IDT7035L20PF9 [IDT]

Dual-Port SRAM, 8KX8, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100;
IDT7035L20PF9
型号: IDT7035L20PF9
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 8KX8, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100

静态存储器
文件: 总19页 (文件大小:165K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED  
8K x 18 DUAL-PORT  
STATIC RAM  
IDT7035S/L  
Features  
True Dual-Ported memory cells which allow simultaneous  
using the Master/Slave select when cascading more than  
one device  
M/S = H for BUSY output flag on Master  
M/S = L for BUSY input on Slave  
Interrupt Flag  
On-chip port arbitration logic  
reads of the same memory location  
High-speed access  
– Commercial:15/20ns (max.)  
Industrial:20ns (max.)  
Low-power operation  
IDT7035S  
Full on-chip hardware support of semaphore signaling  
between ports  
Active:800mW(typ.)  
Standby: 5mW (typ.)  
IDT7035L  
Fully asynchronous operation from either port  
Battery backup operation2V data retention  
TTL-compatible, single 5V (±10%) power supply  
Available in 100-pin Thin Quad Flatpack  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
Active:800mW(typ.)  
Standby: 1mW (typ.)  
Separate upper-byte and lower-byte control for multiplexed  
bus compatibility  
IDT7035 easily expands data bus width to 36 bits or more  
FunctionalBlockDiagram  
R/WL  
R/  
W
R
R
UBL  
UB  
LB  
CE  
OE  
L
L
L
LB  
CE  
OE  
R
R
R
I/O9L-I/O17L  
I/O0L-I/O8L  
I/O9R-I/O17R  
I/O  
Control  
I/O  
Control  
I/O0R-I/O8R  
(1,2)  
L
(1,2)  
R
BUSY  
BUSY  
A
12L  
A
12R  
0R  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A
0L  
A
13  
13  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE  
OE  
L
L
CE  
OE  
R/  
R
R
R/WL  
W
R
SEM  
R
SEM  
INTL  
L
(2)  
(2)  
INTR  
M/S  
4088 drw 01  
NOTES:  
1. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
2. BUSY outputs and INT outputs are non-tri-stated push-pull.  
AUGUST 2001  
1
DSC 4088/8  
©2001IntegratedDeviceTechnology,Inc.  
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
port to enter a very low standby power mode.  
The IDT7035 is a high-speed 8K x 18 Dual-Port Static RAM. The  
IDT7035isdesignedtobeusedasastand-alone144K-bitDual-PortRAM  
orasacombinationMASTER/SLAVEDual-PortRAMfor36-bitormore  
wordsystems. UsingtheIDTMASTER/SLAVEDual-PortRAMapproach  
in36-bitorwidermemorysystemapplicationsresultsinfull-speed,error-  
freeoperationwithouttheneedforadditionaldiscretelogic.  
TheIDT7035utilizes a18-bitwidedatapathtoalowforparityatthe  
user's option. This feature is especiallyusefulindata communications  
applications where it is necessary to use a parity bit for transmission/  
receptionerrorchecking.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typically operate on only 800mW of power. Low-power (L)  
versionsofferbatterybackupdataretentioncapabilitywithtypical power  
consumptionof500µWfroma2Vbattery.  
This device provides two independent ports with separate control,  
address,andI/Opinsthatpermitindependent, asynchronousaccessfor  
reads or writes to any location in memory. An automatic power down  
featurecontrolledbyChipEnable(CE)permitstheon-chipcircuitryofeach  
PinConfigurations(1,2,3)  
Index  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
N/C  
N/C  
I/O8L  
I/O17L  
I/O11L  
I/O12L  
I/O13L  
I/O14L  
GND  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
N/C  
N/C  
N/C  
N/C  
2
3
4
5
A5L  
A4L  
A3L  
A2L  
A1L  
A0L  
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
I/O15L  
I/O16L  
IDT7035PF  
PN100-1  
INTL  
(4)  
VCC  
BUSY  
GND  
M/S  
L
GND  
I/O0R  
I/O1R  
I/O2R  
100-Pin TQFP  
(5)  
Top View  
BUSY  
R
INTR  
VCC  
A
A
A
A
A
0R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
I/O8R  
I/O17R  
N/C  
1R  
2R  
3R  
4R  
N/C  
N/C  
N/C  
N/C  
N/C  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
4088 drw 02  
.
NOTES:  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
