IDT70T3539MS133BCI8 [IDT]

Dual-Port SRAM, 512KX36, 15ns, CMOS, PBGA256, BGA-256;
IDT70T3539MS133BCI8
型号: IDT70T3539MS133BCI8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 512KX36, 15ns, CMOS, PBGA256, BGA-256

静态存储器
文件: 总26页 (文件大小:294K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 2.5V  
512K x 36  
SYNCHRONOUS  
IDT70T3539M  
DUAL-PORT STATIC RAM  
WITH 3.3V OR 2.5V INTERFACE  
Š
Features:  
Data input, address, byte enable and control registers  
True Dual-Port memory cells which allow simultaneous  
access of the same memory location  
High-speed data access  
– Commercial: 3.6ns (166MHz)/4.2ns (133MHz)(max.)  
Industrial: 4.2ns (133MHz) (max.)  
Selectable Pipelined or Flow-Through output mode  
Counter enable and repeat features  
Dual chip enables allow for depth expansion without  
additional logic  
Interrupt and Collision Detection Flags  
Full synchronous operation on both ports  
– 6ns cycle time, 166MHzoperation(12Gbps bandwidth)  
– Fast 3.6ns clock to data out  
– Self-timedwriteallowsfastcycletime  
Separate byte controls for multiplexed bus and bus  
matching compatibility  
Dual Cycle Deselect (DCD) for Pipelined Output Mode  
2.5V (±100mV) power supply for core  
LVTTL compatible, selectable 3.3V (±150mV) or 2.5V  
(±100mV) power supply for I/Os and control signals on  
each port  
Includes JTAG functionality  
Industrial temperature range (-40°C to +85°C) is  
available at 133MHz  
Available in a 256-pin Ball Grid Array (BGA)  
– 1.5ns setup to clock and 0.5ns hold on all control, data, and  
address inputs @ 166MHz  
FunctionalBlockDiagram  
BE3R  
BE3L  
BE2L  
BE1L  
BE0L  
BE2R  
BE1R  
BE0R  
FT/PIPE  
L
0a 1a  
a
0b 1b  
b
0c 1c  
c
0d 1d  
d
1d 0d  
d
1c 0c  
c
1b 0b  
b
1a 0a  
a
FT/PIPER  
1/0  
1/0  
R/WL  
R/WR  
CE0L  
CE0R  
1
1
CE1R  
CE1L  
0
0
B
B B B  
B
B B B  
1/0  
1/0  
W W W W W W W W  
0
L
1
L
2
L
3
L
3
R
2
1
R
0
R
R
OE  
R
OE  
L
Dout0-8_L  
Dout0-8_R  
Dout9-17_R  
Dout18-26_R  
Dout27-35_R  
Dout9-17_L  
Dout18-26_L  
Dout27-35_L  
,
1d 0d 1c 0c  
1b 0b 1a 0a  
0a 1a 0b 1b  
0c 1c 0d 1d  
d c b a  
0/1  
0/1  
FT/PIPE  
R
FT/PIPE  
L
a bc d  
512K x 36  
MEMORY  
ARRAY  
I/O0L - I/O35L  
I/O0R - I/O35R  
Din_L  
Din_R  
,
CLK  
R
CLK  
L
A
18R  
A
18L  
Counter/  
Address  
Reg.  
Counter/  
Address  
Reg.  
A
0L  
REPEAT  
ADS  
CNTEN  
A
0R  
REPEAT  
ADS  
CNTEN  
ADDR_R  
ADDR_L  
L
R
R
L
R
L
TDI  
TCK  
TMS  
TRST  
INTERRUPT  
CE  
CE1  
0
R
CE  
0
L
JTAG  
COLLISION  
DETECTION  
LOGIC  
R
CE1  
TDO  
L
R/  
W
L
R/W  
R
COL  
L
COL  
R
INT  
L
INT  
R
(1)  
(1)  
ZZR  
ZZ  
CONTROL  
LOGIC  
ZZ  
L
5678 drw 01  
NOTE:  
1. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when asserted. All static inputs, i.e., PL/FTx and OPTx and  
the sleep mode pins themselves (ZZx) are not affected during sleep mode.  
JULY 2008  
1
DSC 5678/6  
©2008IntegratedDeviceTechnology,Inc.  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Description:  
TheIDT70T3539Misahigh-speed512Kx36bitsynchronousDual- inbursts.Anautomaticpowerdownfeature,controlledbyCE0andCE1,  
Port RAM. The memory array utilizes Dual-Port memory cells to allow permitstheon-chipcircuitryofeachporttoenteraverylowstandbypower  
simultaneousaccessofanyaddressfrombothports.Registersoncontrol, mode.  
data,andaddressinputsprovideminimalsetupandholdtimes.Thetiming  
The 70T3539M can support an operating voltage of either 3.3V or  
latitudeprovidedbythisapproachallowssystemstobedesignedwithvery 2.5Vononeorbothports,controllablebytheOPTpins.Thepowersupply  
shortcycletimes.Withaninputdataregister,theIDT70T3539Mhasbeen for the core of the device (VDD) is at 2.5V.  
optimizedforapplicationshavingunidirectionalorbidirectionaldataflow  
6.42  
2
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configuration (1,2,3,4)  
70T3539M BC  
BC-256(5)  
256-Pin BGA  
Top View(6)  
10/07/03  
A1  
A2  
A3  
A6  
A7  
A8  
A9  
A11  
A12  
A13  
A14  
A4  
A5  
A10  
A15  
A16  
NC  
TDI  
NC  
A
11L  
A
8L  
9L  
7L  
BE2L CE1L  
CNTEN  
L
L
A
5L  
A
2L  
A
0L  
A
17L  
18L  
A
14L  
OE  
L
NC  
NC  
B1  
B2  
B3  
B6  
B7  
B9  
CE0L  
B11  
B12  
B13  
B4  
B5  
B8  
B10  
B14  
B15  
B16  
I/O18L NC TDO  
A
12L  
A
REPEAT  
A4L  
A
1L  
A
A
15L  
BE3L  
R/W  
L
VDD I/O17L NC  
C1  
C5  
C6  
C2  
C3  
C4  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C16  
C14  
C15  
I/O18R  
A
13L  
A
10L  
I/O19L  
V
SS  
A
BE1L BE0L CLK  
L
ADS  
L
A6L  
A
3L  
I/O16L  
A16L  
OPT  
L
I/O17R  
D1  
D2  
D6  
D9  
D11  
D3  
D5  
D7  
D8  
D10  
D12  
D13  
D14  
D15  
D16  
D4  
I/O20R I/O19R  
VDDQL  
VDDQL  
VDDQR  
VDDQL  
I/O20L  
V
PIPE/FTL  
DDQL  
V
DDQR  
VDDQR  
VDDQR  
VDD I/O15R I/O15L I/O16R  
E6  
E5  
E7  
E8  
E9  
E10  
E11  
E12  
E13  
E1  
E2  
E3  
E4  
E14  
E16  
E15  
V
DD  
V
DD  
INT  
L
V
SS  
SS  
SS  
V
SS  
SS  
SS  
V
SS  
V
DD  
V
DD  
V
DDQR  
I/O13L  
I/O21R I/O21L I/O22L  
V
DDQL  
I/O14R  
I/O14L  
F7  
F1 F2 F3  
F5  
F6  
F9  
F10  
F14  
F15  
F16  
F11  
F13  
F4  
F8  
F12  
COL  
L
VDD  
NC  
V
VSS  
I/O23L I/O22R I/O23R  
G1  
VSS  
V
DDQR I/O12R I/O13R I/O12L  
V
V
DD  
VDDQL  
G5  
H5  
G2  
G4  
G6  
G8  
G9  
G3  
G7  
G10  
G12  
G13 G14 G15 G16  
G11  
I/O24R  
V
SS  
I/O24L  
V
DDQR  
VSS  
V
V
I/O25L  
I/O10L I/O11L I/O11R  
H16  
VSS  
VSS  
VSS  
V
DDQL  
VSS  
H11  
H12  
H13  
H7  
H8  
H9  
H10  
H14  
H15  
H3  
H4  
H6  
H1  
H2  
VSS  
V
SS  
VDDQL  
I/O10R  
VSS  
VSS  
VSS  
V
SS  
I/O9R IO9L  
VSS  
VSS  
I/O26R  
V
DDQR  
I/O26L I/O25R  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J13  
J10  
J11  
J12  
J14  
J15  
J16  
I/O27L  
I/O28R I/O27R  
V
DDQL ZZ  
R
V
SS  
V
SS  
V
SS  
SS  
V
SS  
V
DDQR  
I/O8R  
V
SS  
V
SS  
ZZ  
L
I/O7R I/O8L  
K6  
K8  
K10  
K12  
K13  
K5  
K7  
K9  
K11  
K2  
K4  
K15  
K16  
K1  
K3  
K14  
VSS  
V
VSS  
V
SS  
V
DDQR  
I/O6R  
I/O29L  
V
DDQL  
V
SS  
V
SS  
V
SS  
V
SS  
I/O6L I/O7L  
I/O29R  
I/O28L  
L7  
L8  
L11  
L12  
L13  
L3  
L4  
L5  
L6  
L9  
L10  
L15  
L16  
L1  
L2  
L14  
COLR  
V
SS  
VSS  
V
DD  
V
DDQL  
I/O30R  
VDDQR  
VDD  
NC  
V
SS  
V
SS  
I/O4R I/O5R  
I/O30L I/O31R  
I/O5L  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M1 M2  
M3  
M4  
M16  
M14  
M15  
VDD  
V
DD INT  
R
V
SS  
V
SS  
VSS  
VDD  
V
DD  
V
DDQL  
I/O3R I/O3L  
I/O32R I/O32L I/O31L  
V
DDQR  
I/O4L  
N8  
N12  
N16  
N13  
N4  
N5  
N6  
N7  
N9  
N10  
N11  
N15  
N1  
N2  
N3  
N14  
VDDQL  
VDDQL  
VDD  
I/O2R  
P IP E /FT  
R
V
DDQR  
VDDQR  
VDDQL  
V
DDQR  
V
DDQR  
VDDQL  
I/O1R  
I/O33L I/O34R I/O33R  
I/O2L  
P1  
P2  
P3  
P4  
P5  
P7  
P8  
P9  
P10  
P11  
P12  
P14  
P15  
P16  
P6  
P13  
A
16R  
I/O35R I/O34L TMS  
A
13R  
A
7R BE1R BE0R CLK  
R
ADS  
R
A
6R  
4R  
5R  
I/O0L I/O0R I/O1L  
A
10R  
A
3R  
R5  
R6  
R7  
R8 R9 R10  
R11  
R16  
R1  
R2  
R3  
R4  
R12  
R13  
R14  
R15  
,
A
15R  
A
12R  
A
9R  
BE3R CE0R R/W  
R
REPEAT  
R
NC  
I/O35L NC TRST  
A
18R  
A
A1R OPTR  
NC  
T2  
T3  
T4  
T1  
T5  
T8  
T9  
T15  
T16  
T6  
T7  
T10  
T11  
T12  
T13  
T14  
A
17R  
TCK  
NC  
NC  
A
14R  
BE2R CE1R  
NC  
NC  
A11R  
A
8R  
OER  
CNTEN  
R
A
A
2R  
A
0R  
5678 drw 02d  
NOTES:  
1. All VDD pins must be connected to 2.5V power supply.  
,
