IDT7008L55PFGB

更新时间:2024-09-18 13:00:32
品牌:IDT
描述:暂无描述

IDT7008L55PFGB 概述

暂无描述

IDT7008L55PFGB 数据手册

通过下载IDT7008L55PFGB数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
HIGH-SPEED  
IDT7008S/L  
64K x 8 DUAL-PORT  
STATIC RAM  
Features  
IDT7008 easily expands data bus width to 16 bits or  
more using the Master/Slave select when cascading more  
than one device  
M/S = VIH for BUSY output flag on Master,  
M/S = VIL for BUSY input on Slave  
Interrupt Flag  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
Military:25/35/55ns(max.)  
Industrial:55ns (max.)  
– Commercial:20/25/35/55ns(max.)  
Low-power operation  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
IDT7008S  
Active:750mW(typ.)  
Standby: 5mW (typ.)  
IDT7008L  
Active:750mW(typ.)  
Standby: 1mW (typ.)  
Dual chip enables allow for depth expansion without  
external logic  
Fully asynchronous operation from either port  
TTL-compatible, single 5V (±10%) power supply  
Available in 84-pin PGA, 84-pin PLCC, and a 100-pin TQFP  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
FunctionalBlockDiagram  
R/WL  
CE0L  
CE1L  
R/WR  
CE0R  
CE1R  
OEL  
OER  
I/O  
Control  
I/O  
Control  
I/O0-7L  
I/O0-7R  
(1,2)  
BUSYL  
(1,2)  
BUSYR  
64Kx8  
MEMORY  
ARRAY  
7008  
A15L  
A15R  
Address  
Decoder  
Address  
Decoder  
A0R  
A0L  
16  
16  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE0L  
CE0R  
1L  
CE  
1R  
CE  
OEL  
OER  
L
R/  
W
R
R/W  
SEML  
INTL  
SEMR  
INTR  
(2)  
(2)  
M/S(1)  
3198 drw 01  
NOTES:  
1. BUSY is an input as a Slave (M/S = VIL) and an output when it is a Master (M/S = VIH).  
2. BUSY and INT are non-tri-state totem-pole outputs (push-pull).  
MAY 2000  
1
DSC 3198/6  
©2000IntegratedDeviceTechnology,Inc.  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Description  
The IDT7008 is a high-speed 64K x 8 Dual-Port Static RAM. The reads or writes to any location in memory. An automatic power down  
IDT7008isdesignedtobeusedasastand-alone512K-bitDual-PortRAM featurecontrolledbythe chipenables(CE0andCE1)permittheon-chip  
orasacombinationMASTER/SLAVEDual-PortRAMfor16-bit-or-more circuitry of each port to enter a very low standby power mode.  
wordsystems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproach  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
in16-bitorwidermemorysystemapplicationsresultsinfull-speed,error- devices typicallyoperate ononly750mWofpower.  
freeoperationwithouttheneedforadditionaldiscretelogic.  
TheIDT7008ispackagedina84-pinCeramicPinGridArray(PGA),  
This device provides two independent ports with separate control, a84-pinPlasticLeadlessChipCarrier(PLCC)anda100-pinThinQuad  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor Flatpack(TQFP).  
PinConfigurations(1,2,3)  
INDEX  
11 10 9  
8
7
6
5
4
3
2
1 84 83 82 81 80 79 78 77 76 75  
74  
A6R  
A5R  
A4R  
A3R  
A2R  
A1R  
A0R  
NC  
12  
13  
14  
15  
16  
17  
I/O7R  
I/O6R  
I/O5R  
I/O4R  
I/O3R  
Vcc  
73  
72  
71  
70  
69  
68  
67  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
R
R
S
INT  
I/O2R  
I/O1R  
I/O0R  
GND  
Vcc  
IDT7008J  
J84-1  
BUSY  
(4)  
66  
65  
64  
63  
62  
61  
M/  
84-Pin PLCC  
GND  
BUSYL  
INTL  
NC  
(5)  
Top View  
I/O0L  
I/O1L  
GND  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
I/O6L  
I/O7L  
A0L  
60  
59  
58  
57  
56  
55  
54  
A1L  
A2L  
A3L  
A4L  
A5L  
A6L  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
,
3198 drw 02  
NOTES:  
