IDT70T3719_18 [IDT]

HIGH-SPEED SYNCHRONOUS DUAL-PORT STATIC RAM;
IDT70T3719_18
型号: IDT70T3719_18
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH-SPEED SYNCHRONOUS DUAL-PORT STATIC RAM

文件: 总25页 (文件大小:345K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 2.5V  
256/128K x 72  
SYNCHRONOUS  
IDT70T3719/99M  
DUAL-PORTSTATICRAM  
WITH 3.3V OR 2.5V INTERFACE  
LEAD FINISH (SnPb) ARE IN EOL PROCESS - LAST TIME BUY EXPIRES JUNE 15, 2018  
Features:  
True Dual-Port memory cells which allow simultaneous  
– 1.7ns setup to clock and 0.5ns hold on all control, data, and  
address inputs @ 166MHz  
– Data input, address, byte enable and control registers  
Separate byte controls for multiplexed bus and bus  
matching compatibility  
Dual Cycle Deselect (DCD) for Pipelined Output Mode  
2.5V ( 100mV) power supply for core  
LVTTL compatible, selectable 3.3V ( 150mV) or 2.5V  
( 100mV) power supply for I/Os and control signals on  
each port  
Industrial temperature range (-40°C to +85°C) is  
available at 133MHz  
Available in a 324-pin Green Ball Grid Array (BGA)  
Includes JTAG Functionality  
Green parts available, see ordering information  
access of the same memory location  
High-speed data access  
– Commercial: 3.6ns (166MHz)/  
4.2ns (133MHz)(max.)  
– Industrial: 4.2ns (133MHz) (max.)  
Selectable Pipelined or Flow-Through output mode  
Counter enable and repeat features  
Dual chip enables allow for depth expansion without  
additional logic  
Interrupt and Collision Detection Flags  
Full synchronous operation on both ports  
– 6ns cycle time, 166MHz operation (23.9Gbps bandwidth)  
– Fast 3.6ns clock to data out  
– Self-timedwriteallowsfastcycletime  
Functional Block Diagram  
BE7L  
BE7R  
BE0L  
BE0R  
FT/PIPE  
L
0a 1a  
a
0h 1h  
h
1h 0h  
h
1a 0a  
a
FT/PIPER  
1/0  
1/0  
R/WL  
R/WR  
CE0L  
CE0R  
1
1
CE1R  
CE1L  
0
0
B
W
0
B
W
7
B
W
7
B
W
0
1/0  
1/0  
L
L
R
R
OE  
R
OE  
L
D
D
D
D
D
D
D
D
OUT0-8_L  
OUT9-17_L  
D
D
D
D
D
D
D
D
OUT0-8_R  
OUT9-17_R  
OUT18-26_L  
OUT27-35_L  
OUT36-44_L  
OUT45-53_L  
OUT54-62_L  
OUT63-72_L  
OUT18-26_R  
OUT27-35_R  
OUT36-44_R  
OUT45-53_R  
OUT54-62_R  
OUT63-72_R  
,
1h 0h  
1a 0a  
0a 1a  
0h 1h  
0/1  
0/1  
FT/PIPER  
FT/PIPE  
L
a
h
h
a
256/128K x 72  
MEMORY  
ARRAY  
Byte 0  
I/O0L - I/O71L  
Byte 7  
Byte 7  
Byte 0  
I/O0R - I/O71R  
D
IN_L  
D
IN_R  
,
CLK  
L
CLKR  
(1)  
17L  
(1)  
17R  
A
A
A
A
0L  
REPEAT  
ADS  
Counter/  
Address  
Reg.  
Counter/  
Address  
Reg.  
R
0
ADDR_R  
ADDR_L  
L
REPEAT  
ADS  
CNTEN  
R
R
L
R
CNTEN  
L
INTERRUPT  
CE  
0
L
CE0R  
TDI  
TDO  
TCK  
TMS  
T RST  
COLLISION  
DETECTION  
LOGIC  
CE  
1
L
CE1R  
JTAG  
R/W  
L
R/W  
R
L
COL  
INT  
R
COL  
INT  
L
R
ZZ  
CONTROL  
LOGIC  
(2)  
(2)  
ZZR  
ZZ  
L
5687 drw 01  
NOTES:  
1. Address A17 is a NC for the IDT70T3799.  
2. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when asserted. All static inputs, i.e., PL/FTx and OPTx  
FEBRUARY 2018  
and the sleep mode pins themselves (ZZx) are not affected during sleep mode.  
1
DSC 5687/4  
©2018 Integrated Device Technology, Inc.  
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Description:  
TheIDT70T3719/99Misahigh-speed256K/128Kx72bitsynchro- tionalorbidirectionaldataflowinbursts.Anautomaticpowerdownfeature,  
nousDual-PortRAM.ThememoryarrayutilizesDual-Portmemorycells controlled by CE0 and CE1, permits the on-chip circuitry of each port to  
toallowsimultaneousaccessofanyaddressfrombothports.Registerson enter a very low standby power mode.  
control,data,andaddressinputsprovideminimalsetupandholdtimes.  
The 70T3719/99M can support an operating voltage of either 3.3V  
The timing latitude provided by this approach allows systems to be or 2.5V on one or both ports, controllable by the OPT pins. The power  
designed with very short cycle times. With an input data register, the supply for the core of the device (VDD) is at 2.5V.  
IDT70T3719/99Mhasbeenoptimizedforapplicationshavingunidirec-  
6.42  
2
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configuration (2,3,4,5)  
70T3719/99M  
BBG-324(6)  
324-Pin BGA  
Top View(7)  
06/27/05  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
A
B
I/O39R  
I/O38R  
I/O37R  
I/O36R  
A
15L  
A
A
12L  
A
8L  
CE1L  
A
6L  
A
1L  
0L  
3L  
I/O32R  
I/O33R  
I/O34R  
I/O35R  
A
B
COL  
L
BE7L  
BE6L  
BE0L  
BE4L  
BE2L  
BE5L  
CE0L  
BE3L  
ADSL  
I/O39L  
I/O38L  
I/O41R  
I/O37L  
I/O42R  
I/O36L  
I/O43R  
TDO  
A
17L(1)  
13L  
A
10L  
REPEAT  
L
A
A
I/O32L  
I/O31R  
I/O33L  
I/O30R  
I/O34L  
I/O29R  
I/O35L  
I/O28R  
BE1L  
OEL  
C
D
E
F
I/O40R  
I/O40L  
I/O47R  
I/O47L  
I/O48R  
I/O48L  
I/O55R  
I/O55L  
I/O56R  
I/O56L  
I/O63R  
I/O63L  
I/O64R  
I/O64L  
I/O71R  
A
16L  
A
11L  
14L  
A
7L  
9L  
R/W  
L
CNTEN  
L
A
A
4L  
2L  
C
D
E
F
INTL  
I/O41L  
I/O46R  
I/O46L  
I/O49R  
I/O49L  
I/O54R  
I/O54L  
I/O57R  
I/O57L  
I/O62R  
I/O62L  
I/O65R  
I/O65L  
I/O42L  
I/O45R  
I/O45L  
I/O50R  
I/O50L  
I/O53R  
I/O53L  
I/O58R  
I/O58L  
I/O61R  
I/O61L  
I/O66R  
I/O66L  
I/O43L  
I/O44R  
I/O44L  
I/O51R  
I/O51L  
I/O52R  
I/O52L  
I/O59R  
I/O59L  
I/O60R  
I/O60L  
I/O67R  
I/O67L  
TDI  
NC  
A
A
CLK  
L
A
5L  
ZZ  
L
I/O31L  
I/O24R  
I/O24L  
I/O23R  
I/O23L  
I/O16R  
I/O16L  
I/O15R  
I/O15L  
I/O8R  
I/O8L  
I/O30L  
I/O25R  
I/O25L  
I/O22R  
I/O22L  
I/O17R  
I/O17L  
I/O14R  
I/O14L  
I/O9R  
I/O9L  
I/O29L  
I/O26R  
I/O26L  
I/O21R  
I/O21L  
I/O18R  
I/O18L  
I/O13R  
I/O13L  
I/O10R  
I/O10L  
I/O5R  
I/O28L  
I/O27R  
I/O27L  
I/O20R  
I/O20L  
I/O19R  
I/O19L  
I/O12R  
I/O12L  
I/O11R  
I/O11L  
I/O4R  
PL/FT  
L
V
V
DD  
DD  
V
V
DDQL  
DDQL  
V
DDQR  
V
DDQR  
V
DDQL  
V
DDQL  
V
DDQR  
V
DDQR  
OPT  
L
V
DD  
V
ss  
ss  
ss  
ss  
ss  
ss  
ss  
V
V
V
V
V
V
V
V
V
ss  
ss  
ss  
ss  
ss  
ss  
ss  
ss  
DD  
V
ss  
ss  
ss  
ss  
ss  
ss  
ss  
ss  
V
DD  
ss  
ss  
ss  
ss  
ss  
ss  
DD  
V
DD  
ss  
ss  
ss  
ss  
ss  
ss  
V
DD  
V
DD  
G
H
J
VDDQR  
VDDQL  
VDDQR  
VDDQR  
VDDQL  
VDDQL  
VDDQR  
V
DDQR  
DDQL  
V
ss  
ss  
ss  
ss  
ss  
ss  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDQR  
DDQL  
VDDQR  
VDDQL  
VDDQR  
VDDQR  
VDDQL  
VDDQL  
VDDQR  
G
H
J
V
V
V
V
V
V
V
V
V
ss  
ss  
ss  
DD  
V
V
V
V
V
ss  
ss  
ss  
K
L
V
V
V
V
V
K
L
M
N
P
R
T
V
DDQL  
DDQR  
M
N
P
R
T
V
DDQR  
V
DDQL  
V
DDQL  
V
DDQR  
V
ZZR  
TMS  
V
DD  
12R  
13R  
14R  
V
DD  
9R  
7R  
V
DDQL  
V
DDQL  
V
DD  
6R  
V
DD  
2R  
4R  
OPT  
R
A
17R(1)  
A
A
A
A
A
A
A
A
1R  
0R  
3R  
5R  
I/O7R  
I/O7L  
I/O6R  
I/O6L  
COL  
R
BE4R  
BE7R  
BE2R  
CE0R  
BE3R  
BE6R  
OER  
PL/FT  
R
A
16R  
A
A
A
A
CE1R  
A
I/O5L  
I/O4L  
ADS  
R
U
V
I/O70R  
I/O69R  
I/O68R  
TCK  
A
10R  
R/W  
R
REPEAT  
R
I/O0R  
I/O1R  
I/O2R  
I/O3R  
I/O3L  
U
V
INT  
R
BE1R  
I/O71L  
1
I/O70L  
2
I/O69L  
3
I/O68L  
4
NC  
15R  
A
11R  
A
8R  
CLK  
12  
R
CNTEN  
R
I/O0L  
15  
I/O1L  
16  
I/O2L  
17  
TRST  
BE5R  
BE0R  
5
6
7
8
9
10  
11  
13  
14  
18  
5687 tbl 01  
NOTES:  
1. Pin is a NC for IDT70T3799.  
2. All VDD pins must be connected to 2.5V power supply.  
3. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V), and 2.5V if OPT pin for that port is  
set to VSS (0V).  
4. All VSS pins must be connected to ground supply.  
5. Package body is approximately 19mm x 19mm x 1.76mm, with 1.0mm ball-pitch.  