2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V), and 2.5V if OPT pin for that port is  
set to VSS (0V).  
3. All VSS pins must be connected to ground supply.  
4. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part-marking.  
6.42  
3
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
CE1R  
Names  
(5)  
Chip Enables (Input)  
CE0L  
R/W  
OE  
,
CE1L  
CE0R  
R/W  
OE  
,
L
R
Read/Write Enable (Input)  
Output Enable (Input)  
Address (Input)  
L
R
A0L - A18L  
A0R - A18R  
I/O0L - I/O35L  
CLK  
PL/FT  
ADS  
CNTEN  
REPEAT  
BE0L - BE3L  
I/O0R - I/O35R  
CLK  
Data Input/Output  
L
R
Clock (Input)  
L
PL/FT  
ADS  
CNTEN  
REPEAT  
BE0R - BE3R  
R
Pipeline/Flow-Through (Input)  
Address Strobe Enable (Input)  
Counter Enable (Input)  
Counter Repeat(3)  
L
R
L
R
L
R
(5)  
Byte Enables (9-bit bytes) (Input)  
Power (I/O Bus) (3.3V or 2.5V)(1) (Input)  
Option for selecting VDDQX(1,2) (Input)  
Sleep Mode pin(4) (Input)  
Power (2.5V)(1) (Input)  
VDDQL  
VDDQR  
OPT  
ZZ  
L
OPTR  
L
ZZR  
V
DD  
NOTES:  
1. VDD, OPTX, and VDDQX must be set to appropriate operating levels prior to  
applying inputs on the I/Os and controls for that port.  
V
SS  
Ground (0V) (Input)  
TDI  
TDO  
TCK  
TMS  
TRST  
Test Data Input  
2. OPTX selects the operating voltage levels for the I/Os and controls on that port.  
If OPTX is set to VDD (2.5V), then that port's I/Os and controls will operate at 3.3V  
levels and VDDQX must be supplied at 3.3V. If OPTX is set to VSS (0V), then that  
port's I/Os and address controls will operate at 2.5V levels and VDDQX must be  
supplied at 2.5V. The OPT pins are independent of one anotherboth ports can  
operate at 3.3V levels, both can operate at 2.5V levels, or either can operate  
at 3.3V with the other at 2.5V.  
Test Data Output  
Test Logic Clock (10MHz) (Input)  
Test Mode Select (Input)  
Reset (Initialize TAP Controller) (Input)  
Interrupt Flag (Output)  
3. When REPEATX is asserted, the counter will reset to the last valid address loaded  
via ADSX.  
INT  
R
INTL  
4. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when  
asserted. All static inputs, i.e., PL/FTx and OPTx and the sleep mode pins  
themselves (ZZx) are not affected during sleep mode. It is recommended that  
boundry scan not be operated during sleep mode.  
COL  
R
COL  
L
Collision Alert (Output)  
5678 tbl 01  
5. Chip Enables and Byte Enables are double buffered when PL/FT = VIH, i.e., the  
signals take two cycles to deselect.  
6.42  
4
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
(1,2,3,4)  
Truth Table I—Read/Write and Enable Control  
Byte 3  
I/O27-35  
Byte 2  
I/O18-26  
Byte 1  
I/O9-17  
Byte 0  
I/O0-8  
CLK  
CE  
1
R/W  
X
X
X
L
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
MODE  
OE  
X
X
X
X
X
X
X
X
X
X
L
CE  
0
BE  
3
BE  
2
BE  
1
BE0  
H
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
X
X
L
X
X
H
H
H
H
L
X
X
H
H
H
L
X
X
H
H
L
X
X
H
L
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z DeselectedPower Down  
High-Z DeselectedPower Down  
High-Z All Bytes Deselected  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
X
DIN  
Write to Byte 0 Only  
H
H
H
L
L
DIN  
High-Z Write to Byte 1 Only  
High-Z Write to Byte 2 Only  
High-Z Write to Byte 3 Only  
H
H
L
L
DIN  
High-Z  
High-Z  
H
H
L
L
D
IN  
High-Z  
High-Z  
H
L
L
High-Z  
DIN  
DIN  
Write to Lower 2 Bytes Only  
H
L
H
L
L
DIN  
DIN  
High-Z  
High-Z Write to Upper 2 bytes Only  
L
L
L
DIN  
DIN  
DIN  
D
IN  
Write to All Bytes  
Read Byte 0 Only  
H
H
H
L
H
H
L
H
L
L
H
H
H
H
H
H
H
X
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
DOUT  
L
H
H
H
L
DOUT  
High-Z Read Byte 1 Only  
High-Z Read Byte 2 Only  
High-Z Read Byte 3 Only  
L
H
H
L
DOUT  
High-Z  
High-Z  
L
H
H
L
D
OUT  
High-Z  
High-Z  
L
H
L
High-Z  
DOUT  
D
OUT  
Read Lower 2 Bytes Only  
High-Z Read Upper 2 Bytes Only  
Read All Bytes  
L
H
L
H
L
DOUT  
DOUT  
High-Z  
L
L
L
DOUT  
DOUT  
DOUT  
DOUT  
H
X
X
X
X
X
X
X
X
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z Outputs Disabled  
High-Z Sleep Mode  
X
5678 tbl 02  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. ADS, CNTEN, REPEAT = VIH.  
3. OE and ZZ are asynchronous input signals.  
4. It is possible to read or write any combination of bytes during a given access. A few representative samples have been illustrated here.  
(1,2)  
Truth Table II—Address Counter Control  
Previous  
Internal  
Address  
Internal  
Address  
Used  
MODE  
(3)  
ADS CNTEN REPEAT(6)  
Address  
CLK  
I/O  
I/O (n) External Address Used  
I/O(n+1) Counter EnabledInternal Address generation  
I/O(n+1) External Address BlockedCounter disabled (An + 1 reused)  
DI/O(n) Counter Set to last valid ADS load  
(4)  
An  
X
X
An  
An  
L
H
H
X
X
H
H
D
(5)  
An + 1  
An + 1  
An  
L
H
X
D
X
An + 1  
X
H
D
(4)  
X
L
5678 tbl 03  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. Read and write operations are controlled by the appropriate setting of R/W, CE0, CE1, BEn and OE.  
3. Outputs configured in flow-through output mode: if outputs are in pipelined mode the data out will be delayed by one cycle.  
4. ADS and REPEAT are independent of all other memory control signals including CE0, CE1 and BEn  
5. The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other memory control signals including CE0, CE1, BEn.  
6. When REPEAT is asserted, the counter will reset to the last valid address loaded via ADS. This value is not set at power-up: a known location should be loaded  
via ADS during initialization if desired. Any subsequent ADS access during operations will update the REPEAT address location.  
6.42  
5
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
RecommendedOperating  
Temperature and Supply Voltage  
(1)  
Ambient  
Grade  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
VDD  
Commercial  
0V  
2.5V  
2.5V  
+
+
100mV  
100mV  
Industrial  
0V  
5678 tbl 04  
NOTES:  
1. This is the parameter TA. This is the "instant on" case temperature.  
RecommendedDCOperating  
Conditions with VDDQ at 2.5V  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
2.4  
0
Typ.  
2.5  
2.5  
0
Max.  
Unit  
V
V
DD  
DDQ  
SS  
2.6  
2.6  
0
V
V
V
V
Input High Volltage  
(Address, Control &  
Data I/O Inputs)(3)  
(2)  
____  
V
DDQ + 100mV  
1.7  
1.7  
V
V
V
IH  
Input High Voltage _  
JTAG  
(2)  
____  
VIH  
VDD + 100mV  
Input High Voltage -  
ZZ, OPT, PIPE/FT  
(2)  
____  
____  
____  
V
IH  
IL  
IL  
V
DD - 0.2V  
V
DD + 100mV  
V
V
V
Input Low Voltage  
-0.3(1)  
0.7  
0.2  
Input Low Voltage -  
ZZ, OPT, PIPE/FT  
V
-0.3(1)  
V
5678 tbl 05a  
NOTES:  
1. VIL (min.) = -1.0V for pulse width less than tCYC/2 or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tCYC/2 or 5ns, whichever is less.  
3. To select operation at 2.5V levels on the I/Os and controls of a given port, the OPT  
pinforthatportmustbesettoVss(0V),andVDDQX forthatportmustbesuppliedas indicated  
above.  
RecommendedDCOperating  
Conditions with VDDQ at 3.3V  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
3.15  
0
Typ.  
2.5  
3.3  
0
Max.  
2.6  
3.45  
0
Unit  
V
V
DD  
DDQ  
SS  
V
V
V
V
Input High Voltage  
(Address, Control  
(3)  
&Data I/O Inputs)  
(2)  
____  
2.0  
