145  
340  
280  
SB1  
I
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
20  
10  
60  
60  
20  
10  
60  
50  
20  
10  
60  
50  
16  
10  
60  
50  
mA  
mA  
L
R
IH  
CE = CE = V  
R
L
IH  
SEM = SEM = V  
(3)  
MAX  
f = f  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
20  
10  
90  
70  
16  
10  
80  
65  
(5)  
SB2  
I
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
105  
95  
190  
160  
105  
95  
190  
160  
95  
85  
180  
150  
90  
80  
170  
140  
"A"  
IL  
"B"  
IH  
CE = V and CE = V  
Active Port Outputs Open,  
(3)  
MAX  
f=f  
____  
____  
____  
____  
____  
____  
____  
____  
R
L
IH  
MIL &  
IND  
S
L
95  
85  
240  
210  
90  
80  
215  
180  
SEM = SEM = V  
SB3  
L
I
Full Standby Current (Both Both Ports CE and  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
mA  
mA  
R
CC  
Ports - All CMOS Level  
Inputs)  
CE > V - 0.2V  
IN  
IN  
CC  
V
V
> V - 0.2V or  
____  
____  
____  
____  
____  
____  
____  
____  
(4)  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
< 0.2V, f = 0  
R
L
CC  
SEM = SEM > V - 0.2V  
SB4  
I
Full Standby Current  
(One Port - All  
CMOS Level Inputs)  
"A"  
COM'L  
S
L
100  
90  
170  
140  
100  
90  
170  
140  
90  
80  
155  
130  
85  
75  
145  
120  
CE < 0.2V and  
(5)  
CE"B"  
CC  
> V - 0.2V  
R
L
CC  
SEM = SEM > V - 0.2V  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
90  
80  
225  
200  
85  
75  
200  
170  
IN  
CC  
IN  
V
> V - 0.2V or V < 0.2V  
Active Port Outputs Open  
(3)  
MAX  
f = f  
2738 tbl 10  
7005X35  
Com'l, Ind  
& Military  
7005X55  
Com'l, Ind  
& Military  
7005X70  
Military  
Only  
Symbol  
Parameter  
Test Condition  
Version  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
____  
____  
____  
____  
CC  
I
Dynamic Operating  
Current  
(Both Ports Active)  
COM'L  
S
L
150  
140  
250  
210  
150  
140  
250  
210  
mA  
IL  
CE = V , Outputs Open  
IH  
SEM = V  
(3)  
MAX  
f = f  
MIL &  
IND  
S
L
150  
140  
300  
250  
150  
140  
300  
250  
140  
130  
300  
250  
____  
____  
____  
____  
SB1  
I
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
13  
10  
60  
50  
13  
10  
60  
50  
mA  
mA  
mA  
mA  
L
R
IH  
CE = CE = V  
R
L
IH  
SEM = SEM = V  
f = f  
(3)  
MAX  
MIL &  
IND  
S
L
13  
10  
80  
65  
13  
10  
80  
65  
10  
8
80  
65  
____  
____  
____  
____  
(5)  
SB2  
I
Standby Current  
(One Port - TTL  
Level Inputs)  
"A"  
IL  
"B"  
IH  
COM'L  
S
L
85  
75  
155  
130  
85  
75  
155  
130  
CE = V and CE = V  
Active Port Outputs Open,  
(3)  
MAX  
f=f  
85  
75  
R
L
IH  
MIL &  
IND  
S
L
190  
160  
85  
75  
190  
160  
80  
70  
190  
160  
SEM = SEM = V  
____  
____  
____  
____  
SB3  
L
I
Full Standby Current  
(Both Ports - All  
CMOS Level Inputs)  
Both Ports CE and  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
R
CC  
CE > V - 0.2V  
IN  
IN  
CC  
V
V
> V - 0.2V or  
(4)  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
< 0.2V, f = 0  
R
L
CC  
SEM = SEM > V - 0.2V  
____  
____  
____  
____  
SB4  
I
Full Standby Current  
(One Port - All  
CMOS Level Inputs)  
COM'L  
S
L
80  
70  
135  
110  
80  
70  
135  
110  
"A"  
CE < 0.2V and  
(5)  
"B"  
CC  
CE > V - 0.2V  
R
L
CC  
SEM = SEM > V - 0.2V  
MIL &  
IND  
S
L
80  
70  
175  
150  
80  
70  
175  
150  
75  
65  
175  
150  
IN  
CC  
IN  
V
> V - 0.2V or V < 0.2V  
Active Port Outputs Open  
f = f  
(3)  
MAX  
2738 tbl 11  
NOTES:  
1. 'X' in part number indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C and are not production tested. ICC DC = 120mA (typ)  
3. At f = fMAX, address and I/O'S are cycling at the maximum frequency read cycle of 1/tRC, and using “AC Test Conditions” of input levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the port opposite port "A".  
6. Industrial temperature: for other speeds, packages and powers contact your sales office.  
6.42  
6
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
5V  
5V  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
5ns Max.  
1.5V  
1250  
1250Ω  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
DATAOUT  
BUSY  
INT  
DATAOUT  
5pF*  
775Ω  
30pF  
775Ω  
1.5V  
Figures 1 and 2  
2738 tbl 12  
2738 drw 06  
Figure 1. AC Output Test Load  
Figure 2. Output Test Load  
(For tLZ, tHZ, tWZ, tOW)  
*Including scope and jig  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4,5)  
7005X15  
Com'l Only  
7005X17  
Com'l Only  
7005X20  
Com'l &  
Military  
7005X25  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
____  
tRC  
Read Cycle Time  
15  
17  
20  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
____  
tAA  
Address Access Time  
15  
15  
17  
17  
20  
20  
25  
25  
Chip Enable Access Time(3)  
Output Enable Access Time  
