IDT7027L25PF9 [IDT]

Dual-Port SRAM, 32KX16, 25ns, CMOS, PQFP100, TQFP-100;
IDT7027L25PF9
型号: IDT7027L25PF9
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 32KX16, 25ns, CMOS, PQFP100, TQFP-100

静态存储器 内存集成电路
文件: 总19页 (文件大小:181K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
32K x 16 DUAL-PORT  
STATIC RAM  
IDT7027S/L  
Features  
IDT7027 easily expands data bus width to 32 bits or more  
using the Master/Slave select when cascading more than  
one device  
M/S = VIH for BUSY output flag on Master,  
M/S = VIL for BUSY input on Slave  
True Dual-Ported memory cells which allow simultaneous  
access of the same memory location  
High-speed access  
– Commercial:15/20/25/35/55ns (max.)  
Industrial: 20/25ns (max.)  
Low-power operation  
Busy and Interrupt Flags  
On-chip port arbitration logic  
IDT7027S  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
TTL-compatible, single 5V (±10%) power supply  
Available in 100-pin Thin Quad Flatpack (TQFP) and 108-pin  
Ceramic PinGridArray(PGA)  
Active: 750mW (typ.)  
Standby: 5mW (typ.)  
IDT7027L  
Active: 750mW (typ.)  
Standby: 1mW (typ.)  
Separate upper-byte and lower-byte control for bus  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
matching capability.  
Dual chip enables allow for depth expansion without  
external logic  
FunctionalBlockDiagram  
R/W  
L
R/  
WR  
UB  
L
UB  
R
CE0L  
CE0R  
CE1L  
CE1R  
OE  
LB  
R
OE  
LB  
L
L
R
I/O 8-15L  
I/O8-15R  
I/O0-7R  
I/O  
Control  
I/O  
Control  
0-7L  
I/O  
(1,2)  
R
BUSY  
BUSY  
L
.
32Kx16  
14L  
A
14R  
0R  
A
Address  
Decoder  
Address  
Decoder  
MEMORY  
ARRAY  
7027  
A0L  
A
A
14L  
A
A
CE0R  
14R  
0R  
A
CE0L  
0L  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE1L  
OE  
CE1R  
OE  
L
R
R/W  
L
R/W  
R
SEM  
INT  
L
L
SEM  
R
(2)  
(2)  
INTR  
M/S(2)  
3199 drw 01  
NOTES:  
1. BUSY is an input as a Slave (M/S=VIL) and an output as a Master (M/S=VIH).  
2. BUSY and INT are non-tri-state totem-pole outputs (push-pull).  
JULY 2004  
1
DSC 3199/8  
©2004 IntegratedDeviceTechnology,Inc.  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
circuitry of each port to enter a very low standby power mode.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typically operate on only 750mW of power. The IDT7027 is  
packagedina100-pinThinQuadFlatpack(TQFP)anda108-pinceramic  
Pin Grid Array (PGA).  
Military grade product is manufactured in compliance with the  
latest revision of MIL-PRF-38535 QML, making it ideally suited to  
military temperature applications demanding the highest level of  
performanceandreliability.  
The IDT7027 is a high-speed 32K x 16 Dual-Port Static RAM,  
designed to be used as a stand-alone 512K-bit Dual-Port RAM or as a  
combinationMASTER/SLAVEDual-PortRAMfor32-bit-or-moreword  
systems.UsingtheIDTMASTER/SLAVEDual-PortRAMapproachin32-  
bitorwidermemorysystemapplicationsresultsinfull-speed,error-free  
operationwithouttheneedforadditionaldiscretelogic.  
The device provides two independent ports with separate control,  
address,andI/Opinsthatpermit independent,asynchronousaccessfor  
reads or writes to any location in memory. An automatic power down  
featurecontrolledby thechipenables(CE0 andCE1)permitstheon-chip  
PinConfigurations(1,2,3)  
07/23/04  
INDEX  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
A
9L  
A
9R  
75  
74  
73  
72  
71  
A
A
A
A
A
10R  
11R  
12R  
13R  
14R  
2
A10L  
A11L  
A12L  
A13L  
A14L  
3
4
5
6
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
NC  
NC  
NC  
NC  
7
8
9
LB  
L
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
LBR  
IDT7027PF  
(4)  
UB  
L
UBR  
PN100-1  
CE0L  
CE1L  
CE0R  
CE1R  
SEM  
GND  
R/W  
OER  
100-Pin TQFP  
(5)  
SEM  
L
R
Top View  
Vcc  
R/W  
OE  
L
L
R
GND  
GND  
GND  
GND  
I/O15L  
I/O14L  
I/O13L  
I/O12L  
I/O11L  
I/O10L  
I/O15R  
I/O14R  
I/O13R  
I/O12R  
I/O11R  
I/O10R  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
.
3199 drw 02  
NOTES:  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
2
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
07/23/04  
81  
A
80  
A
77  
74  
72  
69  
68  
65  
63  
60  
57  
54  
UB  
R
SEM  
R
GND  
10R  
11R  
A
14R  
NC  
GND  
NC  
I/O13R I/O10R NC  
12  
11  
10  
09  
08  
84  
83  
78  
76  
73  
70  
67  
64  
61  
59  
56  
53  
A
7R  
4R  
1R  
A
8R  
5R  
3R  
A
13R  
NC  
CE1R R/W  
R
GND I/O14R I/O12R I/O9R  
NC  
LB  
R
87  
86  
82  
79  
75  
71  
66  
62  
58  
55  
51  
50  
CE0R OE  
R
A
A
A
9R  
A
12R  
NC  
I/O15R I/O11R  
NC  
I/O8R I/O7R  
90  
88  
85  
52  
49  
47  
A
A
A
6R  
2R  
NC  
Vcc I/O5R  
92  
95  
91  
94  
89  
48  
46  
45  
INT  
R
A
0R  
A
I/O6R I/O4R I/O3R  
93  
44  
43  
42  
GND  
BUSYR  
I/O2R I/O1R I/O0R  
M/S  
07  