1. This text does not indicate orientation of the actual part marking.  
2. All Vcc pins must be connected to power supply.  
3. Package body is approximately 1.15 in x 1.15 in x .17 in.  
4. This package code is used to reference the package diagram.  
5. All GND pins must be connected to ground supply.  
2
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
Index  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
NC  
NC  
A7L  
A8L  
A9L  
A10L  
A11L  
A12L  
A13L  
A14L  
A15L  
NC  
75  
NC  
NC  
A7R  
A8R  
2
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
3
4
5
A9R  
6
A10R  
A11R  
A12R  
A13R  
A14R  
A15R  
NC  
GND  
NC  
NC  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
IDT7008PF  
PN100-1  
(
4)  
100-Pin TQFP  
Vcc  
NC  
NC  
NC  
(5)  
Top View  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
CE0L  
CE1L  
SEML  
CE0R  
CE1R  
SEMR  
R/WR  
OER  
GND  
GND  
NC  
WL  
R/  
OEL  
GND  
NC  
NC  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
,
3198 drw 03  
NOTES:  
1. This text does not indicate orientation of the actual part marking.  
2. All Vcc pins must be connected to power supply.  
3. Package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. All GND pins must be connected to ground supply.  
3
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't)  
63  
66  
67  
61  
64  
65  
68  
71  
60  
58  
55  
54  
49  
51  
50  
48  
46  
45  
42  
40  
GND  
11  
10  
09  
08  
A7R  
A4R  
A3R  
A1R  
A9R  
A6R  
A5R  
A2R  
A10R  
A12R  
A15R  
SEMR OER  
NC  
NC  
NC  
62  
59  
56  
47  
44  
43  
A8R  
A11R  
A14R  
CE0R R/WR  
GND  
NC  
I/O6R  
CE1R  
57  
53  
52  
41  
39  
A13R  
GND  
NC  
I/O7R I/O5R  
69  
72  
38  
37  
I/O4R I/O3R  
73  
74  
33  
35  
34  
BUSYR  
M/S  
INTR  
I/O0R  
I/O2R I/O1R  
07  
06  
IDT7008G  
G84-3  
75  
70  
32  
31  
36  
30  
(4)  
GND  
GND  
BUSY  
A0R  
Vcc  
Vcc  
L
84-Pin PGA  
Top View  
(5)  
76  
77  
78  
28  
29  
INTL  
A
0L  
NC  
I/O1L  
I/O0L  
GND  
05  
04  
79  
80  
26  
27  
A1L  
A2L  
A5L  
A7L  
I/O3L I/O2L  
81  
83  
1
7
8
9
11  
10  
15  
12  
23  
25  
03  
02  
01  
NC  
A3L  
A13L  
A14L  
Vcc  
NC  
I/O6L I/O4L  
82  
2
4
5
6
14  
17  
20  
22  
24  
A4L  
A8L  
A11L  
CE0L R/WL  
GND I/O7L I/O5L  
84  
3
13  
16  
18  
19  
21  
A6L  
A9L  
B
A10L  
C
A12L  
D
A15L  
E
NC  
G
SEML  
OEL  
GND  
NC  
L
CE  
1L  
,
A
F
H
J
K
3198 drw 04  
INDEX  
NOTES:  
1. All Vcc pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 1.12 in x 1.12 in x .16 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part marking.  
PinNames  
Left Port  
Right Port  
Names  
Chip Enables  
Read/Write Enable  
Output Enable  
Address  
CE0L  
1L  
CE0R  
1R  
, CE  
, CE  
WL  
R/  
WR  
R/  
OEL  
A0L - A15L  
OER  
A0R - A15R  
0L  
7L  
0R  
7R  
I/O - I/O  
I/O - I/O  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
Busy Flag  
SEML  
INTL  
SEMR  
INTR  
BUSYR  
S
BUSYL  
M/  
Master or Slave Select  
Power  
CC  
V
GND  
Ground  
3198 tbl 01  
4
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table I: Chip Enable(1)  
1
CE  
CE  
CE0  
Mode  
VIL  
VIH  
Port Selected (TTL Active)  
L
< 0.2V  
VIH  
>VCC -0.2V  
X
Port Selected (CMOS Active)  
Port Deselected (TTL Inactive)  
Port Deselected (TTL Inactive)  
Port Deselected (CMOS Inactive)  
Port Deselected (CMOS Inactive)  
X
VIL  
H
>VCC -0.2V  
X
X
<0.2V  
3198 tbl 02  
NOTES:  