6.42  
2
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
Names  
Chip Enable  
CE  
R/W  
OE  
L
CE  
R/W  
OE  
R
L
R
Read/Write Enable  
Output Enable  
Address  
L
R
A0L - A12L  
A0R - A12R  
I/O0L - I/O17L  
I/O0R - I/O17R  
Data Input/Output  
Semaphore Enable  
Upper Byte Select  
Lower Byte Select  
Interrupt Flag  
SEM  
UB  
LB  
INT  
BUSY  
L
SEM  
UB  
LB  
INT  
BUSY  
M/S  
R
L
R
L
R
L
R
Busy Flag  
L
R
Master or Slave Select  
Power  
V
CC  
GND  
Ground  
4088 tbl 01  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
R/W  
X
X
L
I/O9-17  
High-Z  
High-Z  
DATAIN  
High-Z  
DATAIN  
I/O0-8  
High-Z  
High-Z  
High-Z  
DATAIN  
DATAIN  
High-Z  
DATAOUT  
DATAOUT  
High-Z  
Mode  
Deselected: Power-Down  
CE  
H
X
L
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
H
Both Bytes Deselected  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
H
L
L
H
L
H
L
L
L
H
L
H
H
H
X
L
H
L
H
DATAOUT  
High-Z  
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
L
L
H
L
H
L
L
L
H
DATAOUT  
High-Z  
X
H
X
X
X
Outputs Disabled  
4088 tbl 02  
NOTE:  
1. A0L A12L A0R A12R  
3
6.42  
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
R/W  
H
I/O9-17  
I/O0-8  
Mode  
Read Data in Semaphore Flag  
Read Data in Semaphore Flag  
CE  
H
OE  
L
UB  
X
LB  
X
SEM  
L
DATAOUT  
DATAOUT  
DATAOUT  
DATAOUT  
X
H
L
H
H
L
H
X
X
X
L
DATAIN  
DATAIN  
Write I/O into Semaphore Flag  
0
X
L
L
X
X
X
X
X
H
L
H
X
L
L
L
L
DATAIN  
DATAIN  
Write I/O0 into Semaphore Flag  
______  
______  
Not Allowed  
Not Allowed  
______  
______  
X
4088 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from I/O0 - I/O17. These eight semaphores are addressed by A0 - A2.  
AbsoluteMaximumRatings(1)  
MaximumOperating  
TemperatureandSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
Ambient  
(2)  
Grade  
Commercial  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
Vcc  
V
TERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +7.0  
V
5.0V  
5.0V  
+
+
10%  
Industrial  
0V  
10%  
Te mp e rature  
Under Bias  
-55 to +125  
-65 to +150  
50  
oC  
oC  
T
BIAS  
4088 tbl 05  
NOTES:  
Storage  
Te mp e rature  
TSTG  
1. This is the parameter TA. This is the "instant on" case temperature.  
DC Output  
Current  
mA  
IOUT  
4088 tbl 04  
NOTES:  
RecommendedDCOperating  
Conditions  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
Symbol  
Parameter  
Supply Voltage  
GND Ground  
Min.  
Typ. Max. Unit  
VCC  
4.5  
5.0  
5.5  
0
V
V
V
2. VTERM must not exceed Vcc + 10% for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20 mA for the period over VTERM > Vcc + 10%.  
0
0
V
IH  
IL  
NOTES:  
Input High Voltage  
Input Low Voltage  
2.2  
6.0(2)  
0.8  
____  
-0.5(1)  
V
____  
V
4088 tbl 06  
Capacitance(TA = +25°C, f = 1.0MHz) (1)  
Symbol  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 10%.  
Parameter  
Conditions(2)  
IN = 3dV  
OUT = 3dV  
Max. Unit  
CIN  
Input Capacitance  
V
9
pF  
pF  
Output  
Capacitance  
V
10  
COUT  
4088 tbl 07  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested. For TQFP Package Only.  
2. 3dV references the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
6.42  
4
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VCC = 5.0V ± 10%)  
7035S  
7035L  
Symbol  
Parameter  
Test Conditions  
Min.  
Max.  
10  
Min.  
Max.  
5
Unit  
µA  
µA  
V
(1)  
___  
___  
|ILI|  
Input Leakage Current  
Output Leakage Current  
Output Low Voltage  
V
CC = 5.5V, VIN = 0V to VCC  
___  
___  
___  
___  
|ILO  
|
10  
5
CE = VIH, VOUT = 0V to VCC  
VOL  
I
OL = 4mA  
0.4  
0.4  
___  
___  
VOH  
Output High Voltage  
IOH = -4mA  
2.4  
2.4  
V
4088 tbl 08  
NOTE:  
1. At Vcc < 2.0V input leakages are undefined.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (VCC = 5.0V ± 10%)  
7035X15  
Com'l Only  
Typ.(2) Max.  
7035X20  
Com'l & Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2) Max.  
Unit  
ICC  
