IDT7026S35JI [IDT]

Dual-Port SRAM, 16KX16, 35ns, CMOS, PQCC84, PLASTIC, LCC-84;
IDT7026S35JI
型号: IDT7026S35JI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 16KX16, 35ns, CMOS, PQCC84, PLASTIC, LCC-84

静态存储器 内存集成电路
文件: 总18页 (文件大小:267K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
IDT7026S/L  
16K X 16 DUAL-PORT  
STATIC RAM  
Features  
True Dual-Ported memory cells which allow simultaneous  
access of the same memory location  
High-speed access  
IDT7026 easily expands data bus width to 32 bits or more  
using the Master/Slave select when cascading more than  
one device  
M/S = H for BUSY output flag on Master,  
M/S = L for BUSY input on Slave  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
TTL-compatible, single 5V (±10%) power supply  
Available in 84-pin PGA and 84-pin PLCC  
Industrial temperature range (-40°C to +85°C) is available  
for selected speeds  
– Commercial: 15/20/25/35/55ns (max.)  
– Industrial: 20/25/35/55ns (max.)  
– Military: 20/25/35/55ns (max.)  
Low-power operation  
– IDT7026S  
Active: 750mW (typ.)  
Standby: 5mW (typ.)  
– IDT7026L  
Active: 750mW (typ.)  
Standby: 1mW (typ.)  
Separate upper-byte and lower-byte control for multi-  
plexed bus compatibility  
FunctionalBlockDiagram  
R/  
W
R
R
R/  
W
UBL  
L
UB  
LB  
CE  
OE  
L
LB  
CER  
OE  
R
L
L
R
I/O8L-I/O15L  
I/O0L-I/O7L  
I/O8R-I/O15R  
I/O  
Control  
I/O  
Control  
I/O0R-I/O7R  
(1,2)  
L
(1,2)  
R
BUSY  
BUSY  
A
13R  
A
13L  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A0R  
A
0L  
14  
14  
ARBITRATION  
SEMAPHORE  
LOGIC  
CE  
L
CE  
R
SEMR  
SEM  
L
M/S  
2939 drw 01  
NOTES:  
1. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
2. BUSY outputs are non-tri-stated push-pull.  
DECEMBER 2002  
1
DSC 2939/12  
©2001IntegratedDeviceTechnology,Inc.  
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Description  
The IDT7026 is a high-speed 16K x 16 Dual-Port Static RAM. The  
IDT7026 is designed to be used as a stand-alone Dual-Port RAM or as  
acombinationMASTER/SLAVEDual-PortRAMfor32-bit-or-moreword  
systems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproachin32-  
bitorwidermemorysystemapplicationsresultsinfull-speed,error-free  
operationwithouttheneedforadditionaldiscretelogic.  
featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
a very low standby power mode.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typically operate on only 750mW of power.  
The IDT7026 is packaged in a ceramic 84-pin PGA, and a 84-pin  
PLCC.Militarygradeproductismanufacturedincompliancewiththelatest  
revision of MIL-PRF-38535 QML, making it ideally suited to military  
temperatureapplicationsdemandingthehighestlevelofperformanceand  
reliability.  
This device provides two independent ports with separate control,  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
reads or writes to any location in memory. An automatic power down  
PinConfigurations(1,2,3)  
11/16/01  
INDEX  
11 10 9  
8
7
6
5
4
3
2
1 84 83 82 81 80 79 78 77 76 75  
I/O8L  
I/O9L  
A
A
A
A
A
A
A
A
8L  
7L  
6L  
5L  
4L  
3L  
2L  
1L  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
I/O10L  
I/O11L  
I/O12L  
I/O13L  
GND  
I/O14L  
I/O15L  
A0L  
IDT7026J  
J84-1(4)  
BUSY  
GND  
M/S  
L
VCC  
GND  
I/O0R  
I/O1R  
I/O2R  
84-Pin PLCC  
Top View(5)  
BUSY  
R
A0R  
A1R  
A2R  
A3R  
A4R  
A5R  
A6R  
A7R  
VCC  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
I/O7R  
I/O8R  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
,
2939 drw 02  
NOTES:  
1. All Vcc pins must be connected to the power supply.  
2. All GND pins must be connected to the ground supply.  
3. Package body is approximately 1.15 in x 1.15 in x .17 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
6.42  
2
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
11/16/01  
63  
I/O7L  
61  
I/O5L  
60  
I/O4L  
58  
I/O2L  
55  
I/O0L  
54  
51  
48  
46  
45  
42  
11  
10  
09  
08  
07  
06  
05  
04  
03  
02  
01  
A
12L  
A
11L  
A
8L  
OE  
L
SEM  
L
LB  
L
66  
I/O10L  
64  
I/O8L  
62  
I/O6L  
59  
I/O3L  
56  
I/O1L  
49  
50  
47  
44  
43  
41  
40  
A
10L  
A
9L  
7L  
4L  
1L  
A
6L  
UB  
L
CE  
L
A
13L  
67  
I/O11L  
65  
I/O9L  
68  
I/O12L  
71  
I/O14L  
70  
57  
53  
52  
39  
R/W  
L
GND  
V
CC  
A
A
5L  
69  
I/O13L  
38  
37  
A
3L  
A
72  
I/O15L  
73  
33  
35  
34  