1.7  
V
DDQ + 150mV  
V
V
V
IH  
_
Input High Voltage  
JTAG  
(2)  
____  
VIH  
VDD + 100mV  
Input High Voltage -  
ZZ, OPT, PIPE/FT  
(2)  
____  
____  
____  
V
IH  
IL  
IL  
V
DD - 0.2V  
V
DD + 100mV  
V
V
V
Input Low Voltage  
-0.3(1)  
0.8  
0.2  
Input Low Voltage -  
ZZ, OPT, PIPE/FT  
V
-0.3(1)  
V
5678 tbl 05b  
NOTES:  
1. VIL (min.) = -1.0V for pulse width less than tCYC/2, or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tCYC/2 or 5ns, whichever is less.  
3. To select operation at 3.3V levels on the I/Os and controls of a given port, the OPT pin  
for that port must be set to VDD (2.5V), and VDDQX for that port must be supplied as indicated  
above.  
6.42  
6
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Absolute Maximum Ratings (1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
V
V
TERM  
VDD Terminal Voltage  
-0.5 to 3.6  
(VDD  
)
with Respect to GND  
(2)  
TERM  
V
V
DDQ Terminal Voltage  
-0.3 to VDDQ + 0.3  
-0.3 to VDDQ + 0.3  
V
(VDDQ  
)
with Respect to GND  
(2)  
TERM  
V
Input and I/O Terminal  
V
(INPUTS and I/O's)  
Voltage with Respect to GND  
(3)  
T
BIAS  
STG  
JN  
Temperature Under Bias  
Storage Temperature  
Junction Temperature  
-55 to +125  
-65 to +150  
+150  
oC  
oC  
T
T
oC  
IOUT(For VDDQ = 3.3V) DC Output Current  
50  
mA  
IOUT(For VDDQ = 2.5V) DC Output Current  
40  
mA  
5678 tbl 06  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation of the  
device at these or any other conditions above those indicated in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
2. This is a steady-state DC parameter that applies after the power supply has reached its  
nominal operating value. Power sequencing is not necessary; however, the voltage on  
any Input or I/O pin cannot exceed VDDQ during power supply ramp up.  
3. Ambient Temperature under DC Bias. No AC Conditions. Chip Deselected.  
Capacitance(1)  
(TA = +25°C, F = 1.0MHZ) PQFP ONLY  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2)  
Max. Unit  
CIN  
VIN = 3dV  
15  
pF  
(3)  
OUT  
C
VOUT = 3dV  
10.5  
pF  
5678 tbl 07  
NOTES:  
1. These parameters are determined by device characterization, but are not  
production tested.  
2. 3dV references the interpolated capacitance when the input and output switch  
from 0V to 3V or from 3V to 0V.  
3. COUT also references CI/O.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 2.5V ± 100mV)  
70T3539MS  
Symbol  
|ILI  
|ILI  
|ILO  
Parameter  
Test Conditions  
DDQ = Max., VIN = 0V to VDDQ  
DD = Max. IN = 0V to VDD  
CE = VIH or CE = VIL, VOUT = 0V to VDDQ  
OL = +4mA, VDDQ = Min.  
OH = -4mA, VDDQ = Min.  
OL = +2mA, VDDQ = Min.  
OH = -2mA, VDDQ = Min.  
Min.  
Max.  
10  
Unit  
µA  
µA  
µA  
V
(1)  
___  
___  
___  
___  
|
Input Leakage Current  
V
(1,2)  
|
JTAG & ZZ Input Leakage Current  
V
,
V
±30  
10  
(1,3)  
|
Output Leakage Current  
0
1
V
OL (3.3V) Output Low Voltage(1)  
OH (3.3V) Output High Voltage(1)  
OL (2.5V) Output Low Voltage(1)  
OH (2.5V) Output High Voltage(1)  
I
0.4  
___  
V
I
2.4  
V
___  
V
I
0.4  
V
___  
V
I
2.0  
V
5678 tbl 08  
NOTES:  
1. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to p.5 for details.  
2. Applicable only for TMS, TDI and TRST inputs.  
3. Outputs tested in tri-state mode.  
6.42  
7
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
(3)  
Temperature and Supply Voltage Range  
(VDD = 2.5V ± 100mV)  
70T3539MS166 70T3539MS133  
Com'l Only  
Com'l  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(4)  
640  
Max.  
900  
Typ.(4)  
Max. Unit  
IDD  
Dynamic Operating  
Current (Both  
Ports Active)  
CE  
L
and CER= VIL,  
S
S
S
S
S
S
S
S
S
S
S
S
520  
520  
280  
280  
400  
400  
12  
740  
mA  
900  
Outputs Disabled,  
___  
___  
(1)  
IND  
f = fMAX  
I
SB1(6)  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
CE  
f = fMAX  
L
= CE  
R
= VIH  
COM'L  
IND  
350  
460  
380  
mA  
470  
(1)  
___  
___  
SB2(6)  
Standby Current  
(One Port - TTL  
Level Inputs)  
(5)  
I
CE"A" = VIL and CE"B" = VIH  
COM'L  
IND  
500  
650  
500  
mA  
620  
Active Port Outputs Disabled,  
___  
___  
(1)  
f=fMAX  
ISB3  
Full Standby Current  
(Both Ports - CMOS  
Level Inputs)  
Both Ports CE  
CE > VDDQ - 0.2V, VIN > VDDQ - 0.2V  
or VIN < 0.2V, f = 0  
L and  
COM'L  
IND  
12  
20  
20  
R
mA  
25  
___  
___  
(2)  
12  
SB4(6)  
Full Standby Current  
(One Port - CMOS  
Level Inputs)  
(5)  
I
CE"A" < 0.2V and CE"B" > VDDQ - 0.2V  
IN > VDDQ - 0.2V or VIN < 0.2V  
Active Port, Outputs Disabled, f = fMAX  
COM'L  
IND  
500  
650  
400  
400  
12  
500  
mA  
620  
V
___  
___  
(1)  
Izz  
Sleep Mode Current  
(Both Ports - TTL  
Level Inputs)  
ZZL = ZZR = VIH  
f=fMAX  
COM'L  
IND  
12  
20  
20  
(1)  
mA  
25  
___  
___  
12  
5678 tbl 09  
NOTES:  
1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tCYC, using "AC TEST CONDITIONS".  
2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.  
3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
4. VDD = 2.5V, TA = 25°C for Typ, and are not production tested. IDD DC(f=0) = 30mA (Typ).  
5. CEX = VIL means CE0X = VIL and CE1X = VIH  
CEX = VIH means CE0X = VIH or CE1X = VIL  
CEX < 0.2V means CE0X < 0.2V and CE1X > VDDQ - 0.2V  
CEX > VDDQ - 0.2V means CE0X > VDDQ - 0.2V or CE1X - 0.2V  
"X" represents "L" for left port or "R" for right port.  
6. ISB1, ISB2 and ISB4 will all reach full standby levels (ISB3) on the appropriate port(s) if ZZL and/or ZZR = VIH.  
6.42  
8
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
AC Test Conditions (VDDQ - 3.3V/2.5V)  
Input Pulse Levels (Address & Controls)  
Input Pulse Levels (I/Os)  
Input Rise/Fall Times  
GND to 3.0V/GND to 2.4V  
GND to 3.0V/GND to 2.4V  
2ns  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V/1.25V  
1.5V/1.25V  
Figure 1  
5678 tbl 10  
50  
50Ω  
,
DATAOUT  
1.5V/1.25  
10pF  
(Tester)  
5678 drw 03  
Figure 1. AC Output Test load.  
tCD  
(Typical, ns)  
5678 drw 04  
Capacitance (pF) from AC Test Load  
6.42  
9
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating Temperature Range  
(Read and Write Cycle Timing) (2,3) (VDD = 2.5V ± 100mV, TA = 0°C to +70°C)  
70T3539MS166  
Com'l Only  
70T3539MS133  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
20  
Max.  
Min.  
25  
Max.  
Unit  
ns  
t
CYC1  
CYC2  
CH1  
CL1  
CH2  
CL2  
SA  
HA  
SC  
HC  
SB  
HB  
SW  
HW  
SD  
HD  
SAD  
HAD  
SCN  
HCN  
SRPT  
HRPT  
OE  
Clock Cycle Time (Flow-Through)(1)  
Clock Cycle Time (Pipelined)(1)  
Clock High Time (Flow-Through)(1)  
Clock Low Time (Flow-Through)(1)  
Clock High Time (Pipelined)(2)  
Clock Low Time (Pipelined)(1)  
Address Setup Time  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
6
7.5  
10  
ns  
t
8
ns  
t
8
10  
ns  
t
2.4  
2.4  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
3
ns  
t
3
ns  
t
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
ns  
t
Address Hold Time  
ns  
t
Chip Enable Setup Time  
Chip Enable Hold Time  
Byte Enable Setup Time  
Byte Enable Hold Time  
R/W Setup Time  
ns  
t
ns  
t
ns  
t
ns  
t
ns  
t
R/W Hold Time  
ns  
t
Input Data Setup Time  
ns  
t
Input Data Hold Time  
ns  
t
ns  
ADS Setup Time  
t
ns  
ADS Hold Time  
t
ns  