Dynamic Operating Current  
(Both Ports Active)  
S
L
170  
170  
310  
260  
160  
160  
290  
240  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
IND  
S
L
160  
160  
370  
320  
I
SB1  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
IND  
S
L
20  
20  
60  
50  
20  
20  
60  
50  
mA  
mA  
CE  
L
SEM  
= CE  
R
= VIH  
= VIH  
R
= SEM  
L
(3)  
f = fMAX  
____  
____  
____  
____  
S
L
20  
20  
90  
70  
(5)  
ISB2  
Standby Current  
(One Port - TTL Level Inputs)  
COM'L  
S
L
105  
105  
190  
160  
95  
95  
180  
150  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
SEM  
R
= SEML = VIH  
____  
____  
____  
____  
IND  
S
L
95  
95  
240  
210  
I
SB3  
Full Standby Current (Both  
Ports - All CMOS Level  
Inputs)  
Both Ports CE  
CE > VCC - 0.2V  
IN > VCC - 0.2V or  
IN < 0.2V, f = 0(4)  
SEM = SEM > VCC - 0.2V  
L
and  
S
L
1.0  
0.2  
1.0  
0.2  
15  
5
mA  
mA  
COM'L  
IND  
15  
5
R
V
V
____  
____  
____  
____  
S
L
1.0  
0.2  
30  
10  
R
L
ISB4  
Full Standby Current  
(One Port - All CMOS Level  
Inputs)  
COM'L  
IND  
S
L
100  
100  
170  
140  
90  
90  
155  
130  
CE"A" < 0.2V and  
(5)  
CE"B" > VCC - 0.2V  
SEM = SEM > VCC - 0.2V  
IN > VCC - 0.2V or VIN < 0.2V  
R
L
____  
____  
____  
____  
S
L
90  
90  
225  
200  
V
Active Port Outputs Disabled  
(3)  
f = fMAX  
4088 tbl 09  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L)  
2. VCC = 5V, TA = +25°C, and are not production tested. Icc dc = 120mA (TYP)  
3. At f = fMAX, address and I/O'S are cycling at the maximum frequency read cycle of 1/tRC, and using AC Test Conditions” of input levels of  
GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
5
6.42  
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Data retention Characteristics Over All Temperature Ranges  
(L Version Only) (VLC = 0.2V, VHC = VCC - 0.2V)(4)  
Symbol  
Parameter  
Test Condition  
Min.  
Typ.(1)  
Max.  
Unit  
V
___  
___  
V
DR  
VCC for Data Retention  
VCC = 2V  
2.0  
___  
ICCDR  
Data Retention Current  
µA  
CE > VHC  
IN > VHC or < VLC  
IND.  
100  
4000  
___  
V
COM'L.  
100  
1500  
(3)  
CDR  
___  
___  
t
Chip Deselect to Data Retention Time  
Operation Recovery Time  
0
ns  
SEM > VHC  
(3)  
(2)  
___  
___  
t
R
t
RC  
ns  
4088 tbl 10  
NOTES:  
1. TA = +25°C, VCC = 2V, not production tested.  
2. tRC = Read Cycle Time  
3. This parameter is guaranteed by characterization, but is not production tested.  
4. At Vcc < 2.0V input leakages are undefined.  
Data Retention Waveform  
DATA RETENTION MODE  
VDR  
4.5V  
4.5V  
2V  
VCC  
tCDR  
tR  
VDR  
VIH  
VIH  
CE  
4088 drw 03  
AC Test Conditions  
Input Pulse Levels  
5V  
5V  
GND to 3.0V  
5ns Max.  
1.5V  
893  
893Ω  
Input Rise/Fall Times  
DATAOUT  
BUSY  
INT  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
DATAOUT  
1.5V  
5pF*  
347Ω  
30pF  
347Ω  
Figures 1 and 2  
4088 tbl 11  
4088 drw 04  
Figure 1. AC Output Test Load  
Figure 2. Output Test Load  
( for tLZ, tHZ, tWZ, tOW)  
* including scope and jig.  
6.42  
6
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
7035X15  
Com'l Only  
7035X20  
Com'l & Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
t
Address Access Time  
15  
15  
15  
20  
20  
20  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
t
t
t
10  
12  
____  
____  
t
3
3
____  
____  
t
3
3
Output High-Z Time(1,2)  
10  
12  
____  
____  
t
t
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
0
0
____  
____  
____  
____  
t
15  
20  
(3)  
____  
____  
t
Semaphore Flag Update Pulse (OE or SEM)  
10  
10  
Semaphore Address Access Time(3)  
15  
20  
ns  
____  
____  
t
4088 tbl 12  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL.  
4. 'X' in part numbers indicates power rating (S or L).  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
t
t
AA  
(4)  
ACE  
CE  
OE  
(4)  
tAOE  
(4)  
tABE  
UB, LB  
R/W  
(1)  
tOH  
tLZ  
VALID DATA(4)  
DATAOUT  