____  
____  
____  
____  
____  
____  
____  
____  
tACE  
tAOE  
tOH  
10  
10  
12  
13  
____  
____  
____  
____  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
3
3
3
3
____  
____  
____  
____  
tLZ  
3
3
3
3
Output High-Z Time(1,2)  
10  
10  
12  
15  
____  
____  
____  
____  
tHZ  
tPU  
Chip Enable to Power Up Time (2,5)  
Chip Disable to Power Down Time (2,5)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
0
0
____  
____  
____  
____  
____  
____  
____  
____  
tPD  
15  
17  
20  
25  
____  
____  
____  
____  
tSOP  
tSAA  
10  
10  
10  
10  
____  
____  
____  
____  
15  
17  
20  
25  
ns  
2738 tbl 13a  
7005X35  
Com'l, Ind  
& Military  
7005X55  
Com'l, Ind  
& Military  
IDT7005X70  
Military  
Only  
Symbol  
READ CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
tRC  
Read Cycle Time  
35  
55  
70  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
tAA  
Address Access Time  
35  
35  
55  
55  
70  
70  
Chip Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
tACE  
tAOE  
tOH  
20  
30  
35  
____  
____  
____  
3
3
3
____  
____  
____  
tLZ  
3
3
3
Output High-Z Time(1,2)  
15  
25  
30  
____  
____  
____  
tHZ  
tPU  
Chip Enable to Power Up Time (2,5)  
Chip Disable to Power Down Time (2,5)  
0
0
0
____  
____  
____  
____  
____  
____  
tPD  
35  
50  
50  
____  
____  
____  
tSOP  
tSAA  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
15  
15  
15  
____  
____  
____  
35  
55  
70  
ns  
2738 tbl 13b  
NOTES:  
1. Transition is measured ±500mV from Low or High impedance voltage with load (Figures 1 and 2).  
2. This parameter is guaranteed but not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL.  
4. 'X' in part number indicates power rating (S or L).  
5. Industrial temperature: for other speeds, packages and powers contact your sales office.  
6.42  
7
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
tAA  
(4)  
tACE  
CE  
(4)  
tAOE  
OE  
R/W  
(1)  
tOH  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
tHZ  
BUSYOUT  
(3,4)  
tBDD  
2738 drw 07  
NOTES:  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
Timing of Power-Up Power-Down  
CE  
PU  
t
PD  
t
ICC  
SB  
I
,
2738 drw 08  
6.42  
8
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5,6)  
7005X15  
Com'l Only  
7005X17  
Com'l Only  
7005X20  
Com'l &  
Military  
7005X25  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
Chip Enable to End-of-Write(3)  
15  
12  
12  
0
17  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
tWP  
tWR  
tDW  
tHZ  
12  
0
12  
0
15  
0
20  
0
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
10  
10  
15  
15  
____  
____  
____  
____  
10  
10  
12  
15  
____  
____  
____  
____  
tDH  
0
0
0
0
(1,2)  
____  
____  
____  
____  
tWZ  
tOW  
tSWRD  
tSPS  
Write Enable to Output in High-Z  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
10  
12  
15  
____  
____  
____  
____  
0
5
5
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
____  
____  
ns  
2738 tbl 14a  
7005X35  
Com'l, Ind  
& Military  
7005X55  
Com'l, Ind  
& Military  
7005X70  
Military Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
70  
50  
50  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
tWP  
tWR  
tDW  
tHZ  
25  
0
40  
0
50  
0
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
15  
30  
40  
____  
____  
____  
15  
25  
30  
____  
____  
____  
tDH  
0
0
0
(1,2)  
____  
____  
____  
tWZ  
tOW  
tSWRD  
tSPS  
Write Enable to Output in High-Z  
15  
25  
30  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
____  
____  
____  
ns  
2738 tbl 14b  
NOTES:  
1. Transition is measured ±500mV from Low or High-impedance voltage with load (Figure 2).  
2. This parameter is guaranteed by device characterization but is not production tested.  
3. To access RAM, CE = VIL, SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part number indicates power rating (S or L).  
6. Industrial temperature: for other speeds, packages and powers contact your sales office.  
6.42  
9
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM(9)  
(3)  
(6)  
(2)  
tWR  
tAS  
tWP  
R/W  
DATAOUT  
DATAIN  
(7)  
tOW  
tWZ  
(4)  
(4)  
tDW  
tDH  
2738 drw 09  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
tWC  
ADDRESS  
tAW  
CE or SEM(9)  
(6)  
(2)  
(3)  
tAS  
tEW  
tWR  
R/  
W
tDW  
tDH  
DATAIN  
2738 drw 10  
NOTES:  
1. R/W or CE must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured ±500mV from steady state with the Output Test Load  
(Figure 2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be placed  
on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified  
tWP.  
9. To access RAM, CE = VIH and SEM = VIL. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
6.42  
10  
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
