IDT70T653MS12BCGI [IDT]

Dual-Port SRAM, 512KX36, 12ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256;
IDT70T653MS12BCGI
型号: IDT70T653MS12BCGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 512KX36, 12ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256

静态存储器 内存集成电路
文件: 总24页 (文件大小:189K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 2.5V  
512K x 36  
ASYNCHRONOUS DUAL-PORT  
STATIC RAM  
IDT70T653M  
Š
WITH 3.3V 0R 2.5V INTERFACE  
Features  
True Dual-Port memory cells which allow simultaneous  
access of the same memory location  
High-speed access  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
Separate byte controls for multiplexed bus and bus  
matching compatibility  
– Commercial:10/12/15ns (max.)  
Industrial:12ns (max.)  
RapidWrite Mode simplifies high-speed consecutive write  
cycles  
Dual chip enables allow for depth expansion without  
external logic  
IDT70T653M easily expands data bus width to 72 bits or  
more using the Busy Input when cascading more than one  
device  
Sleep Mode Inputs on both ports  
Single 2.5V (±100mV) power supply for core  
LVTTL-compatible, selectable 3.3V (±150mV)/2.5V (±100mV)  
power supply for I/Os and control signals on each port  
Includes JTAG functionality  
Available in a 256-ball Ball Grid Array  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
Busy input for port contention management  
Interrupt Flags  
Green parts available, see ordering information  
Functional Block Diagram  
BE3L  
BE3R  
BE2R  
BE2L  
BE1L  
BE0L  
BE1R  
BE0R  
R/WL  
R/WR  
B B B B  
E E E E  
B
E
3
B B B  
E E E  
2 1 0  
0
L
1
L
2
L
3
L
CE0L  
CE0R  
R R R R  
CE1L  
CE1R  
OEL  
OER  
Dout0-8_L  
Dout9-17_L  
Dout18-26_L  
Dout27-35_L  
Dout0-8_R  
Dout9-17_R  
Dout18-26_R  
Dout27-35_R  
512K x 36  
MEMORY  
ARRAY  
I/O0L- I/O35L  
Di n_L  
Di n_R  
I/O0R -I/O35R  
A
18R  
0R  
Address  
Decoder  
A
18L  
0L  
Address  
Decoder  
ADDR_L  
ADDR_R  
A
A
CE0L  
CE1L  
ARBITRATION  
CE0R  
CE1R  
TDI  
TC K  
TMS  
JTAG  
INTERRUPT  
SEMAPHORE  
LOGIC  
TD O  
TRST  
OE  
L
OE  
R
R/WL  
R/W  
R
BUSY  
L
BUSY  
R
SEM  
L
SEM  
R
(1)  
L
(1)  
R
INT  
INT  
ZZ  
CONTROL  
LOGIC  
(2)  
(2)  
ZZR  
ZZ  
L
NOTES:  
1. INT is non-tri-state totem-pole outputs (push-pull).  
5679 drw 01  
2. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when asserted. OPTx, INTx and the sleep mode  
pins themselves (ZZx) are not affected during sleep mode.  
JANUARY 2009  
1
DSC-5679/5  
©2009IntegratedDeviceTechnology,Inc.  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
The IDT70T653M is a high-speed 512K x 36 Asynchronous Dual-  
Port Static RAM. The IDT70T653M is designed to be used as a stand-  
alone18874K-bitDual-PortRAM.Thisdeviceprovidestwoindependent  
portswithseparatecontrol,address,andI/Opinsthatpermitindependent,  
asynchronousaccessforreadsorwritestoanylocationinmemory.An  
automaticpowerdownfeaturecontrolledbythe chipenables(eitherCE0  
orCE1)permittheon-chipcircuitryofeachporttoenteraverylowstandby  
powermode.  
TheIDT70T653MhasaRapidWriteModewhichallowsthedesigner  
toperformback-to-backwriteoperationswithoutpulsingtheR/Winput  
each cycle. This is especially significant at the 10ns cycle time of the  
IDT70T653M,easingdesignconsiderationsatthesehighperformance  
levels.  
The70T653Mcansupportanoperatingvoltageofeither3.3Vor2.5V  
on one or both ports, controlled by the OPT pins. The power supply for  
the core of the device (VDD) is at 2.5V.  
2
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfiguration(1,2,3)  
70T653M BC  
BC-256(4,5)  
256-Pin BGA  
Top View  
10/07/03  
A1  
A2  
A3  
A6  
A7  
A8  
A9  
A11  
A12  
A13  
A14  
A4  
A5  
A10  
A15  
A16  
NC  
TDI  
NC  
A
11L  
A
8L  
9L  
7L  
BE2L CE1L  
INT  
L
A
5L  
A
2L  
A
0L  
A
17L  
18L  
16L  
A
14L  
OE  
L
NC  
NC  
B1  
B2  
B3  
B6  
B7  
B9  
CE0L  
B11  
B12  
B13  
B4  
B5  
B8  
B10  
B14  
B15  
B16  
I/O18L NC TDO  
A
12L  
A
NC  
A4L  
A
1L  
A
A
15L  
BE3L  
R/W  
L
NC I/O17L NC  
C1  
C5  
C6  
C2  
C3  
C4  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C16  
C14  
C15  
I/O18R  
A
13L  
A
10L  
I/O19L  
V
SS  
A
A
BE1L BE0L SEM  
L
BUSY  
L
A6L  
A
3L  
I/O16L  
OPT  
L
I/O17R  
D1  
D2  
D6  
D9  
D11  
D3  
D5  
D7  
D8  
D10  
D12  
D13  
D14  
D15  
D16  
D4  
I/O20R I/O19R  
VDDQL  
VDDQL  
VDDQR  
I/O20L  
VDDQL  
V
DDQR  
VDDQR  
VDDQL  
VDDQR  
VDD I/O15R I/O15L I/O16R  
V
DD  
E5  
E6  
E7  
E8  
E9  
E10  
E11  
E12  
E13  
E1  
E2  
E3  
E4  
DDQL  
E14  
E16  
E15  
V
DD  
V
DD  
V
SS  
V
SS  
SS  
SS  
V
SS  
SS  
SS  
SS  
VSS  
V
DD  
VDD  
V
DDQR  
I/O13L  
I/O21R I/O21L I/O22L  
V
I/O14R  
I/O14L  
F7  
F1  
F2  
F3  
F5  
F6  
F9  
F10  
F14  
F15  
F16  
F11  
F13  
F4  
F8  
F12  
V
SS  
V
DD  
NC  
V
V
SS  
I/O23L I/O22R I/O23R  
I/O12R I/O13R I/O12L  
DDQR  
V
V
SS  
V
DD  
V
V
DDQL  
G1  
G5  
H5  
G2  
G4  
G6  
G8  
G9  
G3  
G7  
G10  
G12  
G13  
G14  
I/O10L I/O11L I/O11R  
DDQL  
G15  
G16  
G11  
I/O24R  
V
SS  
I/O24L  
V
DDQR  
V
SS  
V
V
I/O25L  
V
SS  
VSS  
VSS  
V
V
SS  
H13  
H11  
H12  
H16  
H7  
H8  
H9  
H10  
H14  
H15  
H3  
H4  
H6  
H1  
H2  
VDDQL  
VSS  
V
SS  
I/O10R  
V
SS  
V
SS  
V
V
SS  
SS  
I/O9R IO9L  
V
SS  
VSS  
I/O26R  
V
DDQR  
I/O26L I/O25R  
J1  
J2  
J5  
J3  
J4  
J6  
J7  
J8  
J9  
J13  
J10  
J11  
J12  
J14  
J15  
J16  
I/O27L  
I/O28R I/O27R  
V
DDQL ZZ  
R
V
SS  
V
SS  
V
SS  
V
SS  
SS  
V
DDQR  
I/O8R  
V
V
SS  
ZZ  
L
I/O7R I/O8L  
K6  
K8  
K10  
K12  
K13  
K5  
K7  
K9  
K11  
K2  
K4  
K15  
K16  
K1  
K3  
K14  
V
SS  
V
SS  
V
SS  
SS  
V
SS  
V
DDQR  
V
SS  
V
SS  
SS  
SS  
V
V
SS  
SS  
I/O29L  
V
DDQL  
I/O6L I/O7L  
I/O29R  
I/O28L  
I/O6R  
L7  
L8  
L11  
L12  
L13  
L3  
L4  
L5  
L6  
L9  
L10  
L15  
L16  
L1  
L2  
L14  
V
V
SS  
V
V
DD  
V
DDQL  
I/O5L  
I/O30R  
V
DDQR  
V
DD  
NC  
V
SS  
V
I/O4R I/O5R  
I/O30L I/O31R  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M1 M2  
M3  
M4  
M16  
M14  
M15  
V
DD  
V
DD  
V
V
SS  
V
SS  
V
SS  
V
DD  
V
DD  
V
DDQL  
I/O32R I/O32L I/O31L  
V
DDQR  
I/O4L  
I/O3R I/O3L  
N8  
N12  
N16  
N13  
N4  
N5  
N6  
DDQR  
N7  
DDQL  
N9  
N10  
N11  
N15  
N1  
N2  
N3  
N14  
VDDQL  
VDDQL  
VDD  
I/O2R  
I/O1R  
V
DDQR  
V
V
V
DDQR  
V
DDQR  
VDDQL  
V
DD  
16R  
18R  
I/O33L I/O34R I/O33R  
I/O2L  
P1  
P2  
P3  
P4  
P5  
P7  
P8  
P9  
P10  
P11  
P12  
P14  
P15  
P16  
P6  
P13  
I/O35R I/O34L TMS  
A
A13R  
A
7R BE1R BE0R SEM  
R
BUSY  
R
A6R  
I/O0L I/O0R I/O1L  
A10R  
A3R  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R16  
R1  
R2  
R3  
R4  
R12  
R13  
R14  
R15  
,
A15R  
A
12R  
A9R  
BE3R CE0R R/W  
R
V
SS  
NC  
I/O35L NC TRST  
A
A4R  
A1R OPTR  
NC  
T2  
T3  
T4  
T1  
T5  
T8  
T9  
T15  
T16  
T6  
T7  
T10  
T11  
T12  