1. Chip Enable references are shown above with the actual CE0 and CE1 levels, CE is a reference only.  
Truth Table II: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
CE(2)  
H
OE  
SEM  
H
R/W  
X
I/O0-7  
Mode  
X
X
L
High-Z  
DATAIN  
Deselected: Power-Down  
Write to memory  
L
L
H
L
H
H
DATAOUT Read memory  
High-Z Outputs Disabled  
X
X
H
X
3198 tbl 03  
NOTES:  
1. A0L A15L A0R A15R.  
2. Refer to Chip Enable Truth Table.  
Truth Table III: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
(2)  
R/W  
I/O0-7  
Mode  
CE  
OE  
SEM  
H
H
L
L
DATAOUT Read Semaphore Flag Data Out  
H
L
X
X
L
L
DATAIN  
Write I/O0 into Semaphore Flag  
Not Allowed  
______  
X
3198 tbl 04  
NOTES:  
1. There are eight semaphore flags written to via I/O0 and read from all the I/Os (I/O0-I/O7). These eight semaphore flags are addressed by A0-A2.  
2. Refer to Chip Enable Truth Table.  
5
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AbsoluteMaximumRatings(1)  
RecommendedDCOperating  
Conditions  
Symbol  
Rating  
Commercial  
& Industrial  
Military  
Unit  
Symbol  
Parameter  
Min.  
4.5  
0
Typ.  
Max. Unit  
(2)  
VTERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +7.0  
-0.5 to +7.0  
V
VCC  
Supply Voltage  
5.0  
5.5  
0
V
V
V
GND Ground  
0
TBIAS  
TSTG  
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
50  
-65 to +135  
-65 to +150  
50  
oC  
oC  
(2)  
____  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
2.2  
6.0  
Storage  
Temperature  
(1)  
____  
-0.5  
0.8  
V
3198 tbl 07  
IOUT  
DC Output Current  
mA  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
3198 tbl 05  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
Capacitance  
(TA = +25°C, f = 1.0mhz) (TQFP Only)  
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > Vcc + 10%.  
Symbol  
Parameter(1)  
Input Capacitance  
Output Capacitance  
Conditions(2)  
IN = 3dV  
OUT = 3dV  
Max. Unit  
CIN  
V
9
pF  
COUT  
V
10  
pF  
MaximumOperatingTemperature  
andSupplyVoltage(1,2)  
Ambient  
3198 tbl 08  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested.  
2. 3dV represents the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
Grade  
Temperature  
-55OC to+125OC  
0OC to +70OC  
-40OC to +85OC  
GND  
Vcc  
Military  
0V  
5.0V + 10%  
5.0V + 10%  
5.0V + 10%  
Commercial  
Industrial  
0V  
0V  
3198 tbl 06  
NOTES:  
1. This is the parameter TA. This is the "instant on" case tempreature.  
2. Industrial Temperature: for other speeds, packages and powers contact your  
sales office.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(2) (VCC = 5.0V ± 10%)  
7008S  
7008L  
Symbol  
Parameter  
Input Leakage Current(1)  
Output Leakage Current  
Output Low Voltage  
Test Conditions  
VCC = 5.5V, VIN = 0V to VCC  
Min.  
Max.  
10  
Min.  
Max.  
Unit  
µA  
µA  
V
___  
___  
|ILI|  
5
5
___  
___  
___  
___  
|ILO  
|
10  
CE = VIH, VOUT = 0V to VCC  
IOL = 4mA  
VOL  
VOH  
0.4  
0.4  
___  
___  
Output High Voltage  
IOH = -4mA  
2.4  
2.4  
V
3198 tbl 09  
NOTES:  
