IDT70261L25PF9 [IDT]

Dual-Port SRAM, 16KX16, 25ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100;
IDT70261L25PF9
型号: IDT70261L25PF9
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 16KX16, 25ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100

静态存储器
文件: 总19页 (文件大小:179K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
IDT70261S/L  
16K x 16 DUAL-PORT  
STATIC RAM WITH INTERRUPT  
Features  
True Dual-Ported memory cells which allow simultaneous  
IDT70261 easily expands data bus width to 32 bits or more  
using the Master/Slave select when cascading more than  
one device  
M/S = H for BUSY output flag on Master,  
M/S = L for BUSY input on Slave  
Busy and Interrupt Flags  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
TTL-compatible, single 5V (±10%) power supply  
Available in 100-pin Thin Quad Flatpack  
Industrial temperature range (-40OC to +85OC) is available  
for selected speeds  
access of the same memory location  
High-speed access  
– Commercial:15/20/25/35/55ns(max.)  
Industrial20/25ns (max.)  
Low-power operation  
IDT70261S  
Active:750mW(typ.)  
Standby: 5mW (typ.)  
IDT70261L  
Active:750mW(typ.)  
Standby: 1mW (typ.)  
Separate upper-byte and lower-byte control for multiplexed  
bus compatibility  
FunctionalBlockDiagram  
R/  
UB  
W
L
L
R/  
W
R
R
UB  
LB  
CE  
OE  
L
LB  
CE  
OE  
R
L
L
R
R
I/O8L-I/O15L  
I/O8R-I/O15R  
I/O  
I/O  
Control  
Control  
I/O0L-I/O7L  
(1,2)  
I/O0R-I/O7R  
(1,2)  
BUSY  
L
BUSY  
R
A
13L  
A
13R  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A
0L  
A
0R  
14  
14  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE  
OE  
R/W  
R
CE  
OE  
R/W  
L
R
L
R
L
SEM  
R
(2)  
SEM  
L
(2)  
INTR  
INTL  
M/S  
3039 drw 01  
NOTES:  
1. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
2. BUSY and INT outputs are non-tri-stated push-pull.  
NOVEMBER 2001  
1
DSC 3039/9  
©2001IntegratedDeviceTechnology,Inc.  
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
Description  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
reads or writes to any location in memory. An automatic power down  
featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
a very low standby power mode.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typicallyoperate ononly750mWofpower.  
TheIDT70261is ahigh-speed16Kx16Dual-PortStaticRAM.The  
IDT70261isdesignedtobeusedasastand-aloneDual-PortRAMoras  
acombinationMASTER/SLAVEDual-PortRAMfor32-bit-or-moreword  
systems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproachin32-  
bitorwidermemorysystemapplicationsresultsinfull-speed,error-free  
operationwithouttheneedforadditionaldiscretelogic.  
The IDT70261 is packaged in a 100-pin TQFP.  
This device provides two independent ports with separate control,  
PinConfigurations(1,2,3)  
11/16/01  
Index  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
2
3
4
A
A
A
A
A
A
A
6L  
5L  
4L  
3L  
2L  
1L  
0L  
N/C  
5
I/O10L  
I/O11L  
I/O12L  
I/O13L  
GND  
I/O14L  
I/O15L  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
IDT70261PF  
PN100-1(4)  
INT  
L
BUSY  
GND  
M/S  
L
VCC  
GND  
I/O0R  
I/O1R  
I/O2R  
100-Pin TQFP  
Top View(5)  
BUSY  
R
INT  
R
A
A
A
A
A
A
0R  
1R  
2R  
3R  
4R  
5R  
VCC  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
N/C  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
,
3039 drw 02  
PinNames  
NOTES:  
1. All VCC pins must be connected to power supply.  
Left Port  
Right Port  
Names  
2. All GND pins must be connected to ground supply.  
Chip Enable  
CE  
R/W  
OE  
L
CE  
R/W  
OE  
R
3. Package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
L
R
Read/Write Enable  
Output Enable  
Address  
L
R
A0L - A13L  
A0R - A13R  
I/O0L - I/O15L  
I/O0R - I/O15R  
Data Input/Output  
Semaphore Enable  
Upper Byte Select  
Lower Byte Select  
Interrupt Flag  
SEM  
UB  
LB  
INT  
BUSY  
L
SEM  
UB  
LB  
INT  
BUSY  
M/S  
R
L
R
L
R
L
R
Busy Flag  
L
R
Master or Slave Select  
Power  
V
CC  
GND  
Ground  
3039 tbl 01  
6.42  
2
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
MaximumOperatingTemperature  
andSupplyVoltage(1,2)  
RecommendedDCOperating  
Conditions  
Symbol  
Parameter  
Supply Voltage  
GND Ground  
Min.  
Typ. Max. Unit  
Ambient  
Grade  
Commercial  
Industrial  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
Vcc  
VCC  
4.5  
5.0  
5.5  
0
V
V
V
5.0V  
5.0V  
+
+
10%  
0
0
0V  
10%  
V
IH  
Input High Voltage  
Input Low Voltage  
2.2  
6.0(2)  
0.8  
____  
3039 tbl 02  
VIL  
-0.5(1)  
V
NOTES:  
____  
1. This is the parameter TA. This is the "instant on"case temperature.  
3039 tbl 03  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