6. This package code is used to reference the package diagram.  
7. This text does not indicate orientation of the actual part-marking.  
6.42  
3
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Names  
Left Port  
Right Port  
CE0R CE1R  
R/W  
OE  
Names  
Chip Enables (Input)(6)  
CE0L  
R/W  
OE  
,
CE1L  
,
L
R
Read/Write Enable (Input)  
Output Enable (Input)  
L
R
(5)  
(5)  
A
0L - A17L  
A
0R - A17R  
I/O0R - I/O71R  
CLK  
PL/FT  
ADS  
CNTEN  
REPEAT  
BE0R - BE7R  
Address (Input)  
I/O0L - I/O71L  
CLK  
PL/FT  
ADS  
CNTEN  
REPEAT  
BE0L - BE7L  
Data Input/Output  
L
R
Clock (Input)  
L
R
Pipeline/Flow-Through (Input)  
Address Strobe Enable (Input)  
Counter Enable (Input)  
Counter Repeat(3)  
L
R
L
R
L
R
Byte Enables (9-bit bytes) (Input)(6)  
Power (I/O Bus) (3.3V or 2.5V)(1) (Input)  
Option for selecting VDDQX(1,2) (Input)  
Sleep Mode pin(4) (Input)  
Power (2.5V)(1) (Input)  
V
DDQL  
L
V
DDQR  
R
OPT  
ZZ  
OPT  
ZZ  
L
R
V
V
DD  
SS  
NOTES:  
1. VDD, OPTX, and VDDQX must be set to appropriate operating levels prior to  
applying inputs on the I/Os and controls for that port.  
2. OPTX selects the operating voltage levels for the I/Os and controls on that port.  
If OPTX is set to VDD (2.5V), then that port's I/Os and controls will operate at 3.3V  
levels and VDDQX must be supplied at 3.3V. If OPTX is set to VSS (0V), then that  
port's I/Os and address controls will operate at 2.5V levels and VDDQX must be  
supplied at 2.5V. The OPT pins are independent of one another—both ports can  
operate at 3.3V levels, both can operate at 2.5V levels, or either can operate  
at 3.3V with the other at 2.5V.  
Ground (0V) (Input)  
TDI  
TDO  
TCK  
Test Data Input  
Test Data Output  
Test Logic Clock (10MHz) (Input)  
Test Mode Select (Input)  
Reset (Initialize TAP Controller) (Input)  
Interrupt Flag (Output)  
TMS  
TRST  
3. When REPEATX is asserted, the counter will reset to the last valid address loaded  
via ADSX.  
INT  
R
INT  
L
4. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when  
asserted. All static inputs, i.e., PL/FTx and OPTx and the sleep mode pins  
themselves (ZZx) are not affected during sleep mode. It is recommended that  
boundry scan not be operated during sleep mode.  
COL  
R
Collision Alert (Output)  
COL  
L
5687 tbl 02  
5. Address A17x is a NC for the IDT70T3799M.  
6. Chip Enables and Byte Enables are double buffered when PL/FT = VIH, i.e., the  
signals take two cycles to deselect.  
6.42  
4
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
(1,2,3,4,5)  
Truth Table I—Read/Write and Enable Control  
CLK  
!
!
!
!
!
!
!
!
!
!
!
X
CE  
1
Byte Enables  
All BE = X  
All BE = X  
All BE = H  
R/W  
ZZ  
L
L
L
L
L
L
L
L
L
I/O Operation(6)  
MODE  
OE  
X
X
X
X
X
X
X
L
CE  
H
X
L
0
X
X
All Bytes= High-Z  
All Bytes = High-Z  
All Bytes = High-Z  
Deselected: Power Down  
Deselected: Power Down  
All Bytes Deselected  
L
X
H
H
H
H
H
H
H
H
H
X
X
L
L
Byten = DIN, All other Bytes = High-Z Write to Byte X Only  
BEn = L, All other BE = H  
L
L
Byte4-7 = DIN, Byte0-3 = High-Z  
Byte4-7 = High-Z, Byte0-3 = DIN  
Byte0-7 = DIN  
Write to Lower Bytes Only  
Write to Upper Bytes Only  
Write to All Bytes  
BE4-7 = L, BE0-3 = H  
BE4-7 = H, BE0-3 = L  
BE0-7 = L  
L
L
L
L
L
H
H
H
H
X
Byten = DOUT, All other Bytes = High-Z Read Byte X Only  
BEn = L, All other BE = H  
L
L
Byte4-7 = DOUT, Byte0-3 = High-Z  
Byte4-7 = High-Z, Byte0-3 = DOUT  
All Bytes = DOUT  
Read Lower Bytes Only  
Read Upper Bytes Only  
Read All Bytes  
BE4-7 = L, BE0-3 = H  
BE4-7 = H, BE0-3 = L  
All BE = L  
L
L
L
L
L
L
H
X
X
X
All BE = X  
L
All Bytes = High-Z  
Outputs Disabled  
Sleep Mode  
X
X
All BE = X  
X
H
All Bytes = High-Z  
5687 tbl 03  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. ADS, CNTEN, REPEAT = X.  
3. OE and ZZ are asynchronous input signals.  
4. It is possible to read or write any combination of bytes during a given access. A few representative samples have been illustrated here.  
5. For the examples shown here, BEn may correspond to any of the eight byte enable signals.  
(1,2)  
Truth Table II—Address Counter Control  
Previous Internal  
Internal Address  
I/O(3)  
I/O(n) External Address Used  
I/O(n+1) Counter Enabled-Internal Address generation  
I/O(n+1) Enabled Address Blocked-Counter disabled (An + 1 reused)  
I/O(n) Counter Set to last valid ADS load  
ADS(4)  
CNTEN REPEAT(4,6)  
MODE  
Address Address  
Used  
An  
CLK  
!
An  
X
X
An  
L
X
H
H
H
L
D
An + 1  
An + 1  
An  
H
H
X
L(5)  
H
D
D
!
X
An + 1  
X
!
X
X
D
!
5687 tbl 04  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. Read and write operations are controlled by the appropriate setting of R/W, CE0, CE1, BEn and OE.  
3. Outputs configured in flow-through output mode: if outputs are in pipelined mode the data out will be delayed by one cycle.  
4. ADS and REPEAT are independent of all other memory control signals including CE0, CE1 and BEn.  
5. The address counter advances if CNTEN = VIL on the rising edge of CLK, regardless of all other memory control signals including CE0, CE1, BEn.  
6. When REPEAT is asserted, the counter will reset to the last valid address loaded via ADS. This value is not set at power-up: a known location should be loaded  
via ADS during initialization if desired. Any subsequent ADS access during operations will update the REPEAT address location.  
6.42  
5
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Recommended Operating  
Temperature and Supply Voltage  
Ambient  
(1)  
Grade  
Commercial  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
V
+
+
DD  
2.5V  
2.5V  
100mV  
100mV  
Industrial  
0V  
5687 tbl 05  
NOTES:  
1. This is the parameter TA. This is the "instant on" case temperature.  
Recommended DC Operating  
Conditions with VDDQ at 2.5V  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
2.4  
0
Typ.  
2.5  
2.5  
0
Max.  
Unit  
V
V
DD  
DDQ  
SS  
2.6  
2.6  
0
V
V
V
V
Input High Volltage  
(Address, Control &  
Data I/O Inputs)(3)  
____  
V
DDQ + 100mV(2)  
1.7  
1.7  
V
V
V
IH  
IH  
Input High Voltage _  
JTAG  
____  
V
V
DD + 100mV(2)  
Input High Voltage -  
ZZ, OPT, PIPE/FT  
____  
____  
____  
VIH  
VIL  
VIL  
V
DD - 0.2V  
-0.3(1)  
V
DD + 100mV(2)  
V
V
Input Low Voltage  
0.7  
0.2  
Input Low Voltage -  
ZZ, OPT, PIPE/FT  
-0.3(1)  
V
5687 tbl 06a  
NOTES:  
1. VIL (min.) = -1.0V for pulse width less than tCYC/2 or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tCYC/2 or 5ns, whichever is less.  
3. To select operation at 2.5V levels on the I/Os and controls of a given port, the OPT  
pinforthatportmustbesettoVss(0V), andVDDQX forthatportmustbesuppliedasindicated  
above.  
Recommended DC Operating  
Conditions with VDDQ at 3.3V  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
3.15  
0
Typ.  
2.5  
3.3  
0
Max.  
2.6  
3.45  
0
Unit  
V
VDD  
VDDQ  
VSS  
V
V
Input High Voltage  
(Address, Control  
&Data I/O Inputs)(3)  
VDDQ + 150mV(2)  
VDD + 100mV(2)  
V
V
____  
2.0  
1.7  
VIH  
VIH  
_
Input High Voltage  
JTAG  
____  
Input High Voltage -  
ZZ, OPT, PIPE/FT  
____  
____  
____  
VIH  
VIL  
VIL  
VDD - 0.2V  
-0.3(1)  
VDD + 100mV(2)  
V
V
V
Input Low Voltage  
0.8  
0.2  
Input Low Voltage -  
ZZ, OPT, PIPE/FT  
-0.3(1)  
5687 tbl 06b  
NOTES:  
1. VIL (min.) = -1.0V for pulse width less than tCYC/2, or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tCYC/2 or 5ns, whichever is less.  