1. At Vcc < 2.0V, input leakages are undefined.  
2. Refer to Chip Enable Truth Table.  
6
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1,6,7) (VCC = 5.0V ± 10%)  
7008X20  
Com'l Only  
7008X25  
Com'l &  
Military  
Symbol  
Parameter  
Dynamic Operating  
Current  
(Both Ports Active)  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
CC  
I
S
L
190  
180  
325  
285  
180  
170  
305  
265  
mA  
IL  
CE = V , Outputs Disabled  
IH  
SEM = V  
(3)  
MAX  
f = f  
___  
___  
___  
___  
MIL &  
IND  
S
L
170  
170  
345  
305  
SB1  
I
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
S
L
50  
50  
90  
70  
40  
40  
85  
60  
mA  
mA  
mA  
mA  
L
R
IH  
CE = CE = V  
R
L
IH  
SEM = SEM = V  
(3)  
MAX  
f = f  
___  
___  
___  
___  
MIL &  
IND  
S
L
40  
40  
100  
80  
(5)  
IH  
SB2  
I
Standby Current  
(One Port - TTL Level  
Inputs)  
"A"  
IL  
"B"  
COM'L  
S
L
115  
115  
215  
185  
105  
105  
200  
170  
CE = V and CE = V  
Active Port Outputs Disabled,  
(3)  
MAX  
f=f  
___  
___  
___  
___  
R
L
IH  
MIL &  
IND  
S
L
105  
105  
230  
200  
SEM = SEM = V  
SB3  
I
L
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CE and  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
R
CC  
CC  
CE > V - 0.2V  
IN  
IN  
V
> V - 0.2V or  
< 0.2V, f = 0  
___  
___  
___  
___  
(4)  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
V
R
L
CC  
SEM = SEM > V - 0.2V  
SB4  
I
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
COM'L  
S
L
110  
110  
190  
160  
100  
100  
170  
145  
"A"  
CE < 0.2V and  
(5)  
"B"  
CC  
CE > V - 0.2V  
R
L
CC  
SEM = SEM > V - 0.2V  
___  
___  
___  
___  
MIL &  
IND  
S
L
100  
100  
200  
175  
IN  
CC  
IN  
V
> V - 0.2V or V < 0.2V  
Active Port Outputs Disabled  
f = f  
(3)  
MAX  
3198 tbl 10a  
7008X35  
Com'l &  
Military  
7008X55  
Com'l, Ind  
& Military  
Symbol  
Parameter  
Test Condition  
Version  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
CC  
I
Dynamic Operating Current  
(Both Ports Active)  
COM'L  
S
L
160  
160  
295  
255  
150  
150  
270  
230  
mA  
IL  
CE = V , Outputs Disabled  
IH  
SEM = V  
(3)  
MAX  
f = f  
MIL &  
IND  
S
L
160  
160  
335  
295  
150  
150  
310  
270  
SB1  
I
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
S
L
30  
30  
85  
60  
20  
20  
85  
60  
mA  
mA  
L
R
IH  
CE = CE = V  
R
L
IH  
SEM = SEM = V  
MIL &  
IND  
S
L
20  
20  
100  
80  
13  
13  
100  
80  
(5)  
IH  
SB2  
I
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
S
L
95  
95  
185  
155  
85  
85  
165  
135  
"A"  
IL  
"B"  
CE = V and CE = V  
Active Port Outputs Disabled,  
(3)  
MAX  
f=f  
MIL &  
IND  
S
L
95  
95  
215  
185  
85  
85  
195  
165  
R
L
IH  
SEM = SEM = V  
SB3  
L
I
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CE and  
mA  
mA  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
R
CC  
CE > V - 0.2V  
IN  
IN  
V
CC  
V
> V - 0.2V or  
(4)  
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
< 0.2V, f = 0  
R
L
CC  
SEM = SEM > V - 0.2V  
SB4  
I
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
"A"  
"B"  
COM'L  
S
L
90  
90  
160  
135  
80  
80  
135  
110  
CE < 0.2V and  
(5)  
CC  
CE > V - 0.2V  
R
L
CC  
SEM = SEM > V - 0.2V  
IN  
V
CC  
IN  
MIL &  
IND  
S
L
90  
90  
190  
165  
80  
80  
175  
150  
> V - 0.2V or V < 0.2V  
Active Port Outputs Disabled  
(3)  
MAX  
f = f  
3198 tbl 10b  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested. ICCDC = 120mA (Typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/ tRC, and using AC Test Conditionsof input  
levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6. Refer to Chip Enable Truth Table.  
7. Industrial Temperature: for other speeds, packages and powers contact your sales office.  
7
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
5V  
5V  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
5ns Max.  
1.5V  
893  
893  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
DATAOUT  
BUSY  
INT  
DATAOUT  
1.5V  
30pF  
5pF*  
347Ω  
347  
Figures 1 and 2  
3198 tbl 11  
3198 drw 05  
3198 drw 06  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
Figure 1. AC Output Test Load  
* Including scope and jig.  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
tAA  
(4)  
tACE  
CE(6)  
(4)  
tAOE  
OE  
R/W  
(1)  
tOH  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
tHZ  
BUSYOUT  
(3,4)  
3198 drw 07  
tBDD  
Timing of Power-Up Power-Down  
CE(6)  
PU  
t
PD  
t
I
CC  
I
SB  
,
3198 drw 08  
NOTES:  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6. Refer to Chip Enable Truth Table.  