Truth Table I – Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
R/W  
X
X
L
I/O8-15  
I/O0-7  
Mode  
CE  
H
X
L
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
High-Z  
High-Z  
High-Z Deselected: Power-Down  
High-Z Both Bytes Deselected  
H
H
DATAIN  
High-Z  
High-Z  
DATAIN  
DATAIN  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
L
L
H
L
H
L
L
L
H
DATAIN  
DATAOUT  
High-Z  
L
H
H
H
X
L
H
L
H
High-Z Read Upper Byte Only  
DATAOUT Read Lower Byte Only  
DATAOUT Read Both Bytes  
High-Z Outputs Disabled  
L
L
H
L
H
L
L
L
H
DATAOUT  
High-Z  
X
H
X
X
X
3039 tbl 04  
NOTE:  
1. A0L A13L A0R A13R.  
Truth Table II – Semaphore Read/Write Control(1)  
Inputs  
Outputs  
R/W  
H
I/O8-15  
I/O0-7  
Mode  
CE  
H
OE  
L
UB  
X
LB  
X
SEM  
L
DATAOUT  
DATAOUT  
DATAOUT Read Data in Semaphore Flag  
DATAOUT Read Data in Semaphore Flag  
X
H
L
H
H
L
H
X
X
X
L
DATAIN  
DATAIN  
Write I/O into Semaphore Flag  
0
X
X
X
L
L
X
X
X
H
L
H
X
L
L
L
L
DATAIN  
DATAIN  
Write I/O0 into Semaphore Flag  
______  
______  
Not Allowed  
Not Allowed  
______  
______  
X
3039 tbl 05  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all I/O's(I/O0 - I/O15). These eight semaphores are addressed by A0 - A2.  
3
6.42  
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
AbsoluteMaximumRatings(1)  
Capacitance(1) (TA = +25°C, f = 1.0Mhz)  
Conditions(2)  
IN = 3dV  
OUT = 3dV  
Max. Unit  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
Symbol  
Parameter  
CIN  
Input Capacitance  
V
9
pF  
pF  
(2)  
V
TERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +7.0  
V
Output  
Capacitance  
V
10  
COUT  
3039 tbl 07  
Te mp e rature  
Under Bias  
-55 to +125  
-65 to +150  
50  
oC  
oC  
T
BIAS  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested.  
2. 3dV represents the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
TSTG  
Storage  
Te mp e rature  
DC Output  
Current  
mA  
IOUT  
3039 tbl 06  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > Vcc + 10%.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VCC = 5.0V ± 10%)  
70261S  
70261L  
Symbol  
|ILI  
|ILO  
Parameter  
Test Conditions  
Min.  
Max.  
10  
Min.  
Max.  
5
Unit  
µA  
µA  
V
(1)  
___  
___  
|
Input Leakage Current  
Output Leakage Current  
Output Low Voltage  
V
CC = 5.5V, VIN = 0V to VCC  
___  
___  
___  
___  
|
10  
5
CE = VIH, VOUT = 0V to VCC  
V
OL  
OH  
NOTE:  
I
OL = 4mA  
0.4  
0.4  
___  
___  
V
Output High Voltage  
I
OH = -4mA  
2.4  
2.4  
V
3039 tbl 08  
1. At Vcc < 2.0V, input leakages are undefined.  
5V  
5V  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
3ns  
893  
893Ω  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
DATAOUT  
BUSY  
INT  
DATAOUT  
1.5V  
1.5V  
30pF  
347Ω  
347Ω  
5pF*  
Figures 1 and 2  
3039 tbl 09  
3039 drw 04  
3039 drw 03  
Figure 1. AC Output Test Load  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
*Including scope and jig.  
6.42  
4
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (VCC = 5.0V ± 10%)  
70261X15  
70261X20  
Com'l & Ind  
70261X25  
Com'l & Ind  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating Current  
(Both Ports Active)  
S
L
190  
190  
325  
285  
180  
180  
315  
275  
170  
170  
305  
265  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
IND  
S
L
170  
345  
____  
____  
180  
315  
I
SB1  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
IND  
S
L
35  
35  
95  
70  
30  
30  
85  
60  
25  
25  
85  
60  
mA  
mA  
CE  
SEM  
f = fMAX  
L
= CE  
R
= VIH  
= VIH  
R
= SEM  
L
(3)  
____  
____  
____  
____  
____  
____  
S
L
25  
100  
____  
____  
30  
80  
(5)  
ISB2  
Standby Current  
(One Port - TTL Level Inputs)  
COM'L  
S
L
125  
125  
220  
190  
115  
115  
210  
180  
105  
105  
200  
170  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
SEMR = SEML = VIH  
____  
____  
____  
____  
____  
____  
IND  
S
L
105  
230  
____  
____  
115  
210  
I
SB3  
Full Standby Current (Both  
Ports - All CMOS Level  
Inputs)  
Both Ports CE  
CE > VCC - 0.2V  
IN > VCC - 0.2V or  
IN < 0.2V, f = 0(4)  
SEM = SEM > VCC - 0.2V  
L
and  
COM'L  
IND  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
mA  
mA  
R
V
V
____  
____  
____  
____  
____  
____  
S
L
1.0  
30  
____  
____  
0.2  
10  
R
L
ISB4  
Full Standby Current  
(One Port - All CMOS Level  
Inputs)  
COM'L  
IND  
S
L
120  
120  
195  
170  
110  
110  
185  
160  
100  
100  
170  
145  
CE"A" < 0.2V and  
(5)  
CE"B" > VCC - 0.2V  
SEM = SEM > VCC - 0.2V  
R
L
____  
____  
____  
____  
____  
____  
S
L
100  
200  
V
IN > VCC - 0.2V or VIN < 0.2V  
____  
____  
110  
185  
Active Port Outputs Disabled  
(3)  
f = fMAX  
3039 tbl 10  