3. To select operation at 3.3V levels on the I/Os and controls of a given port, the OPT pin  
for that port must be set to VDD (2.5V), and VDDQX for that port must be supplied as indicated  
above.  
6.42  
6
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Absolute Maximum Ratings (1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
V
V
TERM  
V
DD Terminal Voltage  
with Respect to GND  
-0.5 to 3.6  
(VDD  
)
(2)  
V
(VDDQ  
TERM  
V
DDQ Terminal Voltage  
with Respect to GND  
-0.3 to VDDQ + 0.3  
-0.3 to VDDQ + 0.3  
V
)
(2)  
VTERM  
(INPUTS and I/O's)  
Input and I/O Terminal  
Voltage with Respect to GND  
V
(3)  
T
BIAS  
STG  
JN  
Temperature Under Bias  
Storage Temperature  
Junction Temperature  
-55 to +125  
-65 to +150  
+150  
oC  
oC  
T
T
oC  
I
OUT(For VDDQ = 3.3V) DC Output Current  
OUT(For VDDQ = 2.5V) DC Output Current  
NOTES:  
50  
mA  
I
40  
mA  
5687 tbl 07  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation of the  
device at these or any other conditions above those indicated in the operational sections  
of this specification is not implied. Exposure to absolute maximum rating conditions for  
extended periods may affect reliability.  
2. This is a steady-state DC parameter that applies after the power supply has reached its  
nominal operating value. Power sequencing is not necessary; however, the voltage on  
any Input or I/O pin cannot exceed VDDQ during power supply ramp up.  
3. Ambient Temperature under DC Bias. No AC Conditions. Chip Deselected.  
Capacitance (1)  
(TA = +25°C, F = 1.0MHZ)  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2)  
IN = 0V  
OUT = 0V  
Max. Unit  
CIN  
V
15  
pF  
(2)  
OUT  
C
V
10.5  
pF  
5687 tbl 08  
NOTES:  
1. These parameters are determined by device characterization, but are not  
production tested.  
2. COUT also references CI/O.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 2.5V ± 100mV)  
70T3719/99M  
Symbol  
|ILI  
|ILI  
|ILO  
Parameter  
Test Conditions  
DDQ = Max., VIN = 0V to VDDQ  
DD = Max. IN = 0V to VDD  
Min.  
Max.  
10  
Unit  
µA  
µA  
µA  
V
___  
___  
___  
___  
|
Input Leakage Current(1)  
V
V
|
JTAG & ZZ Input Leakage Current(1,2)  
Output Leakage Current(1,3)  
,
V
30  
|
10  
CE  
OL = +4mA, VDDQ = Min.  
OH = -4mA, VDDQ = Min.  
OL = +2mA, VDDQ = Min.  
OH = -2mA, VDDQ = Min.  
0 = VIH or CE1 = VIL, VOUT = 0V to VDDQ  
V
V
V
V
OL (3.3V) Output Low Voltage(1)  
OH (3.3V) Output High Voltage(1)  
OL (2.5V) Output Low Voltage(1)  
OH (2.5V) Output High Voltage(1)  
I
0.4  
___  
I
2.4  
V
___  
I
0.4  
V
___  
I
2.0  
V
5687 tbl 09  
NOTES:  
1. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to p.5 for details.  
2. Applicable only for TMS, TDI and TRST inputs.  
3. Outputs tested in tri-state mode.  
6.42  
7
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
(3)  
Temperature and Supply Voltage Range  
(VDD = 2.5V ± 100mV)  
70T3719/99M  
S166  
Com'l  
70T3719/99M  
S133  
Com'l  
Only  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(4)  
Max.  
Typ.(4)  
520  
520  
280  
280  
400  
400  
12  
Max. Unit  
IDD  
Dynamic Operating  
Current (Both  
Ports Active)  
CEL and CER= VIL,  
Outputs Disabled,  
f = fMAX  
S
S
S
S
S
S
S
S
S
S
S
S
640  
900  
740  
900  
380  
470  
500  
620  
20  
mA  
mA  
mA  
mA  
mA  
___  
___  
(1)  
IND  
I
SB1(6)  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
CE  
f = fMAX  
L
= CE  
(1)  
R
= VIH  
COM'L  
IND  
350  
460  
___  
___  
SB2(6)  
Standby Current  
(One Port - TTL  
Level Inputs)  
(5)  
I
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
COM'L  
IND  
500  
650  
___  
___  
(1)  
f=fMAX  
ISB3  
Full Standby Current  
(Both Ports - CMOS  
Level Inputs)  
Both Ports CE  
R
L and  
> VDDQ - 0.2V, VIN > VDDQ - 0.2V  
or VIN < 0.2V, f = 0(2)  
COM'L  
IND  
12  
20  
CE  
___  
___  
12  
25  
SB4(6)  
Full Standby Current  
(One Port - CMOS  
Level Inputs)  
CE"A" < 0.2V and CE"B" > VDDQ - 0.2V(5)  
IN > VDDQ - 0.2V or VIN < 0.2V  
Active Port, Outputs Disabled, f = fMAX  
I
COM'L  
IND  
500  
650  
400  
400  
12  
500  
620  
20  
V
___  
___  
(1)  
Izz  
Sleep Mode Current  
(Both Ports - TTL  
Level Inputs)  
ZZL = ZZR = VIH  
COM'L  
IND  
12  
20  
(1)  
f=fMAX  
mA  
___  
___  
12  
25  
5687 tbl 10  
NOTES:  
1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency clock cycle of 1/tCYC, using "AC TEST CONDITIONS".  
2. f = 0 means no address, clock, or control lines change. Applies only to input at CMOS level standby.  
3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
4. VDD = 2.5V, TA = 25°C for Typ, and are not production tested. IDD DC(f=0) = 30mA (Typ).  
5. CEX = VIL means CE0X = VIL and CE1X = VIH  
CEX = VIH means CE0X = VIH or CE1X = VIL  
CEX < 0.2V means CE0X < 0.2V and CE1X > VDD - 0.2V  
CEX > VDD - 0.2V means CE0X > VDD - 0.2V or CE1X - 0.2V  
"X" represents "L" for left port or "R" for right port.  
6. ISB1, ISB2 and ISB4 will all reach full standby levels (ISB3) on the appropriate port(s) if ZZL and/or ZZR = VIH.  
6.42  
8
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
AC Test Conditions (VDDQ - 3.3V/2.5V)  
Input Pulse Levels (Address & Controls)  
Input Pulse Levels (I/Os)  
Input Rise/Fall Times  
GND to 3.0V/GND to 2.4V  
GND to 3.0V/GND to 2.4V  
2ns  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V/1.25V  
1.5V/1.25V  
Figure 1  
5687 tbl 11  
50  
50Ω  
,
DATAOUT  
1.5V/1.25  
10pF  
(Tester)  
5687 drw 03  
Figure 1. AC Output Test load.  
tCD  
(Typical, ns)  
5687 drw 04  
Capacitance (pF) from AC Test Load  
6.42  
9
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the Operating Temperature Range  
(2,3)  
(Read and Write Cycle Timing)  
(VDD = 2.5V ± 100mV, TA = 0°C to +70°C)  
70T3719/99M  
S166  
Com'l  
70T3719/99M  
S133  
Com'l  
Only  
& Ind  
Symbol  
Parameter  
Min.  
20  
Max.  
Min.  
25  
Max.  
Unit  
ns  
t
CYC1  
CYC2  
CH1  
CL1  
CH2  
CL2  
SA  
HA  
SC  
HC  
SB  
HB  
SW  
HW  
SD  
HD  
SAD  
HAD  
SCN  
HCN  
SRPT  
HRPT  
OE  
Clock Cycle Time (Flow-Through)(1)  
Clock Cycle Time (Pipelined)(1)  
Clock High Time (Flow-Through)(1)  
Clock Low Time (Flow-Through)(1)  
Clock High Time (Pipelined)(2)  
Clock Low Time (Pipelined)(1)  
Address Setup Time  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
6
7.5  
10  
ns  
t
8
ns  
t
8
10  
ns  
t
2.4  
2.4  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
0.5  
1.7  
3
ns  
t
3
ns  
t
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
0.5  
1.8  
ns  
t
Address Hold Time  
ns  
t
Chip Enable Setup Time  
Chip Enable Hold Time  
Byte Enable Setup Time  
Byte Enable Hold Time  
R/W Setup Time  
ns  
t
ns  
t
ns  
t
ns  
t
ns  
t
R/W Hold Time  
ns  
t
Input Data Setup Time  
ns  
t
Input Data Hold Time  
ns  
t
ns  
ADS Setup Time  
t
ns  
ADS Hold Time  
t
ns  
CNTEN Setup Time  
t
ns  
CNTEN Hold Time  
t
ns  
REPEAT Setup Time  
t
0.5  
0.5  
ns  
REPEAT Hold Time  
____  
____  
t
Output Enable to Data Valid  
Output Enable to Output Low-Z  
Output Enable to Output High-Z  
Clock to Data Valid (Flow-Through)(1)  
Clock to Data Valid (Pipelined)(1)  
Data Output Hold After Clock High  
Clock High to Output High-Z  
Clock High to Output Low-Z  
Interrupt Flag Set Time  
4.4  
4.6  
ns  
(4)  