T13  
2R  
T14  
TCK  
NC  
A17R  
NC  
A
14R  
BE2R CE1R  
NC  
NC  
A
11R  
A
8R  
OE  
R
INT  
R
A
5R  
A
A
0R  
5679 drw 02f  
,
NOTES:  
1. All VDD pins must be connected to 2.5V power supply.  
2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VDD (2.5V), and 2.5V if OPT pin for that port is  
set to VSS (0V).  
3. All VSS pins must be connected to ground supply.  
4. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch.  
5. This package code is used to reference the package diagram.  
3
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
CE1R  
Names  
Chip Enables (Input)  
CE0L  
R/W  
OE  
,
CE1L  
CE0R  
R/W  
OE  
,
L
R
Read/Write Enable (Input)  
Output Enable (Input)  
L
R
A0L - A18L  
A0R - A18R  
Address (Input)  
I/O0L - I/O35L  
I/O0R - I/O35R  
Data Input/Output  
Semaphore Enable (Input)  
Interrupt Flag (Output)  
Busy Input  
SEM  
INT  
BUSY  
BE0L - BE3L  
L
SEM  
INT  
BUSY  
BE0R - BE3R  
R
L
R
L
R
Byte Enables (9-bit bytes) (Input)  
Power (I/O Bus) (3.3V or 2.5V)(1) (Input)  
Option for selecting VDDQX(1,2) (Input)  
Sleep Mode Pin(3) (Input)  
Power (2.5V)(1) (Input)  
Ground (0V) (Input)  
VDDQL  
VDDQR  
NOTES:  
1. VDD, OPTX, and VDDQX must be set to appropriate operating levels prior to  
applying inputs on I/OX.  
OPTL  
OPTR  
2. OPTX selects the operating voltage levels for the I/Os and controls on that port.  
If OPTX is set to VDD (2.5V), then that port's I/Os and controls will operate at 3.3V  
levels and VDDQX must be supplied at 3.3V. If OPTX is set to VSS (0V), then that  
port's I/Os and controls will operate at 2.5V levels and VDDQX must be supplied  
at 2.5V. The OPT pins are independent of one anotherboth ports can operate  
at 3.3V levels, both can operate at 2.5V levels, or either can operate at 3.3V  
with the other at 2.5V.  
3. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when  
asserted. OPTx, INTx and the sleep mode pins themselves (ZZx) are not  
affected during sleep mode. It is recommended that boundry scan not be operated  
during sleep mode.  
ZZL  
ZZR  
V
DD  
V
SS  
TDI  
TDO  
TCK  
TMS  
TRST  
Test Data Input  
Test Data Output  
Test Logic Clock (10MHz) (Input)  
Test Mode Select (Input)  
Reset (Initialize TAP Controller) (Input)  
5679 tbl 01  
4
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I—Read/Write and Enable Control(1,2)  
Byte 3  
I/O27-35  
Byte 2  
I/O18-26  
Byte 1  
I/O9-17  
Byte 0  
I/O0-8  
CE  
1
R/W  
X
X
X
L
ZZ  
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
H
MODE  
OE  
X
X
X
X
X
X
X
X
X
X
L
SEM CE  
0
BE  
3
BE  
2
BE  
1
BE0  
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
H
X
L
X
X
H
H
H
H
L
X
X
H
H
H
L
X
X
X
H
L
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z DeselectedPower Down  
High-Z DeselectedPower Down  
High-Z All Bytes Deselected  
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
X
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
X
H
H
L
DIN  
Write to Byte 0 Only  
H
H
H
L
L
DIN  
High-Z Write to Byte 1 Only  
High-Z Write to Byte 2 Only  
High-Z Write to Byte 3 Only  
H
H
L
L
DIN  
High-Z  
High-Z  
H
H
L
L
DIN  
High-Z  
High-Z  
H
L
L
High-Z  
DIN  
DIN  
Write to Lower 2 Bytes Only  
H
L
H
L
L
DIN  
DIN  
High-Z  
High-Z Write to Upper 2 bytes Only  
L
L
L
DIN  
DIN  
DIN  
DIN  
Write to All Bytes  
Read Byte 0 Only  
H
H
H
L
H
H
L
H
L
L
H
H
H
H
H
H
H
X
X
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
DOUT  
L
H
H
H
L
DOUT  
High-Z Read Byte 1 Only  
High-Z Read Byte 2 Only  
High-Z Read Byte 3 Only  
L
H
H
L
DOUT  
High-Z  
High-Z  
L
H
H
L
DOUT  
High-Z  
High-Z  
L
H
L
High-Z  
DOUT  
D
OUT  
Read Lower 2 Bytes Only  
High-Z Read Upper 2 Bytes Only  
Read All Bytes  
L
H
L
H
L
DOUT  
DOUT  
High-Z  
L
L
L
DOUT  
DOUT  
DOUT  
DOUT  
H
X
L
L
L
L
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z  
High-Z Outputs Disabled  
High-Z High-Z Sleep Mode  
X
X
X
X
5679 tbl 02  
NOTES:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
2. It is possible to read or write any combination of bytes during a given access. A few representative samples have been illustrated here.  
Truth Table II – Semaphore Read/Write Control(1)  
Inputs(1)  
Outputs  
I/O1-8,  
CE(2)  
H
OE  
L
BE  
3
BE  
2
BE  
X
1
BE  
L
0
SEM  
L
R/W  
H
I/O18-26  
I/O  
DATAOUT Read Data in Semaphore Flag(3)  
DATAIN Write I/O into Semaphore Flag  
Not Allowed  
0
Mode  
X
X
X
L
DATAOUT  
H
X
X
X
X
L
L
X
0
______  
______  
L
X
X
X
X
L
5679 tbl 03  
NOTES:  
1. There are eight semaphore flags written to I/O0 and read from the I/Os (I/O0-I/O08 and I/O18-I/O26). These eight semaphore flags are addressed by A0-A2.  
2. CE = L occurs when CE0 = VIL and CE1 = VIH. CE = H when CE0 = VIH and/or CE1 = VIL.  
3. Each byte is controlled by the respective BEn. To read data BEn = VIL.  
5
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
RecommendedOperating  
RecommendedDCOperating  
TemperatureandSupplyVoltage(1)  
Conditions with VDDQ at 2.5V  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
2.4  
0
Typ.  
2.5  
2.5  
0
Max.  
2.6  
2.6  
0
Unit  
V
Ambient  
V
DD  
DDQ  
SS  
Grade  
Commercial  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
VDD  
V
V
2.5V  
2.5V  
+
+
100mV  
100mV  
V
V
Industrial  
0V  
Input High Volltage  
(Address, Control &  
Data I/O Inputs)  
(2)  
____  
V
DDQ + 100mV  
1.7  
1.7  
V
V
V
IH  
5679 tbl 04  
(3)  
NOTE:  
1. This is the parameter TA. This is the "instant on" case temperature.  
Input High Voltage _  
JTAG  
(2)  
____  
VIH  
VDD + 100mV  
Capacitance(1)  
V
IH  
IL  
V
DD - 0.2V  
-0.3(1)  
VDD + 100mV  
V
V
Input High Voltage -  
ZZ, OPT  
(2)  
____  
____  
____  
(TA = +25°C, F = 1.0MHZ) PQFP ONLY  
V
Input Low Voltage  
0.7  
0.2  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions  
Max. Unit  
Input Low Voltage -  
ZZ, OPT  
VIL  
-0.3(1)  
V
CIN  
VIN = 0V  
15  
pF  
5679 tbl 05  
NOTES:  
(2)  
OUT  
C
VOUT = 0V  
10.5  
pF  
1. VIL (min.) = -1.0V for pulse width less than tRC/2 or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tRC/2 or 5ns, whichever is  
less.  
3. To select operation at 2.5V levels on the I/Os and controls of a given port, the  
OPT pin for that port must be set to VSS(0V), and VDDQX for that port must be  
supplied as indicated above.  
5679 tbl 08  
NOTES:  
1. These parameters are determined by device characterization, but are not  
production tested.  
2. COUT also references CI/O.  
RecommendedDCOperating  
Conditions with VDDQ at 3.3V  
AbsoluteMaximumRatings(1)  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min.  
2.4  
3.15  
0
Typ.  
2.5  
3.3  
0
Max.  
2.6  
3.45  
0
Unit  
V
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
V
V
DD  
DDQ  
SS  
V
V
VTERM  
VDD Terminal Voltage  
-0.5 to 3.6  
V
V
(VDD  