CNTEN Setup Time  
t
ns  
CNTEN Hold Time  
t
ns  
REPEAT Setup Time  
t
0.5  
0.5  
ns  
REPEAT Hold Time  
____  
____  
t
Output Enable to Data Valid  
Output Enable to Output Low-Z  
Output Enable to Output High-Z  
Clock to Data Valid (Flow-Through)(1)  
Clock to Data Valid (Pipelined)(1)  
Data Output Hold After Clock High  
Clock High to Output High-Z  
Clock High to Output Low-Z  
Interrupt Flag Set Time  
4.4  
4.6  
ns  
(6)  
____  
____  
t
OLZ  
1
1
ns  
(6)  
OHZ  
t
1
3.6  
12  
1
4.2  
15  
ns  
____  
____  
t
CD1  
CD2  
DC  
ns  
____  
____  
t
3.6  
4.2  
ns  
____  
____  
t
1
1
1
1
ns  
(6)  
CKHZ  
t
3.6  
4.2  
ns  
(6)  
CKLZ  
____  
____  
t
1
1
ns  
____  
____  
t
INS  
INR  
COLS  
COLR  
ZZSC  
ZZRC  
7
7
7
7
ns  
____  
____  
____  
____  
____  
____  
t
Interrupt Flag Reset Time  
Collision Flag Set Time  
Collision Flag Reset Time  
Sleep Mode Set Cycles  
Sleep Mode Recovery Cycles  
ns  
t
3.6  
4.2  
ns  
t
3.6  
4.2  
ns  
____  
____  
t
2
3
2
3
cycles  
cycles  
____  
____  
t
Port-to-Port Delay  
Clock-to-Clock Offset  
Clock-to-Clock Offset for Collision Detection  
____  
____  
t
CO  
5
6
ns  
tOFS  
Please refer to Collision Detection Timing Table on Page 19  
5678 tbl 11  
NOTES:  
1. The Pipelined output parameters (tCYC2, tCD2) apply to either or both left and right ports when FT/PIPEX = VDD (2.5V). Flow-through parameters (tCYC1, tCD1)  
apply when FT/PIPE = Vss (0V) for that port.  
2. All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE), FT/PIPE and OPT. FT/PIPE and OPT should be  
treated as DC signals, i.e. steady state during operation.  
3. These values are valid for either level of VDDQ (3.3V/2.5V). See page 6 for details on selecting the desired operating voltage levels for each port.  
4. Guaranteed by design (not production tested).  
6.42  
10  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Read Cycle for Pipelined Operation  
(FT/PIPE'X' = VIH)(1,2)  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
0
t
SC  
tHC  
t
SC  
SB  
t
HC  
HB  
(3)  
CE  
1
n
t
SB  
tHB  
t
t
(5)  
BE  
R/W  
t
HW  
HA  
t
SW  
SA  
t
t
ADDRESS(4)  
DATAOUT  
An  
An + 1  
An + 2  
Qn  
An + 3  
(1 Latency)  
tDC  
tCD2  
Qn + 1  
Qn + 2(5)  
(1)  
tCKLZ  
t
OHZ  
tOLZ  
OE(1)  
,
tOE  
5678 drw 05  
Timing Waveform of Read Cycle for Flow-through Output  
(FT/PIPE"X" = VIL)(1,2,6)  
t
CYC1  
t
CH1  
t
CL1  
CLK  
CE  
0
t
SC  
tHC  
t
SC  
SB  
tHC  
(3)  
CE  
1
t
tHB  
tHB  
BEn  
tSB  
R/W  
t
SW  
SA  
t
HW  
t
t
HA  
ADDRESS(4)  
DATAOUT  
An  
An + 1  
An + 2  
An + 3  
tDC  
tCD1  
tCKHZ  
Qn  
Qn + 1  
Qn + 2(5)  
t
CKLZ  
tDC  
tOHZ  
t
OLZ  
OE(1)  
,
tOE  
5678 drw 06  
NOTES:  
1. OE is asynchronously controlled; all other inputs depicted in the above waveforms are synchronous to the rising clock edge.  
2. ADS = VIL, CNTEN and REPEAT = VIH.  
3. The output is disabled (High-Impedance state) by CE0 = VIH, CE1 = VIL, BEn = VIH following the next rising edge of the clock. Refer to  
Truth Table 1.  
4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers  
are for reference use only.  
5. If BEn was HIGH, then the appropriate Byte of DATAOUT for Qn + 2 would be disabled (High-Impedance state).  
6. "x" denotes Left or Right port. The diagram is with respect to that port.  
6.42  
11  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of a Multi-Device Pipelined Read(1,2)  
tCYC2  
t
CH2  
tCL2  
CLK  
ADDRESS(B1)  
CE0(B1)  
t
SA  
tHA  
A6  
A5  
A4  
A
3
A
2
A
0
A1  
tSC tHC  
t
SC  
tHC  
tCD2  
tCD2  
tCKHZ  
tCD2  
Q
0
Q
3
Q1  
DATAOUT(B1)  
ADDRESS(B2)  
tDC  
tCKLZ  
tDC  
tCKHZ  
tSA  
tHA  
A6  
A5  
A4  
A
3
A2  
A
0
A1  
tSC  
tHC  
CE0(B2)  
tSC  
tHC  
tCD2  
tCKHZ  
tCD2  
,
DATAOUT(B2)  
Q4  
Q2  
tCKLZ  
tCKLZ  
5678 drw 07  
Timing Waveform of a Multi-Device Flow-Through Read(1,2)  
t
CYC1  
tCH1  
tCL1  
CLK  
tSA  
tH  
A
A6  
A5  
A4  
A3  
A2  
A0  
A1  
ADDRESS(B1)  
t
SC  
t
HC  
CE0(B1)  
tSC  
tHC  
(1)  
tCD1  
tCD1  
tCKHZ  
tCD1  
tCD1  
D
0
D
3
D5  
D
1
DATAOUT(B1)  
ADDRESS(B2)  
(1)  
(1)  
(1)  
tDC  
tCKLZ  
tCKLZ  
t
DC  
tCKHZ  
tSA  
tHA  
A6  
A
5
A4  
A3  
A2  
A
0
A1  
tSC  
tHC  
CE0(B2)  
t
SC  
t
HC  
(1)  
(1)  
tCD1  
tCKHZ  
tCD1  
tCKHZ  
D4  
DATAOUT(B2)  
D2  
(1)  
(1)  
,
tCKLZ  
tCKLZ  
5678 drw 08  
NOTES:  
1. B1 Represents Device #1; B2 Represents Device #2. Each Device consists of one IDT70T3539M for this waveform,  
and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation.  
2. BEn, OE, and ADS = VIL; CE1(B1), CE1(B2), R/W, CNTEN, and REPEAT = VIH.  
6.42  
12  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Left Port Write to Pipelined Right Port Read(1,2,4)  
CLK"A"  
tSW  
tHW  
R/W"A  
"
t
SA  
MATCH  
SD HD  
VALID  
tHA  
NO  
MATCH  
ADDRESS"A"  
DATAIN"A"  
t
t
(3)  
CO  
t
CLK"B"  
t
CD2  
R/W"B"  
tSW  
tHW  
tSA  
t
HA  
NO  
ADDRESS"B"  
DATAOUT"B"  
MATCH  
MATCH  
VALID  
,
t
DC  
5678 drw 09  
NOTES:  
1. CE0, BEn, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
2. OE = VIL for Port "B", which is being read from. OE = VIH for Port "A", which is being written to.  
3. If tCO < minimum specified, then data from Port "B" read is not valid until following Port "B" clock cycle (ie, time from write to valid read on opposite port will be  
tCO + 2 tCYC2 + tCD2). If tCO > minimum, then data from Port "B" read is available on first Port "B" clock cycle (ie, time from write to valid read on opposite port  
will be tCO + tCYC2 + tCD2).  
4. All timing is the same for Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite of Port "A"  
Timing Waveform with Port-to-Port Flow-Through Read(1,2,4)  
CLK "A"  
t
SW  
tHW  
R/W "A"  
ADDRESS "A"  
DATAIN "A"  
CLK "B"  
t
SA  
MATCH  
SD HD  
VALID  
tHA  
NO  
MATCH  
t
t
(3)  
tCO  
t
CD1  
R/W "B"  
tHW  
tSW  
t
HA  
t
SA  
NO  
MATCH  
ADDRESS "B"  
DATAOUT "B"  
MATCH  
tCD1  
VALID  
VALID  
,
tDC  
t
DC  
5678 drw 10  
NOTES:  
1. CE0, BEn, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
2. OE = VIL for the Right Port, which is being read from. OE = VIH for the Left Port, which is being written to.  
3. If tCO < minimum specified, then data from Port "B" read is not valid until following Port "B" clock cycle (i.e., time from write to valid read on opposite port will be  
tCO + tCYC + tCD1). If tCO > minimum, then data from Port "B" read is available on first Port "B" clock cycle (i.e., time from write to valid read on opposite port will  
be tCO + tCD1).  
4. All timing is the same for both left and right ports. Port "A" may be either left or right port. Port "B" is the opposite of Port "A".  
6.42  
13  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Pipelined Read-to-Write-to-Read (OE = VIL)(2)  
t
CYC2  
tCH2  
tCL2  
CLK  
CE  
CE  
BE  
0
1
n
t
SC  
tHC  
t
SB  
tHB  
tSW tHW  
R/W  
tSW tHW  
(3)  
An + 3  
An + 4  
An  
An +1  
An + 2  
An + 2  
ADDRESS  
tSA  
tHA  
tSD  
tHD  
DATAIN  
Dn + 2  
tCD2  
t
CD2  
(1)  
t
CKHZ  
(4)  
tCKLZ  
Qn + 3  
Qn  
DATAOUT  
READ  
NOP  
WRITE  
READ  
,
5678 drw 11  
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CE0, BEn, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH. "NOP" is "No Operation".  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers  