36  
BUSY  
L
A
0L  
A
VCC  
IDT7026G  
G84-3(4)  
75  
I/O0R  
74  
32  
31  
GND  
GND  
GND  
M/S  
A
2L  
84-Pin PGA  
Top View(5)  
76  
I/O1R  
77  
I/O2R  
78  
28  
29  
26  
30  
VCC  
A0R  
BUSY  
R
A
1R  
79  
I/O3R  
80  
I/O4R  
27  
A
2R  
A
3R  
81  
I/O5R  
82  
I/O6R  
83  
I/O7R  
7
11  
12  
23  
25  
SEM  
R
A
4R  
A
6R  
GND  
GND  
1
2
5
8
10  
14  
17  
20  
18  
22  
24  
I/O9R  
I/O10R I/O13R I/O15R  
R/W  
R
A
12R  
A
9R  
A
7R  
A
5R  
UB  
R
84  
I/O8R  
3
4
6
9
15  
13  
16  
19  
21  
I/O11R I/O12R I/O14R  
A
11R  
A
10R  
A
8R  
OER  
LB  
R
CER  
A
13R  
A
B
C
D
E
F
G
H
J
K
L
2939 drw 03  
Index  
NOTES:  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 1.12 in x 1.12 in x .16 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
MaximumOperatingTemperature  
andSupplyVoltage(1)  
Ambient  
Pin Names  
Grade  
Temperature  
-55OC to+125OC  
0OC to +70OC  
-40OC to +85OC  
GND  
Vcc  
Left Port  
Right Port  
Names  
Military  
0V  
5.0V  
+
+
+
10%  
Chip Enable  
Commercial  
Industrial  
0V  
5.0V  
5.0V  
10%  
10%  
CE  
R/W  
OE  
L
CE  
R/W  
OE  
R
0V  
L
R
Read/Write Enable  
Output Enable  
2939 tbl 02  
L
R
NOTES:  
1. This is the parameter TA. This is the "instant on" case temperature.  
A
0L - A13L  
I/O0L - I/O15L  
SEM  
UB  
LB  
BUSY  
A
0R - A13R  
I/O0R - I/O15R  
SEM  
UB  
LB  
BUSY  
M/S  
Address  
Data Input/Output  
Semaphore Enable  
Upper Byte Select  
Lower Byte Select  
Busy Flag  
Capacitance(1) (TA = +25°C, f = 1.0mhz)  
L
R
Symbol  
Parameter  
Conditions(2)  
IN = 3dV  
OUT = 3dV  
Max. Unit  
L
R
CIN  
Input Capacitance  
V
9
pF  
pF  
L
R
Output  
Capacitance  
V
10  
COUT  
L
R
Master or Slave Select  
Power  
2939 tbl 03  
NOTES:  
V
CC  
1. This parameter is determined by device characterization but is not production  
tested.  
2. 3dV represents the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
GND  
Ground  
2939 tbl 01  
6.42  
3
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Truth Table I – Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
R/W  
X
I/O8-15  
I/O0-7  
High-Z  
High-Z  
High-Z  
DATAIN  
DATAIN  
High-Z  
Mode  
Deselected: Power-Down  
CE  
H
X
L
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
High-Z  
High-Z  
X
H
Both Bytes Deselected  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
L
H
DATAIN  
High-Z  
L
L
H
L
H
L
L
L
H
DATAIN  
DATAOUT  
High-Z  
L
H
H
H
X
L
H
L
H
Read Upper Byte Only  
L
L
H
L
H
DATAOUT Read Lower Byte Only  
DATAOUT Read Both Bytes  
L
L
L
H
DATAOUT  
High-Z  
X
H
X
X
X
High-Z  
Outputs Disabled  
2939 tbl 04  
NOTE:  
1. A0L — A13L A0R — A13R.  
Truth Table II – Semaphore Read/Write Control(1)  
Inputs  
Outputs  
R/W  
H
I/O8-15  
I/O0-7  
Mode  
CE  
H
OE  
L
UB  
X
LB  
X
SEM  
L
L
DATAOUT  
DATAOUT  
DATAOUT Read Data in Semaphore Flag  
DATAOUT Read Data in Semaphore Flag  
X
H
L
H
H
H
X
X
X
L
DATAIN  
DATAIN  
Write I/O  
0
0
into Semaphore Flag  
into Semaphore Flag  
X
L
L
X
X
X
X
X
H
L
H
X
L
L
L
L
DATAIN  
DATAIN  
Write I/O  
______  
______  
Not Allowed  
Not Allowed  
______  
______  
X
2939 tbl 05  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O15). These eight semaphores are addressed by A0 - A2.  
AbsoluteMaximumRatings(1)  
Commercial  
Symbol  
Rating  
Military  
Unit  
& Industrial  
-0.5 to +7.0  
-55 to +125  
-55 to +125  
50  
(2)  
V
TE RM  
BIAS  
STG  
OUT  
Terminal Voltage with Respect to GND  
-0.5 to +7.0  
-65 to +135  
-65 to +150  
50  
V
T
Temperature Under Bias  
Storage Temperature  
DC Output Current  
oC  
oC  
T
I
mA  
2939 tbl 06  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect reliability.  
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns maximum, and is limited to < 20mA for the period of  
VTERM > Vcc + 10%.  
6.42  
4
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
RecommendedDCOperating  
Conditions  
Symbol  
Parameter  
Min.  
Typ. Max. Unit  
V
CC  
Supply Voltage  
4.5  
5.0  
5.5  
0
V
V
V
GND  
Ground  
0
0
V
V
IH  
IL  
Input High Voltage  
Input Low Voltage  
2.2  
6.0(2)  
0.8  
____  
-0.5(1)  
V
____  
2939 tbl 07  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Soltage Range (VCC = 5.0V ± 10%)  
7026S  
7026L  
Symbol  
Parameter  
Input Leakage Current(1)  
Output Leakage Current  
Output Low Voltage  
Test Conditions  
Min.  
Max.  
10  
Min.  