)
with Respect to GND  
Input High Voltage  
(Address, Control  
&Data I/O Inputs)  
(2)  
TERM  
V
V
DDQ Terminal Voltage  
-0.3 to VDDQ + 0.3  
-0.3 to VDDQ + 0.3  
-55 to +125  
V
(2)  
____  
2.0  
1.7  
V
DDQ + 150mV  
V
V
V
IH  
(3)  
(VDDQ  
)
with Respect to GND  
(2)  
TERM  
_
V
Input and I/O Terminal  
Voltage with Respect to GND  
V
Input High Voltage  
JTAG  
(2)  
____  
VIH  
VDD + 100mV  
(INPUTS and I/O's)  
(3)  
Temperature  
Under Bias  
oC  
oC  
Input High Voltage -  
ZZ, OPT  
(2)  
____  
____  
____  
TBIAS  
VIH  
V
DD - 0.2V  
V
DD + 100mV  
V
V
VIL  
Input Low Voltage  
-0.3(1)  
0.8  
0.2  
Storage  
Temperature  
-65 to +150  
TSTG  
Input Low Voltage -  
ZZ, OPT  
(1)  
VIL  
-0.3  
V
TJN  
Junction Temperature  
+150  
50  
oC  
5679 tbl 06  
NOTES:  
I
OUT(For VDDQ = 3.3V) DC Output Current  
mA  
1. VIL (min.) = -1.0V for pulse width less than tRC/2 or 5ns, whichever is less.  
2. VIH (max.) = VDDQ + 1.0V for pulse width less than tRC/2 or 5ns, whichever is  
less.  
I
OUT(For VDDQ = 2.5V) DC Output Current  
40  
mA  
5679 tbl 07  
3. To select operation at 3.3V levels on the I/Os and controls of a given port, the  
OPT pin for that port must be set to VDD (2.5V), and VDDQX for that port must be  
supplied as indicated above.  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS  
may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above those  
indicated in the operational sections of this specification is not implied. Exposure  
to absolute maximum rating conditions for extended periods may affect  
reliability.  
2. This is a steady-state DC parameter that applies after the power supply has  
reached its nominal operating value. Power sequencing is not necessary;  
however, the voltage on any Input or I/O pin cannot exceed VDDQ during power  
supply ramp up.  
3. Ambient Temperature under DC Bias. No AC Conditions. Chip Deselected.  
6
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 2.5V ± 100mV)  
70T653M  
Min.  
Symbol  
Parameter  
Test Conditions  
DDQ = Max., VIN = 0V to VDDQ  
DD = Max. IN = 0V to VDD  
CE = VIH or CE = VIL, VOUT = 0V to VDDQ  
OL = +4mA, VDDQ = Min.  
OH = -4mA, VDDQ = Min.  
OL = +2mA, VDDQ = Min.  
OH = -2mA, VDDQ = Min.  
Max.  
10  
Unit  
µA  
µA  
µA  
V
(1)  
___  
___  
___  
___  
|ILI  
|ILI  
|ILO  
|
Input Leakage Current  
V
|
JTAG & ZZ Input Leakage Current(1,2)  
Output Leakage Current(1,3)  
V
,
V
+60  
10  
|
0
1
V
OL (3.3V) Output Low Voltage(1)  
OH (3.3V) Output High Voltage(1)  
OL (2.5V) Output Low Voltage(1)  
OH (2.5V) Output High Voltage(1)  
I
0.4  
___  
V
I
2.4  
V
___  
V
I
0.4  
V
___  
V
I
2.0  
V
5679 tbl 09  
NOTES:  
1. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to page 6 for details.  
2. Applicable only for TMS, TDI and TRST inputs.  
3. Outputs tested in tri-state mode.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(3) (VDD = 2.5V ± 100mV)  
70T653MS10  
Com'l Only  
70T653MS12  
Com'l  
& Ind  
70T653MS15  
Com'l Only  
Symbol  
Parameter  
Test Condition  
= VIL  
Version  
COM'L  
Typ.(4)  
Max.  
Typ.(4)  
600  
600  
150  
150  
360  
360  
Max.  
710  
790  
210  
260  
460  
510  
Typ.(4)  
Max. Unit  
IDD  
Dynamic Operating  
Current (Both  
Ports Active)  
mA  
600  
CE  
L
and CE  
Outputs Disabled  
R
,
S
S
S
S
S
S
600  
810  
450  
____  
____  
____  
____  
(1)  
IND  
f = fMAX  
(6)  
ISB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
mA  
170  
CE  
f = fMAX  
L = CER = VIH  
(1)  
COM'L  
IND  
180  
240  
120  
____  
____  
____  
____  
(6)  
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
mA  
400  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
f = fMAX  
COM'L  
IND  
400  
530  
300  
____  
____  
____  
____  
(1)  
ISB3  
Full Standby Current Both Ports CE  
> VDDQ - 0.2V,  
IN > VDDQ - 0.2V or VIN < 0.2V,  
L
and  
mA  
20  
COM'L  
IND  
S
S
4
20  
4
4
20  
40  
4
(Both Ports - CMOS CE  
R
Level Inputs)  
V
____  
____  
____  
____  
(2)  
f = 0  
(6)  
ISB4  
Full Standby Current  
(One Port - CMOS  
Level Inputs)  
mA  
400  
CE"A" < 0.2V and  
COM'L  
IND  
S
S
400  
530  
460  
510  
300  
(5)  
CE"B" > VDDQ - 0.2V  
IN > VDDQ - 0.2V or VIN < 0.2V,  
Active Port, Outputs Disabled,  
V
____  
____  
____  
____  
360  
(1)  
f = fMAX  
IZZ  
Sleep Mode Current ZZL = ZZR =  
(1)  
VIH  
mA  
COM'L  
IND  
S
S
4
20  
4
4
20  
40  
4
20  
(Both Ports - TTL  
Level Inputs)  
f = fMAX  
____  
____  
____  
____  
5679 tbl 10  
NOTES:  
1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, using "AC TEST CONDITIONS" at input  
levels of GND to 3.3V.  
2. f = 0 means no address or control lines change. Applies only to input at CMOS level standby.  
3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
4. VDD = 3.3V, TA = 25°C for Typ, and are not production tested. IDD DC(f=0) = 200mA (Typ).  
5. CEX = VIL means CE0X = VIL and CE1X = VIH  
CEX = VIH means CE0X = VIH or CE1X = VIL  
CEX < 0.2V means CE0X < 0.2V and CE1X > VDDQX - 0.2V  
CEX > VDDQX - 0.2V means CE0X > VDDQX - 0.2V or CE1X < 0.2V.  
"X" represents "L" for left port or "R" for right port.  
6. ISB1, ISB2 and ISB4 will all reach full standby levels (ISB3) on the appropriate port(s) if ZZL and /or ZZR = VIH.  
7
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Test Conditions (VDDQ - 3.3V/2.5V)  
Input Pulse Levels  
GND to 3.0V / GND to 2.4V  
2ns Max.  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V/1.25V  
1.5V/1.25V  
Figure 1  
5679 tbl 11  
50  
50Ω  
,
DATAOUT  
1.5V/1.25  
10pF  
(Tester)  
5679 drw 03  
Figure 1. AC Output Test load.  
4
3.5  
3
2.5  
tAA/tACE  
(Typical, ns)  
2
1.5  
1
0.5  
0
0
160  
5679 drw 05  
20  
40  
60  
120  
140  
80  
100  
Capacitance (pF) from AC Test Load  
Figure 3. Typical Output Derating (Lumped Capacitive Load).  
8
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
70T653MS10  
Com'l Only  
70T653MS12  
Com'l  
70T653MS15  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
LZOB  
HZ  
PU  
PD  
SOP  
SAA  
SOE  
Read Cycle Time  
10  
12  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
10  
10  
5
12  
12  
6
15  
15  
7
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
t
t
5
6
7
____  
____  
____  
t
Output Hold from Address Change  
3
3
0
0
3
3
0
0
3
3
0
0
t
Output Low-Z Time Chip Enable and Semaphore(1,2)  
Output Low-Z Time Output Enable and Byte Enable(1,2)  
Output High-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
t
t
4
6
8
t
Chip Enable to Power Up Time(2)  
0
0
0
____  
____  
____  
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
8
4
8
6
12  
8
____  
____  
____  
t
____  
____  
____  
t
t
2
10  
5
2
12  
6
2
15  
7
____  
____  
____  
t
Semaphore Output Enable Access Time  
ns  