06  
IDT7027G  
G108-1  
(4)  
96  
BUSY  
97  
98  
NC  
39  
I/O1L  
40  
41  
L
INT  
L
I/O0L GND  
108-Pin PGA  
(5)  
Top View  
99  
100  
A
102  
35  
I/O4L I/O2L GND  
31 34 36  
I/O5L I/O3L  
37  
38  
A0L  
1L  
A
3L  
05  
04  
03  
02  
101  
103  
106  
A2L  
A4L  
A7L  
Vcc  
104  
105  
A
1
5
6
4
7
9
8
12  
17  
21  
25  
28  
32  
33  
A5L  
6L  
A
10L  
A
13L  
NC  
CE1L GND I/O14L I/O10L  
NC  
I/O7L I/O6L  
107  
2
10  
13  
16  
19  
22  
24  
29  
30  
I/O8L  
UBL  
SEML  
A8L  
A11L  
A
14L  
NC  
OEL  
GND I/O13L I/O11L NC  
108  
3
11  
14  
15  
18 20 23 26  
NC I/O15L I/O12L I/O9L  
27  
LB  
L
CE0L  
A9L  
A12L  
NC  
C
Vcc R/W  
L
NC  
01  
.
A
B
D
E
F
G
H
J
K
L
M
3199d r w 0 3  
INDEX  
Pin Names  
Left Port  
Right Port  
Names  
NOTES:  
Chip Enables  
Read/Write Enable  
Output Enable  
Address  
CE0L, CE1L  
CE0R, CE1R  
R/W  
OE  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 1.21 in x 1.21 in x .16 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
R/WL  
R
OEL  
R
A0L - A14L  
A0R - A14R  
I/O0L - I/O15L  
I/O0R - I/O15R  
Data Input/Output  
Semaphore Enable  
Upper Byte Select  
Lower Byte Select  
Interrupt Flag  
SEM  
UB  
LB  
INT  
BUSY  
L
SEM  
UB  
LB  
INT  
BUSY  
M/S  
R
L
R
L
R
L
R
Busy Flag  
L
R
Master or Slave Select  
Power  
V
CC  
GND  
Ground  
3199 tbl 01  
3
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I – Chip Enable  
CE1  
Mode  
CE  
CE0  
VIL  
VIH  
Port Selected (TTL Active)  
L
< 0.2V  
>VCC - 0.2V  
X
Port Selected (CMOS Active)  
Port Deselected (TTL Inactive)  
Port Deselected (TTL Inactive)  
Port Deselected (CMOS Inactive)  
Port Deselected (CMOS Inactive)  
VIH  
X
VIL  
H
>VCC - 0.2V  
X
X
<0.2V  
3199 tbl 02  
NOTES:  
1. Chip Enable references are shown above with the actual CE0 and CE1 levels, CE is a reference only.  
2. Port "A" and "B" references are located where CE is used.  
3. "H" = VIH and "L" = VIL.  
Truth Table II – Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
(2)  
R/W  
X
X
L
I/O8-15  
I/O0-7  
Mode  
CE  
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
H
High-Z  
High-Z  
High-Z Deselected: Power-Down  
High-Z Both Bytes Deselected  
X
L
L
L
L
L
L
X
H
H
DATAIN  
High-Z  
High-Z  
DATAIN  
DATAIN  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
L
H
L
H
L
L
H
DATAIN  
DATAOUT  
High-Z  
H
H
H
X
L
H
L
H
High-Z Read Upper Byte Only  
DATAOUT Read Lower Byte Only  
DATAOUT Read Both Bytes  
High-Z Outputs Disabled  
L
H
L
H
L
L
H
DATAOUT  
High-Z  
H
X
X
X
3199 tbl 03  
NOTES:  
1. A0L A14L A0R A14R.  
2. Refer to Chip Enable Truth Table.  
Truth Table III – Semaphore Read/Write Control  
Inputs(1)  
Outputs  
CE(2)  
OE  
L
UB  
X
H
X
H
L
LB  
X
H
X
H
X
L
SEM  
L
R/W  
H
I/O8-15  
I/O0-7  
Mode  
H
DATAOUT  
DATAOUT  
DATAIN  
DATAOUT Read Data in Semaphore Flag  
DATAOUT Read Data in Semaphore Flag  
X
H
L
L
H
X
X
X
X
L
DATAIN  
Write I/O into Semaphore Flag  
0
X
L
L
DATAIN  
DATAIN  
Write I/O0 into Semaphore Flag  
______  
______  
X
L
Not Allowed  
Not Allowed  
______  
______  
L
X
X
L
3199 tbl 04  
NOTES:  
1. There are eight semaphore flags written to via I/O0 and read from all the I/Os (I/O0 __I/O15). These eight semaphore flags are addressed by A0-A2.  
2. Refer to Chip Enable Truth Table.  
4
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AbsoluteMaximumRatings(1,3)  
MaximumOperating  
TemperatureandSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Military  
Unit  
Ambient  
(2)  
Grade  
Temperature  
-55OC to+125OC  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
Vcc  
V
TERM  
Te rminal Vo ltag e  
with Respect  
to GND  
-0.5 to +7.0  
-0.5 to +7.0  
V
Military  
5.0V  
+
+
+
10%  
Commercial  
Industrial  
0V  
5.0V  
5.0V  
10%  
T
BIAS  
Te mp e rature  
Under Bias  
-55 to +125  
-65 to +150  
50  
-65 to +135  
-65 to +150  
50  
oC  
oC  
0V  
10%  
Storage  
Te mp e rature  
TSTG  
3199 tbl 06  
NOTES:  
1. This is the parameter TA. This is the "instant on" case temperature.  
DC Output  
Current  
mA  
IOUT  
3199 tbl 05  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
Capacitance(1)  
(TA = +25°C, f = 1.0mhz) TQFP ONLY  
Symbol  
Parameter  
Conditions  
Max. Unit  
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > Vcc + 10%.  
C
IN  
Input Capacitance  
V
IN = 0V  
9
pF  
(2)  
OUT  
Output  
Capacitance  
C
VOUT = 0V  
10  
pF  
3199 tbl 08  
RecommendedDCOperating  
Conditions  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested.  
Symbol  
Parameter  
Supply Voltage  
GND Ground  
Min.  
Typ. Max. Unit  
2. COUT also references CI/O.  
VCC  
4.5  
5.0  
5.5  
0
V
V
V
0
0
(2)  
____  
V
IH  
Input High Voltage  
Input Low Voltage  
2.2  
6.0  
0.8  
-0.5(1)  
V
____  
VIL  