are for reference use only.  
4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.  
Timing Waveform of Pipelined Read-to-Write-to-Read (OE Controlled)(2)  
t
CYC2  
tCH2  
tCL2  
CLK  
CE  
0
tSC  
tHC  
CE1  
tSB  
tHB  
BE  
n
tSW tHW  
R/W  
t
SW tHW  
(3)  
An + 4  
An  
An +1  
An + 2  
An + 3  
Dn + 3  
An + 5  
ADDRESS  
t
SA  
tHA  
t
SD  
tHD  
DATAIN  
Dn + 2  
t
CD2  
tCD2  
t
CKLZ  
(1)  
Qn  
Qn + 4  
DATAOUT  
(4)  
tOHZ  
OE  
READ  
WRITE  
READ  
,
NOTES:  
5678 drw 12  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CE0, BEn, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference  
use only.  
4. This timing does not meet requirements for fastest speed grade. This waveform indicates how logically it could be done if timing so allows.  
6.42  
14  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Flow-Through Read-to-Write-to-Read (OE = VIL)(2)  
t
CYC1  
t
CH1  
tCL1  
CLK  
CE  
0
1
t
SC  
tHC  
CE  
t
SB  
tHB  
BEn  
t
SW tHW  
R/  
W
t
SW tHW  
(3)  
An + 4  
An  
An + 3  
An +1  
An + 2  
An + 2  
ADDRESS  
t
SA  
tHA  
t
SD tHD  
DATAIN  
Dn + 2  
t
CD1  
t
CD1  
tCD1  
tCD1  
(1)  
Qn + 3  
Qn  
READ  
Qn + 1  
DATAOUT  
t
DC  
t
DC  
tCKLZ  
t
CKHZ  
NOP(5)  
,
READ  
WRITE  
5678 drw 13  
TimingWaveformof Flow-ThroughRead-to-Write-to-Read(OE Controlled)(2)  
t
CYC1  
t
CH1  
tCL1  
CLK  
CE  
0
1
t
SC  
tHC  
CE  
t
SB  
tHB  
BEn  
t
SW tHW  
t
SW tHW  
R/  
W
(3)  
An + 5  
An  
An + 4  
An +1  
An + 2  
An + 3  
Dn + 3  
ADDRESS  
DATAIN  
t
SA  
tHA  
t
SD tHD  
Dn + 2  
t
OE  
t
DC  
t
CD1  
t
CD1  
t
CD1  
(1)  
Qn + 4  
Qn  
DATAOUT  
t
CKLZ  
t
DC  
t
OHZ  
OE  
,
READ  
WRITE  
READ  
5678 drw 14  
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CE0, BEn, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for  
reference use only.  
4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.  
6.42  
15  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Pipelined Read with Address Counter Advance(1)  
t
CYC2  
tCH2  
tCL2  
CLK  
t
SA  
tHA  
An  
ADDRESS  
tSAD tHAD  
ADS  
tSAD tHAD  
CNTEN  
t
SCN tHCN  
tCD2  
,
Qn + 2(2)  
Qx - 1(2)  
Qx  
Qn + 3  
Qn + 1  
Qn  
DATAOUT  
tDC  
READ  
EXTERNAL  
ADDRESS  
READ  
WITH  
COUNTER  
COUNTER  
HOLD  
READ WITH COUNTER  
5678 drw 15  
TimingWaveformof Flow-ThroughReadwithAddressCounterAdvance(1)  
t
CYC1  
t
CH1  
tCL1  
CLK  
t
SA  
tHA  
An  
ADDRESS  
t
SAD tHAD  
t
SAD  
t
HAD  
ADS  
t
SCN  
t
HCN  
CNTEN  
t
CD1  
,
Qn + 3(2)  
Qx(2)  
Qn + 4  
Qn + 1  
Qn + 2  
Qn  
DATAOUT  
t
DC  
READ  
WITH  
COUNTER  
READ  
EXTERNAL  
ADDRESS  
READ WITH COUNTER  
COUNTER  
HOLD  
5678 drw 16  
NOTES:  
1. CE0, OE, BEn = VIL; CE1, R/W, and REPEAT = VIH.  
2. If there is no address change via ADS = VIL (loading a new address) or CNTEN = VIL (advancing the address), i.e. ADS = VIH and CNTEN = VIH, then  
the data output remains constant for subsequent clocks.  
6.42  
16  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with Address Counter Advance  
(Flow-through or Pipelined Inputs)(1)  
t
CYC2  
tCH2  
tCL2  
CLK  
t
SA  
tHA  
An  
ADDRESS  
INTERNAL(3)  
ADDRESS  
An(7)  
An + 1  
An + 3  
An + 4  
An + 2  
t
SAD tHAD  
ADS  
t
SCN  
t
HC  
N
CNTEN  
t
SD tHD  
Dn + 4  
Dn + 1  
Dn + 3  
Dn  
Dn + 1  
Dn + 2  
DATAIN  
WRITE  
EXTERNAL  
ADDRESS  
WRITE  
WITH COUNTER  
WRITE  
COUNTER HOLD  
WRITE WITH COUNTER  
,
5678 drw 17  
Timing Waveform of Counter Repeat(2,6)  
t
CYC2  
CLK  
t
SA tHA  
An  
ADDRESS  
INTERNAL(3)  
ADDRESS  
An+2  
An+1  
An+2  
An+2  
An  
An  
An+1  
An+2  
t
SAD tHAD  
ADS  
tSW tHW  
R/  
W
t
SCN tHCN  
CNTEN  
(4)  
REPEAT  
SRPT tHRPT  
t
,
t
SD  
t
HD  
D3  
D2  
D
0
D1  
DATAIN  
tCD1  
An  
An+1  
An+2  
An+2  
HOLD  
DATAOUT  
,
ADVANCE  
COUNTER  
WRITE TO  
An+2  
ADVANCE  
COUNTER  
WRITE TO  
An+1  
HOLD  
REPEAT  
READ LAST  
ADS  
ADDRESS  
An  
ADVANCE  
COUNTER  
READ  
WRITE TO  
ADS  
ADDRESS  
An  
ADVANCE  
COUNTER  
READ  
COUNTER  
WRITE TO  
An+2  
COUNTER  
READ  
An+1  
An+2  
An+2  
5678 drw 18  
NOTES:  
1. CE0, BEn, and R/W = VIL; CE1 and REPEAT = VIH.  
CE0, BEn = VIL; CE1 = VIH.  
2.  
3. The "Internal Address" is equal to the "External Address" when ADS = VIL and equals the counter output when ADS = VIH.  
4. No dead cycle exists during REPEAT operation. A READ or WRITE cycle may be coincidental with the counter REPEAT cycle: Address loaded by last valid  
ADS load will be accessed. For more information on REPEAT function refer to Truth Table II.  
5. CNTEN = VIL advances Internal Address from An’ to An +1. The transition shown indicates the time required for the counter to advance. The An +1Address is  
written to during this cycle.  
6. For Pipelined Mode user should add 1 cycle latency for outputs as per timing waveform of read cycle for pipelined operations.  
6.42  
17  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(2)  
CLK  
L
tSW  
tHW  
R/W  
L
t
SA  
7FFFF  
SC  
t
HA  
ADDRESSL(3)  
CEL(1)  
t
t
HC  
t
INS  
INT  
R
t
INR  
CLKR  
t
SC  
tHC  
CER(1)  
R/WR  
t
SW  
SA  
7FFFF  
t
HW  
t
HA  
t
ADDRESSR(3)  
5678 drw 19  
NOTES:  
1. CE0 = VIL and CE1 = VIH  
2. All timing is the same for Left and Right ports.  
3. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
Truth Table III — Interrupt Flag(1)  
Left Port  
Right Port  
(2)  
(2)  
(2)  
(2)  
CLK  
L
R/W  
L
CE  
L
A
18L-A0L  
CLK  
R
R/W  
R
CE  
R
A
18R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
INT  
X
L
INTR  
L
X
X
H
L
7FFFF  
X
X
H
L
X
L
L
X
X
L
R
X
X
L
X
7FFFF  
7FFFE  
X
H
X
X
R
X
L
L
7FFFE  
H
X
L
5678 tbl 12  
NOTES:  
1. INTL and INTR must be initialized at power-up by Resetting the flags.  
2. CE0 = VIL and CE1 = VIH. R/W and CE are synchronous with respect to the clock and need valid set-up and hold times.  
3. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
6.42  
18  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Collision Timing(1,2)  
CLK  
L
tOFS  
tSA tHA  
ADDRESS(4)  
L
A
3
A
2
A1  
A0  
tCOLR  
tCOLS  
COL  
L
(3)  
tOFS  
CLK  
R
tSA  
tHA  
(4)  
ADDRESS  
R
A3  
A
2
A0  
A1  
tCOLR  
tCOLS  
COL  
R
5678 drw 20  
NOTES:  
1. CE0 = VIL, CE1 = VIH.  
2. For reading port, OE is a Don't care on the Collision Detection Logic. Please refer to Truth Table IV for specific cases.  
3. Leading Port Output flag might output 3tCYC2 + tCOLS after Address match.  
4. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
Collision Detection Timing(3,4)  
tOFS (ns)  
Cycle Time  
NOTES:  
1. Region 1  
Region 1 (ns) (1)  
Region 2 (ns) (2)  
Both ports show collision after 2nd cycle for Addresses 0, 2, 4 etc.  
2. Region 2  
Leading port shows collision after 3rd cycle for addresses 0, 3, 6, etc.  
while trailing port shows collision after 2nd cycle for addresses 0, 2, 4 etc.  
3. All the production units are tested to midpoint of each region.  
5ns  
6ns  
0 - 2.8  
2.81 - 4.6  
0 - 3.8  
0 - 5.3  
3.81 - 5.6  
5.31 - 7.1  
4. These ranges are based on characterization of a typical device.  
7.5ns  
5678 tbl 13  
Truth Table IV — Collision Detection Flag  
Left Port  
Right Port  
(1)  
(1)  
(2)  
(1)  
(1)  
(2)  
CLK  
L
R/W  
L
CE  
L
A
18L-A0L  
CLK  
R
R/W  
R
CE  
R
A
18R-A0R  
Function  