BUSYOUT  
(2)  
tHZ  
(3,4)  
4088 drw 05  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE, CE, LB, or UB.  
2. Timing depends on which signal is de-asserted first, CE, OE, LB, or UB.  
3. tBDD delay is required only in case where opposite port is completing a write operation to the same address location for simultaneous read operations BUSY has  
no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tABE, tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
7
6.42  
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing of Power-Up Power-Down  
CE  
tPU  
tPD  
I
CC  
SB  
50%  
50%  
I
.
4088 drw 06  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
7035X15  
Com'l Only  
7035X20  
Com'l & Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
15  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
10  
15  
____  
____  
t
10  
12  
____  
____  
t
0
0
Write Enable to Output in High-Z (1,2)  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
10  
12  
____  
____  
t
____  
____  
t
0
5
5
0
5
5
____  
____  
____  
____  
t
t
ns  
SEM Flag Contention Window  
4088 tbl 13  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL, UB or LB = VIL, SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL. Either condition must be valid for the  
entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part numbers indicates power rating (S or L).  
6.42  
8
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM(9)  
UB or LB(9)  
R/W  
(3)  
WR  
(2)  
tWP  
(6)  
t
tAS  
(7)  
tWZ  
tOW  
(4)  
(4)  
DATAOUT  
DATAIN  
tDW  
tDH  
4088 drw 07  
Timing Waveform of Write Cycle No. 2, CE, UB, LB Controlled Timing(1,5)  
t
WC  
ADDRESS  
CE or SEM(9)  
UB or LB(9)  
R/W  
tAW  
(3)  
(2)  
(6)  
t
WR  
t
AS  
tEW  
t
DW  
tDH  
DATAIN  
4088 drw 08  
NOTES:  
1. R/W or CE or UB & LB must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW UB or LB and a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end-of-write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the high-impedance state.  
6. Timing depends on which enable signal is asserted last, CE, R/W, or byte control.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with Output Test Load  
(Figure 2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as  
the specified tWP.  
9. To access RAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL. tEW must be met  
for either condition.  
9
6.42  
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
t
OH  
t
SAA  
A0 - A2  
VALID ADDRESS  
VALID ADDRESS  
t
AW  
t
WR  
t
ACE  
t
t
EW  
SEM  
t
SOP  
t
DW  
OUT  
DATA  
DATA  
0
VALID(2)  
DATAIN VALID  
t
AS  
WP  
tDH  
R/W  
t
SWRD  
t
AOE  
OE  
t
SOP  
Read Cycle  
Write Cycle  
4088 drw 09  
NOTE:  
1. CE = VIH or UB & LB = VIH for the duration of the above timing (both write and read cycle).  
2. "DATAOUT VALID' represents all I/Os (I/O0-I/O17) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2)  
"A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
4088 drw 10  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH, or both UB & LB = VIH.  
2. All timing is the same for left and right port. Port A” may be either left or right port. Port B” is the opposite from port A”.  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will obtain the semaphore flag.  
6.42  
10  
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
Operating TemperatureandSupplyVoltageRange(6)  
7035X15  
Com'l Only  
7035X20  
Com'l & Ind  
Symbol  
BUSY TIMING (M/S=VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
t
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
15  
17  
____  
____  
t
5
5
____  
____  
BUSY Disable to Valid Data(3)  
t
18  
30  
t
Write Hold After BUSY(5)  
12  
15  
____  
____  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
ns  
ns  
tWH  
12  
15  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
30  
25  
45  
30  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