3199 tbl 07  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VCC = 5.0V ± 10%)  
7027S  
7027L  
Symbol  
|ILI  
|ILO  
Parameter  
Test Conditions  
Min.  
Max.  
10  
Min.  
Max.  
5
Unit  
µA  
µA  
V
(1)  
___  
___  
|
Input Leakage Current  
V
CC = 5.5V, VIN = 0V to VCC  
___  
___  
___  
___  
|
Output Leakage Current  
Output Low Voltage  
Output High Voltage  
10  
5
CE = VIH, VOUT = 0V to VCC  
VOL  
IOL = 4mA  
0.4  
0.4  
___  
___  
VOH  
IOH = -4mA  
2.4  
2.4  
V
3199 tbl 09  
NOTE:  
1. At Vcc < 2.0V, input leakages are undefined.  
5
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1,6) (VCC = 5.0V ± 10%)  
7027X15  
7027X20  
Com'l  
7027X25  
Com'l  
Com'l Only  
& Ind  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating  
S
L
205  
200  
365  
325  
190  
180  
325  
285  
180  
170  
305  
265  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
Current  
(3)  
(Both Ports Active)  
f = fMAX  
___  
___  
___  
___  
___  
___  
IND  
S
L
170  
345  
___  
___  
180  
335  
I
SB1  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
IND  
S
L
65  
65  
110  
90  
50  
50  
90  
70  
40  
40  
85  
60  
mA  
mA  
CE  
SEM  
f = fMAX  
L
= CE  
R
= VIH  
= VIH  
R
= SEM  
L
(3)  
___  
___  
___  
___  
___  
___  
S
L
40  
100  
___  
___  
50  
85  
(5)  
ISB2  
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
IND  
S
L
130  
130  
245  
215  
115  
115  
215  
185  
105  
105  
200  
170  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
___  
___  
___  
___  
___  
___  
S
L
105  
230  
SEMR = SEML = VIH  
___  
___  
115  
220  
I
SB3  
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CE  
CE > VCC - 0.2V  
IN > VCC - 0.2V or  
IN < 0.2V, f = 0(4)  
SEM = SEM > VCC - 0.2V  
L
and  
COM'L  
IND  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
mA  
mA  
R
V
V
___  
___  
___  
___  
___  
___  
S
L
1.0  
30  
___  
___  
0.2  
10  
R
L
ISB4  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
COM'L  
IND  
S
L
120  
120  
220  
190  
110  
110  
190  
160  
100  
100  
170  
145  
CE"A" < 0.2V and  
(5)  
CE"B" > VCC - 0.2V  
SEM = SEM > VCC - 0.2V  
R
L
___  
___  
___  
___  
___  
___  
S
L
100  
200  
V
IN > VCC - 0.2V or VIN < 0.2V  
___  
___  
110  
195  
Active Port Outputs Disabled  
(3)  
f = fMAX  
3199 tbl 10a  
7027X35  
Com'l Only  
7027X55  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating Current  
(Both Ports Active)  
S
160  
160  
295  
255  
150  
150  
270  
230  
mA  
CE = VIL, Outputs Disabled  
L
SEM = VIH  
(3)  
f = fMAX  
___  
___  
___  
___  
___  
___  
___  
___  
IND  
S
L
I
SB1  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
IND  
S
L
30  
30  
85  
60  
20  
20  
85  
60  
mA  
mA  
CE  
L
SEM  
= CE  
R
= VIH  
= VIH  
R
= SEM  
L
___  
___  
___  
___  
___  
___  
___  
___  
S
L
(5 )  
ISB2  
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
IND  
S
L
95  
95  
185  
155  
85  
85  
165  
135  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
SEMR = SEML = VIH  
___  
___  
___  
___  
___  
___  
___  
___  
S
L
I
SB3  
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CE  
CE > VCC - 0.2V  
IN > VCC - 0.2V or  
IN < 0.2V, f = 0(4 )  
SEM = SEM > VCC - 0.2V  
L
and  
mA  
mA  
COM'L  
IND  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
R
V
V
___  
___  
___  
___  
___  
___  
___  
___  
S
L
R
L
ISB4  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
COM'L  
IND  
S
L
90  
90  
160  
135  
80  
80  
135  
110  
CE"A" < 0.2V and  
(5 )  
CE"B" > VCC - 0.2V  
SEM = SEM > VCC - 0.2V  
R
L
___  
___  
___  
___  
___  
___  
___  
___  
S
L
V
IN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled  
(3)  
f = fMAX  
3199 tbl 10b  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
2. VCC = 5V, TA = +25°C, and are not production tested. ICCDC = 120mA (Typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/ tRC, and using AC Test Conditions” of input  
levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6. Refer to Chip Enable Truth Table.  
6
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Test Conditions  
dInput Pulse Levels  
GND to 3.0V  
5ns Max.  
1.5V  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V  
Figures 1 and 2  
3199 tbl 11  
5V  
5V  
893  
893Ω  
DATAOUT  
BUSY  
INT  
DATAOUT  
30pF  
5pF*  
347Ω  
347Ω  
3199 drw 04  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
Figure 1. AC Output Test Load  
*Including scope and jig.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRanges(4)  
7027X15  
7027X20  
Com'l  
7027X25  
Com'l  
7027X35  
Com'l Only  
7027X55  
Com'l Only  
Com'l Only  
& Ind  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
____  
____  
t
RC  
AA  
ACE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