Max.  
Unit  
µA  
µA  
V
___  
___  
|ILI|  
V
CC = 5.5V, VIN = 0V to VCC  
5
5
___  
___  
___  
___  
|ILO  
|
10  
CE = VIH, VOUT = 0V to VCC  
OL = 4mA  
OH = -4mA  
V
OL  
OH  
I
0.4  
0.4  
___  
___  
V
Output High Voltage  
I
2.4  
2.4  
V
2939 tbl 08  
NOTE:  
1. At Vcc = 2.0V, input leakages are undefined.  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
3ns  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V  
1.5V  
Figures 1 and 2  
2939 tbl 09  
5V  
5V  
893  
893Ω  
DATAOUT  
BUSY  
DATAOUT  
30pF  
347Ω  
5pF*  
347Ω  
2939 drw 04  
2939 drw 05  
Figure 1. AC Output Test Load  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
* Including scope and jig.  
6.42  
5
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (con't.) (VCC = 5.0V ± 10%)  
7026X15  
Com'l Only  
7026X20  
Com'l, Ind  
& Military.  
7026X25  
Com'l, Ind  
& Military  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating Current  
(Both Ports Active)  
S
L
190  
190  
325  
285  
180  
180  
315  
275  
170  
170  
305  
265  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
___  
___  
___  
___  
MIL &  
IND  
S
L
180  
180  
355  
315  
170  
170  
345  
305  
I
SB1  
Standby Current  
(B oth Ports - TTL Level  
Inputs)  
COM'L  
S
L
35  
35  
95  
70  
30  
30  
85  
60  
25  
25  
85  
60  
mA  
mA  
CE  
SEM  
f = fMAX  
L
= CE  
R
= VIH  
= VIH  
R
= SEM  
L
(3)  
___  
___  
___  
___  
MIL &  
IND  
S
L
30  
30  
100  
80  
25  
25  
100  
80  
(5)  
ISB2  
Standby Current  
(One Port - TTL Level Inputs)  
COM'L  
S
L
125  
125  
220  
190  
115  
115  
210  
180  
105  
105  
200  
170  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
___  
___  
___  
___  
MIL &  
IND  
115  
115  
245  
210  
S
L
105  
105  
230  
200  
SEMR = SEML = VIH  
I
SB3  
Full Standby Current (Both  
Ports - All CMOS Level  
Inputs)  
Both Ports CE  
L
and  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
mA  
mA  
CER  
> VCC - 0.2V  
V
V
IN > VCC - 0.2V or  
IN < 0.2V, f = 0(4)  
___  
___  
___  
___  
MIL &  
IND  
1.0  
0.2  
30  
10  
S
L
1.0  
0.2  
30  
10  
SEM  
R
= SEM  
L
> VCC - 0.2V  
ISB4  
Full Standby Current  
(One Port - All CMOS Level  
Inputs)  
COM'L  
S
L
120  
120  
195  
170  
110  
110  
185  
160  
100  
100  
170  
145  
CE"A" < 0.2V and  
CE"B" > VCC - 0.2V(5)  
SEMR = SEML > VCC - 0.2V  
___  
___  
___  
___  
MIL &  
IND  
110  
110  
210  
185  
S
L
100  
100  
200  
175  
V
IN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
2939 tbl 10  
7026X35  
Com'l, Ind  
& Military  
7026X55  
Com'l, Ind  
& Military  
Symbol  
Parameter  
Test Condition  
Version  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
COM'L  
S
L
160  
160  
295  
255  
150  
150  
270  
230  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
MIL &  
IND  
S
L
160  
160  
335  
295  
150  
150  
310  
270  
I
SB1  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
S
L
20  
20  
85  
60  
13  
13  
85  
60  
mA  
mA  
CE  
SEM  
f = fMAX  
L
= CE  
R
= VIH  
= VIH  
R
= SEM  
L
(3)  
MIL &  
IND  
S
L
20  
20  
100  
80  
13  
13  
100  
80  
(5)  
ISB2  
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
S
L
95  
95  
185  
155  
85  
85  
165  
135  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
MIL &  
IND  
S
L
95  
95  
215  
185  
85  
85  
195  
165  
SEM  
R
= SEM  
L
= VIH  
I
SB3  
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CE  
L
and  
COM'L  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
mA  
mA  
CER  
> VCC - 0.2V  
IN > VCC - 0.2V or  
IN < 0.2V, f = 0(4)  
= SEM > VCC - 0.2V  
V
V
MIL &  
IND  
S
L
1.0  
0.2  
30  
10  
1.0  
0.2  
30  
10  
SEMR  
L
ISB4  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
COM'L  
S
L
90  
90  
160  
135  
80  
80  
135  
110  
CE"A" < 0.2V and  
CE"B" > VCC - 0.2V(5)  
SEMR = SEML > VCC - 0.2V  
MIL &  
IND  
S
L
90  
90  
190  
165  
80  
80  
175  
150  
V
IN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled  
(3)  
f=fMAX  
2939 tbl 11  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
2. VCC = 5V, TA = +25°C, and are not production tested. ICCDC = 120mA (Typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using  
“AC Test Conditions” of input levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
6.42  
6
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