____  
____  
t
OLZ  
1
1
ns  
(4)  
OHZ  
t
1
3.6  
12  
1
4.2  
15  
ns  
____  
____  
t
CD1  
CD2  
DC  
CKHZ  
ns  
____  
____  
t
3.6  
4.2  
ns  
____  
____  
t
1
1
1
1
ns  
(4)  
t
3.6  
4.2  
ns  
(4)  
CKLZ  
____  
____  
t
1
1
ns  
____  
____  
t
INS  
INR  
COLS  
COLR  
ZZSC  
ZZRC  
7
7
7
7
ns  
____  
____  
____  
____  
____  
____  
t
Interrupt Flag Reset Time  
Collision Flag Set Time  
Collision Flag Reset Time  
Sleep Mode Set Cycles  
Sleep Mode Recovery Cycles  
ns  
t
3.6  
4.2  
ns  
t
3.6  
4.2  
ns  
____  
____  
t
2
3
2
3
cycles  
cycles  
____  
____  
t
Port-to-Port Delay  
Clock-to-Clock Offset  
____  
____  
tCO  
5
6
ns  
Please refer to collision Detection Timing Table  
on Page 19.  
tOFS  
Clock-to-Clock Offset for Collision Detection  
5687 tbl 12  
NOTES:  
1. The Pipelined output parameters (tCYC2, tCD2) apply to either or both left and right ports when FT/PIPEX = VDD (2.5V). Flow-through parameters (tCYC1, tCD1)  
apply when FT/PIPE = Vss (0V) for that port.  
2. All input signals are synchronous with respect to the clock except for the asynchronous Output Enable (OE), FT/PIPE and OPT. FT/PIPE and OPT should be  
treated as DC signals, i.e. steady state during operation.  
3. These values are valid for either level of VDDQ (3.3V/2.5V). See page 6 for details on selecting the desired operating voltage levels for each port.  
4. Guaranteed by design (not production tested).  
6.42  
10  
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Read Cycle for Pipelined Operation  
(FT/PIPE'X' = VIH)(1,2)  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
0
t
SC  
(3)  
tHC  
tSC  
tHC  
CE1  
t
SB  
tHB  
tSB  
tHB  
(5)  
BE  
n
R/  
W
tHW  
tSW  
t
SA  
tHA  
ADDRESS(4)  
DATAOUT  
An  
An + 1  
An + 2  
Qn  
An + 3  
(1 Latency)  
t
DC  
tCD2  
Qn + 1  
Qn + 2(5)  
(1)  
t
CKLZ  
t
OHZ  
tOLZ  
(1)  
OE  
,
tOE  
5687 drw 05  
Timing Waveform of Read Cycle for Flow-through Output  
(FT/PIPE"X" = VIL)(1,2,6)  
tCYC1  
tCH1  
tCL1  
CLK  
CE  
0
t
SC  
(3)  
tHC  
t
SC  
SB  
tHC  
CE1  
t
tHB  
t
HB  
BEn  
tSB  
R/W  
t
SW  
t
HW  
HA  
t
SA  
t
ADDRESS(4)  
DATAOUT  
An  
An + 1  
An + 2  
An + 3  
tDC  
tCD1  
tCKHZ  
Qn  
Qn + 1  
Qn + 2(5)  
t
CKLZ  
tDC  
t
OHZ  
t
OLZ  
(1)  
OE  
,
t
OE  
5687 drw 06  
NOTES:  
1. OE is asynchronously controlled; all other inputs depicted in the above waveforms are synchronous to the rising clock edge.  
2. ADS = VIL, CNTEN and REPEAT = VIH.  
3. The output is disabled (High-Impedance state) by CE0 = VIH, CE1 = VIL, BEn = VIH following the next rising edge of the clock. Refer to  
Truth Table 1.  
4. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers  
are for reference use only.  
5. If BEn was HIGH, then the appropriate Byte of DATAOUT for Qn + 2 would be disabled (High-Impedance state).  
6. "x" denotes Left or Right port. The diagram is with respect to that port.  
6.42  
11  
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
(1,2)  
Timing Waveform of a Multi-Device Pipelined Read  
t
CYC2  
t
CH2  
t
CL2  
CLK  
ADDRESS(B1)  
CE0(B1)  
t
SA  
tHA  
A
6
A
5
A
4
A
3
A
2
A
0
A
1
t
SC  
t
HC  
t
SC  
tHC  
t
CD2  
t
CD2  
t
CKHZ  
t
CD2  
Q
0
Q3  
Q
1
DATAOUT(B1)  
ADDRESS(B2)  
t
DC  
t
CKLZ  
t
DC  
tCKHZ  
t
SA  
t
HA  
A
6
A
5
A
4
A3  
A
2
A
0
A
1
t
SC  
t
HC  
CE0(B2)  
t
SC  
t
HC  
t
CD2  
t
CKHZ  
t
CD2  
,
DATAOUT(B2)  
Q
4
Q
2
t
CKLZ  
t
CKLZ  
5687 drw 07  
(1,2)  
Timing Waveform of a Multi-Device Flow-Through Read  
t
CYC1  
tCH1  
tCL1  
CLK  
t
SA  
tH  
A
A6  
A5  
A4  
A3  
A2  
A0  
A1  
ADDRESS(B1)  
t
SC  
tHC  
CE0(B1)  
t
SC  
tHC  
(1)  
tCD1  
tCD1  
t
CKHZ  
t
CD1  
(1)  
tCD1  
D0  
D3  
D5  
D1  
DATAOUT(B1)  
ADDRESS(B2)  
(1)  
(1)  
tDC  
t
CKLZ  
tCKLZ  
t
DC  
t
CKHZ  
t
SA  
tHA  
A6  
A5  
A4  
A3  
A2  
A
0
A1  
t
SC  
tHC  
CE0(B2)  
t
SC  
t
HC  
(1)  
(1)  
t
CD1  
t
CKHZ  
t
CD1  
(1)  
t
CKHZ  
D4  
DATAOUT(B2)  
D2  
(1)  
,
t
CKLZ  
tCKLZ  
5687 drw 08  
NOTES:  
1. B1 Represents Device #1; B2 Represents Device #2. Each Device consists of one IDT70T3719/99M for this waveform,  
and are setup for depth expansion in this example. ADDRESS(B1) = ADDRESS(B2) in this situation.  
2. BEn, OE, and ADS = VIL; CE1(B1), CE1(B2), R/W, CNTEN, and REPEAT = VIH.  
6.42  
12  
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
(1,2,4)  
Timing Waveform of Left Port Write to Pipelined Right Port Read  
CLK"A"  
t
SW  
tHW  
R/W"A  
"
t
SA  
MATCH  
SD HD  
VALID  
tHA  
NO  
MATCH  
ADDRESS"A"  
DATAIN"A"  
t
t
(3)  
CO  
t
CLK"B"  
tCD2  
R/W"B"  
tSW  
tHW  
tSA  
tHA  
NO  
ADDRESS"B"  
DATAOUT"B"  
MATCH  
MATCH  
VALID  
,
t
DC  
5687 drw 09  
NOTES:  
1. CE0, BEn, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
2. OE = VIL for Port "B", which is being read from. OE = VIH for Port "A", which is being written to.  
3. If tCO < minimum specified, then data from Port "B" read is not valid until following Port "B" clock cycle (ie, time from write to valid read on opposite port will be  
tCO + 2 tCYC2 + tCD2). If tCO > minimum, then data from Port "B" read is available on first Port "B" clock cycle (ie, time from write to valid read on opposite port  
will be tCO + tCYC2 + tCD2).  
4. All timing is the same for Left and Right ports. Port "A" may be either Left or Right port. Port "B" is the opposite of Port "A"  
(1,2,4)  
Timing Waveform with Port-to-Port Flow-Through Read  
CLK "A"  
tSW tHW  
R/W "A"  
tSA tHA  
NO  
ADDRESS "A"  
DATAIN "A"  
CLK "B"  
MATCH  
MATCH  
tSD tHD  
VALID  
(3)  
tCO  
tCD1  
R/W "B"  
tHW  
tHA  
tSW  
tSA  
NO  
MATCH  
ADDRESS "B"  
DATAOUT "B"  
MATCH  
tCD1  
VALID  
VALID  
,
tDC  
tDC  
5687 drw 10  
NOTES:  
1. CE0, BEn, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
2. OE = VIL for the Right Port, which is being read from. OE = VIH for the Left Port, which is being written to.  
3. If tCO < minimum specified, then data from Port "B" read is not valid until following Port "B" clock cycle (i.e., time from write to valid read on opposite port will be  
tCO + tCYC + tCD1). If tCO > minimum, then data from Port "B" read is available on first Port "B" clock cycle (i.e., time from write to valid read on opposite port will  
be tCO + tCD1).  
4. All timing is the same for both left and right ports. Port "A" may be either left or right port. Port "B" is the opposite of Port "A".  
6.42  
13  
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Pipelined Read-to-Write-to-Read  
(OE = VIL)(2)  
tCYC2  
tCH2  
tCL2  
CLK  
CE0  
CE1  
BEn  
t
SC  
tHC  
tSB  
tHB  
tSW tHW  
R/W  
tSW tHW  
(3)  
An + 3  
An + 4  
An  
An +1  
An + 2  
An + 2  
ADDRESS  
t
SA  
tHA  
t
SD  
tHD  
DATAIN  
Dn + 2  
tCD2  
t
CD2  
(1)  
t
CKHZ  
(4)  
tCKLZ  
Qn + 3  
Qn  
DATAOUT  
READ  
NOP  
WRITE  
READ  
,
5687 drw 11  
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CE0, BEn, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH. "NOP" is "No Operation".  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers  
are for reference use only.  
4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.  
(2)  
Timing Waveform of Pipelined Read-to-Write-to-Read ( OE Controlled)  
tCYC2  
tCH2  
tCL2  
CLK  
CE  
0
t
SC  
tHC  
CE1  
tSB  
tHB  
BE  
n
t
SW tHW  
R/  
W
t
SW tHW  
(3)  
An + 4  
An  
An +1  
An + 2  
An + 3  
Dn + 3  
An + 5  
ADDRESS  
t
SA  
tHA  
t
SD  