20  
25  
35  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
____  
____  
t
Address Access Time  
15  
15  
20  
20  
25  
25  
35  
35  
55  
55  
Chip Enable Access Time(4)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
10  
12  
13  
20  
30  
____  
____  
____  
____  
____  
t
3
3
3
3
3
____  
____  
____  
____  
____  
t
3
3
3
3
3
Output High-Z Time(1,2)  
10  
12  
15  
15  
25  
____  
____  
____  
____  
____  
t
t
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
0
0
0
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
15  
20  
25  
35  
50  
____  
____  
____  
____  
____  
t
10  
10  
12  
15  
15  
____  
____  
____  
____  
____  
t
15  
20  
25  
35  
55  
ns  
3199 tbl 12  
NOTES:.  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE= VIH and SEM = VIL.  
4. 'X' in part numbers indicates power rating (S or L).  
5. Refer to Chip Enable Truth Table.  
7
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE(6)  
OE  
(4)  
tAOE  
(4)  
tABE  
UB, LB  
R/W  
DATAOUT  
BUSYOUT  
t
OH  
(1)  
tLZ  
VALID DATA(4)  
(2)  
tHZ  
(3,4)  
3199 drw 05  
tBDD  
Timing of Power-Up Power-Down  
CE(6)  
tPU  
tPD  
ICC  
50%  
50%  
ISB  
.
3199 drw 06  
NOTES:  
1. Timing depends on which signal is asserted last, CE, OE, LB, or UB.  
2. Timing depends on which signal is de-asserted first CE, OE, LB, or UB.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6. Refer to Chip Enable Truth Table.  
8
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
7027X15  
7027X20  
Com'l  
7027X25  
Com'l  
& Ind  
7027X35  
Com'l Only  
7027X55  
Com'l Only  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
15  
0
20  
0
25  
0
40  
0
t
Write Recovery Time  
t
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(5)  
10  
15  
15  
15  
30  
____  
____  
____  
____  
____  
t
10  
12  
15  
15  
25  
____  
____  
____  
____  
____  
t
0
0
0
0
0
(1,2)  
____  
____  
____  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1,2,5)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
12  
15  
15  
25  
____  
____  
____  
____  
____  
t
0
5
5
0
5
5
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
ns  
3199 tbl 13  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM CE= VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time. Refer to Chip Enable  
Truth Table.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part numbers indicates power rating (S or L).  
9
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
t
AW  
CE or SEM (9,10)  
UB or LB(9)  
R/W  
(3)  
(2)  
(6)  
t
WR  
tAS  
tWP  
(7)  
tOW  
tWZ  
(4)  
(4)  
DATAOUT  
DATAIN  
tDW  
tDH  
3199 drw 07  
Timing Waveform of Write Cycle No. 2, CE, UB, LB Controlled Timing(1,5)  
t
WC  
ADDRESS  
t
AW  
CE or SEM(9,10)  
UB or LB(9)  
(6)  
AS  
(3)  
(2)  
t
WR  
tEW  
t
R/W  
t
DW  
tDH  
DATAIN  
3199 drw 08  
NOTES:  
1. R/W or CE or UB and LB = VIH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL and a R/W = VIL for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure  
2).  
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
10. Refer to Chip Enable Truth Table.  
10  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
t
OH  
tSAA  
VALID ADDRESS  
VALID ADDRESS  
A0-A2  
tWR  
tACE  
tAW  
t
EW  
SEM  
tSOP  
t
DW  
DATAIN  
VALID  
DATAOUT  
VALID(2)  
I/O0  
tAS  
tWP  
tDH  
R/W  
t
SWRD  
tAOE  
OE  
Write Cycle  
Read Cycle  
3199 drw 09  
NOTES:  
1. CE = VIH or UB and LB = VIH for the duration of the above timing (both write and read cycle), refer to Chip Enable Truth Table.  
2. "DATAOUT VALID" represents all I/O's (I/O0-I/O15) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2)  
"A"  
R/W"A"  
SEM"A"  
t
SPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
3199 drw 10  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH, or both UB & LB = VIH (refer to Chip Enable Truth Table).  
2. All timing is the same for left and right ports. Port A” may be either left or right port. Port B” is the opposite from port A”.  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will be granted the semaphore flag.  
11  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
Operating TemperatureandSupplyVoltageRange(6)  
7027X15  
7027X20  
Com'l  
7027X25  
Com'l  
7027X35  
Com'l Only  
7027X55  
Com'l Only  
Com'l Only  
& Ind  
& Ind  
Symbol  
BUSY TIMING (M/S=VIH  
Parameter  
Min. Max. Min.  
Max.  
Min.  
Max.  
Min.  
Max. Min.  
Max. Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
20  
20  
20  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
t
15  
17  
17  
20  
35  
____  
____  
____  
____  
____  
t
5
5
5
5
5
____  
____  
____  
____  
____  
BUSY Disable to Valid Data(3)  
t
15  
20  
25  
35  
55  