COL  
L
COL  
H
R
Both ports reading. Not a valid collision.  
No flag output on either port.  
H
L
L
L
L
MATCH  
MATCH  
MATCH  
MATCH  
H
H
L
MATCH  
MATCH  
MATCH  
MATCH  
Left port reading, Right port writing.  
Valid collision, flag output on Left port.  
H
L
L
L
L
H
L
L
L
L
H
Right port reading, Left port writing.  
Valid collision, flag output on Right port.  
H
L
Both ports writing. Valid collision. Flag  
output on both ports.  
L
L
5678 tbl 14  
NOTES:  
1. CE0 = VIL and CE1 = VIH. R/W and CE are synchronous with respect to the clock and need valid set-up and hold times.  
2. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
6.42  
19  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform - Entering Sleep Mode (1,2)  
R/W  
(3)  
Timing Waveform - Exiting Sleep Mode (1,2)  
An  
An+1  
(5)  
R/W  
OE  
(5)  
Dn  
Dn+1  
DATAOUT  
(4)  
NOTES:  
1. CE1 = VIH.  
2. All timing is same for Left and Right ports.  
3. CE0 has to be deactivated (CE0 = VIH) three cycles prior to asserting ZZ (ZZx = VIH) and held for two cycles after asserting ZZ (ZZx = VIH).  
4. CE0 has to be deactivated (CE0 = VIH) one cycle prior to de-asserting ZZ (ZZx = VIL) and held for three cycles after de-asserting ZZ (ZZx = VIL).  
5. The device must be in Read Mode (R/W High) when exiting sleep mode. Outputs are active but data is not valid until the following cycle.  
6.42  
20  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
same startingaddress onbothports andone orbothports writing  
duringeachaccess(i.e.,imposesalongstringofcollisionson  
contiguousclockcycles),thealertflagwillbeassertedandcleared  
everyothercycle.PleaserefertotheCollisionDetectiontiming  
waveform on Page 19.  
FunctionalDescription  
The IDT70T3539M provides a true synchronous Dual-Port Static  
RAM interface.Registeredinputsprovideminimalset-upandholdtimes  
onaddress,data,andallcriticalcontrolinputs.Allinternalregistersare  
clocked on the rising edge of the clock signal, however, the self-timed  
internalwritepulsewidthisindependentofthecycletime.  
Collisiondetectiononthe IDT70T3539Mrepresents a significant  
advanceinfunctionalityovercurrentsyncmulti-ports,whichhaveno  
suchcapability. InadditiontothisfunctionalitytheIDT70T3539M  
sustainsthekeyfeaturesofbandwidthandflexibility. Thecollision  
detectionfunctionisveryusefulinthecaseofburstingdata,orastring  
ofaccessesmadetosequentialaddresses,inthatitindicatesa  
problemwithintheburst,givingtheusertheoptionofeitherrepeating  
theburstorcontinuingtowatchthealertflagtoseewhetherthe  
numberofcollisionsincreasesaboveanacceptablethresholdvalue.  
Offeringthisfunctiononchipalsoallowsuserstoreducetheirneedfor  
arbitrationcircuits,typicallydoneinCPLD’sorFPGAs.Thisreduces  
boardspaceanddesigncomplexity, andgives theusermoreflexibility  
indevelopingasolution.  
An asynchronous output enable is provided to ease asyn-  
chronousbusinterfacing.Counterenableinputsarealsoprovidedtostall  
the operation of the address counters for fast interleaved  
memoryapplications.  
AHIGHonCE0oraLOWonCE1foroneclockcyclewillpowerdown  
the internal circuitry to reduce static power consumption. Multiple chip  
enables allow easier banking of multiple IDT70T3539Ms for depth  
expansionconfigurations. Twocycles arerequiredwith CE0 LOWand  
CE1HIGHtore-activatetheoutputs.  
Interrupts  
If the user chooses the interrupt function, a memory location (mail  
boxormessagecenter)isassignedtoeachport. Theleftportinterrupt  
flag (INTL) is asserted when the right port writes to memory location  
7FFFE (HEX), where a write is defined as CER = R/WR = VIL per the  
Truth Table. The left port clears the interrupt through access of  
addresslocation7FFFEwhenCEL= VIL andR/WL=VIH.Likewise,the  
right port interrupt flag (INTR) is asserted when the left  
port writes to memory location 7FFFF (HEX) and to clear the interrupt  
flag (INTR), the right port must read the memory location 7FFFF. The  
message (36 bits) at 7FFFE or 7FFFF is user-defined since it is an  
addressableSRAMlocation.Iftheinterruptfunctionisnotused,address  
locations 7FFFE and 7FFFF are not used as mail boxes, but as part of  
the random access memory. Refer to Truth Table III for the interrupt  
operation.  
SleepMode  
TTheIDT70T3539Misequippedwithanoptionalsleeporlowpower  
modeonbothports.Thesleepmodepinonbothportsisasynchronous  
andactivehigh.Duringnormaloperation,theZZpinispulledlow.When  
ZZispulledhigh,theportwillentersleepmodewhereitwillmeetlowest  
possible power conditions. The sleep mode timing diagram shows the  
modes ofoperation:NormalOperation,NoRead/WriteAllowedandSleep  
Mode.  
Fornormaloperationallinputsmustmeetsetupandholdtimesprior  
tosleepand afterrecoveringfromsleep.Clocksmustalsomeetcyclehigh  
and low times during these periods. Three cycles prior to asserting ZZ  
(ZZx=VIH)andthreecyclesafterde-assertingZZ(ZZx=VIL),thedevice  
mustbedisabledviathechipenablepins.Ifawriteorreadoperationoccurs  
duringtheseperiods,thememoryarraymaybecorrupted.Validityofdata  
outfromtheRAMcannotbeguaranteedimmediatelyafterZZisasserted  
(priortobeinginsleep).Whenexitingsleepmode,thedevicemustbein  
Read mode (R/Wx = VIH)when chip enable is asserted, and the chip  
enablemustbevalidforonefullcyclebeforeareadwillresultintheoutput  
ofvaliddata.  
DuringsleepmodetheRAMautomaticallydeselectsitself.TheRAM  
disconnectsitsinternalclockbuffer.Theexternalclockmaycontinuetorun  
withoutimpactingtheRAMssleepcurrent(IZZ).Alloutputswillremainin  
high-Zstatewhileinsleepmode.Allinputsareallowedtotoggle.TheRAM  
will not be selected and will not perform any reads or writes.  
CollisionDetection  
Collision is defined as an overlap in access between the two ports  
resultinginthepotentialforeitherreadingorwritingincorrectdatatoa  
specificaddress. Forthe specificcases:(a)Bothports reading-no  
dataiscorrupted,lost,orincorrectlyoutput,sonocollisionflagisoutput  
on either port. (b) One port writing, the other port reading - the end  
resultofthe write willstillbe valid. However, the readingportmight  
capturedatathatisinastateoftransitionandhencethereadingports  
collisionflagis output.(c)Bothports writing-thereis ariskthatthetwo  
ports willinterferewitheachother,andthedatastoredinmemorywill  
notbe a validwrite fromeitherport(itmayessentiallybe a random  
combinationofthetwo). Therefore,thecollisionflagisoutputonboth  
ports. Please refer to Truth Table IV for all of the above cases.  
The alert flag (COLX) is asserted on the 2nd or 3rd rising clock  
edgeoftheaffectedportfollowingthecollision,andremainslowfor  
onecycle.PleaserefertoCollisionDetectionTimingTableonPage  
19.Duringthatnextcycle,theinternalarbitrationis engagedin  
resettingthealertflag(thisavoidsaspecificrequirementonthepartof  
theusertoresetthealertflag). Iftwocollisionsoccuronsubsequent  
clockcycles,thesecondcollisionmaynotgeneratetheappropriate  
alertflag.Athirdcollisionwillgeneratethealertflagasappropriate.In  
theeventthatauserinitiatesaburstaccessonbothportswiththe  
6.42  
21  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Depth andWidth Expansion  
The IDT70T3539M can also be used in applications requiring  
expandedwidth,asindicatedinFigure4.Throughcombiningthecontrol  