5679 tbl 12  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(4)  
70T653MS10  
Com'l Only  
70T653MS12  
Com'l  
70T653MS15  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
10  
7
12  
9
15  
12  
12  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
7
9
t
0
0
t
7
9
12  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Data Hold Time  
0
0
t
5
7
10  
t
0
0
0
(1,2)  
____  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1,2)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
4
6
8
____  
____  
____  
t
3
5
5
3
5
5
3
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
5679 tbl 13  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 1).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE= VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time. CE = VIL when  
CE0 = VIL and CE1 = VIH. CE = VIH when CE0 = VIH and/or CE1 = VIL.  
4. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 6 for details.  
9
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(4)  
tRC  
ADDR  
(3)  
t
t
AA  
(3)  
ACE  
CE(5)  
(3)  
tAOE  
OE  
(3)  
tABE  
BEn  
R/W  
(1)  
tOH  
tLZ/tLZOB  
VALID DATA(3)  
DATAOUT  
(2)  
tHZ  
.
5679 drw 06  
NOTES:  
1. Timing depends on which signal is asserted last, OE, CE or BEn.  
2. Timing depends on which signal is de-asserted first CE, OE or BEn.  
3. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tABE.  
4. SEM = VIH.  
5. CE = L occurs when CE0 = VIL and CE1 = VIH. CE = H when CE0 = VIH and/or CE1 = VIL.  
Timing of Power-Up Power-Down  
CE  
t
PU  
tPD  
ICC  
50%  
50%  
.
5679 drw 07  
ISB  
10  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
CE or SEM(9)  
t
AW  
(7)  
tHZ  
(9)  
BEn  
(3)  
(6)  
(2)  
tWR  
tAS  
tWP  
R/W  
(7)  
(7)  
tLZ  
t
OW  
tWZ  
(4)  
OUT  
DATA  
(4)  
tDH  
t
DW  
,
IN  
DATA  
5679 drw 10  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
t
AW  
CE or SEM(9)  
BEn(9)  
(6)  
AS  
(3)  
WR  
(2)  
t
t
EW  
t
R/W  
t
DW  
tDH  
DATAIN  
.
.
5679 drw 11  
NOTES:  
1. R/W or CE or BEn = VIH during all address transitions for Write Cycles 1 and 2.  
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL, BEn = VIL, and a R/W = VIL for memory array writing cycle.  
3. tWR is measured from the earlier of CE, BEn or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load  
(Figure 1).  
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition. CE = VIL when CE0 = VIL  
and CE1 = VIH. CE = VIH when CE0 = VIH and/or CE1 = VIL.  
11  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
takentostillmeettheWriteCycletime(tWC),thetimeinwhichtheAddress  
inputsmustbestable. Inputdatasetupandholdtimes(tDW andtDH)will  
nowbereferencedtotheendingaddresstransition. InthisRapidWrite  
Mode theI/OwillremainintheInputmodeforthedurationoftheoperations  
duetoR/Wbeingheldlow. AllstandardWriteCyclespecificationsmust  
beadheredto.However,tAS andtWR areonlyapplicablewhenswitching  
between read and write operations. Also, there are two additional  
conditionsontheAddressInputsthatmustalsobemettoensurecorrect  
addresscontrolledwrites. Thesespecifications,theAllowableAddress  
Skew(tAAS)andtheAddressRise/Falltime(tARF),mustbemettousethe  
RapidWriteMode. Iftheseconditionsarenotmetthereisthepotentialfor  
inadvertent write operations at random intermediate locations as the  
devicetransitionsbetweenthedesiredwriteaddresses.  
RapidWrite Mode Write Cycle  
Unlike othervendors'Asynchronous RandomAccess Memories,  
theIDT70T653Miscapableofperformingmultipleback-to-backwrite  
operations without having to pulse the R/W, CE, or BEn signals high  
duringaddresstransitions. ThisRapidWriteModefunctionalityallowsthe  
systemdesignertoachieveoptimumback-to-backwritecycleperformance  
withoutthedifficulttaskofgeneratingnarrowresetpulseseverycycle,  
simplifyingsystemdesignandreducingtimetomarket.  
DuringthisnewRapidWriteMode,theendofthewritecycleisnow  
definedbytheendingaddresstransition,insteadoftheR/WorCEorBEn  
transition to the inactive state. R/W, CE, and BEn can be held active  
throughouttheaddresstransitionbetweenwritecycles.Caremustbe  
Timing Waveform of Write Cycle No. 3, RapidWrite Mode Write Cycle(1,3)  
(4)  
WC  
t
WC  
t
t
WC  
ADDRESS  
(2)  
EW  
t
CE or SEM(6)  
BEn  
R/W  
t
WR  
t
WP  
(5)  
OW  
(5)  
WZ  
t
t
DATAOUT  
t
DH  
t
DH  
t
DH  
t
DW  
tDW  
t
DW  
DATAIN  
5679 drw 08  
NOTES:  
1. OE = VIL for this timing waveform as shown. OE may equal VIH with same write functionality; I/O would then always be in High-Z state.  
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL, BEn = VIL, and a R/W = VIL for memory array writing cycle. The last transition LOW of CE, BEn, and  
R/W initiates the write sequence. The first transition HIGH of CE, BEn, and R/W terminates the write sequence.  
3. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
4. The timing represented in this cycle can be repeated multiple times to execute sequential RapidWrite Mode writes.  
5. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load  
(Figure 1).  
6. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition. CE = VIL when CE0 = VIL  
and CE1 = VIH. CE = VIH when CE0 = VIH and/or CE1 = VIL.  
12  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics over the Operating Temperature Range  
and Supply Voltage Range for RapidWrite Mode Write Cycle(1)  
Symbol  
Parameter  
Min  
Max  
Unit  
____  
t
AAS  
Allowable Address Skew for RapidWrite Mode  
Address Rise/Fall Time for RapidWrite Mode  
1
ns  
____  
tARF  
1.5  
V/ns  
5679 tbl 14  
NOTE:  
1. Timing applies to all speed grades when utilizing the RapidWrite Mode Write Cycle.  
Timing Waveform of Address Inputs for RapidWrite Mode Write Cycle  
A
0
t
ARF  
t
AAS  
A
18  
t
ARF  
5679 drw 09  
13  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
t
tAW  
tWR  
ACE  
tEW  
SEM(1)  
tOH  
tSOP  
tDW  
OUT  
DATA  
VALID(2)  
I/O  
IN  
DATA VALID  
tAS  
tWP  
tDH  
R/W  
tSWRD  
tSOE  
OE  
tSOP  
Write Cycle  
Read Cycle  
.
5679 drw 12  
NOTES:  
1. CE0 = VIH and CE1 = VIL are required for the duration of both the write cycle and the read cycle waveforms shown above. Refer to Truth Table II for details and for  
appropriate BEn controls.  
2. "DATAOUT VALID" represents all I/O's (I/O0 - I/O8 and I/O18 - I/O26) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2) "A"  
R/W"A"  
SEM"A"  
t
SPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
.
5679 drw 13  
NOTES:  
1. DOR = DOL = VIL, CEL = CER = VIH. Refer to Truth Table II for appropriate BE controls.  
2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied,the semaphore will fall positively to one side or the other, but there is no guarantee which side will be granted the semaphore flag.  
14  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70T653MS10  