(5)  
____  
____  
____  
____  
____  
t
Write Hold After BUSY  
12  
15  
17  
25  
25  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
t
WB  
0
0
0
0
0
ns  
ns  
(5)  
t
WH  
Write Hold After BUSY  
PORT-TO-PORT DELAY TIMING  
Write Pulse to Data Delay  
Write Data Valid to Read Data Delay(1)  
12  
15  
17  
25  
25  
(1)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWDD  
30  
25  
45  
30  
50  
35  
60  
45  
80  
65  
ns  
tDDD  
ns  
3199 tbl 14  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual), or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
6. 'X' in part numbers indicates power rating (S or L).  
12  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadandBUSY (M/S =VIH)(2,4,5)  
t
WC  
MATCH  
ADDR"A"  
R/W"A"  
t
WP  
tDW  
t
DH  
VALID  
DATAIN "A"  
(1)  
t
APS  
MATCH  
ADDR"B"  
t
BAA  
t
BDA  
tBDD  
BUSY"B"  
tWDD  
VALID  
DATAOUT "B"  
(3)  
t
DDD  
3199 drw 11  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (slave).  
2. CEL = CER = VIL (refer to Chip Enable Truth Table).  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSY"A" = VIH and BUSY"B" input is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY (M/S = VIL)  
t
WP  
R/W"A"  
(3)  
t
WB  
BUSY"B"  
(1)  
tWH  
.
(2)  
R/W"B"  
3199 drw 12  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the "Slave" version.  
13  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(M/S = VIH)(1,3)  
ADDR"A"  
and "B"  
ADDRESSES MATCH  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
BUSY"B"  
3199 drw 13  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(M/S = VIH)(1)  
ADDR"A"  
ADDRESS "N"  
(2)  
tAPS  
ADDR"B"  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
BUSY"B"  
3199 drw 14  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from port A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
3. Refer to Chip Enable Truth Table.  
AC Electrical Characteristics Over the  
Operating TemperatureandSupplyVoltageRange(1)  
7027X15  
7027X20  
Com'l  
7027X25  
Com'l  
7027X35  
Com'l Only  
7027X55  
Com'l Only  
Com'l Only  
& Ind  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
0
0
0
0
0
ns  
ns  
ns  
t
Write Recovery Time  
Interrupt Set Time  
0
0
0
0
0
____  
____  
____  
____  
____  
t
15  
15  
20  
20  
20  
20  
25  
25  
40  
40  
____  
____  
____  
____  
____  
t
Interrupt Reset Time  
ns  
3199 tbl 15  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
14  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1,5)  
t
WC  
INTERRUPT SET ADDRESS (2)  
ADDR"A"  
(4)  
(3)  
t
AS  
tWR  
CE"A"  
R/W"A"  
INT"B"  
(3)  
t
INS  
3199 drw 15  
t
RC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
t
AS  
OE"B"  
(3)  
INR  
t
INT"B"  
NOTES:  
3199 drw 16  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from port A”.  
2. See the Interrupt Truth Table IV.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
5. Refer to Chip Enable Truth Table.  
Truth Table IV — Interrupt Flag(1,4)  
Left Port  
Right Port  
OE  
R/WL  
A14L-A0L  
R/WR  
A
14R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CEL  
OEL  
INTL  
CER  
R
INTR  
(2)  
L
L
X
X
L
X
X
X
L
7FFF  
X
X
X
X
L
X
L
L
X
X
L
X
7FFF  
7FFE  
X
L
R
(3)  
X
X
H
R
(3)  
X
X
L
X
X
X
L
(2)  
X
7FFE  
H
X
X
L
3199 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. Refer to Chip Enable Truth Table.  
15  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table V —  
Address Bus Arbitration(4)  
Inputs  
Outputs  
A
OL-A14L  
(1)  
(1)  
A
OR-A14R  
Function  
Normal  
Normal  
Normal  
Write  
CE  
L
CE  
R
BUSY  
L
BUSYR  
X
H
X
X
X
H
NO MATCH  
MATCH  
H
H
H
H
H
H
MATCH  
L
L
MATCH  
(2)  
(2)  
(3)  
Inhibit  
3199 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT7027 are  
push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of the actual logic level on the pin. Writes to the right port are internally  
ignored when BUSYR outputs are driving LOW regardless of the actual logic level on the pin.  
4. Refer to Chip Enable Truth Table.  
Truth Table VI — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D15 Left  
D0  
- D15 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
3199 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7027.  
2. There are eight semaphore flags written to via I/O0 and read from all the I/O's (I/O0-I/O15). These eight semaphores are addressed by A0-A2.  
3. CE = VIH, SEM = VIL, to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
TheIDT7027providestwoportswithseparatecontrol,addressand  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation  
inmemory.TheIDT7027hasanautomaticpowerdownfeaturecontrolled  
by CE0 and CE1. The CE0 and CE1 control the on-chip power down  
circuitrythatpermitstherespectiveporttogointoastandbymodewhen  