7026X15  
7026X20  
7026X25  
Com'l, Ind  
& Military  
Com'l Only  
Com'l, Ind  
& Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
20  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
15  
15  
15  
20  
20  
20  
25  
25  
25  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
t
10  
12  
13  
____  
____  
____  
t
Output Hold from Address Change  
Output Low-Z Time(1,2)  
3
3
3
____  
____  
____  
t
3
3
3
Output High-Z Time(1,2)  
10  
12  
15  
____  
____  
____  
t
t
Chip Enable to Power Up Time (2)  
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
0
____  
____  
____  
____  
____  
____  
t
15  
20  
25  
____  
____  
____  
t
10  
10  
12  
____  
____  
____  
t
15  
20  
25  
ns  
2939 tbl 12a  
7026X35  
Com'l, Ind  
& Military  
7026X55  
Com'l, Ind  
& Military  
Symbol  
READ CYCLE  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
35  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
t
Address Access Time  
35  
35  
35  
55  
55  
55  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
t
t
t
20  
30  
____  
____  
t
3
3
____  
____  
t
3
3
Output High-Z Time(1,2)  
15  
25  
____  
____  
t
t
Chip Enable to Power Up Time (2)  
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
____  
____  
____  
____  
t
35  
50  
____  
____  
t
15  
15  
____  
____  
t
35  
55  
ns  
2939 tbl 12b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL.  
4. 'X' in part numbers indicates power rating (S or L).  
6.42  
7
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
WAVEFORMOFREADCYCLES(5)  
t
RC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE  
OE  
(4)  
tAOE  
(4)  
tABE  
UB, LB  
R/W  
t
OH  
(1)  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
t
HZ  
BUSYOUT  
(3, 4)  
2939 drw 06  
t
BDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE, CE, LB, or UB.  
2. Timing depends on which signal is de-asserted first CE, OE, LB, or UB.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
Timing of Power-Up Power-Down  
CE  
tPU  
tPD  
I
CC  
SB  
50%  
50%  
I
,
2939 drw 07  
6.42  
8
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5,6)  
7026X15  
7026X20  
Com'l, Ind  
& Military  
7026X25  
Com'l, Ind  
& Military  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
15  
0
20  
0
t
Write Recovery Time  
t
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
10  
15  
15  
____  
____  
____  
t
10  
12  
15  
____  
____  
____  
t
0
0
0
(1,2)  
____  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
12  
15  
____  
____  
____  
t
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
3199 tbl 13a  
7026X35  
Com'l, Ind  
& Military  
7026X55  
Com'l, Ind  
& Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
25  
0
40  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
15  
30  
____  
____  
t
15  
25  
____  
____  
t
0
0
(1,2)  
____  
____  
t
Write Enable to Output in High-Z  
15  
25  
t
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
2939 tbl 13b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part numbers indicates power rating (S or L).  
6.42  
9
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM (9)  
UB or LB(9)  
(3)  
(2)  
(6)  
t
WP  
t
AS  
tWR  
R/W  
DATAOUT  
DATAIN  
(7)  
t
OW  
tWZ  
(4)  
(4)  
tDW  
tDH  
2939 drw 08  
Timing Waveform of Write Cycle No. 2, CE, UB, LB Controlled Timing(1,5)  
t
WC  
ADDRESS  
tAW  
CE or SEM(9)  
(3)  
(2)  
(6)  
tWR  
t
EW  
t
AS  
UB or LB(9)  
R/W  
t
DW  
tDH  
DATAIN  
2939 drw 09  
NOTES:  
1. R/W or CE or UB and LB = VIH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a VIL CE = VIL and R/W = VIL for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going VIH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure  
2).  
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be placed  
on the bus for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
6.42  
10  
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tOH  
tSAA  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tWR  
t
ACE  
tAW  
tEW  
SEM  
t
SOP  
tDW  
DATAOUT  
DATAIN  
VALID  
I/O0  
(2)  
VALID  
t
AS  
tDH  
tWP  
R/W  
tSWRD  
tAOE  
OE  
Read Cycle  
Write Cycle  
2939 drw 10  
NOTES:  
1. CE = VIH or UB and LB = VIH for the duration of the above timing (both write and read cycle).  
2. "DATAOUT VALID" represents all I/O's (I/O0-I/O15) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
(2)  
SIDE  
"A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
(2)  
SIDE  
"B"  
R/W"B"  
SEM"B"  
2939 drw 11  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH, or both UB & LB = VIH.  
2. All timing is the same for left and right ports. Port “A” may be either left or right port. Port “B” is the opposite from port “A”.  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will be granted the semaphore flag.  
6.42  
11  
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6,7)  
7026X15  
7026X20  
7026X25  
Com'l, Ind  
& Military  
Com'l Only  
Com'l, Ind  
& Military  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S=VIH  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
t
15  
17  
17  
____  
____  
____  
t
5
5
5
____  
____  
____  
t
18  
30  
30  
BUSY Disable to Valid Data  
(5)  
____  
____  
____  
t
Write Hold After BUSY  
12  
15  
17  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
t
WB  
0
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
12  
15  
17  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
30  
25  
45  
30  
50  
35  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
2939 tbl 14a  
7026X35  
Com'l, Ind  
& Military  
7026X55  
Com'l, Ind  
& Military  
Symbol  
BUSY TIMING (M/S=VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
20  
20  
20  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
t
20  
35  
____  
____  
t
5
5
____  
____  
BUSY Disable to Valid Data(3)  
t
35  
40  
(5)  
____  
____  
t
Write Hold After BUSY  
25  
25  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
BUSY Input to Write(4)  
t
WB  
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
25  
25  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
60  
45  
80  
65  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
2939 tbl 14b  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual), or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
6. 'X' in part numbers indicates power rating (S or L).  
7. Industrial temperature: for other speeds, packages and powers contact your sales office.  
6.42  
12  
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadandBUSY (M/S =VIH)(2,4,5)  
t
WC  
MATCH  
ADDR"A"  
R/W"A"  
t
WP  
tDW  
t
DH  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
t
BAA  
t
BDA  
tBDD  
BUSY"B"  
tWDD  
VALID  
DATAOUT "B"  
(3)  
tDDD  
2939 drw 12  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (slave).  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSY"A" = VIH and BUSY"B" input is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY (M/S = VIL)  
tWP  
R/W"A"  
(3)  
tWB  
BUSY"B"  
(1)  
t
WH  
R/W"B"  
(2)  
,
2939 drw 13  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the “SLAVE” version.  
6.42  
13  
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(M/S = VIH)(1)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
t
APS  
CE"B"  
t
BAC  
t
BDC  
BUSY"B"  
2939 drw 14  
Waveform of BUSY Arbitration Cycle Controlled by  
Address Match Timing(M/S = VIH)(1)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
ADDRESS "N"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
t
BAA  
tBDA  
2939 drw 15  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from “A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
Truth Table III — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D15 Left  
D0  
- D15 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
2939 tbl 15  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7026.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O15). These eight semaphores are addressed by A0 - A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the semaphore Read/Write Control Truth Table.  
6.42  
14  
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Width Expansion with BUSY Logic  
Truth Table IV —  
Address BUSY Arbitration  
Master/SlaveArrays  
WhenexpandinganIDT7026RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMarraywill  
receiveaBUSYindication,andtooutputthatindication.Anynumberof  
slavestobeaddressedinthesameaddressrangeasthemasterusethe  
BUSYsignalasawriteinhibitsignal.ThusontheIDT7026RAMtheBUSY  
pinisanoutputifthepartisusedasamaster(M/Spin=VIH),andtheBUSY  
pin is an input if the part used as a slave (M/S pin = VIL) as shown in  
Figure 3.  
Inputs  
Outputs  