Com'l Only  
70T653MS12  
Com'l  
70T653MS15  
Com'l Only  
& Ind  
Symbol  
Parameter  
Unit  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
BUSY TIMING  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
7
0
9
0
ns  
ns  
tWH  
12  
PORT-TO-PORT DELAY TIMING  
Write Pulse to Data Delay(1)  
Write Data Valid to Read Data Delay(1)  
____  
____  
____  
____  
____  
____  
t
WDD  
14  
14  
16  
16  
20  
20  
ns  
tDDD  
ns  
5679 tbl 15  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to Timing Waveform of Write with Port-to-Port Read.  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of the Max. spec, tWDD – tWP (actual), or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1,2,3)  
70T65M3S10  
Com'l Only  
70T653MS12  
Com'l  
& Ind  
70T6539MS15  
Com'l Only  
Symbol  
SLEEP MODE TIMING (ZZx=VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
ZZS  
ZZR  
ZZPD  
ZZPU  
Sleep Mode Set Time  
10  
10  
12  
12  
15  
15  
t
Sleep Mode Reset Time  
t
Sleep Mode Power Down Time(4)  
Sleep Mode Power Up Time(4)  
10  
12  
15  
____  
____  
____  
t
0
0
0
5679 tbl 15a  
NOTES:  
1. Timing is the same for both ports.  
2. The sleep mode pin shuts off all dynamic inputs, except JTAG inputs, when asserted. OPTx, INTx and the sleep mode pins themselves (ZZx) are not affected  
during sleep mode. It is recommended that boundary scan not be operated during sleep mode.  
3. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 6 for details.  
4. This parameter is guaranteed by device characterization, but is not production tested.  
15  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with Port-to-Port Read(1,3)  
t
WC  
MATCH  
ADDR"A"  
t
WP  
R/W"A"  
t
DH  
tDW  
VALID  
DATAIN "A"  
ADDR"B"  
MATCH  
(4)  
R/W"B"  
t
WDD  
DATAOUT "B"  
VALID  
(3)  
t
DDD  
.
NOTES:  
5679 drw 14a  
1. CE0L = CE0R = VIL; CE1L = CE1R = VIH.  
2. OE = VIL for the reading port.  
3. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
4. R/WB = VIH.  
Timing Waveform of Write with BUSY  
t
WP  
R/W"A"  
t
WB  
BUSY"B"  
(1)  
t
WH  
(2)  
R/W"B"  
.
NOTES:  
1. tWH must be met for BUSY input.  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
5679 drw 15  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1,2)  
70T653MS10  
Com'l Only  
70T653MS12  
Com'l  
& Ind  
70T653MS15  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
t
0
0
0
____  
____  
____  
t
10  
10  
12  
12  
15  
15  
____  
____  
____  
t
Interrupt Reset Time  
ns  
5679 tbl 16  
NOTES:  
1. Timing is the same for both ports.  
2. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 6 for details.  
16  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
t
WC  
(2)  
ADDR"A"  
INTERRUPT SET ADDRESS  
(5)  
(4)  
tWR  
t
AS  
(3)  
CE"A"  
R/W"A"  
INT"B"  
(4)  
t
INS  
.
5679 drw 18  
tRC  
INTERRUPT CLEAR ADDRESS(2)  
ADDR"B"  
(4)  
tAS  
(3)  
CE"B"  
OE"B"  
INT"B"  
(4)  
tINR  
.
5679 drw 19  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from port A”.  
2. Refer to Interrupt Truth Table.  
3. CEX = VIL means CE0X = VIL and CE1X = VIH. CEX = VIH means CE0X = VIH and/or CE1X = VIL.  
4. Timing depends on which enable signal (CE or R/W) is asserted last.  
5. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
Truth Table III — Interrupt Flag(1,4)  
Left Port  
Right Port  
OE  
R/W  
L
L
A
18L-A0L  
R/W  
X
R
A18R-A0R  
Function  
CE  
L
OE  
L
INT  
L
CE  
R
R
INTR  
(2)  
L
X
X
L
X
X
X
L
7FFFF  
X
X
X
L
L
X
X
L
X
L
Set Right INT  
Reset Right INT  
Set Left INT Flag  
Reset Left INT Flag  
R
Flag  
(3)  
X
X
X
7FFFF  
7FFFE  
X
H
R
Flag  
(3)  
X
X
L
L
X
X
X
L
(2)  
X
7FFFE  
H
X
X
L
5679 tbl 17  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH. CE0X = VIL and CE1X = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTL and INTR must be initialized at power-up.  
17  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table IV — Example of Semaphore Procurement Sequence(1,2,3)  
D
0
- D  
8
Left  
D
0
- D  
8 Right  
Functions  
Status  
D
18 - D26 Left  
D18 - D26 Right  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
5679 tbl 19  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70T653M.  
2. There are eight semaphore flags written to via I/O0 and read from I/Os (I/O0-I/O8 and I/O18-I/O26). These eight semaphores are addressed by A0 - A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
semaphoreflags.Theseflags alloweitherprocessorontheleftor  
right side of the Dual-Port RAM to claim a privilege over the other  
processorforfunctionsdefinedbythesystemdesignerssoftware.As  
an example, the semaphore can be used by one processor to inhibit  
the otherfromaccessinga portionofthe Dual-PortRAMoranyother  
sharedresource.  
TheIDT70T653Mprovidestwoportswithseparatecontrol,address  
and I/O pins that permit independent access for reads or writes to any  
location in memory. The IDT70T653M has an automatic power down  
feature controlled by CE. The CE0 and CE1 control the on-chip power  
downcircuitrythatpermitstherespectiveporttogointoastandbymode  
whennotselected(CE =HIGH). Whena portis enabled, access tothe  
entirememoryarrayispermitted.  
TheDual-PortRAMfeaturesafastaccesstime,withbothportsbeing  
completelyindependentofeachother.Thismeansthatthe activityonthe  
leftportinnowayslowstheaccesstimeoftherightport. Bothportsare  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom  
orwrittentoatthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE0andCE1,theDual-  
PortRAMchipenables,andSEM,thesemaphoreenable.TheCE0,CE1,  
and SEM pins control on-chip power down circuitry that permits the  
respectiveporttogointostandbymodewhennotselected.  
Systems which can best use the IDT70T653M contain multiple  
processors or controllers and are typically very high-speed systems  
whicharesoftwarecontrolledorsoftwareintensive.Theseystems can  
benefit from a performance increase offered by the IDT70T653Ms  
hardware semaphores, which provide a lockout mechanism without  
requiringcomplexprogramming.  
Interrupts  
Iftheuserchoosestheinterruptfunction,amemorylocation(mail box  
ormessagecenter)is assignedtoeachport. Theleftportinterruptflag  
(INTL)isassertedwhentherightportwritestomemorylocation7FFFE  
(HEX),whereawriteisdefinedasCER =R/WR=VILpertheTruthTable.  
Theleftportclearstheinterruptthroughaccessofaddresslocation7FFFE  
when CEL = OEL = VIL, R/W is a "don't care". Likewise, the right port  
interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
7FFFF(HEX)andtocleartheinterruptflag(INTR),therightportmustread  
thememorylocation7FFFF.Themessage(36bits)at7FFFEor7FFFF  
isuser-definedsinceitisanaddressableSRAMlocation.Iftheinterrupt  
functionisnotused,addresslocations7FFFEand7FFFFarenotused  