tHD  
DATAIN  
Dn + 2  
t
CD2  
t
CD2  
t
CKLZ  
(1)  
Qn  
Qn + 4  
DATAOUT  
(4)  
tOHZ  
OE  
READ  
WRITE  
READ  
,
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
5687 drw 12  
2. CE0, BEn, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for reference  
use only.  
4. This timing does not meet requirements for fastest speed grade. This waveform indicates how logically it could be done if timing so allows.  
6.42  
14  
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Flow-Through Read-to-Write-to-Read (OE = VIL)(2)  
t
CYC1  
tCH1  
tCL1  
CLK  
CE  
0
1
t
SC  
tHC  
CE  
t
SB  
tHB  
BEn  
t
SW tHW  
R/W  
tSW tHW  
(3)  
An + 4  
An  
An + 3  
An +1  
An + 2  
An + 2  
ADDRESS  
t
SA  
tHA  
t
SD  
tHD  
DATAIN  
Dn + 2  
t
CD1  
tCD1  
t
CD1  
tCD1  
(1)  
Qn + 3  
Qn  
READ  
Qn + 1  
DATAOUT  
tDC  
t
CKLZ  
t
DC  
tCKHZ  
NOP(5)  
,
READ  
WRITE  
5687 drw 13  
Timing Waveform of Flow-Through Read-to-Write-to-Read (OE Controlled)(2)  
t
CYC1  
t
CH1  
tCL1  
CLK  
CE  
0
1
t
SC  
tHC  
CE  
t
SB  
tHB  
BEn  
t
SW tHW  
t
SW tHW  
R/  
W
(3)  
An + 5  
An  
An + 4  
An +1  
An + 2  
An + 3  
Dn + 3  
ADDRESS  
t
SA  
tHA  
t
SD tHD  
DATAIN  
Dn + 2  
tOE  
t
DC  
t
CD1  
tCD1  
t
CD1  
(1)  
Qn + 4  
Qn  
DATAOUT  
tCKLZ  
t
DC  
t
OHZ  
OE  
,
READ  
WRITE  
READ  
5687 drw 14  
NOTES:  
1. Output state (High, Low, or High-impedance) is determined by the previous cycle control signals.  
2. CE0, BEn, and ADS = VIL; CE1, CNTEN, and REPEAT = VIH.  
3. Addresses do not have to be accessed sequentially since ADS = VIL constantly loads the address on the rising edge of the CLK; numbers are for  
reference use only.  
4. "NOP" is "No Operation." Data in memory at the selected address may be corrupted and should be re-written to guarantee data integrity.  
6.42  
15  
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
(1)  
Timing Waveform of Pipelined Read with Address Counter Advance  
t
CYC2  
tCH2  
tCL2  
CLK  
tSA  
tHA  
An  
ADDRESS  
t
SAD tHAD  
ADS  
tSAD tHAD  
CNTEN  
tSCN tHCN  
tCD2  
,
Qn + 2(2)  
Qx - 1(2)  
Qx  
Qn + 3  
Qn + 1  
Qn  
DATAOUT  
tDC  
READ  
EXTERNAL  
ADDRESS  
READ  
WITH  
COUNTER  
COUNTER  
HOLD  
READ WITH COUNTER  
5687 drw 15  
(1)  
Timing Waveform of Flow-Through Read with Address Counter Advance  
t
CYC1  
tCH1  
tCL1  
CLK  
tSA  
tHA  
An  
ADDRESS  
t
SAD tHAD  
t
SAD  
t
HAD  
ADS  
t
SCN  
tHCN  
CNTEN  
t
CD1  
,
Qn + 3(2)  
Qx(2)  
Qn + 4  
Qn + 1  
Qn + 2  
Qn  
DATAOUT  
tDC  
READ  
WITH  
COUNTER  
READ  
EXTERNAL  
ADDRESS  
READ WITH COUNTER  
COUNTER  
HOLD  
5687 drw 16  
NOTES:  
1. CE0, OE, BEn = VIL; CE1, R/W, and REPEAT = VIH.  
2. If there is no address change via ADS = VIL (loading a new address) or CNTEN = VIL (advancing the address), i.e. ADS = VIH and CNTEN = VIH, then  
the data output remains constant for subsequent clocks.  
6.42  
16  
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with Address Counter Advance  
(1)  
(Flow-through or Pipelined Inputs)  
t
CYC2  
tCH2  
tCL2  
CLK  
t
SA  
tHA  
An  
ADDRESS  
INTERNAL(3)  
ADDRESS  
An(7)  
An + 4  
An + 2  
An + 1  
An + 3  
t
SAD tHAD  
ADS  
t
SCN  
t
HC  
N
CNTEN  
t
SD tHD  
Dn + 4  
Dn + 1  
Dn + 3  
Dn  
Dn + 1  
Dn + 2  
DATAIN  
WRITE  
EXTERNAL  
ADDRESS  
WRITE  
WITH COUNTER  
WRITE  
COUNTER HOLD  
WRITE WITH COUNTER  
,
5687 drw 17  
(2,6)  
Timing Waveform of Counter Repeat  
tCYC2  
CLK  
tSA tHA  
An  
ADDRESS  
INTERNAL(3)  
ADDRESS  
An+2  
An+1  
An+2  
An+2  
An  
An  
An+1  
An+2  
tSAD tHAD  
ADS  
tSW tHW  
R/  
W
t
SCN tHCN  
CNTEN  
(4)  
REPEAT  
SRPT tHRPT  
t
,
t
SD  
t
HD  
D3  
D2  
D0  
D1  
DATAIN  
tCD1  
An  
An+1  
An+2  
An+2  
HOLD  
DATAOUT  
,
ADVANCE  
COUNTER  
WRITE TO  
An+2  
ADVANCE  
COUNTER  
WRITE TO  
An+1  
HOLD  
REPEAT  
READ LAST  
ADS  
ADDRESS  
An  
ADVANCE  
COUNTER  
READ  
WRITE TO  
ADS  
ADDRESS  
An  
ADVANCE  
COUNTER  
READ  
COUNTER  
WRITE TO  
An+2  
COUNTER  
READ  
An+1  
An+2  
An+2  
5687 drw 18  
NOTES:  
1. CE0, BEn, and R/W = VIL; CE1 and REPEAT = VIH.  
CE0, BEn = VIL; CE1 = VIH.  
2.  
3. The "Internal Address" is equal to the "External Address" when ADS = VIL and equals the counter output when ADS = VIH.  
4. No dead cycle exists during REPEAT operation. A READ or WRITE cycle may be coincidental with the counter REPEAT cycle: Address loaded by last valid  
ADS load will be accessed. For more information on REPEAT function refer to Truth Table II.  
5. CNTEN = VIL advances Internal Address from ‘An’ to ‘An +1’. The transition shown indicates the time required for the counter to advance. The ‘An +1’Address is  
written to during this cycle.  
6. For Pipelined Mode user should add 1 cycle latency for outputs as per timing waveform of read cycle for pipelined operations.  
6.42  
17  
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
(2)  
Waveform of Interrupt Timing  
CLK  
L
t
SW  
tHW  
R/W  
L
t
SA  
3FFFF  
SC  
t
HA  
ADDRESSL(3)  
CEL(1)  
t
tHC  
tINS  
INT  
R
t
INR  
CLKR  
t
SC  
tHC  
CER(1)  
R/WR  
t
SW  
t
HW  
HA  
t
t
SA  
ADDRESSR(3)  
3FFFF  
5687 drw 19  
NOTES:  
1. CE0 = VIL and CE1 = VIH  
2. All timing is the same for Left and Right ports.  
3. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
(1)  
Truth Table III — Interrupt Flag  
Left Port  
Right Port  
(3,4)  
(2)  
(3,4)  
(2)  
CLK  
L
R/W  
L
A
17L-A0L  
CLK  
R
R/W  
R
A
17R-A0R  
Function  
CE  
L
L
INT  
X
L
CE  
R
INT  
R
L
3FFFF  
X
X
X
X
L
Set Right INT  
Reset Right INT  
Set Left INT Flag  
Reset Left INT Flag  
R
Flag  
!
!
!
!
!
!
!
!
X
X
X
X
L
L
3FFFF  
3FFFE  
X
H
R
Flag  
X
X
X
L
L
X
L
H
L
3FFFE  
H
X
X
X
L
5687 tbl 13  
NOTES:  
1. INTL and INTR must be initialized at power-up by Resetting the flags.  
2. CE0 = VIL and CE1 = VIH. R/W and CE are synchronous with respect to the clock and need valid set-up and hold times.  
3. A17X is a NC for IDT70T3799, therefore Interrupt Addresses are 1FFFF and 1FFFE.  
4. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
6.42  
18  
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Collision Timing(1,2)  
Both Ports Writing with Left Port Clock Leading  
CLK  
L
t
OFS  
tSA  
tHA  
ADDRESS (4)  
L
A
3
A
1
A2  
A
0
t
COLR  
tCOLS  
COL  
L
(3)  
tOFS  
CLK  
R
t
SA  
t
HA  
(4)  
ADDRESS  
R
A
3
A2  
A
0
A1  
t
COLR  
tCOLS  
COLR  
5687 drw 20  
NOTES:  
1. CE0 = VIL, CE1 = VIH.  
2. For reading port, OE is a Don't care on the Collision Detection Logic. Please refer to Truth Table IV for specific cases.  
3. Leading Port Output flag might output 3tCYC2 + tCOLS after Address match.  
4. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
Collision Detection Timing(3,4)  
tOFS (ns)  
Cycle Time  
NOTES:  
1. Region 1  
(1)  
(2)  
Region 1 (ns)  
Region 2 (ns)  
Both ports show collision after 2nd cycle for Addresses 0, 2, 4 etc.  
2. Region 2  
Leading port shows collision after 3rd cycle for addresses 0, 3, 6, etc.  
while trailing port shows collision after 2nd cycle for addresses 0, 2, 4 etc.  
3. All the production units are tested to midpoint of each region.  
5ns  
6ns  
0 - 2.8  
2.81 - 4.6  
0 - 3.8  
0 - 5.3  
3.81 - 5.6  
5.31 - 7.1  
7.5ns  
4. These ranges are based on characterization of a typical device.  
56876 tbl 14  
Truth Table IV — Collision Detection Flag  
Left Port  
Right Port  
(2)  
(1)  
(2)  
(1)  
CLK  
L
R/W  
H
L