not selected (CE = VIH). When a port is enabled, access to the entire  
memoryarrayispermitted.  
(INTL) is asserted when the right port writes to memory location 7FFE  
(HEX), where a write is defined as CER = R/WR = VIL per Truth Table  
IV. The leftportclears the interruptthroughaccess ofaddress location  
7FFEwhenCEL=OEL=VIL,R/Wisa"don'tcare".Likewise,therightport  
interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
7FFF(HEX)andtocleartheinterruptflag(INTR),therightportmustread  
the memory location 7FFF. The message (16 bits) at 7FFE or 7FFF is  
user-defined since it is an addressable SRAM location. If the interrupt  
functionisnotused,addresslocations7FFEand7FFFarenotusedas  
mail-boxes by ignoring the interrupt, but as part of the random access  
memory.RefertoTruthTableIVfortheinterruptoperation.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)is assignedtoeachport. Theleftportinterruptflag  
16  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
pulsecanbeinitiatedwitheithertheR/Wsignalorthebyteenables.Failure  
toobservethistimingcanresultinaglitchedinternalwriteinhibitsignaland  
corrupteddataintheslave.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisBusy.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
Semaphores  
TheIDT7027isafastDual-Port32Kx16CMOSStaticRAMwithan  
additional8addresslocationsdedicatedtobinarysemaphoreflags.These  
flagsalloweitherprocessorontheleftorrightsideoftheDual-PortSRAM  
toclaimaprivilegeovertheotherprocessorforfunctionsdefinedbythe  
systemdesignerssoftware.Asanexample,thesemaphorecanbeused  
byoneprocessortoinhibittheotherfromaccessingaportionoftheDual-  
Port SRAM or any other shared resource.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
anduse anyBUSYindicationas aninterruptsource toflagthe eventof  
anillegalorillogicaloperation.Ifthewriteinhibitfunctionofbusylogicisnot  
desirable,theBUSYlogiccanbedisabledbyplacingthepartinslavemode  
withtheM/Spin.OnceinslavemodetheBUSYpinoperatessolelyasa  
writeinhibitinputpin.Normaloperationcanbeprogrammedbytyingthe  
BUSY pins HIGH. If desired, unintended write operations can be pre-  
ventedtoa portbytyingthe BUSYpinforthatportLOW.  
TheBUSYoutputsontheIDT7027RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate.Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
TheDual-PortSRAMfeaturesafastaccesstime,andbothportsare  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnowayslows theaccess timeoftherightport.Bothports are  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
in the non-semaphore portion of the Dual-Port SRAM. These devices  
haveanautomaticpower-downfeaturecontrolledbyCE theDual-Port  
SRAMenable,andSEM,thesemaphoreenable.TheCEandSEMpins  
controlon-chippowerdowncircuitrythatpermitstherespectiveporttogo  
intostandbymodewhennotselected. Thisistheconditionwhichisshown  
in Truth Table II where CE and SEM = VIH.  
A15  
CE0  
CE0  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY  
R
BUSY  
R
BUSY  
L
BUSYL  
SystemswhichcanbestusetheIDT7027containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
software controlled or software intensive. These systems can benefit  
from a performance increase offered by the IDT7027's hardware  
semaphores, which provide a lockout mechanism without requiring  
complexprogramming.  
CE  
1
CE1  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY  
R
BUSY  
R
BUSY  
R
BUSY  
L
BUSYL  
BUSY  
L
3199 drw 17  
Softwarehandshakingbetweenprocessors offers themaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT7027doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT7027 RAMs.  
Width Expansion with Busy Logic  
Master/SlaveArrays  
WhenexpandinganIDT7027RAMarrayinwidthwhileusingBUSY  
logic, one master part is used to decide which side of the RAM array  
willreceiveaBUSYindication,andtooutputthatindication.Anynumber  
ofslavestobeaddressedinthesameaddressrangeasthemaster,use  
theBUSYsignalasawriteinhibitsignal.ThusontheIDT7027RAMthe  
BUSYpinisanoutputifthepartisusedasaMaster(M/Spin=VIH),and  
theBUSYpinisaninputifthepartusedasaSlave(M/Spin=VIL)asshown  
in Figure 3.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortSRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.”Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
that semaphores status or remove its request for that semaphore to  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. Itignores whetheranaccess is a readorwrite. In  
a master/slave array, bothaddress andchipenable mustbe validlong  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
17  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
performanothertaskandoccasionallyattemptagaintogaincontrolofthe side during subsequent read. Had a sequence of READ/WRITE been  