4088 tbl 14  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Read With BUSY (M/S = VIH)" or "Timing Waveform of Write with  
Port-To-Port Delay (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0ns, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on Port "B" during contention with Port "A".  
5. To ensure that a write cycle is completed on Port "B" after contention with Port "A".  
6. 'X' in part numbers indicates power rating (S or L).  
11  
6.42  
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Port-to-Port Read and BUSY(2,5) (M/S = VIH)(4)  
tWC  
ADDR"A"  
MATCH  
tWP  
R/W"A"  
tDW  
tDH  
DATAIN "A"  
VALID  
(1)  
tAPS  
ADDR"B"  
MATCH  
tBAA  
tBDA  
tBDD  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
4088 drw 11  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (slave).  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (SLAVE) then BUSY is an input BUSY"A" = VIL and BUSY"B" = "don't care."  
5. All timing is the same for left and right ports. Port "A" may be either the left of right port. Port "B" is the opposite port from Port "A".  
Timing Waveform of Write with BUSY  
t
WP  
R/W"A"  
t
WB(3)  
BUSY"B"  
t
WH(1)  
R/W"B"  
,
(2)  
4088 drw 12  
NOTES:  
1. tWH must be met for both BUSY input (slave) output master.  
2. BUSY is asserted on port "B" Blocking R/W"B", until BUSY"B" goes HIGH  
3. tWB is only for the 'Slave' Version.  
6.42  
12  
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
APS  
t
CE"B"  
tBAC  
t
BDC  
BUSY"B"  
4088 drw 13  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESS "N"  
(2)  
tAPS  
ADDR"B"  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
BUSY"B"  
4088 drw 14  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
7035X15  
7035X20  
Com'l Only  
Com'l & Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
ns  
ns  
ns  
t
0
0
____  
____  
t
15  
15  
20  
20  
____  
____  
t
Interrupt Reset Time  
ns  
4088 tbl 15  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
13  
6.42  
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
t
WC  
INTERRUPT SET ADDRESS (2)  
ADDR"A"  
(4)  
(3)  
t
AS  
tWR  
CE"A"  
R/W"A"  
INT"B"  
(3)  
INS  
t
4088 drw 15  
t
RC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
tINR  
INT"B"  
4088 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from A”.  
2. See Interrupt Flag Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
Truth Table III — Interrupt Flag(1,2)  
Left Port  
Right Port  
R/W  
L
A
0L-A12L  
R/W  
R
A
0R-A12R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CE  
L
OE  
L
INT  
L
CE  
R
OE  
R
INTR  
(2)  
L
X
X
X
L
X
X
L
X
X
X
L
1FFF  
X
X
X
X
L
L
X
X
L
X
1FFF  
1FFE  
X
L
R
(3)  
X
X
H
R
(3)  
X
L
L
X
X
X
L
(2)  
1FFE  
H
X
X
L
4088 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTR and INTL must be initialized at power-up.  
6.42  
14  
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
A
OL-A12L  
(1)  
(1)  
AOR-A12R  
Function  
Normal  
Normal  
Normal  
CE  
L
CE  
R
BUSY  
L
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
MATCH  
H
H
(3)  
MATCH  
(2)  
(2)  
Write Inhibit  
4088 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. BUSY are inputs when configured as a slave. BUSYx outputs on the IDT7035  
are push pull, not open drain outputs. On slaves the BUSY asserted internally inhibits write.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D17 Left  
D0  
- D17 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
4088 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT7035.  
2. There are eight semaphore flags written to via I/O0 and read from all I/0's. These eight semaphores are addressed by A0 - A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
(INTL) is asserted when the right port writes to memory location 1FFE  
(HEX),whereawriteisdefinedastheCER=R/WR=VIL perTruthTable  
III.Theleftportclearstheinterruptbyanaddresslocation1FFEaccess  