A
OL-A13L  
(1)  
(1)  
A
OR-A13R  
Function  
Normal  
CEL  
CER  
BUSY  
L
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
Normal  
MATCH  
H
H
Normal  
MATCH  
(2)  
(2)  
Write Inhibit(3)  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
2939 tbl 16  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a  
master. Both are inputs when configured as a slave. BUSYX outputs on the  
IDT7026 are push pull, not open drain outputs. On slaves the BUSYX input  
internally inhibits writes.  
2. LOW if the inputs to the opposite port were stable prior to the address and enable  
inputs of this port. HIGH if the inputs to the opposite port became stable after the  
address and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR  
= LOW will result. BUSYL and BUSYR outputs cannot be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW  
regardless of actual logic level on the pin. Writes to the right port are internally  
ignored when BUSYR outputs are driving LOW regardless of actual logic level  
on the pin.  
CE  
CE  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
BUSY  
R
BUSY  
L
BUSY  
R
BUSY  
L
MASTER  
Dual Port  
RAM  
CE  
SLAVE  
Dual Port  
RAM  
CE  
BUSY  
R
BUSY  
L
BUSY  
L
BUSYR  
BUSY  
R
BUSY  
L
2939 drw 16  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT7026 RAMs.  
FunctionalDescription  
TheIDT7026providestwoportswithseparatecontrol,addressand  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation  
inmemory.TheIDT7026hasanautomaticpowerdownfeaturecontrolled  
by CE. The CE controls on-chip power down circuitry that permits the  
respectiveporttogointoastandbymodewhennotselected(CE =VIH).  
Whenaportisenabled,accesstotheentirememoryarrayispermitted.  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
The BUSY arbitration on a master is based on the chip enable and  
address signals only. It ignores whether an access is a read or write. In  
a master/slave array, both address and chip enable must be valid long  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwitheithertheR/Wsignalorthebyteenables.Failure  
toobservethistimingcanresultinaglitchedinternalwriteinhibitsignaland  
corrupteddataintheslave.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisBusy”.  
The BUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
Semaphores  
The IDT7026 is an extremely fast Dual-Port 16K x 16 CMOS Static  
RAMwithanadditional8addresslocationsdedicatedtobinarysemaphore  
flags.TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-  
PortRAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefined  
bythesystemdesigner’ssoftware.Asanexample,thesemaphorecan  
beusedbyoneprocessortoinhibittheotherfromaccessingaportionof  
the Dual-Port RAM or any other shared resource.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
and use any BUSY indication as an interrupt source to flag the event of  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
TheBUSYoutputsontheIDT7026RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate. Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
The Dual-Port RAM features a fast access time, and both ports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnowayslowstheaccesstimeoftherightport. Bothportsare  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
6.42  
15  
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave one for both sides (unless a semaphore request from the other side is  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM pending)andthencanbewrittentobybothsides.Thefactthattheside  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
on-chip power down circuitry that permits the respective port to go into fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
standbymodewhennotselected. Thisistheconditionwhichisshownin communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
Truth Table I where CE and SEM = VIH.  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
Systems which can best use the IDT7026 contain multiple proces- storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
sors or controllers and are typically very high-speed systems which freedbythefirstside.  
are software controlled or software intensive. These systems can  
When a semaphore flag is read, its value is spread into all data bits  