asmailboxes,butaspartoftherandomaccessmemory.RefertoTruth  
Table III forthe interruptoperation.  
BusyLogic  
Softwarehandshakingbetweenprocessors offers themaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations. The IDT70T653M does not use its semaphore flags to  
control any resources through hardware, thus allowing the system  
designertotalflexibilityinsystemarchitecture.  
TheBUSY pinoperatesasawriteinhibitinputpin.Normaloperation  
canbeprogrammedbytyingtheBUSYpinsHIGH.Ifdesired,unintended  
writeoperationscanbepreventedtoaportbytyingtheBUSYpinforthat  
port LOW.  
Anadvantageofusingsemaphoresratherthanthemorecommon  
methodsofhardwarearbitrationisthatwaitstatesareneverincurred  
in either processor. This can prove to be a major advantage in very  
high-speed systems.  
Semaphores  
The IDT70T653Mis anextremelyfastDual-Port 512Kx36CMOS  
StaticRAMwithanadditional8addresslocationsdedicatedtobinary  
18  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
subsequent read (see Table IV). As an example, assume a processor  
writes a zero to the left port at a free semaphore location. On a  
subsequent read, the processor will verify that it has written success-  
fullytothatlocationandwillassumecontrolovertheresourceinquestion.  
Meanwhile,ifaprocessorontherightsideattemptstowriteazerotothe  
samesemaphoreflagitwillfail,aswillbeverifiedbythe factthataonewill  
bereadfromthatsemaphoreontherightsideduringsubsequentread.  
HadasequenceofREAD/WRITEbeenusedinstead,systemcontention  
problemscouldhaveoccurredduringthegapbetweenthereadandwrite  
cycles.  
How the Semaphore Flags Work  
The semaphore logic is a set of eight latches which are indepen-  
dent of the Dual-Port RAM. These latches can be used to pass a flag,  
or token, from one port to the other to indicate that a shared resource  
is in use. The semaphores provide a hardware assist for a use  
assignmentmethodcalledTokenPassingAllocation.”Inthis method,  
the state of a semaphore latch is used as a token indicating that a  
shared resource is in use. If the left processor wants to use this  
resource,itrequeststhetokenbysettingthelatch.Thisprocessorthen  
verifiesitssuccessinsettingthelatchbyreadingit. Ifitwassuccessful,it  
proceeds to assume control over the shared resource. If it was not  
successfulinsettingthelatch,itdeterminesthattherightsideprocessor  
has set the latch first, has the token and is using the shared resource.  
The left processor can then either repeatedly request that  
semaphores status or remove its request for that semaphore to  
perform another task and occasionally attempt again to gain control of  
the token via the set and test sequence. Once the right side has  
relinquishedthetoken,theleftsideshouldsucceedingainingcontrol.  
The semaphore flags are active LOW. A token is requested by  
writing a zero into a semaphore latch and is released when the same  
sidewritesaonetothatlatch.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation.The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
The eight semaphore flags reside within the IDT70T653M in a  
separate memoryspace fromthe Dual-PortRAM. This address space  
is accessedbyplacingalowinputonthe SEM pin(whichacts as achip  
selectforthesemaphoreflags)andusingtheothercontrolpins(Address,  
CE0, CE1,R/W and BEn) as they would be used in accessing a  
standardStaticRAM.Eachoftheflagshasauniqueaddresswhichcan  
beaccessedbyeithersidethroughaddresspinsA0A2.Whenaccessing  
thesemaphores,noneoftheotheraddresspinshasanyeffect.  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel  
is written into an unused semaphore location, that flag will be set to  
a zero on that side and a one on the other side (see Truth Table IV).  
Thatsemaphorecannowonlybemodifiedbythesideshowingthezero.  
Whenaoneiswrittenintothesamelocationfromthesameside,the flag  
will be set to a one for both sides (unless a semaphore request  
fromtheothersideispending)andthencanbewrittentobybothsides.  
The fact that the side which is able to write a zero into a semaphore  
subsequently locks out writes from the other side is what makes  
semaphoreflagsusefulininterprocessorcommunications.(Athorough  
discussionontheuseofthisfeaturefollowsshortly.)Azerowrittenintothe  
samelocationfromtheothersidewillbestoredinthesemaphorerequest  
latchforthatsideuntilthesemaphoreisfreedbythefirstside.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
a zeroreads as allzeros fora semaphore read, theSEM, BEn, and OE  
signals needtobeactive.(PleaserefertoTruthTableII).Furthermore,  
thereadvalueislatchedintoonesidesoutputregisterwhenthatside's  
semaphoreselect(SEM,BEn)andoutputenable(OE)signalsgoactive.  
Thisservestodisallowthesemaphorefromchangingstateinthemiddle  
of a read cycle due to a write cycle from the other side.  
A sequence WRITE/READ must be used by the semaphore in  
order to guarantee that no system level contention will occur. A  
processor requests access to shared resources by attempting to write  
a zero into a semaphore location. If the semaphore is already in use,  
the semaphore request latch will contain a zero, yet the semaphore  
flag will appear as one, a fact which the processor will verify by the  
5679 drw 21  
Figure 4. IDT70T653M Semaphore Logic  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Iftheoppositesidesemaphorerequestlatchhas  
beenwrittentozerointhemeantime,thesemaphoreflagwillflipoverto  
theothersideassoonasaoneiswrittenintothefirstrequestlatch.The  
oppositesideflagwillnowstayLOWuntilitssemaphorerequestlatchis  
writtentoaone.Fromthisitiseasytounderstandthat,ifasemaphoreis  
requested and the processor which requested it no longer needs the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
The criticalcase ofsemaphore timingis whenbothsides requesta  
single token by attempting to write a zero into it at the same time. The  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta-  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst  
side to make the request will receive the token. If  
bothrequests arriveatthesametime,theassignmentwillbearbitrarily  
made to one port or the other.  
One caution that should be noted when using semaphores is that  
semaphoresalonedonotguaranteethataccesstoaresourceissecure.  
As with any powerful programming technique, if semaphores  
are misusedormisinterpreted, a software errorcaneasilyhappen.  
Initializationofthesemaphoresisnotautomaticandmustbehandled  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides  
to assure that they will be free when needed.  
19  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
20  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
SleepMode  
The IDT70T653M is equipped with an optional sleep or low power operation occurs during these periods, the memory array may be  