tOH  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tAW  
tWR  
tACE  
tEW  
SEM  
tDW  
tSOP  
DATA OUT  
VALID  
DATA0  
DATAIN VALID  
tWP tDH  
tAS  
R/  
W
tSWRD  
tAOE  
OE  
tSOP  
Write Cycle  
Read Cycle  
2738 drw 11  
NOTE:  
1. CE = VIH for the duration of the above timing (both write and read cycle).  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
(2)  
SIDE  
“A”  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
(2)  
R/W"B"  
SEM"B"  
SIDE “B”  
2738 drw 12  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH. Semaphore flag is released from both sides (reads as ones from both sides) at cycle start.  
2. All timing is the same for left and right ports. Port “A” may be either left or right port. “B” is the opposite from port “A”.  
3. This parameter is measured from R/W“A” or SEM“A” going HIGH to R/W“B” or SEM“B” going HIGH.  
4. If tSPS is not satisfied, the semaphore will fall positively to one side or the other, but there is no guarantee which side will obtain the flag.  
6.42  
11  
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6,7)  
7005X15  
Com'l Only  
7005X17  
Com'l Only  
7005X20  
Com'l &  
Military  
7005X25  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S=VIH)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
BAA  
t
15  
15  
15  
17  
17  
17  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
BDA  
t
BAC  
t
tBDC  
tAPS  
tBDD  
tWH  
15  
17  
17  
17  
____  
____  
____  
____  
5
5
5
5
____  
____  
____  
____  
BUSY Disable to Valid Data(3)  
18  
18  
30  
30  
(5)  
____  
____  
____  
____  
Write Hold After  
12  
13  
15  
17  
BUSY  
BUSY TIMING (M/S=VIL)  
____  
____  
____  
____  
BUSY Input to Write(4)  
tWB  
0
0
0
0
ns  
ns  
(5)  
____  
____  
____  
____  
tWH  
Write Hold After BUSY  
12  
13  
15  
17  
PORT-TO-PORT DELAY TIMING  
tWDD  
Write Pulse to Data Delay(1)  
30  
25  
30  
25  
45  
35  
50  
35  
ns  
____  
____  
____  
____  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
____  
____  
____  
____  
2738 tbl 15a  
7005X35  
Com'l, Ind  
& Military  
7005X55  
Com'l, Ind &  
Military  
7005X70  
Military  
Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S=VIH)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tBAA  
20  
20  
20  
45  
40  
40  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
20  
35  
35  
____  
____  
____  
5
5
5
____  
____  
____  
BUSY Disable to Valid Date(3)  
35  
40  
45  
(5)  
____  
____  
____  
Write Hold After BUSY  
25  
25  
25  
BUSY TIMING (M/S=VIL)  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
PORT-TO-PORT DELAY TIMING  
tWB  
0
0
0
ns  
ns  
____  
____  
____  
tWH  
25  
25  
25  
tWDD  
Write Pulse to Data Delay(1)  
Write Data Valid to Read Data Delay(1)  
60  
45  
80  
65  
95  
80  
ns  
____  
____  
____  
____  
____  
____  
tDDD  
ns  
2738 tbl 15b  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention with port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
6. 'X' in part number indicates power rating (S or L).  
7. Industrial temperature: for other speeds, packages and powers contact your sales office.  
6.42  
12  
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
(4)  
Timing Waveform of Write with Port-to-Port Read with BUSY(2,5) (M/S = VIH  
)
tWC  
MATCH  
ADDR"A"  
tWP  
R/  
W"A"  
tDW  
tDH  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
tBDA  
tBDD  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
2738 drw 13  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for for M/S = VIL (slave).  
2. CEL = CER = VIL  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), then BUSY is an input (BUSY"A" =VIH), and BUSY"B" = "don't care", for this example.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite port "A".  
Timing Waveform of Write with BUSY  
tWP  
R/W"A"  
(3)  
tWB  
BUSY"B"  
(1)  
tWH  
(2)  
R/W"B"  
2738 drw 14  
NOTES:  
1. tWH must be met for both BUSY input (slave) and output (master).  
2. BUSY is asserted on Port "B", blocking R/W"B", until BUSY"B" goes HIGH  
3. tWB is only for the 'Slave' Version..  
6.42  
13  
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR  
and  
"A"  
"B"  
ADDRESSES MATCH  
CE"A"  
CE"B"  
(2)  
APS  
t
t
t
BDC  
BAC  
BUSY"B"  
2738 drw 15  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESS "N"  
(2)  
tAPS  
ADDR"B"  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
BUSY"B"  
2738 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1,2)  
7005X15  
Com'l Only  
7005X17  
Com'l Only  
7005X20  
Com'l &  
Military  
7005X25  
Com'l &  
Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
tAS  
Address Set-up Time  
Write Recovery Time  
0
0
0
0
ns  
ns  
ns  
____  
____  
____  
____  
tWR  
tINS  
tINR  
0
0
0