benefitfromaperformanceincreaseofferedbytheIDT7026'shardware so that a flag that is a one reads as a one in all data bits and a flag  
semaphores, which provide a lockout mechanism without requiring containing a zero reads as all zeros. The read value is latched into one  
complexprogramming.  
side’soutputregisterwhenthatside'ssemaphoreselect(SEM)andoutput  
Softwarehandshakingbetweenprocessorsoffersthemaximumin enable(OE)signalsgoactive.Thisservestodisallowthesemaphorefrom  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying changingstateinthemiddleofareadcycleduetoawritecyclefromthe  
configurations.TheIDT7026doesnotuseitssemaphoreflagstocontrol otherside.Becauseofthislatch,arepeatedreadofasemaphoreinatest  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal loopmustcauseeithersignal(SEMorOE)togoinactiveortheoutputwill  
flexibilityinsystemarchitecture.  
never change.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin to guarantee that no system level contention will occur. A processor  
either processor. This can prove to be a major advantage in very high- requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
speedsystems.  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTable  
III).Asanexample,assumeaprocessorwritesazerototheleftportata  
freesemaphorelocation.Onasubsequentread,theprocessorwillverify  
thatithaswrittensuccessfullytothatlocationandwillassumecontrolover  
the resource in question. Meanwhile, if a processor on the right side  
attemptstowriteazerotothesamesemaphoreflagitwillfail, aswillbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
gap between the read and write cycles.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation. The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Shouldtheotherside’ssemaphorerequestlatch  
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
overtotheothersideassoonasaoneiswrittenintothefirstside’srequest  
latch.Thesecondside’sflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requested and the processor which requested it no longer needs the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
that semaphore’s status or remove its request for that semaphore to  
performanothertaskandoccasionallyattemptagaintogaincontrolofthe  
tokenviathesetandtestsequence.Oncetherightsidehasrelinquished  
thetoken,theleftsideshouldsucceedingainingcontrol.  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites  
aonetothatlatch.  
The eight semaphore flags reside within the IDT7026 in a separate  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe  
semaphore flags) and using the other control pins (Address, OE, and  
R/W)astheywouldbeusedinaccessingastandardStaticRAM. Each  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof  
theotheraddresspinshasanyeffect.  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
onthatsideandaoneontheotherside(seeTableIII).Thatsemaphore  
can now only be modified by the side showing the zero. When a one is  
writtenintothesamelocationfromthesameside,theflagwillbesettoa  
The critical case of semaphore timing is when both sides request a  
single token by attempting to write a zero into it at the same time. The  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst  
sidetomaketherequestwillreceivethetoken.Ifbothrequestsarriveat  
thesametime,theassignmentwillbearbitrarilymadetooneportorthe  
other.  
One caution that should be noted when using semaphores is that  
6.42  
16  
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
L PORT  
R PORT  
sectionbywriting,thenreadingazerointoSemaphore1.Ifitsucceeded  
ingainingcontrol,itwouldlockouttheleftside.  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
Once the left side was finished with its task, it would write a one to  
Semaphore 0 and may then try to gain access to Semaphore 1. If  
Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
itssemaphorerequestandperformothertasksuntilitwasabletowrite,then  
readazerointoSemaphore1.Iftherightprocessorperformsasimilartask  
withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap  
8K blocks of Dual-Port RAM with each other.  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
2939 drw 17  
The blocks do not have to be any particular size and can even be  
variable, depending upon the complexity of the software using the  
semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual-  