modeonbothports.Thesleepmodepinonbothportsisactivehigh.During corrupted. Validity of data out from the RAM cannot be guaranteed  
normal operation, the ZZ pin is pulled low. When ZZ is pulled high, the immediatelyafterZZis asserted(priortobeinginsleep).  
port will enter sleep mode where it will meet lowest possible power  
conditions.Thesleepmodetimingdiagramshowsthemodesofoperation: disconnectsitsinternalbuffer.Alloutputswillremaininhigh-Zstatewhile  
NormalOperation,NoRead/WriteAllowedandSleepMode. insleepmode.Allinputsareallowedtotoggle.TheRAMwillnotbeselected  
DuringsleepmodetheRAMautomaticallydeselectsitself.TheRAM  
Foraperiodoftime priortosleepmodeandafterrecoveringfromsleep and will not perform any reads or writes.  
mode(tZZS andtZZR),newreadsorwritesarenotallowed.Ifawriteorread  
JTAG Functionality and Configuration  
TheIDT70T653Miscomposedoftwoindependentmemoryarrays, RegisterSizes, andSystemInterface Parametertables. Specifically,  
andthus cannotbe treatedas a single JTAGdevice inthe scanchain. commands for Array B must precede those for Array A in any JTAG  
The two arrays (A and B) each have identical characteristics and operationssenttotheIDT70T653M. PleasereferenceApplicationNote  
commandsbutmustbetreatedasseparateentitiesinJTAGoperations. AN-411,"JTAGTestingofMultichipModules"forspecificinstructionson  
Please refer to Figure 5.  
performing JTAG testing on the IDT70T653M. AN-411 is available at  
JTAGsignalingmustbeprovidedseriallytoeacharrayandutilizes www.idt.com.  
theinformationprovidedintheIdentificationRegisterDefinitions,Scan  
IDT70T653M  
Array B  
TDO  
TDI  
TDOA  
TDIB  
Array A  
TCK  
TMS  
TRST  
5679 drw 23  
Figure 5. JTAG Configuration for IDT70T653M  
21  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
JTAGTimingSpecifications  
t
JCYC  
tJR  
tJF  
tJCL  
tJCH  
TCK  
Device Inputs(1)/  
TDI/TMS  
tJDC  
tJS  
tJH  
Device Outputs(2)/  
TDO  
t
JRSR  
tJCD  
TRST  
x
5679 drw 24  
tJRST  
NOTES:  
1. Device inputs = All device inputs except TDI, TMS, TCK and TRST.  
2. Device outputs = All device outputs except TDO.  
JTAG AC Electrical  
Characteristics(1,2,3,4,5)  
70T653M  
Symbol  
Parameter  
JTAG Clock Input Period  
JTAG Clock HIGH  
JTAG Clock Low  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
JTAG Reset  
Min.  
100  
40  
Max.  
Units  
ns  
____  
t
JCYC  
JCH  
JCL  
JR  
JF  
JRST  
JRSR  
JCD  
JDC  
JS  
JH  
____  
____  
t
ns  
t
40  
ns  
(1)  
____  
t
3
ns  
(1)  
____  
t
3
ns  
____  
____  
t
50  
ns  
t
JTAG Reset Recovery  
JTAG Data Output  
JTAG Data Output Hold  
JTAG Setup  
50  
ns  
NOTES:  
1. Guaranteed by design.  
2. 30pF loading on external output signals.  
3. Refer to AC Electrical Test Conditions stated earlier in this document.  
4. JTAG operations occur at one speed (10MHz). The base device may run at any  
speed specified in this datasheet.  
____  
t
25  
ns  
____  
t
0
ns  
____  
____  
t
15  
15  
ns  
5. JTAG cannot be tested in sleep mode.  
t
JTAG Hold  
ns  
5679 tbl 20  
22  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Identification Register Definitions  
Value  
Value  
Array A  
Instruction Field Array B  
Instruction Field Array A  
Description  
Reserved for Version number  
Array B  
Revision Number (31:28)  
0x0  
Revision Number (63:60)  
IDT Device ID (59:44)  
0x0  
IDT Device ID (27:12)  
0x33B  
0x33  
1
0x33B  
0x33  
1
Defines IDT Part number  
IDT JEDEC ID (11:1)  
IDT JEDEC ID (43:33)  
Allows unique identification of device vendor as IDT  
Indicates the presence of an ID Register  
ID Register Indicator Bit (Bit 0)  
ID Register Indicator Bit (Bit 32)  
5679 tbl 21  
ScanRegisterSizes  
Bit Size  
Array A  
Bit Size  
Array B  
Bit Size  
70T653M  
Register Name  
Instruction (IR)  
4
1
4
1
8
2
Bypass (BYR)  
Identification (IDR)  
Boundary Scan (BSR)  
32  
32  
64  
Note (3)  
Note (3)  
Note (3)  
5679 tbl 22  
SystemInterfaceParameters  
Instruction  
Code  
Description  
EXTEST  
00000000  
Forces contents of the boundary scan cells onto the device outputs(1).  
Places the boundary scan register (BSR) between TDI and TDO.  
BYPASS  
IDCODE  
11111111  
Places the bypass register (BYR) between TDI and TDO.  
00100010  
Loads the ID register (IDR) with the vendor ID code and places the  
register between TDI and TDO.  
01000100  
Places the bypass register (BYR) between TDI and TDO. Forces all  
device output drivers to a High-Z state.  
HIGHZ  
CLAMP  
Uses BYR. Forces contents of the boundary scan cells onto the device  
outputs. Places the bypass register (BYR) between TDI and TDO.  
00110011  
00010001  
SAMPLE/PRELOAD  
Places the boundary scan register (BSR) between TDI and TDO.  
SAMPLE allows data from device inputs(2) and outputs(1) to be captured  
in the boundary scan cells and shifted serially through TDO. PRELOAD  
allows data to be input serially into the boundary scan cells via the TDI.  
RESERVED  
Several combinations are reserved. Do not use codes other than those  
identified above.  
All Other Codes  
5679 tbl 23  
NOTES:  
1. Device outputs = All device outputs except TDO.  
2. Device inputs = All device inputs except TDI, TMS, TCK and TRST.  
3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local  
IDT sales representative.  
23  
IDT70T653M  
High-Speed 2.5V 512K x 36 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Ordering Information  
XXXXX  
A
999  
A
A
A
Speed  
Package  
Power  
Device  
Type  
Process/  
Temperature  
Range  
Blank  
I
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
G(1)  
BC  
Green  
256-ball BGA (BC-256)  
10  
12  
15  
Commercial Only  
Commercial & Industrial  
Commercial Only  
Speed in nanoseconds  
S
Standard Power  
70T653M 18Mbit (512K x 36) Asynchronous Dual-Port RAM  
5679 drw 25  
NOTE:  
1. Green parts available. For specific speeds, packages and powers contact your local sales office.  
DatasheetDocumentHistory:  
10/08/03: InitialDatasheet  
10/20/03: Page1Added"IncludesJTAGfunctionality"tofeatures  
Page 13 Corrected tARF to 1.5V/ns Min  
09/28/04: Removed"Preliminary"status  
Page 11 Updated Timing Waveform of Write Cycle No. 1, R/W ControlledTiming  
Page21 AddedJTAGConfigurationandJTAGFunctionalitydescriptions  
Page 1 & 24 Replaced old ® logo with the new TM logo  
06/30/05: Page 1 Added green availability to features  
Page 24 Added green indicator to ordering information  
07/25/08: Page 7 Corrected a typo in the DC Chars table  
01/19/09: Page 24Removed "IDT" from orderable part number  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
408-284-2794  
DualPortHelp@idt.com  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
Š
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
24  