8
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6,7)  
7008X20  
Com'l Only  
7008X25 Com'l 7008X35 Com'l  
& Military & Military  
7008X55  
Com'l, Ind  
& Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
____  
tRC  
Read Cycle Time  
20  
25  
35  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
____  
tAA  
Address Access Time  
20  
20  
25  
25  
35  
35  
55  
55  
Chip Enable Access Time(4)  
Output Enable Access Time  
____  
____  
____  
____  
____  
____  
____  
____  
tACE  
tAOE  
tOH  
tLZ  
12  
13  
20  
30  
____  
____  
____  
____  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
3
3
3
3
____  
____  
____  
____  
3
3
3
3
Output High-Z Time(1,2)  
12  
15  
15  
25  
____  
____  
____  
____  
tHZ  
tPU  
tPD  
tSOP  
tSAA  
Chip Enab le to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
0
0
____  
____  
____  
____  
____  
____  
____  
____  
20  
25  
35  
50  
____  
____  
____  
____  
10  
12  
15  
15  
____  
____  
____  
____  
20  
25  
35  
55  
ns  
3198 tbl 12  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(6,7)  
7008X20  
Com'l Only  
7008X25  
Com'l &  
Military  
7008X35  
Com'l &  
Military  
7008X55  
Com'l, Ind  
& Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
20  
15  
15  
0
25  
20  
20  
0
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
tWP  
15  
0
20  
0
25  
0
40  
0
tWR  
tDW  
tHZ  
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(5)  
15  
15  
15  
30  
____  
____  
____  
____  
12  
15  
15  
25  
____  
____  
____  
____  
tDH  
0
0
0
0
(1,2)  
____  
____  
____  
____  
tWZ  
tOW  
tSWRD  
tSPS  
Write Enable to Output in High-Z  
Output Active from End-of-Write(1, 2,5 )  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
12  
15  
15  
25  
____  
____  
____  
____  
0
5
5
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
____  
____  
ns  
3198 tbl 13  
NOTES:  
1. Transition is measured 0mV from Low- or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranted by device characterization, but is not production tested.  
3. To access RAM, CE= VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE= VIH and SEM = VIL.  
5. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
6. 'X' in part numbers indicates power rating (s or L).  
7. Industrial Temperature: for other speeds, packages and powers contact your sales office.  
9
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM(9,10)  
(3)  
(2)  
(6)  
tWP  
tWR  
tAS  
R/W  
DATAOUT  
DATAIN  
(7)  
tWZ  
tOW  
(4)  
(4)  
tDW  
tDH  
3198 drw 09  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
tWC  
ADDRESS  
tAW  
(9,10)  
or  
CE SEM  
(3)  
WR  
(6)  
(2)  
t
t
EW  
tAS  
R/  
W
t
DW  
t
DH  
DATAIN  
3198 drw 10  
NOTES:  
1. R/W or CE must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure  
2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as  
the specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
10. Refer to Chip Enable Truth Table.  
10  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
tOH  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tACE  
tAW  
tWR  
tEW  
SEM  
tDW  
DATAIN VALID  
tSOP  
DATAOUT  
VALID(2)  
DATA0  
tAS  
tWP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
tSOP  
Write Cycle  
Read Cycle  
3198 drw 11  
NOTES:  
1. CE = VIH for the duration of the above timing (both write and read cycle) (Refer to Chip Enable Truth Table).  
2. "DATAOUT VALID" represents all I/O's (I/O0 - I/O15) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2) "A"  
R/W"A"  
SEM"A"  
SPS  
t
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W  
"B"  
SEM"B"  
3198 drw 12  
NOTES:  
1. DOR = DOL = VIL, CEL = CER = VIH (Refer to Chip Enable Truth Table).  
2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, the semaphore will fall positively to one side or the other, but there is no guarantee which side will obtain the flag.  
11  
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6,7)  
7008X20  
Com'l Only  
7008X25  
Com'l &  
Military  
7008X35  
Com'l &  
Military  
7008X55  
Com'l, Ind &  
Military  
Symbol  
BUSY TIMING (M/S=V )  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max. Unit  
IH  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tBAA  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
20  
20  
20  
20  
20  
20  
20  
20  
20  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
17  
17  
20  
35  
____  
____  
____  
____  
5
5
5
5
____  
____  
____  
____  
BUSY Disable to Valid Data(3)  
20  
25  
35  
55  
Write Hold After BUSY(5)  
15  
17  
25  
25  
____  
____  
____  
____  
BUSY TIMING (M/S=V )  
IL  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
PORT-TO-PORT DELAY TIMING  
tWDD  
Write Pulse to Data Delay(1)  
tDDD  
Write Data Valid to Read Data Delay(1)  
____  
____  
____  
____  
____  
____  
____  
____  
tWB  
0
0
0
0
ns  
ns  
tWH  
15  
17  
25  
25  
____  
____  
____  
____  
____  
____  
____  
____  
45  
30  
50  
35  
60  
45  
80  
65  
ns  
ns  
3198 tbl 14  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD tWP (actual) or tDDD tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
6. 'X' in part numbers indicates power rating (S or L).  