signals, the devices can be grouped as necessary to accommodate  
applicationsneeding72-bitsorwider.  
The IDT70T3539M features dual chip enables (refer to Truth  
Table I) in order to facilitate rapid and simple depth expansion with no  
requirements for external logic. Figure 4 illustrates how to control the  
various chip enables in order to expand two devices in depth.  
A
19  
IDT70T3539M  
Control Inputs  
IDT70T3539M  
Control Inputs  
CE  
0
1
CE  
0
1
CE  
CE  
V
DD  
V
DD  
CE  
1
0
IDT70T3539M CE  
CE  
1
0
IDT70T3539M  
Control Inputs  
CE  
BE,  
R/W,  
OE,  
CLK,  
Control Inputs  
ADS,  
REPEAT,  
CNTEN  
5678 drw 22  
Figure 4. Depth and Width Expansion with IDT70T3539M  
JTAG Functionality and Configuration  
TheIDT70T3539Miscomposedoftwoindependentmemoryarrays,  
andthus cannotbe treatedas a single JTAGdevice inthe scanchain.  
The two arrays (A and B) each have identical characteristics and  
commandsbutmustbetreatedasseparateentitiesinJTAGoperations.  
Please refer to Figure 5.  
RegisterSizes, andSystemInterface Parametertables. Specifically,  
commands for Array B must precede those for Array A in any JTAG  
operationssenttotheIDT70T3539M. PleasereferenceApplicationNote  
AN-411,"JTAGTestingofMultichipModules"forspecificinstructionson  
performingJTAGtestingontheIDT70T3539M. AN-411isavailableat  
www.idt.com.  
.
JTAGsignalingmustbeprovidedseriallytoeacharrayandutilizethe  
informationprovidedintheIdentificationRegisterDefinitions,Scan  
IDT70T3539M  
TDO  
TDI  
TDOA  
TDIB  
Array A  
Array B  
TCK  
TMS  
TRST  
5678drw 23  
Figure 5. JTAG Configuration for IDT70T3539M  
6.42  
22  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
JTAGTimingSpecifications  
t
JCYC  
t
JR  
t
JF  
t
JCL  
tJCH  
TCK  
Device Inputs(1)/  
TDI/TMS  
t
JDC  
tJS  
tJH  
Device Outputs(2)/  
TDO  
t
JRSR  
t
JCD  
TRST  
,
5678 drw 24  
t
JRST  
Figure 6. Standard JTAG Timing  
NOTES:  
1. Device inputs = All device inputs except TDI, TMS, and TRST.  
2. Device outputs = All device outputs except TDO.  
JTAG AC Electrical  
Characteristics(1,2,3,4)  
70T3539M  
Max.  
Symbol  
Parameter  
JTAG Clock Input Period  
JTAG Clock HIGH  
JTAG Clock Low  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
JTAG Reset  
Min.  
100  
40  
Units  
ns  
____  
____  
____  
t
JCYC  
JCH  
JCL  
JR  
JF  
JRST  
JRSR  
JCD  
JDC  
JS  
JH  
t
ns  
t
40  
ns  
(1)  
____  
t
3
ns  
(1)  
____  
t
3
ns  
____  
____  
t
50  
ns  
t
JTAG Reset Recovery  
JTAG Data Output  
JTAG Data Output Hold  
JTAG Setup  
50  
ns  
____  
t
25  
ns  
____  
t
0
ns  
____  
____  
t
15  
15  
ns  
t
JTAG Hold  
ns  
5678 tbl 15  
NOTES:  
1. Guaranteed by design.  
2. 30pF loading on external output signals.  
3. Refer to AC Electrical Test Conditions stated earlier in this document.  
4. JTAG operations occur at one speed (10MHz). The base device may run at  
any speed specified in this datasheet.  
6.42  
23  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Identification Register Definitions  
Value  
Value  
Array A  
Instruction Field Array B  
Instruction Field Array A  
Description  
Reserved for Version number  
Array B  
Revision Number (31:28)  
0x0  
Revision Number (63:60)  
IDT Device ID (59:44)  
0x0  
IDT Device ID (27:12)  
0x333  
0x33  
1
0x333  
0x33  
1
Defines IDT Part number  
IDT JEDEC ID (11:1)  
IDT JEDEC ID (43:33)  
Allows unique identification of device vendor as IDT  
Indicates the presence of an ID Register  
ID Register Indicator Bit (Bit 0)  
ID Register Indicator Bit (Bit 32)  
5678 tbl 16  
ScanRegisterSizes  
Bit Size  
Array A  
Bit Size  
Array B  
Bit Size  
70T3539M  
Register Name  
Instruction (IR)  
4
1
4
1
8
2
Bypass (BYR)  
Identification (IDR)  
Boundary Scan (BSR)  
32  
32  
64  
Note (3)  
Note (3)  
Note (3)  
5678 tbl 17  
SystemInterfaceParameters  
Instruction  
Code  
Description  
EXTEST  
00000000  
Forces contents of the boundary scan cells onto the device outputs(1).  
Places the boundary scan register (BSR) between TDI and TDO.  
BYPASS  
IDCODE  
11111111  
Places the bypass register (BYR) between TDI and TDO.  
00100010  
Loads the ID register (IDR) with the vendor ID code and places the  
register between TDI and TDO.  
01000100  
Places the bypass register (BYR) between TDI and TDO. Forces all  
device output drivers except INTx and COLx to a High-Z state.  
HIGHZ  
CLAMP  
Uses BYR. Forces contents of the boundary scan cells onto the device  
outputs. Places the bypass register (BYR) between TDI and TDO.  
00110011  
00010001  
SAMPLE/PRELOAD  
Places the boundary scan register (BSR) between TDI and TDO.  
SAMPLE allows data from device inputs(2) to be captured in the  
boundary scan cells and shifted serially through TDO. PRELOAD allows  
data to be input serially into the boundary scan cells via the TDI.  
RESERVED  
01010101, 01110111,  
10001000, 10011001,  
10101010, 10111011,  
11001100  
Several combinations are reserved. Do not use codes other than those  
identified above.  
PRIVATE  
01100110,11101110,  
11011101  
For internal use only.  
5678 tbl 18  
NOTES:  
1. Device outputs = All device outputs except TDO.  
2. Device inputs = All device inputs except TDI, TMS, and TRST.  
3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local  
IDT sales representative.  
6.42  
24  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
OrderingInformation  
XXXXX  
A
999  
A
A
IDT  
Device  
Type  
Power Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
BC  
256-pin BGA (BC-256)  
Commercial Only  
Commercial & Industrial  
166  
133  
Speed in Megahertz  
Standard Power  
S
18Mbit (512K x 36) 2.5V Synchronous Dual-Port RAM  
70T3539M  
5678 drw 25  
IDT Clock Solution for IDT70T3539M Dual-Port  
Dual-Port I/O Specitications  
Clock Specifications  
Input Duty  
IDT  
PLL  
Clock Device  
IDT  
Non-PLL  
Clock Device  
IDT Dual-Port  
Part Number  
Input  
Capacitance  
Maximum  
Frequency Tolerance  
Jitter  
Voltage  
3.3/2.5  
I/O  
Cycle  
Requirement  
5T9010  
5T905, 5T9050  
5T907, 5T9070  
70T3539M  
LVTTL  
15pF  
40%  
166  
75ps  
5T2010  
5678 tbl 19  
6.42  
25  
IDT70T3539M  
High-Speed 2.5V 512K x 36 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
DatasheetDocumentHistory:  
10/08/03:  
10/20/03:  
InitialDatasheet  
Page1 Added"IncludesJTAGfunctionality"tofeatures  
Page 25 Added IDT Clock Solution Table  
12/04/03:  
Page10 AddedtOFS symbolandparametertoACElectricalCharacteristicstable  
Page19 UpdatedCollisionTimingwaveform  
Page19 AddedCollisionDetectionTimingtableandfootnotes  
Page22 AddedJTAGConfigurationandJTAGFunctionalitydescriptions  
Page 8 Changed ISB3 and IZZ in the DC Electrical Characteristics table  
Page 20 & 21 Clarified Sleep Mode Text and Waveform  
02/02/04:  
04/08/04:  
Page22 AddedanApplicationNote,AN-411, referencetotheJTAGFunctionalityandConfigurationtext  
Page 4 Addedanothersentence tofootnote 4torecommendthatboundaryscannotbe operatedduringsleepmode  
Removed"Preliminary"status  
05/28/04:  
07/25/08:  
Page 8 Correctedatypointhe footnotes ofthe DCChars table  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
Š
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
26  