A
17L-A0L  
CLK  
R
R/W  
R
A
17R-A0R  
Function  
CE  
L
COL  
H
L
CE  
R
COL  
H
R
Both ports reading. Not a valid collision.  
No flag output on either port  
L
MATCH  
MATCH  
MATCH  
MATCH  
H
L
L
MATCH  
MATCH  
MATCH  
MATCH  
!
!
!
!
!
!
!
Left port reading, Right port writing.  
Valid collision, flag output on Left port.  
H
L
L
L
L
L
H
Right port reading, Left port writing.  
Valid collision, flag output on Right port.  
L
L
H
H
L
L
Both ports writing. Valid collision. Flag  
output on both ports.  
L
L
L
L
!
5687 tbl 15  
NOTES:  
1. CE0 = VIL and CE1 = VIH. R/W and CE are synchronous with respect to the clock and need valid set-up and hold times.  
2. Address is for internal register, not the external bus, i.e., address needs to be qualified by one of the Address counter control signals.  
6.42  
19  
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
(1,2)  
Timing Waveform - Entering Sleep Mode  
R/W  
(3)  
(1,2)  
Timing Waveform - Exiting Sleep Mode  
An  
An+1  
(5)  
R/W  
OE  
(5)  
Dn  
Dn+1  
DATAOUT  
(4)  
NOTES:  
1. CE1 = VIH.  
2. All timing is same for Left and Right ports.  
3. CE0 has to be deactivated (CE0 = VIH) three cycles prior to asserting ZZ (ZZx = VIH) and held for two cycles after asserting ZZ (ZZx = VIH).  
4. CE0 has to be deactivated (CE0 = VIH) one cycle prior to de-asserting ZZ (ZZx = VIL) and held for three cycles after de-asserting ZZ (ZZx = VIL).  
5. The device must be in Read Mode (R/W High) when exiting sleep mode. Outputs are active but data is not valid until the following cycle.  
6.42  
20  
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
alertflagasappropriate.Intheeventthatauserinitiatesaburstaccess  
onbothportswiththesamestartingaddressonbothportsandoneorboth  
portswritingduringeachaccess(i.e.,imposesalongstringofcollisions  
on contiguous clock cycles), the alert flag will be asserted and cleared  
everyothercycle.PleaserefertotheCollisionDetectiontimingwaveform  
on Page 19.  
Functional Description  
TheIDT70T3719/99MprovidesatruesynchronousDual-PortStatic  
RAM interface.Registeredinputsprovideminimalset-upandholdtimes  
onaddress, data, andallcriticalcontrolinputs. Allinternalregistersare  
clocked on the rising edge of the clock signal, however, the self-timed  
internalwritepulsewidthisindependentofthecycletime.  
CollisiondetectionontheIDT70T3719/99Mrepresentsasignificant  
advanceinfunctionalityovercurrentsyncmulti-ports,whichhavenosuch  
capability. InadditiontothisfunctionalitytheIDT70T3719/99Msustains  
thekeyfeaturesofbandwidthandflexibility. Thecollisiondetectionfunction  
isveryusefulinthecaseofburstingdata,orastringofaccessesmadeto  
sequentialaddresses,inthatitindicatesaproblemwithintheburst,giving  
theusertheoptionofeitherrepeatingtheburstorcontinuingtowatchthe  
alert flag to see whether the number of collisions increases above an  
acceptablethresholdvalue.Offeringthisfunctiononchipalsoallowsusers  
to reduce their need for arbitration circuits, typically done in CPLD’s or  
FPGA’s.Thisreducesboardspaceanddesigncomplexity,andgivesthe  
usermoreflexibilityindevelopingasolution.  
An asynchronous output enable is provided to ease asyn-  
chronousbusinterfacing.Counterenableinputsarealsoprovidedtostall  
the operation of the address counters for fast interleaved  
memoryapplications.  
AHIGHonCE0oraLOWonCE1 foroneclockcyclewillpowerdown  
the internal circuitry to reduce static power consumption. Multiple chip  
enables allow easier banking of multiple IDT70T3719/99Ms for depth  
expansionconfigurations. TwocyclesarerequiredwithCE0 LOWand  
CE1 HIGHtore-activatetheoutputs.  
Interrupts  
If the user chooses the interrupt function, a memory location (mail  
boxormessagecenter)isassignedtoeachport. Theleftportinterrupt  
flag (INTL) is asserted when the right port writes to memory location  
3FFFE (HEX), where a write is defined as CER = R/WR = VIL per the  
Truth Table I. The left port clears the interrupt through access of  
addresslocation3FFFEwhenCEL = VILandR/WL=VIH.Likewise,the  
right port interrupt flag (INTR) is asserted when the left  
port writes to memory location 3FFFF (HEX) and to clear the interrupt  
flag(INTR),therightportmustreadthememorylocation3FFFF(1FFFF  
or1FFFEforIDT70T3799M).Themessage(72bits)at3FFFEor3FFFF  
(1FFFF or 1FFFE for 70T3799M) is user-defined since it is an addres-  
sableSRAMlocation.Iftheinterruptfunctionisnotused,addresslocations  
3FFFE and 3FFFF (1FFFF or 1FFFE for IDT70T3799M) are not used  
asmailboxes,butaspartoftherandomaccessmemory.RefertoTruth  
Table III for the interrupt operation.  
Sleep Mode  
TheIDT70T3719/99Misequippedwithanoptionalsleeporlowpower  
modeonbothports.Thesleepmodepinonbothportsisasynchronous  
andactivehigh.Duringnormaloperation,theZZpinispulledlow.When  
ZZispulledhigh,theportwillentersleepmodewhereitwillmeetlowest  
possible power conditions. The sleep mode timing diagram shows the  
modes ofoperation:NormalOperation,NoRead/WriteAllowedandSleep  
Mode.  
Fornormaloperationallinputsmustmeetsetupandholdtimesprior  
tosleepand afterrecoveringfromsleep.Clocksmustalsomeetcyclehigh  
and low times during these periods. Three cycles prior to asserting ZZ  
(ZZx=VIH)andthreecyclesafterde-assertingZZ(ZZx=VIL),thedevice  
mustbedisabledviathechipenablepins.Ifawriteorreadoperationoccurs  
duringtheseperiods,thememoryarraymaybecorrupted.Validityofdata  
outfromtheRAMcannotbeguaranteedimmediatelyafterZZisasserted  
(priortobeinginsleep).Whenexitingsleepmode,thedevicemustbein  
Read mode (R/Wx = VIH)when chip enable is asserted, and the chip  
enablemustbevalidforonefullcyclebeforeareadwillresultintheoutput  
ofvaliddata.  
DuringsleepmodetheRAMautomaticallydeselectsitself.TheRAM  
disconnectsitsinternalclockbuffer.Theexternalclockmaycontinuetorun  
withoutimpactingtheRAMssleepcurrent(IZZ).Alloutputswillremainin  
high-Zstatewhileinsleepmode.Allinputsareallowedtotoggle.TheRAM  
will not be selected and will not perform any reads or writes.  
Collision Detection  
Collision is defined as an overlap in access between the two ports  
resulting in the potential for either reading or writing incorrect data to a  
specificaddress. Forthespecificcases:(a)Bothportsreading-nodata  
iscorrupted,lost,orincorrectlyoutput,sonocollisionflagisoutputoneither  
port.(b)Oneportwriting,theotherportreading-theendresultofthewrite  
willstillbevalid. However, thereadingportmightcapturedatathatisin  
astateoftransitionandhencethereadingport’scollisionflagisoutput.(c)  
Bothportswriting-thereisariskthatthetwoportswillinterferewitheach  
other, andthedatastoredinmemorywillnotbeavalidwritefromeither  
port(itmayessentiallybearandomcombinationofthetwo). Therefore,  
thecollisionflagisoutputonbothports. PleaserefertoTruthTableIVfor  
all of the above cases.  
Thealertflag (COLX)isassertedonthe2ndor3rdrisingclockedge  
oftheaffectedportfollowingthecollision,andremainslowforonecycle.  
PleaserefertoCollisionDetectionTimingtableonPage19.Duringthat  
nextcycle,theinternalarbitrationisengagedinresettingthealertflag(this  
avoidsaspecificrequirementonthepartoftheusertoresetthealertflag).  
Iftwocollisionsoccuronsubsequentclockcycles,thesecondcollisionmay  
notgeneratetheappropriatealertflag.Athirdcollisionwillgeneratethe  
6.42  
21  
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Depth and Width Expansion  