7. Industrial Temperature: for other speeds, packages and powers contact your sales office.  
12  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadandBUSY(2,5)(M/S = VIH)(4)  
tWC  
ADDR"A"  
MATCH  
tWP  
R/  
W"A"  
tDH  
tDW  
DATAIN "A"  
VALID  
(1)  
tAPS  
ADDR"B"  
MATCH  
tBDA  
tBDD  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
NOTES:  
3198 drw 13  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL, refer to Chip Enable Truth Table.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (SLAVE), then BUSY is an input (BUSY"A" = VIH and BUSY"B" = "don't care", for this example).  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY (M/S = VIL)  
tWP  
R/W"A"  
(3)  
tWB  
BUSY"B"  
(1)  
tWH  
R/W"B"  
(2)  
3198 drw 14  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the 'Slave' version.  
13  
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(1,3) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
t
APS  
CE"B"  
t
BAC  
t
BDC  
BUSY"B"  
3198 drw 15  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
"A"  
ADDR  
ADDRESS "N"  
(2)  
t
APS  
ADDR"B"  
MATCHING ADDRESS "N"  
t
BAA  
t
BDA  
BUSY"B"  
3198 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from port A.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
3. Refer to Chip Enable Truth Table.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1,2)  
7008X20  
Com'l Only  
7008X25  
Com'l &  
Military  
7008X35  
Com'l &  
Military  
7008X55  
Com'l, Ind  
& Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
tAS  
Address Set-up Time  
Write Recovery Time  
0
0
0
0
ns  
ns  
ns  
tWR  
tINS  
tINR  
0
0
0
0
____  
____  
____  
____  
Interrupt Set Time  
20  
20  
20  
20  
25  
25  
40  
40  
____  
____  
____  
____  
Interrupt Reset Time  
ns  
3198 tbl 15  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
2. Industrial Temperature: for other speeds, packages and powers contact your sales office.  
14  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1,5)  
t
WC  
INTERRUPT SET ADDRESS(2)  
ADDR"A"  
(3)  
(4)  
t
AS  
t
WR  
CE"A"  
R/W"A"  
INT"B"  
(3)  
t
INS  
3198 drw 17  
t
RC  
INTERRUPT CLEAR ADDRESS(2)  
ADDR"B"  
t
AS(3)  
CE"B"  
"B"  
OE  
t
INR(3)  
INT"B"  
3198 drw 18  
NOTES:  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from port A.  
2. See Interrupt Truth Table.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
5. Refer to Chip Enable Truth Table.  
Truth Table IV — Interrupt Flag(1,4,5)  
Left Port  
Right Port  
WL  
R/  
WR  
R/  
A15L-A0L  
FFFF  
X
A15R-A0R  
X
Function  
CE  
L
OEL  
X
INTL  
X
CE  
X
L
OER  
X
INT  
R
(2)  
L
X
X
X
X
X
L
L
Set Right INT Flag  
R
(3  
)
X
X
L
X
X
L
FFFF  
FFFE  
X
H
Reset Right INT Flag  
R
(3)  
X
X
L
L
X
X
X
Set Left INT Flag  
L
(2)  
L
FFFE  
H
X
X
X
Reset Left INT Flag  
L
3198 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTL and INTR must be initialized at power-up.  
5. Refer to Chip Enable Truth Table.  
15  
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table V —Address BUSY  
Arbitration(4)  
Inputs  
Outputs  
AOL-A15L  
AOR-A15R  
(1)  
(1)  
Function  
Normal  
Normal  
Normal  
Write  
CEL  
X
CER  
X
BUSYL  
BUSYR  
NO MATCH  
MATCH  
H
H
H
H
H
H
H
X
X
H
MATCH  
L
L
MATCH  
(2)  
(2)  
(3)  
Inhibit  
3198 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT7008 are  
push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. Refer to Chip Enable Truth Table.  