Port RAM or other shared resources into eight parts. Semaphores can  
evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing  
given a common meaning as was shown in the example above.  
Semaphores are a useful form of arbitration in systems like disk  
interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring  
atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse  
ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea  
wasoff-limitstotheCPU,boththeCPUandtheI/Odevicescouldaccess  
theirassignedportionsofmemorycontinuouslywithoutanywaitstates.  
SemaphoresarealsousefulinapplicationswherenomemoryWAIT”  
stateisavailableononeorbothsides.Onceasemaphorehandshakehas  
been performed, both processors can access their assigned RAM  
segmentsatfullspeed.  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
mayberesponsibleforbuildingandupdatingadatastructure.Theother  
processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
processorreadsanincompletedatastructure,amajorerrorconditionmay  
exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
is completed, the data structure block is released. This allows the  
interpretingprocessortocomebackandreadthecompletedatastructure,  
therebyguaranteeingaconsistentdatastructure.  
Figure 4. IDT7026 Semaphore Logic  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
or misinterpreted, a software error can easily happen.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplication  
as resource markers for the IDT7026’s Dual-Port RAM. Say the 16K x  
16 RAM was to be divided into two 8K x 16 blocks which were to be  
dedicatedatanyonetimetoservicingeithertheleftorrightport.Semaphore  
0couldbeusedtoindicatethesidewhichwouldcontrolthelowersection  
of memory, and Semaphore 1 could be defined as the indicator for the  
uppersectionofmemory.  
Totakearesource, inthisexamplethelower8KofDual-PortRAM,  
the processor on the left port could write and then read a zero in to  
Semaphore 0. If this task were successfully completed (a zero was  
read back rather than a one), the left processor would assume control  
of the lower 8K. Meanwhile the right processor was attempting to gain  
controlofthe resourceaftertheleftprocessor,itwouldreadbackaone  
inresponsetothezeroithadattemptedtowriteintoSemaphore0.Atthis  
point,thesoftwarecouldchoosetotryandgaincontrolofthesecond8K  
6.42  
17  
IDT7026S/L  
High-Speed 16K x 16 Dual-Port Static RAM  
Military, Industrial and Commercial Temperature Ranges  
Ordering Information  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I
B
Commercial (0°C to +70°C)  
Industrial (-40°C to + 85°C)  
Military (-55°C to +125°C)  
Compliant to MIL-PRF-38535 QML  
G
J
84-pin PGA (G84-3)  
84-pin PLCC (J84-1)  
Commercial Only  
15  
20  
25  
35  
55  
Commercial, Industrial & Military  
Commercial, Industrial & Military  
Commercial, Industrial & Military  
Commercial, Industrial & Military  
Speed  
in nanoseconds  
S
L
Standard Power  
Low Power  
,
7026  
256K (16K x 16) Dual-Port RAM  
2939 drw 18  
DatasheetDocumentHistory  
1/14/99:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Pages2and3Addedadditionalnotestopinconfigurations  
Changeddrawingformat  
6/3/99:  
Page 1 Corrected DSC number  
3/10/00:  
AddedIndustrialTemperatureRangesandremovedrelatednotes  
Replaced IDT logo  
Page 1 FixedformatinFeatures  
Changed±200mVto0mVinnotes  
5/22/00:  
Page 3 ClarifiedTA parameter  
Page 6 DCElectricalparameters–changedwordingfrom"open"to"disabled"  
11/20/01:  
Page1&18 VerifiedaccuracyofIndustrialtempinformationthroughoutdatasheetandupdatedwithregisteredlogo  
Page 2 & 3 Added date revision for pin configurations  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
18  

相关型号:

IDT7026S45G

x16 Dual-Port SRAM
ETC

IDT7026S45GB

x16 Dual-Port SRAM
ETC

IDT7026S45J

x16 Dual-Port SRAM
ETC

IDT7026S55G

HIGH-SPEED 16K x 16 DUAL-PORT STATIC RAM
IDT

IDT7026S55GB

HIGH-SPEED 16K x 16 DUAL-PORT STATIC RAM
IDT

IDT7026S55J

HIGH-SPEED 16K x 16 DUAL-PORT STATIC RAM
IDT

IDT7026S55JB

HIGH-SPEED 16K x 16 DUAL-PORT STATIC RAM
IDT

IDT7026S55JG

Dual-Port SRAM, 16KX16, 55ns, CMOS, PQCC84, PLASTIC, LCC-84
IDT

IDT7026S55JGI

暂无描述
IDT

IDT7026S55JGI8

Dual-Port SRAM, 16KX16, 55ns, CMOS, PQCC84, PLASTIC, LCC-84
IDT

IDT7026S55JI

x16 Dual-Port SRAM
ETC

IDT7026S55JI8

Dual-Port SRAM, 16KX16, 55ns, CMOS, PQCC84, PLASTIC, LCC-84
IDT