70261X35  
Com'l Only  
70261X55  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
I
CC  
Dynamic Operating  
Current  
COM'L  
S
L
160  
160  
295  
255  
150  
150  
270  
230  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
(Both Ports Active)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
IND  
S
L
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
ISB1  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
IND  
S
L
20  
20  
85  
60  
13  
13  
85  
60  
CE  
SEM  
f = fMAX  
L
= CE  
R
= VIH  
= VIH  
R
= SEM  
L
(3)  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
(5)  
ISB2  
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
IND  
S
L
95  
95  
185  
155  
85  
85  
165  
135  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
SEM  
____  
____  
____  
____  
____  
____  
____  
____  
S
L
R
= SEM  
L
= VIH  
and  
ISB3  
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CE  
CE > VCC - 0.2V  
IN > VCC - 0.2V or  
IN < 0.2V, f = 0(4)  
SEM = SEM > VCC - 0.2V  
L
COM'L  
IND  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
R
V
V
____  
____  
____  
____  
____  
____  
____  
____  
S
L
R
L
ISB4  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
COM'L  
IND  
S
L
90  
90  
160  
135  
80  
80  
135  
110  
CE"A" < 0.2V and  
(5)  
CE"B" > VCC - 0.2V  
SEM = SEM > VCC - 0.2V  
R
L
____  
____  
____  
____  
____  
____  
____  
____  
S
L
V
IN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled  
(3)  
f=fMAX  
3039 tbl 11  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
2. VCC = 5V, TA = +25°C, and are not production tested. ICCDC = 120mA (Typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using  
“AC Test Conditions” of input levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
5
6.42  
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
70261X15  
70261X20  
Com'l & Ind  
70261X25  
Com'l & Ind  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min. Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
20  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
15  
15  
15  
20  
20  
20  
25  
25  
25  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
t
10  
12  
13  
____  
____  
____  
t
Output Hold from Address Change  
Output Low-Z Time(1,2)  
3
3
3
____  
____  
____  
t
3
3
3
Output High-Z Time(1,2)  
10  
12  
15  
____  
____  
____  
t
t
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
0
____  
____  
____  
____  
____  
____  
t
15  
20  
25  
____  
____  
____  
t
10  
10  
12  
____  
____  
____  
t
15  
20  
25  
ns  
3039 tbl 12a  
70261X35  
Com'l Only  
70261X55  
Com'l Only  
Symbol  
READ CYCLE  
Parameter  
Min. Max.  
Min. Max.  
Unit  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
35  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
t
Address Access Time  
35  
35  
35  
55  
55  
55  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
t
t
t
20  
30  
____  
____  
t
3
3
____  
____  
t
3
3
Output High-Z Time(1,2)  
15  
25  
____  
____  
t
t
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
____  
____  
____  
____  
t
35  
50  
____  
____  
t
15  
15  
____  
____  
t
35  
55  
ns  
3039 tbl 12b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL.  
4. 'X' in part numbers indicates power rating (S or L).  
6.42  
6
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
t
RC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE  
OE  
(4)  
tAOE  
(4)  
tABE  
UB, LB  
R/W  
t
OH  
(1)  
tLZ  
VALID DATA(4)  
DATAOUT  
BUSYOUT  
NOTES:  
(2)  
t
HZ  
(3, 4)  
3039 drw 05  
tBDD  
1. Timing depends on which signal is asserted last, OE, CE, LB, or UB.  
2. Timing depends on which signal is de-asserted first CE, OE, LB, or UB.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
Timing of Power-Up Power-Down  
CE  
tPU  
tPD  
I
CC  
SB  
50%  
50%  
I
,
3039 drw 06  
7
6.42  
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
70261X15  
70261X20  
Com'l & Ind  
70261X25  
Com'l & Ind  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
15  
0
20  
0
t
Write Recovery Time  
t
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
10  
15  
15  
____  
____  
____  
t
10  
12  
15  
____  
____  
____  
t
0
0
0
(1,2)  
____  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
12  
15  
____  
____  
____  
t
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
3039 tbl 13a  
70261X35  
Com'l Only  
70261X55  
Com'l Only  
Symbol  
WRITE CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
25  
0
40  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
15  
30  
____  
____  
t
15  
25  
____  
____  
t
0
0
(1,2)  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
15  
25  
____  
____  
t
0
5
5
0
5
5
____  
____  
____  
____  
t
t
ns  
3039 tbl 13b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part numbers indicates power rating (S or L).  
6.42  
8
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
t
AW  
CE or SEM (9)  
UB or LB (9)  
R/W  
(3)  
(2)  
(6)  
t
AS  
tWR  
tWP  
(7)  
t
OW  
t
WZ  
(4)  
(4)  
DATAOUT  
DATAIN  
tDW  
tDH  
3039 drw 07  
Timing Waveform of Write Cycle No. 2, CE, UB, LB Controlled Timing(1,5)  
tWC  
ADDRESS  
CE or SEM(9)  
UB or LB(9)  
t
AW  
(3)  
(2)  
(6)  
tWR  
t
AS  
tEW  
R/W  
t
DW  
tDH  
DATAIN  
3039 drw 08  
NOTES:  
1. R/W or CE or UB and LB = VIH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL and a R/W = VIL for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going VIH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure  
2).  
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
9
6.42  
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
t
OH  
t
SAA  
VALID ADDRESS  
VALID ADDRESS  
A0-A2  
tWR  
tACE  
t
AW  
t
EW  
SEM  
tSOP  
t
DW  
DATAIN  
VALID  
DATAOUT  
I/O0  
(2)  
VALID  
t
AS  
t
WP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
Write Cycle  
Read Cycle  
3039 drw 09  
NOTES:  
1. CE = VIH or UB and LB = VIH for the duration of the above timing (both write and read cycle).  
2. "DATAOUT VALID" represents all I/O's (I/O0-I/O15) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A
0"A"-A2"A"  
MATCH  
SIDE(2)  
"A"  
R/W"A"  
SEM"A"  
tSPS  
A
0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
3039 drw 10  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH, or both UB & LB = VIH.  
2. All timing is the same for left and right ports. Port A” may be either left or right port. Port B” is the opposite from port A”.  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will be granted the semaphore flag.  
6.42  
10  
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6,7)  
70261X15  
70261X20  
Com'l & Ind  
70261X25  
Com'l & Ind  
Com'l Only  
Symbol  
BUSY TIMING (M/S=VIH  
Parameter  
Min.  
Max.  
Min. Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
t
15  
17  
17  
____  
____  
____  
t
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
t
18  
30  
30  
t
Write Hold After BUSY(5)  
12  
15  
17  
____  
____  
____  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
0
ns  
ns  
tWH  
12  
15  
17  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
30  
25  
45  
30  
50  
35  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
3039 tbl 14a  
70261X35  
Com'l Only  
70261X55  
Com'l Only  
Symbol  
BUSY TIMING (M/S=VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
20  
20  
20  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
t
20  
35  
____  
____  
t
5
5
____  
____  
BUSY Disable to Valid Data(3)  
t
35  
40  
t
Write Hold After BUSY(5)  
25  
25  
____  
____  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
ns  
ns  
tWH  
25  
25  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
60  
45  
80  
65  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
3039 tbl 14b  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Wave form of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual), or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
6. 'X' in part numbers indicates power rating (S or L).  
11  
6.42  
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadandBUSY (M/S =VIH)(2,4,5)  
t
WC  
MATCH  
ADDR"A"  
tWP  
R/W"A"  
tDW  
tDH  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
tBAA  
tBDA  
tBDD  
BUSY"B"  
tWDD  
VALID  
DATAOUT "B"  
(3)  
tDDD  
3039 drw 11  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSY"A" = VIH and BUSY"B" input is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY (M/S = VIL)  
tWP  
R/W"A"  
(3)  
tWB  
BUSY"B"  
(1)  
tWH  
R/W"B"  
(2)  
,
3039 drw 12  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the SLAVE” version.  
6.42  
12  
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(M/S = VIH)(1)  
ADDR"A"  
and "B"  
ADDRESSES MATCH  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
t
BDC  
BUSY"B"  
3039 drw 13  
Waveform of BUSY Arbitration Cycle Controlled by  
Address Match Timing(M/S = VIH)(1)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
ADDRESS "N"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
t
BAA  
tBDA  
3039 drw 14  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from port A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
70261X15  
70261X20  
70261X25  
Com'l Only  
Com'l & Ind  
Com'l & Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
t
0
0
0
____  
____  
____  
t
15  
15  
20  
20  
20  
20  
____  
____  
____  
t
Interrupt Reset Time  
ns  
3039 tbl 15a  
70261X35  
Com'l Only  
70261X55  
Com'l Only  
Symbol  
INTERRUPT TIMING  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
ns  
ns  
ns  
t
0
0
____  
____  
t
25  
25  
40  
40  
____  
____  
t
Interrupt Reset Time  
ns  
3039 tbl 15b  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
13  
6.42  
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
t
WC  
INTERRUPT SET ADDRESS (2)  
ADDR"A"  
(4)  
(3)  
t
AS  
tWR  
CE"A"  
R/W"A"  
INT"B"  
(3)  
t
INS  
3039 drw 15  
t
RC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
t
AS  
OE"B"  
(3)  
t
INR  
INT"B"  
3039 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from port A”.  
2. See Interrupt Truth Table.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
TruthTables  
Truth Table III — Interrupt Flag(1)  
Left Port  
Right Port  
OE  
R/WL  
A13L-A0L  
R/WR  
A
13R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CEL  
OEL  
INTL  
CER  
R
INTR  
(2)  
L
L
X
X
L
X
X
X
L
3FFF  
X
X
X
X
L
X
L
L
X
X
L
X
3FFF  
3FFE  
X
L
R
(3)  
X
X
H
R
(3)  
X
X
L
X
X
X
L
(2)  
X
3FFE  
H
X
X
L
3039 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
6.42  
14  
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
Truth Table IV —  
AddressBUSY Arbitration  
Inputs  
Outputs  
A
OL-A13L  
(1)  
(1)  
AOR-A13R  
Function  
Normal  
Normal  
Normal  
CE  
L
CE  
R
BUSY  
L
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
MATCH  
H
H
(3)  
MATCH  
(2)  
(2)  
Write Inhibit  
3039 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT70261 are  
push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0 - D15 Left  
D0  
- D15 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
3039 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70261.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O15). These eight semaphores are addressed by A0 - A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
(INTL) is asserted when the right port writes to memory location 3FFE  
(HEX), where a write is defined as CER = R/WR = VIL per Truth Table  
III. The left port clears the interrupt through access of address location  
3FFE when CEL = OEL = VIL, R/W is a "don't care". Likewise, the right  
portinterruptflag(INTR)isassertedwhentheleftportwritestomemory  
location3FFF(HEX)andtocleartheinterruptflag(INTR),therightport  
mustreadthememorylocation3FFF.Themessage(16bits)at3FFEor  
3FFF is user-defined since it is an addressable SRAM location. If the  
interruptfunctionisnotused,addresslocations3FFEand3FFFarenot  
usedasmailboxes,butaspartoftherandomaccessmemory.Referto  
TruthTableIIIfortheinterruptoperation.  
TheIDT70261providestwoportswithseparatecontrol,addressand  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation  
in memory. The IDT70261 has an automatic power down feature  
controlled by CE. The CE controls on-chip power down circuitry that  
permitstherespectiveporttogointoastandbymodewhennotselected  
(CE = VIH). Whena portis enabled, access tothe entire memoryarray  
ispermitted.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessage center)is assignedtoeachport. The leftportinterruptflag  
15  
6.42  
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
pulsecanbeinitiatedwitheithertheR/Wsignalorthebyteenables.Failure  
toobservethistimingcanresultinaglitchedinternalwriteinhibitsignaland  
corrupteddataintheslave.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisBusy.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
Semaphores  
TheIDT70261isanextremelyfastDual-Port16Kx16CMOSStatic  
RAMwithanadditional8addresslocationsdedicatedtobinarysemaphore  
flags.TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-  
PortRAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefined  
bythesystemdesignerssoftware.Asanexample,thesemaphorecan  
beusedbyoneprocessortoinhibittheotherfromaccessingaportionof  
the Dual-Port RAM or any other shared resource.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
anduse anyBUSYindicationas aninterruptsource toflagthe eventof  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins high. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port low.  
TheBUSYoutputsontheIDT70261RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate.Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
The Dual-PortRAMfeatures a fastaccess time, andbothports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnowayslows theaccess timeoftherightport.Bothports are  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chippowerdowncircuitrythatpermits the respective porttogointo  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table V where CE and SEM are both HIGH.  
CE  
CE  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
BUSY  
L
BUSY  
L
BUSY  
R
BUSY  
R
SystemswhichcanbestusetheIDT70261containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
a performance increase offered by the IDT70261's hardware sema-  
phores,whichprovidealockoutmechanismwithoutrequiringcomplex  
programming.  
MASTER  
Dual Port  
RAM  
CE  
SLAVE  
Dual Port  
RAM  
CE  
BUSY  
R
BUSY  
L
BUSY  
L
BUSY  
R
BUSYR  
BUSY  
L
,
3039 drw 17  
Softwarehandshakingbetweenprocessors offers themaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT70261doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT70261 RAMs.  
Width Expansion with Busy Logic  
Master/SalveArrays  
WhenexpandinganIDT70261RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartis usedtodecidewhichsideoftheRAMarraywill  
receiveaBUSYindication,andtooutputthatindication.Anynumberof  
slavestobeaddressedinthesameaddressrangeasthemaster,usethe  
BUSYsignalasawriteinhibitsignal.ThusontheIDT70261RAMtheBUSY  
pinisanoutputifthepartisusedasamaster(M/Spin=VIH),andtheBUSY  
pin is an input if the part used as a slave (M/S pin = VIL) as shown in  
Figure 3.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.”Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,is basedonthechipenableand  
address signals only. It ignores whether an access is a read or write. In  
a master/slave array, both address and chip enable must be valid long  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
6.42  
16  
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
that semaphores status or remove its request for that semaphore to into a semaphore flag. Whichever latch is first to present a zero to the  
performanothertaskandoccasionallyattemptagaintogaincontrolofthe semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
tokenviathesetandtestsequence.Oncetherightsidehasrelinquished sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
thetoken,theleftsideshouldsucceedingainingcontrol.  
semaphorerequestlatch.Shouldtheothersidessemaphorerequestlatch  
Thesemaphoreflagsareactivelow.Atokenisrequestedbywriting havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites  
aonetothatlatch.  
L PORT  
SEMAPHORE  
R PORT  
TheeightsemaphoreflagsresidewithintheIDT70261inaseparate  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed  
byplacingalowinputontheSEMpin(whichactsasachipselectforthe  
semaphore flags) and using the other control pins (Address, OE, and  
R/W)as theywouldbeusedinaccessingastandardStaticRAM.Each  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside  
throughaddresspinsA0 A2. Whenaccessingthesemaphores,none  
oftheotheraddresspinshasanyeffect.  
SEMAPHORE  
REQUEST FLIP FLOP  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
onthatsideandaoneontheotherside(seeTableV).Thatsemaphore  
can now only be modified by the side showing the zero. When a one is  
writtenintothesamelocationfromthesameside,theflagwillbesettoa  
one for both sides (unless a semaphore request from the other side is  
pending)andthencanbewrittentobybothsides.Thefactthattheside  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
freedbythefirstside.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintoonesidesoutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTable  
V).Asanexample,assumeaprocessorwritesazerototheleftportata  
freesemaphorelocation.Onasubsequentread,theprocessorwillverify  
thatithaswrittensuccessfullytothatlocationandwillassumecontrolover  
the resource in question. Meanwhile, if a processor on the right side  
attempts towriteazerotothesamesemaphoreflagitwillfail,as willbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
gap between the read and write cycles.  
3039 drw 18  
Figure 4. IDT70261 Semaphore Logic  
overtotheothersideassoonasaoneiswrittenintothefirstsidesrequest  
latch.Thesecondsidesflagwillnowstaylowuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requestedandthe processorwhichrequesteditnolongerneeds the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
The critical case of semaphore timing is when both sides request  
a single token by attempting to write a zero into it at the same time.  
The semaphore logic is specially designed to resolve this problem.  
If simultaneous requests are made, the logic guarantees that only one  
sidereceivesthetoken.Ifonesideisearlierthantheotherinmakingthe  
request, the firstside tomake the requestwillreceive the token. Ifboth  
requestsarriveatthesametime,theassignmentwillbearbitrarilymade  
to one port or the other.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
ormisinterpreted, a software errorcaneasilyhappen.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
resourcemarkersfortheIDT70261’sDual-PortRAM.Saythe16Kx16  
RAMwastobedividedintotwo8Kx16blockswhichweretobededicated  
atanyonetimetoservicingeithertheleftorrightport.Semaphore0could  
be used to indicate the side which would control the lower section of  
memory,andSemaphore1couldbedefinedastheindicatorfortheupper  
sectionofmemory.  
Totakearesource,inthisexamplethelower8Kof Dual-PortRAM,  
the processor on the left port could write and then read a zero in to  
Semaphore0.Ifthistaskweresuccessfullycompleted(azerowasread  
backratherthana one), the leftprocessorwouldassume controlofthe  
lower8K. Meanwhiletherightprocessorwasattemptingtogaincontrol  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation.The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
17  
6.42  
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
ofthe resourceaftertheleftprocessor,itwouldreadbackaoneinresponse  
tothezeroithadattemptedtowriteintoSemaphore0.Atthis point,the  
softwarecouldchoosetotryandgaincontrolofthesecond8Ksectionby  
writing,thenreadingazerointoSemaphore1.Ifitsucceededingaining  
control,itwouldlockouttheleftside.  
Once the left side was finished with its task, it would write a one to  
Semaphore 0 and may then try to gain access to Semaphore 1. If  
Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
itssemaphorerequestandperformothertasksuntilitwasabletowrite,then  
readazerointoSemaphore1.Iftherightprocessorperformsasimilartask  
withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap  
8Kblocks ofDual-PortRAMwitheachother.  
The blocks do not have to be any particular size and can even be  
variable, depending upon the complexity of the software using the  
semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual-  
PortRAMorothersharedresources intoeightparts. Semaphores can  
evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing  
given a common meaning as was shown in the example above.  
Semaphores are a useful form of arbitration in systems like disk  
interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring  
atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse  
ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea  
wasoff-limitstotheCPU,boththeCPUandtheI/Odevicescouldaccess  
theirassignedportionsofmemorycontinuouslywithoutanywaitstates.  
SemaphoresarealsousefulinapplicationswherenomemoryWAIT”  
stateisavailableononeorbothsides.Onceasemaphorehandshakehas  
been performed, both processors can access their assigned RAM  
segmentsatfullspeed.  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
mayberesponsibleforbuildingandupdatingadatastructure.Theother  
processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
processorreadsanincompletedatastructure,amajorerrorconditionmay  
exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
is completed, the data structure block is released. This allows the  
interpretingprocessortocomebackandreadthecompletedatastructure,  
therebyguaranteeingaconsistentdatastructure.  
6.42  
18  
IDT70261S/L  
High-Speed 16K x 16 Dual-Port Static RAM with Interrupt  
Industrial and Commercial Temperature Ranges  
OrderingInformation  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I(1)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
PF  
100-pin TQFP (PN100-1)  
Commercial  
15  
20  
25  
35  
55  
Commercial & Industrial  
Speed  
Commercial & Industrial  
in nanoseconds  
Commercial Only  
Commercial Only  
S
L
Standard Power  
Low Power  
256K (16K x 16) Dual-Port RAM with Interrupt  
70261  
3039 drw 19  
NOTE:  
1. Contactyourlocalsales officeforIndustrialtemprangeforotherspeeds,packages andpowers.  
DatasheetDocumentHistory  
1/14/99:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Pages 2 Addedadditionalnotestopinconfigurations  
Changeddrawingformat  
6/4/99:  
Page 1 CorrectedDSCnumber  
2/18/00:  
AddedIndustrialTemperatureRangesandremovedrelatednotes  
Replaced IDT logo  
Changed±200mVintableandwaveformnotes to0mV  
Page 3 ClarifiedTAparameter  
5/22/00:  
Page 4 Increasedstoragetemperatureparameter  
Page 5 DCElectricalparameters–changedwordingfromopentodisabled  
Page 2 Addeddaterevisionforpinconfiguration  
11/20/01:  
Page 5 RemovedIndustrialtempforstandardpower20nsspeedfromDCElectricalCharacteristics  
RemovedIndustrialtempforlowpower25nsspeedfromDCElectricalCharacteristics  
RemovedIndustrialtempforstandardandlowpowerfor35ns & 55ns speeds fromDCElectricalCharacteristics  
Pages6,8,11&13 RemovedIndustrialtempfor35nsand55nsspeedsfromACElectricalCharacteristics  
Page 19 RemovedIndustrialtempfrom35nsand55nsinorderinginformation  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
19  
6.42  

相关型号:

IDT70261L25PFG

暂无描述
IDT

IDT70261L25PFI

HIGH-SPEED 16K x 16 DUAL-PORT STATIC RAM WITH INTERRUPT
IDT

IDT70261L35PF

HIGH-SPEED 16K x 16 DUAL-PORT STATIC RAM WITH INTERRUPT
IDT

IDT70261L35PF8

Dual-Port SRAM, 16KX16, 35ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100
IDT

IDT70261L35PF9

Dual-Port SRAM, 16KX16, 35ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100
IDT

IDT70261L35PFG

Dual-Port SRAM, 16KX16, 35ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100
IDT

IDT70261L35PFI

HIGH-SPEED 16K x 16 DUAL-PORT STATIC RAM WITH INTERRUPT
IDT

IDT70261L45PF

x16 Dual-Port SRAM
ETC

IDT70261L45PF8

Multi-Port SRAM, 16KX16, 45ns, CMOS, PQFP100, PLASTIC, TQFP-100
IDT

IDT70261L55PF

HIGH-SPEED 16K x 16 DUAL-PORT STATIC RAM WITH INTERRUPT
IDT

IDT70261L55PF8

Dual-Port SRAM, 16KX16, 55ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100
IDT

IDT70261L55PF9

Dual-Port SRAM, 16KX16, 55ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100
IDT