0
____  
____  
____  
____  
Interrupt Set Time  
15  
15  
15  
15  
20  
20  
20  
20  
____  
____  
____  
____  
Interrupt Reset Time  
ns  
2738 tb l 16a  
7005X35  
Com'l, Ind  
& Military  
7005X55  
Com'l, Ind  
& Military  
7005X70  
Military  
Only  
Symbol  
INTERRUPT TIMING  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
tAS  
Address Set-up Time  
0
0
0
ns  
ns  
ns  
____  
____  
____  
tWR  
tINS  
tINR  
Write Recovery Time  
Interrupt Set Time  
0
0
0
____  
____  
____  
25  
25  
40  
40  
50  
50  
____  
____  
____  
Interrupt Reset Time  
ns  
2738 tb l 16b  
NOTES:  
1. 'X' in part number indicates power rating (S or L).  
2. Industrial temperature: for other speeds, packages and powers contact your sales office.  
6.42  
14  
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
t
WC  
ADDR"A"  
INTERRUPT SET ADDRESS(2)  
(3)  
(4)  
t
AS  
t
WR  
CE"A"  
R/  
W
"A"  
(3)  
t
INS  
INT"B"  
2738 drw 17  
t
RC  
INTERRUPT CLEAR ADDRESS(2)  
ADDR"B"  
CE"B"  
(3)  
AS  
t
OE"B"  
(3)  
INR  
t
INT"B"  
2738 drw 18  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from port “A”.  
2. See Interrupt Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
Truth Table III — Interrupt Flag(1,4)  
Left Port  
Right Port  
R/  
W
L
A12L-A0L  
1FFF  
X
R/  
W
R
A12R-A0R  
X
Function  
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
CE  
L
OE  
L
INT  
L
CE  
R
OE  
R
INT  
R
L
L
X
X
L
X
X
X
X
X
L
X
L
X
L
L(2)  
H(3)  
X
X
X
X
X
1FFF  
1FFE  
X
X
X
L(3)  
H(2)  
L
X
X
L
1FFE  
X
X
X
Reset Left INTL Flag  
2738 tbl 17  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTR and INTL must be initialized at power-up.  
6.42  
15  
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
AOL-A12L  
AOR-A12R  
(1 )  
(1 )  
Function  
Normal  
Normal  
Normal  
CEL  
X
CER  
X
BUSYL  
BUSYR  
NO MATCH  
MATCH  
H
H
H
H
H
X
X
H
MATCH  
H
H
L
L
MATCH  
(2)  
(2)  
Write Inhibit(3 )  
2738 tbl 18  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYX outputs on the IDT7005 are  
push-pull, not open drain outputs. On slaves the BUSYX input internally inhibits writes.  
2. 'L' if the inputs to the opposite port were stable prior to the address and enable inputs of this port. 'H' if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0 - D7 Left  
D0 - D7 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
2738 tbl 19  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7005.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's. These eight semaphores are addressed by A0 - A2.  
3. CE=VIH, SEM=VIL to access the semaphores. Refer to the semaphore Read/Write Control Truth Table.  
FunctionalDescription  
(HEX), where a write is defined as CE = R/W= VIL per Truth Table III.  
Theleftportclearstheinterruptthroughaccessofaddresslocation1FFE  
when CE =OE = VIL. For this example, R/Wis a "don't care". Likewise,  
therightportinterruptflag(INTR)isassertedwhentheleftportwritesto  
memory location 1FFF (HEX) and to clear the interrupt flag (INTR), the  
rightportmustreadthememorylocation1FFF.Themessage(8bits)at  
1FFEor1FFFisuser-defined,sinceitisanaddressableSRAMlocation.  
Iftheinterruptfunctionisnotused,addresslocations1FFEand1FFFare  
notusedasmailboxes,butaspartoftherandomaccessmemory.Refer  
toTruthTableIII fortheinterruptoperation.  
TheIDT7005providestwoportswithseparatecontrol,addressand  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation  
inmemory.TheIDT7005hasanautomaticpowerdownfeaturecontrolled  
by CE. The CE controls on-chip power down circuitry that permits the  
respectiveporttogointoastandbymodewhennotselected(CEHIGH).  
Whenaportisenabled,accesstotheentirememoryarrayispermitted.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
or message center) is assigned to each port. The left port interrupt flag  
(INTL) is asserted when the right port writes to memory location 1FFE  
6.42  
16  
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
SLAVE  
Dual Port  
RAM  
MASTER  
Dual Port  
RAM  
CE  
CE  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
CE  
CE  
BUSY (R)  
BUSY (R)  
BUSY (L) BUSY (R)  
BUSY (L)  
BUSY (L)  
,
2738 drw 19  
Figure 3. Busy and chip enable routing for both width and depth expansion with IDT7005 RAMs.  
BusyLogic  
address signals only. It ignores whether an access is a read or write.  
In a master/slave array, both address and chip enable must be valid  
long enough for a BUSY flag to be output from the master before the  
actualwritepulsecanbeinitiatedwiththeR/Wsignal.Failuretoobserve  
thistimingcanresultinaglitchedinternalwriteinhibitsignalandcorrupted  
data in the slave.  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMis“busy”.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