The IDT70T3719/99M can also be used in applications requiring  
expandedwidth,asindicatedinFigure4.Throughcombiningthecontrol  
signals, the devices can be grouped as necessary to accommodate  
applicationsneeding144-bits.  
The IDT70T3719/99M features dual chip enables (refer to Truth  
Table I) in order to facilitate rapid and simple depth expansion with no  
requirements for external logic. Figure 4 illustrates how to control the  
various chip enables in order to expand two devices in depth.  
(1)  
A18/A17  
IDT70T3719/99M  
IDT70T3719/99M  
CE  
0
1
CE  
0
CE  
CE1  
V
DD  
VDD  
Control Inputs  
Control Inputs  
IDT70T3719/99M  
IDT70T3719/99M  
CE  
1
0
CE  
1
0
CE  
CE  
BE,  
R/W,  
Control Inputs  
Control Inputs  
OE,  
CLK,  
Figure 4. Depth and Width Expansion with IDT70T3719/99M  
ADS,  
REPEAT,  
CNTEN  
,
5687 drw 23  
NOTE:  
1. A18 is for IDT70T3719, A17 is for IDT70T3799.  
JTAG Functionality and Configuration  
The IDT70T3719/99M is composed of two independent memory  
arrays,andthuscannotbetreatedasasingleJTAGdeviceinthescan  
chain. Thetwoarrays(AandB)eachhaveidenticalcharacteristicsand  
commandsbutmustbetreatedasseparateentitiesinJTAGoperations.  
Please refer to Figure 5.  
Register Sizes, and System Interface Parameter tables. Specifically,  
commands for Array B must precede those for Array A in any JTAG  
operationssenttotheIDT70T3719/99M. PleasereferenceApplication  
NoteAN-411,"JTAGTestingofMultichipModules"forspecificinstruc-  
tionsonperformingJTAGtestingontheIDT70T3719/99M. AN-411is  
availableatwww.idt.com.  
.
JTAGsignalingmustbeprovidedseriallytoeacharrayandutilizethe  
informationprovidedintheIdentificationRegisterDefinitions,Scan  
IDT70T3719/99M  
TDO  
TDI  
TDOA  
TDIB  
Array A  
Array B  
TCK  
TMS  
TRST  
5687 drw 24  
Figure 5. JTAG Configuration for IDT70T3719/99M  
6.42  
22  
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
JTAG Timing Specifications  
t
JCYC  
tJR  
t
JF  
tJCL  
tJCH  
TCK  
Device Inputs(1)/  
TDI/TMS  
tJDC  
tJS  
tJH  
Device Outputs(2)/  
TDO  
t
JRSR  
tJCD  
TRST  
,
5687 drw 25  
t
JRST  
Figure 5. Standard JTAG Timing  
NOTES:  
1. Device inputs = All device inputs except TDI, TMS, and TRST.  
2. Device outputs = All device outputs except TDO.  
JTAG AC Electrical  
Characteristics (1,2,3,4)  
70T3719/99M  
Max.  
Symbol  
Parameter  
JTAG Clock Input Period  
JTAG Clock HIGH  
JTAG Clock Low  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
JTAG Reset  
Min.  
100  
40  
Units  
ns  
____  
____  
____  
t
JCYC  
JCH  
JCL  
JR  
JF  
JRST  
JRSR  
JCD  
JDC  
JS  
JH  
t
ns  
t
40  
ns  
3(1)  
ns  
____  
t
3(1)  
ns  
____  
t
____  
t
50  
ns  
____  
t
JTAG Reset Recovery  
JTAG Data Output  
JTAG Data Output Hold  
JTAG Setup  
50  
ns  
____  
t
25  
ns  
____  
t
0
ns  
____  
____  
t
15  
15  
ns  
t
JTAG Hold  
ns  
5687 tbl 16  
NOTES:  
1. Guaranteed by design.  
2. 30pF loading on external output signals.  
3. Refer to AC Electrical Test Conditions stated earlier in this document.  
4. JTAG operations occur at one speed (10MHz). The base device may run at  
any speed specified in this datasheet.  
6.42  
23  
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Identification Register Definitions  
Value  
Value  
Array A  
Instruction Field Array B  
Instruction Field Array A  
Description  
Reserved for Version number  
Array B  
0x0  
Revision Number (31:28)  
Revision Number (63:60)  
0x0  
IDT Device ID (27:12)(1)  
IDT JEDEC ID (11:1)  
IDT Device ID (59:44)(1)  
IDT JEDEC ID (43:33)  
0x330  
0x33  
1
0x330  
0x33  
1
Defines IDT Part number  
Allows unique identification of device vendor as IDT  
Indicates the presence of an ID Register  
ID Register Indicator Bit (Bit 0)  
ID Register Indicator Bit (Bit 32)  
5687 tbl 17  
NOTE:  
1. Device ID for IDT70T3719M is 0x330. Device ID for IDT70T3799M is 0x331.  
Scan Register Sizes  
Bit Size  
Array A  
Bit Size  
Bit Size  
Register Name  
Array B  
70T3719M  
Instruction (IR)  
Bypass (BYR)  
4
1
4
1
8
2
Identification (IDR)  
32  
32  
64  
Boundary Scan (BSR)  
Note (3)  
Note (3)  
Note (3)  
5687 tbl 18  
System Interface Parameters  
Instruction  
Code  
Description  
EXTEST  
00000000  
Forces contents of the boundary scan cells onto the device outputs(1).  
Places the boundary scan register (BSR) between TDI and TDO.  
BYPASS  
IDCODE  
11111111  
Places the bypass register (BYR) between TDI and TDO.  
00100010  
Loads the ID register (IDR) with the vendor ID code and places the  
register between TDI and TDO.  
01000100  
Places the bypass register (BYR) between TDI and TDO. Forces all  
device output drivers except INTx and COLx to a High-Z state.  
HIGHZ  
Uses BYR. Forces contents of the boundary scan cells onto the device  
outputs. Places the bypass register (BYR) between TDI and TDO.  
CLAMP  
00110011  
00010001  
SAMPLE/PRELOAD  
Places the boundary scan register (BSR) between TDI and TDO.  
SAMPLE allows data from device inputs(2) to be captured in the  
boundary scan cells and shifted serially through TDO. PRELOAD allows  
data to be input serially into the boundary scan cells via the TDI.  
RESERVED  
01010101, 01110111,  
10001000, 10011001,  
10101010, 10111011,  
11001100  
Several combinations are reserved. Do not use codes other than those  
identified above.  
PRIVATE  
01100110,11101110,  
11011101  
For internal use only.  
5687 tbl 19  
NOTES:  
1. Device outputs = All device outputs except TDO.  
2. Device inputs = All device inputs except TDI, TMS, and TRST.  
3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local  
IDT sales representative.  
6.42  
24  
IDT70T3719/99M  
High-Speed 2.5V 256/128K x 72 Dual-Port Synchronous Static RAM  
Industrial and Commercial Temperature Ranges  
Ordering Information  
A
A
A
XXXXX  
A
999  
A
Process/  
Temperature  
Range  
Device  
Type  
Power Speed  
Package  
Tube or Tray  
Tape and Reel  
Blank  
8
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Blank  
I
G(1)  
BB  
Green  
324-pin BGA (BBG-324)  
Commercial Only  
166  
133  
Speed in Megahertz  
Commercial & Industrial  
Standard Power  
S
18Mbit (256K x 72) 2.5V Synchronous Dual-Port RAM  
9Mbit (128K x 72) 2.5V Synchronous Dual-Port RAM  
70T3719M  
70T3799M  
5687 drw 26  
NOTE:  
1. Greenpartsavailable.Forspecificspeeds,packagesandpowerscontactyourlocalsalesoffice.  
LEADFINISH(SnPb)partsareinEOLprocess. ProductDiscontinuationNotice-PDN#SP-17-02  
IDT Clock Solution for IDT70T3719/99M Dual-Port  
Dual-Port I/O Specitications  
Clock Specifications  
IDT  
PLL  
Clock Device  
IDT  
Non-PLL  
Clock Device  
IDT Dual-Port  
Part Number  
Input Duty  
Cycle  
Requirement  
Input  
Capacitance  
Maximum  
Frequency Tolerance  
Jitter  
Voltage  
3.3/2.5  
I/O  
5T9010  
5T905, 5T9050  
5T907, 5T9070  
70T3719/99M  
LVTTL  
15pF  
40%  
166  
75ps  
5T2010  
5687 tbl 20  
Datasheet Document History:  
06/27/05:  
07/11/07:  
01/19/09:  
08/06/10:  
07/15/14:  
02/14/18:  
InitialDatasheet  
RemovedAdvancedstatus  
Page 25 Removed "IDT" from orderable part number  
Page 3 Footnote5-correctedatypointhepackagebodyandball-pitchdimensions  
Page 25 Added Tape & Reel to Ordering Information  
ProductDiscontinuationNotice-PDN#SP-17-02  
Last time buy expires June 15, 2018  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
25  