tokenviathesetandtestsequence.Oncetherightsidehasrelinquished usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
thetoken,theleftsideshouldsucceedingainingcontrol.  
gap between the read and write cycles.  
Thesemaphoreflagsareactivelow.Atokenisrequestedbywriting  
It isimportanttonotethatafailedsemaphorerequestmustbefollowed  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites byeitherrepeatedreadsorbywritingaoneintothesamelocation.The  
aonetothatlatch. reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
The eightsemaphore flags reside withinthe IDT7027ina separate ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
memoryspacefromtheDual-PortSRAM.Thisaddressspaceisaccessed into a semaphore flag. Whichever latch is first to present a zero to the  
byplacingalowinputontheSEMpin(whichactsasachipselectforthe  
semaphore flags) and using the other control pins (Address, OE, and  
L PORT  
R PORT  
R/W)as theywouldbeusedinaccessingastandardStaticRAM.Each  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof  
theotheraddresspinshasanyeffect.  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
on that side and a one on the other side (see Truth Table VI). That  
semaphorecannowonlybemodifiedbythesideshowingthezero.When  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
ispending)andthencanbewrittentobybothsides.Thefactthattheside  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
freedbythefirstside.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintoonesidesoutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableVI).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attempts towriteazerotothesamesemaphoreflagitwillfail,as willbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
.
3199 drw 18  
Figure 4. IDT7027 Semaphore Logic  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Shouldtheothersidessemaphorerequestlatch  
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
overtotheothersideassoonasaoneiswrittenintothefirstsidesrequest  
latch.ThesecondsidesflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requestedandthe processorwhichrequesteditnolongerneeds the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
The criticalcase ofsemaphore timingis whenbothsides requesta  
single token by attempting to write a zero into it at the same time. The  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
thetoken.Ifonesideis earlierthantheotherinmakingtherequest,the  
first side to make the request will receive the token. If both requests  
arriveatthesametime,theassignmentwillbearbitrarilymadetooneport  
or the other.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
ormisinterpreted, a software errorcaneasilyhappen.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
18  
6.42  
IDT7027S/L  
High-Speed 32K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
OrderingInformation  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I(1)  
B
Commercial (0°C to +70°C)  
Industrial (-40°C to + 85°C)  
Military (-55°C to +125°C)  
Compliant to MIL-PRF-38535 QML  
PF  
G
100-pin TQFP (PN100-1)  
108-pin PGA (G108-1)  
15  
20  
25  
35  
55  
Commercial Only  
Commercial & Industrial  
Commercial & Industrial  
Commercial Only  
Commercial Only  
Speed in nanoseconds  
.
S
L
Standard Power  
Low Power  
7027  
512K (32K x 16) Dual-Port RAM  
3199 drw 19  
NOTE:  
1. Contact your local sales office for industrial temp range for other speeds, packages and powers.  
DatasheetDocumentHistory  
1/15/99:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmeticandtypographicalcorrections  
Pages2and3Addedadditionalnotestopinconfigurations  
Pages 4 and 16 Fixed typographical errors  
Changeddrawingformat  
5/19/99:  
6/3/99:  
Page 1 CorrectedDSCnumber  
Replaced IDT logo  
Page 5 Increasedstoragetemperatureparameter  
ClarifiedTAparameter  
11/10/99:  
5/22/00:  
Page 6 DCElectricalparameters–changedwordingfrom"open"to"disabled"  
Changed±200mVto0mVinnotes  
7/23/04  
Page 2 & 3 Added date revision for pin configurations  
Page 5 UpdatedCapacitancetable  
Page 6 Added15nscommercialspeedgradetotheDCElectricalCharacteristics  
Added 20nsIndustrialtempforlowpower toDCElectricalCharacteristics  
Removedmilitarytemprangefor25/35/55nsfromDCElectricalCharacteristics  
Page 7, 9, 12&14 Added15ns commercialspeedgrade toACElectricalCharacteristics  
Added20nsIndustrialtempforlowpowertoACElectricalCharacteristicsforRead,Write,BusyandInterrupt  
Removedmilitarytemprangefor25/35/55nsfromACElectricalCharacteristics  
Page 19 AddedCommercialspeedgradefor15nsandIndustrialtempto20nsinorderinginformation  
Page 1 & 19 Replaced old TM logo with new TM logo  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
19  
6.42  