and use any BUSY indication as an interrupt source to flag the event of  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
TheBUSYoutputsontheIDT7005RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate. Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
Semaphores  
TheIDT7005isanextremelyfastDual-Port8Kx8CMOSStaticRAM  
withanadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesigner’ssoftware.Asanexample,thesemaphorecanbe  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
The Dual-Port RAM features a fast access time, and both ports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnoway slowstheaccesstimeof therightport. Bothportsare  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chip power down circuitry that permits the respective port to go into  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table I where CE and SEM are both HIGH.  
SystemswhichcanbestusetheIDT7005containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
aperformanceincreaseofferedbytheIDT7005'shardwaresemaphores,  
whichprovidealockoutmechanismwithoutrequiringcomplexprogram-  
ming.  
Width Expansion with Busy Logic  
Master/SlaveArrays  
WhenexpandinganIDT7005RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMarraywill  
receivea BUSYindication,andtooutputthatindication.Anynumberof  
slavestobeaddressedinthesameaddressrangeasthemaster,usethe  
BUSYsignalasawriteinhibitsignal.ThusontheIDT7005RAMtheBUSY  
pinisanoutputifthepartisusedasamaster(M/Spin=VIH),andtheBUSY  
pin is an input if the part used as a slave (M/S pin = VIL) as shown in  
Figure 3.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSY ononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
The BUSY arbitration on a master is based on the chip enable and  
Softwarehandshaking betweenprocessorsoffersthemaximum in  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
6.42  
17  
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
configurations.TheIDT7005doesnotuseitssemaphoreflagstocontrol cause either signal (SEM or OE) to go inactive or the output will  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal never change.  
flexibilityinsystemarchitecture.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
An advantage of using semaphores rather than the more common to guarantee that no system level contention will occur. A processor  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
either processor. This can prove to be a major advantage in very semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
high-speedsystems.  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableV).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attemptstowriteazerotothesamesemaphoreflag itwillfail, aswillbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
gap between the read and write cycles.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation. The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Shouldtheotherside’ssemaphorerequestlatch  
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
overtotheothersideassoonasaoneiswrittenintothefirstside’srequest  
latch.Thesecondside’sflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requested and the processor which requested it no longer needs the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
The critical case of semaphore timing is when both sides request a  
single token by attempting to write a zero into it at the same time. The  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
thetoken. If onesideisearlierthantheotherinmaking therequest, the  
firstsidetomaketherequestwillreceivethetoken.Ifbothrequestsarrive  
at the same time, the assignment will be arbitrarily made to one port or  
the other.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
or misinterpreted, a software error can easily happen.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
called“TokenPassingAllocation.”Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
thatsemaphore’sstatusorremoveitsrequestforthatsemaphoretoperform  
anothertaskandoccasionallyattemptagaintogaincontrolofthetokenvia  
thesetandtestsequence.Oncetherightsidehasrelinquishedthetoken,  
theleftsideshouldsucceedingainingcontrol.  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites  
aonetothatlatch.  
The eight semaphore flags reside within the IDT7005 in a separate  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe  
semaphore flags) and using the other control pins (Address, OE, and  
R/W) as they would be used in accessing a standard static RAM. Each  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside  
throughaddresspinsA0–A2.Whenaccessingthesemaphores,noneof  
theotheraddresspinshasanyeffect.  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
on that side and a one on the other side (see Truth Table V). That  