相关型号:

IDT70T3799M

HIGH-SPEED 2.5V 256/128K x 72 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT

IDT70T3799MS133BBG

HIGH-SPEED 2.5V 256/128K x 72 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT

IDT70T3799MS133BBGI

HIGH-SPEED 2.5V 256/128K x 72 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT

IDT70T3799MS166BBG

HIGH-SPEED 2.5V 256/128K x 72 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT

IDT70T3799MS166BBGI

HIGH-SPEED 2.5V 256/128K x 72 SYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V OR 2.5V INTERFACE
IDT

IDT70T631S

HIGH-SPEED 2.5V 512/256K x 18 ASYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V 0R 2.5V INTERFACE
IDT

IDT70T631S10BC

HIGH-SPEED 2.5V 512/256K x 18 ASYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V 0R 2.5V INTERFACE
IDT

IDT70T631S10BC8

Dual-Port SRAM, 256KX18, 10ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, BGA-256
IDT

IDT70T631S10BCG

Dual-Port SRAM, 256KX18, 10ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HIEGHT, 1 MM PITCH, GREEN, BGA-256
IDT

IDT70T631S10BCG8

Multi-Port SRAM, 256KX18, 10ns, CMOS, PBGA256
IDT

IDT70T631S10BCGI8

Multi-Port SRAM, 256KX18, 10ns, CMOS, PBGA256
IDT

IDT70T631S10BCI

HIGH-SPEED 2.5V 512/256K x 18 ASYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V 0R 2.5V INTERFACE
IDT