Truth Table VI — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0 - D7 Left  
D0 - D7 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
3198 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7008.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O7). These eight semaphores are addressed by A0-A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
TheIDT7008providestwoportswithseparatecontrol,addressand (INTL) is asserted when the right port writes to memory location FFFE  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation (HEX),whereawriteisdefinedasCER=R/WR=VILpertheTruthTable.  
inmemory.TheIDT7008hasanautomaticpowerdownfeaturecontrolled TheleftportclearstheinterruptthroughaccessofaddresslocationFFFE  
byCE. TheCE0and CE1 control the on-chip power down circuitry that when CEL = OEL = VIL, R/W is a "don't care". Likewise, the right port  
permitstherespectiveporttogointoastandbymodewhennotselected interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
(CEHIGH).Whenaportis enabled,access totheentirememoryarray FFFF(HEX)andtocleartheinterruptflag(INTR),therightportmustread  
ispermitted.  
thememorylocationFFFF. Themessage(8bits)atFFFEorFFFFisuser-  
definedsinceitisanaddressableSRAMlocation.Iftheinterruptfunction  
isnotused,addresslocationsFFFEandFFFFarenotusedasmailboxes,  
butaspartoftherandomaccessmemory.RefertoTableIVfortheinterrupt  
operation.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)is assignedtoeachport. Theleftportinterruptflag  
16  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
resultina glitchedinternalwrite inhibitsignalandcorrupteddata inthe  
slave.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisbusy.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
anduse anyBUSYindicationas aninterruptsource toflagthe eventof  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
TheBUSYoutputsontheIDT7008RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate.Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
Semaphores  
TheIDT7008isanextremelyfastDual-Port64Kx8CMOSStaticRAM  
withanadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesignerssoftware.Asanexample,thesemaphorecanbe  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
The Dual-PortRAMfeatures a fastaccess time, andbothports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnowayslows theaccess timeoftherightport.Bothports are  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chippowerdowncircuitrythatpermits the respective porttogointo  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table II where CE and SEM are both HIGH.  
A16  
CE0  
CE0  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
SystemswhichcanbestusetheIDT7008containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
a per-formance increase offered by the IDT7008s hardware sema-  
phores,whichprovidealockoutmechanismwithoutrequiringcomplex  
programming.  
CE1  
CE1  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
,
3198 drw 19  
Softwarehandshakingbetweenprocessors offers themaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT7008doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT7008 RAMs.  
WidthExpansionBusyLogic  
Master/SlaveArrays  
WhenexpandinganIDT7008RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMsarraywill  
receivea BUSYindication,andtooutputthatindication.Anynumberof  
slaves to be addressed in the same address range as the master, use  
the BUSYsignalasawriteinhibitsignal.ThusontheIDT7008RAMthe  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
BUSYpinisanoutputifthepartisusedasamaster(M/Spin=VIH),and oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
theBUSYpinisaninputifthepartusedasaslave(M/Spin=VIL)as shown fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
in Figure 3.  
semaphores provide a hardware assist for a use assignment method  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit calledTokenPassingAllocation.Inthismethod,thestateofasemaphore  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
arrayandanothermasterindicatingBUSYononeothersideofthearray. processorwantstousethisresource,itrequeststhetokenbysettingthe  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword. it. If it was successful, it proceeds to assume control over the shared  
TheBUSYarbitration,onamaster,is basedonthechipenableand resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
address signals only. Itignores whetheranaccess is a readorwrite. In rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
a master/slave array, both address and chip enable must be valid long sharedresource. Theleftprocessorcantheneitherrepeatedlyrequest  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite thatsemaphoresstatusorremoveitsrequestforthatsemaphoretoperform  
pulsecanbeinitiatedwiththeR/Wsignal.Failuretoobservethistimingcan anothertaskandoccasionallyattemptagaintogaincontrolofthetokenvia  
17  
6.42  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
thesetandtestsequence.Oncetherightsidehasrelinquishedthetoken, side during subsequent read. Had a sequence of READ/WRITE been  