when CEL = OEL = VIL, R/WL is a "don't care". Likewise, the right port  
interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
1FFF(HEX)andtocleartheinterruptflag(INTR),therightportmustaccess  
the memory location 1FFF, The message (18 bits) at 1FFE or 1FFF is  
user-defined, since itis anaddressable SRAMlocation. Ifthe interrupt  
functionisnotused,addresslocations1FFEand1FFFarenotusedas  
TheIDT7035providestwoportswithseparatecontrol,addressand  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation  
inmemory.TheIDT7035hasanautomaticpowerdownfeaturecontrolled  
by CE. The CE controls on-chip power down circuitry that permits the  
respectiveporttogointoastandbymodewhennotselected(CEHIGH).  
Whenaportisenabled,accesstotheentirememoryarrayispermitted.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox mailboxes,butaspartoftherandomaccessmemory.RefertoTruthTable  
ormessage center)is assignedtoeachport. The leftportinterruptflag IIIfortheinterruptoperation.  
15  
6.42  
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Busy Logic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisbusy.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
CE  
CE  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
BUSY  
R
BUSY  
L
BUSY  
R
BUSY  
L
CE  
MASTER  
Dual Port  
RAM  
CE  
SLAVE  
Dual Port  
RAM  
BUSY  
R
BUSY  
R
BUSY  
R
BUSY  
L
BUSYL  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
anduse anyBUSYindicationas aninterruptsource toflagthe eventof  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
TheBUSYoutputsontheIDT7035RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate.Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
BUSY  
L
.
4088 drw 17  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT7035 RAMs.  
leftportinnowayslows theaccess timeoftherightport.Bothports are  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chippowerdowncircuitrythatpermits the respective porttogointo  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table I where CE and SEM = VIH.  
SystemswhichcanbestusetheIDT7035containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
software controlled or software intensive. These systems can benefit  
from a performance increase offered by the IDT7035's hardware  
semaphores, which provide a lockout mechanism without requiring  
complexprogramming.  
Width Expansion with BUSY Logic  
Master/SlaveArrays  
WhenexpandinganIDT7035RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMarraywill  
receiveaBUSYindication,andtooutputthatindication.Anynumberof  
slaves to be addressed in the same address range as the master, use  
theBUSYsignalasawriteinhibitsignal.ThusontheIDT7035RAMthe  
BUSYpinisanoutputifthepartisusedasamaster(M/S=VIH),andthe  
BUSYpin is an input if the part used as a slave (M/S =VIL) as shown in  
Figure 3.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. Itignores whetheranaccess is a readorwrite. In  
a master/slave array, bothaddress andchipenable mustbe validlong  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwitheithertheR/Wsignalorthebyteenables.Failure  
toobservethistimingcanresultinaglitchedinternalwriteinhibitsignaland  
corrupteddataintheslave.  
Softwarehandshakingbetweenprocessors offers themaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations.TheIDT7035doesnotuseitssemaphoreflagstocontrol  
anyresourcesthroughhardware,thusallowingthesystemdesignertotal  
flexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.”Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
Semaphores  
TheIDT7035isanextremelyfastDual-Port8Kx18CMOSStaticRAM  
withanadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesignerssoftware.Asanexample,thesemaphorecanbe  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
The Dual-PortRAMfeatures a fastaccess time, andbothports are  
completelyindependentofeachother.Thismeansthattheactivityonthe  
6.42  
16  
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