semaphorecannowonlybemodifiedbythesideshowingthezero.When  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
ispending)andthencanbewrittentobybothsides. Thefactthattheside  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
freedbythefirstside.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintooneside’soutput  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE) resourcemarkersfortheIDT7005’sDual-PortRAM.Saythe8Kx8RAM  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging wastobedividedintotwo4Kx8blockswhichweretobededicatedatany  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside. onetimetoservicingeithertheleftorrightport.Semaphore0couldbeused  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust toindicatethesidewhichwouldcontrolthelowersectionofmemory,and  
6.42  
18  
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Semaphore 1 could be defined as the indicator for the upper section of evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing  
memory.  
Totakearesource, inthisexamplethelower4Kof Dual-PortRAM,  
given a common meaning as was shown in the example above.  
Semaphores are a useful form of arbitration in systems like disk  
the processor on the left port could write and then read a zero in to interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring  
Semaphore0.Ifthistaskweresuccessfullycompleted(azerowasread atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse  
back rather than a one), the left processor would assume control of the ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea  
lower4K.Meanwhiletherightprocessorwasattemptingtogaincontrolof was“off-limits”totheCPU,boththeCPUandtheI/Odevicescouldaccess  
theresourceaftertheleftprocessor,itwouldreadbackaoneinresponse theirassignedportionsofmemorycontinuouslywithoutanywaitstates.  
tothezeroithadattemptedtowriteintoSemaphore0. Atthispoint, the  
Semaphoresarealsousefulinapplicationswherenomemory“WAIT”  
softwarecouldchoosetotryandgaincontrolofthesecond4Ksectionby stateisavailableononeorbothsides.Onceasemaphorehandshakehas  
writing,thenreadingazerointoSemaphore1.Ifitsucceededingaining been performed, both processors can access their assigned RAM  
control,itwouldlockouttheleftside.  
segmentsatfullspeed.  
Once the left side was finished with its task, it would write a one to  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
Semaphore 0 and may then try to gain access to Semaphore 1. If case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo mayberesponsibleforbuildingandupdatingadatastructure.Theother  
itssemaphorerequestandperformothertasksuntilitwasabletowrite,then processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
readazerointoSemaphore1.Iftherightprocessorperformsasimilartask processorreadsanincompletedatastructure,amajorerrorconditionmay  
withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
4K blocks of Dual-Port RAM with each other.  
differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
The blocks do not have to be any particular size and can even be itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
variable, depending upon the complexity of the software using the is completed, the data structure block is released. This allows the  
semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual- interpretingprocessortocomebackandreadthecompletedatastructure,  
Port RAM or other shared resources into eight parts. Semaphores can therebyguaranteeingaconsistentdatastructure.  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
D0  
D0  
WRITE  
D
D
Q
Q
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
,
READ  
2738 drw 20  
Figure 4. IDT7005 Semaphore Logic  
6.42  
19  
IDT7005S/L  
High-Speed 8K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
OrderingInformation  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I
B
Commercial (0 C to +70 C)  
°
°
(1)  
Industrial (-40 C to +85 C)  
°
°
Military (-55 C to +125 C)  
°
°
Compliant to MIL-PRF-38538 QML  
PF  
G
J
64-pin TQFP (PN64-1)  
68-pin PGA (G68-1)  
68-pin PLCC (J68-1)  
68-pin Flatpack (F64-1)  
F
15  
17  
20  
25  
35  
55  
70  
Commercial Only  
Commercial Only  
Commercial & Military  
Commercial & Military  
Commercial, Industrial & Military  
Commercial, Industrial & Military  
Military Only  
Speed in nanoseconds  
S
L
Standard Power  
Low Power  
7005 64K (8K x 8) Dual-Port RAM  
2738 drw 21  
NOTE:  
1. Industrial temperature range is available on selected TQFP packages in standard power.  
For other speeds, packages and powers contact your sales office.  
DatasheetDocumentHistory  
12/21/98:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Pages2&3Addedadditionalnotestopinconfigurations  
Changeddrawingformat  
6/3/99  
CORPORATE HEADQUARTERS  
2975 StenderWay  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
20  