theleftsideshouldsucceedingainingcontrol. usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting gap between the read and write cycles.  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites  
aonetothatlatch.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation.The  
The eightsemaphore flags reside withinthe IDT7008ina separate reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe into a semaphore flag. Whichever latch is first to present a zero to the  
semaphore flags) and using the other control pins (Address, CE, and semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
R/W)as theywouldbeusedinaccessingastandardStaticRAM.Each sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside semaphorerequestlatch.Shouldtheothersidessemaphorerequestlatch  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
theotheraddresspinshasanyeffect.  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel  
L PORT  
R PORT  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
onthatsideandaoneontheotherside(seeTableVI).Thatsemaphore  
can now only be modified by the side showing the zero. When a one is  
writtenintothesamelocationfromthesameside,theflagwillbesettoa  
one for both sides (unless a semaphore request from the other side is  
pending)andthencanbewrittentobybothsides.Thefactthattheside  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
freedbythefirstside.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintoonesidesoutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTable  
VI). As anexample, assume a processorwrites a zerotothe leftportat  
afreesemaphorelocation.Onasubsequentread,theprocessorwillverify  
thatithaswrittensuccessfullytothatlocationandwillassumecontrolover  
the resource in question. Meanwhile, if a processor on the right side  
attempts towriteazerotothesamesemaphoreflagitwillfail,as willbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
D0  
D0  
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
,
READ  
3198 drw 20  
Figure 4. IDT7008 Semaphore Logic  
overtotheothersideassoonasaoneiswrittenintothefirstsidesrequest  
latch.ThesecondsidesflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requestedandthe processorwhichrequesteditnolongerneeds the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
The criticalcase ofsemaphore timingis whenbothsides requesta  
single token by attempting to write a zero into it at the same time. The  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst  
sidetomaketherequestwillreceivethetoken.Ifbothrequestsarriveat  
thesametime,theassignmentwillbearbitrarilymadetooneportorthe  
other.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
ormisinterpreted, a software errorcaneasilyhappen.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
18  
IDT7008S/L  
High-Speed 64K x 8 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
OrderingInformation  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I(1)  
B
Commercial (0°C to +70°C)  
Industrial (-40°C to + 85°C)  
Military (-55°C to +125°C)  
Compliant to MIL-PRF-38535 QML  
PF  
G
J
100-pin TQFP (PN100-1)  
108-pin PGA (G108-1)  
84-pin PLCC (J84-1)  
Commercial Only  
Commercial & Military  
Commercial & Military  
Commercial, Industrial  
& Military  
20  
25  
35  
55  
Speed in  
nanoseconds  
,
Standard Power  
Low Power  
S
L
512K (64K x 8) Dual-Port RAM  
7008  
3198 drw 21  
NOTE:  
1. IndustrialtemperaturerangeisavailableonselectedTQFPpackagesinstandardpower.  
Forotherspeeds,packagesandpowerscontactyoursalesoffice.  
DatasheetDocumentHistory  
1/6/99:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Pages2and3Addedadditionalnotestopinconfigurations  
Changeddrawingformat  
6/3/99:  
11/10/99:  
5/8/99:  
Replaced IDT logo  
Page 6 Increasedstoragetemperatureparameter  
ClarifiedTAparameter  
Page 7 DCElectricalparamterschangedwordingfrom"open"to"disabled"  
Changed±200mVto0mVinnotes  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
800-345-7015 or 408-727-5166  
fax: 408-492-8674  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
19  
6.42  

IDT7008L55PFGB 相关器件

型号 制造商 描述 价格 文档
IDT7008L55PFGI IDT Dual-Port SRAM, 64KX8, 55ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100 获取价格
IDT7008L55PFI IDT HIGH-SPEED 64K x 8 DUAL-PORT STATIC RAM 获取价格
IDT7008S IDT HIGH-SPEED 64K x 8 DUAL-PORT STATIC RAM 获取价格
IDT7008S15G IDT Dual-Port SRAM, 64KX8, 15ns, CMOS, CPGA84, 1.12 X 1.12 INCH, 0.16 INCH HEIGHT, PGA-84 获取价格
IDT7008S15GG IDT Dual-Port SRAM, 64KX8, 15ns, CMOS, 1.12 X 1.12 INCH, 0.16 INCH HEIGHT, PGA-108 获取价格
IDT7008S15J IDT Dual-Port SRAM, 64KX8, 15ns, CMOS, PQCC84, 1.15 X 1.15 INCH, 0.17 INCH HEIGHT, PLASTIC, LCC-84 获取价格
IDT7008S15PF IDT Dual-Port SRAM, 64KX8, 15ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100 获取价格
IDT7008S15PF8 IDT Dual-Port SRAM, 64KX8, 15ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100 获取价格
IDT7008S20G IDT HIGH-SPEED 64K x 8 DUAL-PORT STATIC RAM 获取价格
IDT7008S20GB IDT HIGH-SPEED 64K x 8 DUAL-PORT STATIC RAM 获取价格

IDT7008L55PFGB 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6