that semaphores status or remove its request for that semaphore to into a semaphore flag. Whichever latch is first to present a zero to the  
performanothertaskandoccasionallyattemptagaintogaincontrolofthe semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
tokenviathesetandtestsequence.Oncetherightsidehasrelinquished sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
thetoken,theleftsideshouldsucceedingainingcontrol.  
semaphorerequestlatch.Shouldtheothersidessemaphorerequestlatch  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites overtotheothersideassoonasaoneiswrittenintothefirstsidesrequest  
aonetothatlatch.  
latch.ThesecondsidesflagwillnowstayLOWuntilitssemaphorerequest  
The eightsemaphore flags reside withinthe IDT7035ina separate latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed is requestedandthe processorwhichrequesteditnolongerneeds the  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe resource, the entire system can hang up until a one is written into that  
semaphore flags) and using the other control pins (Address, OE, and semaphorerequestlatch.  
R/W)astheywouldbeusedinaccessingastandardStaticRAM. Each  
The criticalcase ofsemaphore timingis whenbothsides requesta  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside single token by attempting to write a zero into it at the same time. The  
throughaddresspinsA0 A2. Whenaccessingthesemaphores,none semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
oftheotheraddresspinshasanyeffect.  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero sidetomaketherequestwillreceivethetoken.Ifbothrequestsarriveat  
on that side and a one on the other side (see Truth Table V). That thesametime,theassignmentwillbearbitrarilymadetooneportorthe  
semaphorecannowonlybemodifiedbythesideshowingthezero.When other.  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
One caution that should be noted when using semaphores is that  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
ispending)andthencanbewrittentobybothsides. Thefactthattheside Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites ormisinterpreted, a software errorcaneasilyhappen.  
fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
communications.(Athoroughdiscussionontheuseofthisfeaturefollows viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
freedbythefirstside.  
to assure that they will be free when needed.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintoonesidesoutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
resourcemarkersfortheIDT7035’sDual-PortRAM.Saythe8Kx18RAM  
was tobedividedintotwo4Kx18blocks whichweretobededicatedat  
anyonetimetoservicingeithertheleftorrightport.Semaphore0could  
be used to indicate the side which would control the lower section of  
memory,andSemaphore1couldbedefinedasthe indicatorfortheupper  
sectionofmemory.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableV).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attempts towriteazerotothesamesemaphoreflagitwillfail,as willbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduringthe  
gap between the read and write cycles.  
Totakearesource,inthis examplethelower4KofDual-PortRAM,  
the processor on the left port could write and then read a zero in to  
Semaphore0.Ifthistaskwassuccessfullycompleted(azerowasread  
back rather than a one), the left processor would assume control  
of the lower 4K. Meanwhile the right processor was attempting to gain  
controlofthe resourceaftertheleftprocessor,itwouldreadbackaone  
inresponsetothezeroithadattemptedtowriteintoSemaphore0.Atthis  
point,thesoftwarecouldchoosetotryandgaincontrolofthesecond4K  
sectionbywriting,thenreadingazerointoSemaphore1.Ifitsucceeded  
ingainingcontrol,itwouldlockouttheleftside.  
Once the left side was finished with its task, it would write a one to  
Semaphore 0 and may then try to gain access to Semaphore 1. If  
Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
itssemaphorerequestandperformothertasksuntilitwasabletowrite,then  
readazerointoSemaphore1.Iftherightprocessorperformsasimilartask  
withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap  
4Kblocks ofDual-PortRAMwitheachother.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation.The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
17  
6.42  
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
The blocks do not have to be any particular size and can even be been performed, both processors can access their assigned RAM  
variable, depending upon the complexity of the software using the segmentsatfullspeed.  
semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual-  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
PortRAMorothersharedresources intoeightparts. Semaphores can case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing mayberesponsibleforbuildingandupdatingadatastructure.Theother  
given a common meaning as was shown in the example above.  
processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
Semaphores are a useful form of arbitration in systems like disk processorreadsanincompletedatastructure,amajorerrorconditionmay  
interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
wasoff-limitstotheCPU,boththeCPUandtheI/Odevicescouldaccess is completed, the data structure block is released. This allows the  
theirassignedportionsofmemorycontinuouslywithoutanywaitstates. interpretingprocessortocomebackandreadthecompletedatastructure,  
SemaphoresarealsousefulinapplicationswherenomemoryWAIT” therebyguaranteeingaconsistentdatastructure.  
stateisavailableononeorbothsides.Onceasemaphorehandshakehas  
L PORT  
SEMAPHORE  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
4088 drw 18  
Figure 4. IDT7035 Semaphore Logic  
6.42  
18  
IDT7035S/L  
High-Speed 8K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
OrderingInformation  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I
Commercial (0°C to +70°C)  
Industrial (-40°C to + 85°C)  
PF  
100-pin TQFP (PN100-1)  
Commercial Only  
15  
20  
Speed in nanoseconds  
Commercial & Industrial  
S
L
Standard Power  
Low Power  
7035  
144K (8K x 18) Dual-Port RAM  
4088 drw 19  
DatasheetDocumentHistory  
1/18/99:  
Initiateddatasheetdocumenthistory  
Convertedtonewformat  
Cosmetictypographicalcorrections  
Addedadditionalnotestopinconfigurations  
Page 9 Fixed typographical error  
Changeddrawingformat  
5/19/99:  
6/4/99:  
Page 1 Corrected DSC number  
RemovedPreliminary  
9/1/99:  
10/4/99:  
11/10/99:  
5/23/00:  
AddedIndustrialTemperatureRanges andremovedcorrespondingnotes  
Replaced IDT logo  
Page 4 Increasedstoragetemperatureparameter  
ClarifiedTAparameter  
Page 5 DCElectricalparameters–changedwordingfrom"open"to"disabled"  
Changed±500mVto0mVinnotes  
8/20/01:  
Page 14 Correctednote superscriptinTruthTable III  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
19  
6.42  

相关型号:

IDT7035L20PFI

Dual-Port SRAM, 8KX8, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100
IDT

IDT7035L20PFI8

Dual-Port SRAM, 8KX8, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100
IDT

IDT7035PF

HIGH-SPEED 8K x 18 DUAL-PORT STATIC RAM
IDT

IDT7035S

HIGH-SPEED 8K x 18 DUAL-PORT STATIC RAM
IDT

IDT7035S/L

HIGH-SPEED 8K x 18 DUAL-PORT STATIC RAM
IDT

IDT7035S15PF

HIGH-SPEED 8K x 18 DUAL-PORT STATIC RAM
IDT

IDT7035S15PFG

Dual-Port SRAM, 8KX8, 15ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100
IDT

IDT7035S20PF

HIGH-SPEED 8K x 18 DUAL-PORT STATIC RAM
IDT

IDT7035S20PF9

Dual-Port SRAM, 8KX8, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100
IDT

IDT7035S20PFG

Dual-Port SRAM, 8KX8, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100
IDT

IDT7035S20PFG8

Dual-Port SRAM, 8KX18, 20ns, CMOS, PQFP100, TQFP-100
IDT

IDT7035S20PFGI

Dual-Port SRAM, 8KX8, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-100
IDT