相关型号:

IDT7005L55J

HIGH-SPEED 8K x 8 DUAL-PORT STATIC RAM
IDT

IDT7005L55JB

HIGH-SPEED 8K x 8 DUAL-PORT STATIC RAM
IDT

IDT7005L55JGB

Dual-Port SRAM, 8KX8, 55ns, CMOS, PQCC68, 0.950 X 0.950 INCH, 0.120 INCH HEIGHT, GREEN, PLASTIC, LCC-68
IDT

IDT7005L55JGI

Dual-Port SRAM, 8KX8, 55ns, CMOS, PQCC68, 0.950 X 0.950 INCH, 0.120 INCH HEIGHT, GREEN, PLASTIC, LCC-68
IDT

IDT7005L55JI8

Dual-Port SRAM, 8KX8, 55ns, CMOS, PQCC68, 0.950 X 0.950 INCH, 0.120 INCH HEIGHT, PLASTIC, LCC-68
IDT

IDT7005L55L68

x8 Dual-Port SRAM
ETC

IDT7005L55L68B

x8 Dual-Port SRAM
ETC

IDT7005L55PF

HIGH-SPEED 8K x 8 DUAL-PORT STATIC RAM
IDT

IDT7005L55PF9

Dual-Port SRAM, 8KX8, 55ns, CMOS, PQFP64, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-64
IDT

IDT7005L55PFB

HIGH-SPEED 8K x 8 DUAL-PORT STATIC RAM
IDT

IDT7005L55PFG

Dual-Port SRAM, 8KX8, 55ns, CMOS, PQFP64, 14 X 14 MM, 1.40 MM HEIGHT, GREEN, TQFP-64
IDT

IDT7005L55PFGB

Dual-Port SRAM, 8KX8, 55ns, CMOS, PQFP64, 14 X 14 MM, 1.40 MM HEIGHT, GREEN, TQFP-64
IDT