相关型号:

IDT70T653MS12BCI

HIGH-SPEED 2.5V 512K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V 0R 2.5V INTERFACE
IDT

IDT70T653MS12BCI8

Dual-Port SRAM, 512KX36, 12ns, CMOS, PBGA256, BGA-256
IDT

IDT70T653MS15BC

HIGH-SPEED 2.5V 512K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V 0R 2.5V INTERFACE
IDT

IDT70T653MS15BC8

Dual-Port SRAM, 512KX36, 15ns, CMOS, PBGA256, BGA-256
IDT

IDT70T653MS15BCG

Dual-Port SRAM, 512KX36, 15ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

IDT70T653MS15BCI

HIGH-SPEED 2.5V 512K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V 0R 2.5V INTERFACE
IDT

IDT70T659S

HIGH-SPEED 2.5V 256/128K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V 0R 2.5V INTERFACE
IDT

IDT70T659S10BC

HIGH-SPEED 2.5V 256/128K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V 0R 2.5V INTERFACE
IDT

IDT70T659S10BC8

Dual-Port SRAM, 128KX36, 10ns, CMOS, PBGA256, BGA-256
IDT

IDT70T659S10BCGI8

Dual-Port SRAM, 128KX36, 10ns, CMOS, PBGA256, BGA-256
IDT

IDT70T659S10BCI

HIGH-SPEED 2.5V 256/128K x 36 ASYNCHRONOUS DUAL-PORT STATIC RAM WITH 3.3V 0R 2.5V INTERFACE
IDT

IDT70T659S10BCI8

Dual-Port SRAM, 128KX36, 10ns, CMOS, PBGA256, BGA-256
IDT