相关型号:

IDT7027L25PFB

HIGH-SPEED 32K x 16 DUAL-PORT STATIC RAM
IDT

IDT7027L25PFG

Dual-Port SRAM, 32KX16, 25ns, CMOS, PQFP100, TQFP-100
IDT

IDT7027L25PFGI

Dual-Port SRAM, 32KX16, 25ns, CMOS, PQFP100, TQFP-100
IDT

IDT7027L25PFI

HIGH-SPEED 32K x 16 DUAL-PORT STATIC RAM
IDT

IDT7027L35

Dual-Port SRAM, 32KX16, 35ns, CMOS, CPGA108, CERAMIC, PGA-108
IDT

IDT7027L35G

HIGH-SPEED 32K x 16 DUAL-PORT STATIC RAM
IDT

IDT7027L35GB

HIGH-SPEED 32K x 16 DUAL-PORT STATIC RAM
IDT

IDT7027L35GG

Dual-Port SRAM, 32KX16, 35ns, CMOS, CPGA108, CERAMIC, PGA-108
IDT

IDT7027L35GGB

Dual-Port SRAM, 32KX16, 35ns, CMOS, CPGA108, CERAMIC, PGA-108
IDT

IDT7027L35GI

HIGH-SPEED 32K x 16 DUAL-PORT STATIC RAM
IDT

IDT7027L35PF

HIGH-SPEED 32K x 16 DUAL-PORT STATIC RAM
IDT

IDT7027L35PF8

Dual-Port SRAM, 32KX16, 35ns, CMOS, PQFP100, TQFP-100
IDT