相关型号:

IDT70T3539MS166BC

HIGH-SPEED 2.5V 512K x 36 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT

IDT70T3539MS166BC8

Dual-Port SRAM, 512KX36, 12ns, CMOS, PBGA256, BGA-256
IDT

IDT70T3539MS166BCG

Dual-Port SRAM, 512KX36, 12ns, CMOS, PBGA256, BGA-256
IDT

IDT70T3539MS166BCI

HIGH-SPEED 2.5V 512K x 36 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT

IDT70T3539MS999BC

HIGH-SPEED 2.5V 512K x 36 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT

IDT70T3539MS999BCI

HIGH-SPEED 2.5V 512K x 36 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT

IDT70T3589S

HIGH-SPEED SYNCHRONOUS DUAL-PORT STATIC RAM
IDT

IDT70T3589S-133BC

HIGH-SPEED 2.5V 256/128/64K x 36 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT

IDT70T3589S-133BCI

HIGH-SPEED 2.5V 256/128/64K x 36 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT

IDT70T3589S-133BF

HIGH-SPEED 2.5V 256/128/64K x 36 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT

IDT70T3589S-133BFI

HIGH-SPEED 2.5V 256/128/64K x 36 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT

IDT70T3589S-133DR

HIGH-SPEED 2.5V 256/128/64K x 36 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT