IDT70V15S20J [IDT]

HIGH-SPEED 3.3V 16/8K X 9 DUAL-PORT STATIC RAM; 高速3.3V 16 / 8K ×9双端口静态RAM
IDT70V15S20J
型号: IDT70V15S20J
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH-SPEED 3.3V 16/8K X 9 DUAL-PORT STATIC RAM
高速3.3V 16 / 8K ×9双端口静态RAM

文件: 总18页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 3.3V  
16/8K X 9 DUAL-PORT  
STATIC RAM  
PRELIMINARY  
IDT70V16/5S/L  
ꢀeatures  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
– Commercial:15/20/25ns(max.)  
Industrial:20ns (max.)  
Low-power operation  
IDT70V16/5S  
Active:430mW(typ.)  
Standby: 3.3mW (typ.)  
IDT70V16/5L  
more using the Master/Slave select when cascading more  
than one device  
M/S = VIH for BUSY output flag on Master  
M/S = VIL for BUSY input on Slave  
Busy and Interrupt Flag  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
LVTTL-compatible, single 3.3V (+0.3V) power supply  
Available in 68-pin PLCC and an 80-pin TQFP  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
Active:415mW(typ.)  
Standby:660µW(typ.)  
IDT70V16/5 easily expands data bus width to 18 bits or  
ꢀunctionalBlockDiagram  
OEL  
CEL  
OER  
CER  
R/WR  
R/  
WL  
I/O0L- I/O8L  
I/O0R-I/O8R  
I/O  
I/O  
Control  
Control  
(2,3)  
BUSYL  
(2,3)  
BUSYR  
(1)  
(1)  
A13L  
A13R  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A0R  
A0L  
14  
14  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CEL  
OEL  
CER  
OER  
R/  
WR  
R/WL  
SEML  
SEMR  
INTR  
M/S  
(3)  
(3)  
INTL  
5669 drw 01  
NOTES:  
1. A13 is a NC for IDT70V15.  
2. In MASTER mode: BUSY is an output and is a push-pull driver  
In SLAVE mode: BUSY is input.  
3. BUSY outputs and INT outputs are non-tri-stated push-pull drivers.  
AUGUST 2002  
1
DSC 5669/1  
©2002 IntegratedDeviceTechnology,Inc.  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
PRELIMINARY  
Industrial and Commercial Temperature Ranges  
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Description  
reads or writes to any location in memory. An automatic power down  
featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
a very low standby power mode.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typicallyoperate ononly430mWofpower.  
The IDT70V16/5 is a high-speed 16/8K x 9 Dual-Port Static RAM.  
TheIDT70V16/5isdesignedtobeusedasstand-aloneDual-PortRAMs  
orasacombinationMASTER/SLAVEDual-PortRAMfor18-bit-or-more  
wider systems. Using the IDT MASTER/SLAVE Dual-Port RAM ap-  
proachin18-bitorwidermemorysystemapplicationsresultsinfull-speed,  
error-freeoperationwithouttheneedforadditionaldiscretelogic.  
This device provides two independent ports with separate control,  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
The IDT70V16/5 is packaged in a 64-pin PLCC (Plastic Leaded  
Chip Carriers) and an 80-pinTQFP (Thin Quad Flatpack).  
PinConfigurations(1,2,3,4)  
08/26/02  
INDEX  
9
8
7
6
5
4
3
2
1 68 67 66 65 64 63 62 61  
60  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
VSS  
A5L  
A4L  
A3L  
A2L  
A1L  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
6L  
I/O  
0L  
A
IDT70V16/5J  
,
INTL  
BUSYL  
VSS  
(5)  
J68-1  
I/O7L  
DD  
V
68-Pin PLCC  
VSS  
I/O0R  
(6)  
Top View  
S
M/  
BUSYR  
INTR  
A0R  
A1R  
A2R  
1R  
I/O  
I/O2R  
VDD  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
A3R  
A4R  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
5669 drw 02  
NOTES:  
1. A13 is a NC for IDT70V15.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground supply.  
4. Package body is approximately .95 in x .95 in x .17 in.  
5. This package code is used to reference the package diagram.  
6. This text does not imply orientation of Part-marking.  
2
6.42  
E
L
I
M
I
N
A
R
Y
IDT70V16/5S/L  
PRELIMINARY  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfigurations(1,2,3,4)(con't.)  
08/26/02  
INDEX  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
NC  
1
2
NC  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
A5L  
A
4L  
3
A3L  
A2L  
A1L  
A0L  
4
5
6
VSS  
I/O6L  
I/O7L  
VDD  
7
IDT70V16/5PF  
INT  
L
8
(5)  
PN80-1  
BUSY  
L
9
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
NC  
80-Pin TQFP  
S
M/  
VSS  
(6)  
Top View  
BUSY  
R
I/O0R  
I/O1R  
I/O2R  
INT  
R
A0R  
A1R  
A2R  
A3R  
A4R  
NC  
VDD  
I/O3R  
I/O  
4R  
I/O5R  
I/O6R  
NC  
NC  
5669 drw 03  
NOTES:  
1. A13 is a NC for IDT70V15.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground supply.  
4. PN80-1 package body is approximately 14mm x 14mm x 1.4mm.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part-marking.  
6.432  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
PRELIMINARY  
Industrial and Commercial Temperature Ranges  
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
PinNames  
Left Port  
Right Port  
Names  
CEL  
CER  
Chip Enable  
WL  
WR  
R/  
R/  
Read/Write Enable  
Output Enable  
Address  
OEL  
0L  
OER  
(1)  
(1)  
13L  
0R  
13R  
A
- A  
A
- A  
0L  
8L  
0R  
8R  
I/O - I/O  
I/O - I/O  
SEMR  
INTR  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
SEML  
INTL  
BUSYL  
BUSYR  
S
Busy Flag  
M/  
Master or Slave Select  
Power (3.3V)  
CC  
V
GND  
Ground (0V)  
5669 tbl 01  
NOTE:  
1. A13 is a NC for IDT70V15.  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
R/W  
I/O0-8  
Mode  
CE  
H
L
OE  
X
X
L
SEM  
H
X
L
High-Z  
DATAIN  
DATAOUT  
High-Z  
Deselcted: Power-Down  
Write to Memory  
Read Memory  
H
L
H
X
H
X
H
X
Outputs Disabled  
5669 tbl 02  
NOTE:  
1. Condition: A0L A13L A0R A13R  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
R/W  
H
I/O0-8  
Mode  
Read Semaphore Flag Data Out (I/O0 - I/O8)  
CE  
H
OE  
L
SEM  
L
DATAOUT  
IN  
DATA  
0
H
X
L
Write I/O into Semaphore Flag  
____  
L
X
X
L
Not Allowed  
5669 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all I/Os (I/O0-I/O8). These eight semaphores are addressed by A0 - A2.  
4
6.42  
E
L
I
M
I
N
A
R
Y
IDT70V16/5S/L  
PRELIMINARY  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AbsoluteMaximumRatings(1)  
MaximumOperating  
TemperatureandSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
V
Grade  
Ambient  
Temperature  
GND  
Vcc  
(2)  
Terminal Voltage  
with Respect to GND  
-0.5 to +3.6  
TERM  
V
Commercial  
0OC to +70OC  
0V  
0V  
3.3V 0.3V  
+
Industrial  
-40OC to +85OC  
3.3V 0.3V  
+
Temperature Under Bias  
-55 to +125  
oC  
(3)  
BIAS  
T
5669 tbl 05  
NOTES:  
STG  
T
Storage Temperature  
Junction Temperature  
DC Output Current  
-65 to +150  
+150  
oC  
oC  
1. This is the parameter TA. This is the "instant on" case temperature.  
JN  
T
OUT  
I
50  
mA  
5669 tbl 04  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may  
affect reliability.  
RecommendedDCOperating  
Conditions  
Symbol  
Parameter  
Supply Voltage  
Ground  
Min.  
Typ.  
Max.  
3.6  
0
Unit  
V
2. VTERM must not exceed VDD + 0.3V.  
3. Ambient Temperature Under Bias. No AC Conditions. Chip Deselected.  
DD  
V
3.0  
3.3  
SS  
V
0
0
V
(2)  
____  
DD  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
2.0  
V +0.3  
V
-0.3(1)  
0.8  
V
____  
5669 tbl 06  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed VDD + 0.3V.  
Capacitance(1)(TA = +25°C, f = 1.0MHz)  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2 )  
Max. Unit  
CIN  
VIN = 3dV  
9
pF  
COUT  
VOUT = 3dV  
10  
pF  
5669 tbl 07  
NOTES:  
1. This parameter is determined by device characteristics but is not production  
tested.  
2. 3dV references the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V .  
DC Electrical Characteristics Over the  
Operating Temperature and Supply Voltage Range (VDD = 3.3V ± 0.3V)  
70V16/5S  
70V16/5L  
Symbol  
|ILI|  
Parameter  
Test Conditions  
Min.  
Max.  
10  
Min.  
Max.  
5
Unit  
µA  
µA  
V
(1)  
___  
___  
___  
___  
___  
___  
Input Leakage Current  
VDD = 3.6V, VIN = 0V to VDD  
(1)  
|ILO|  
Output Leakage Currentt  
Output Low Voltage  
Output High Voltage  
IH OUT  
o
10  
5
CE = V , V = 0V t VDD  
VOL  
IOL = +4mA  
0.4  
0.4  
___  
___  
VOH  
IOH = -4mA  
2.4  
2.4  
V
5669 tbl 08  
NOTE:  
1. At VDD < 2.0V, Input leakages are undefined.  
6.452  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
PRELIMINARY  
Industrial and Commercial Temperature Ranges  
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (VDD = 3.3V ± 0.3V)  
70V16/5X15  
Com'l Only  
70V16/5X20  
Com'l  
& Ind  
70V16/5X25  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
DD  
I
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
150  
140  
215  
185  
140  
130  
200  
175  
130  
125  
190  
165  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
IND  
S
L
140  
130  
225  
195  
ISB1  
ISB2  
ISB3  
ISB4  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
25  
20  
35  
30  
20  
15  
30  
25  
16  
13  
30  
25  
mA  
mA  
mA  
mA  
CER and CEL = VIH  
SEMR = SEML = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
20  
15  
45  
40  
(5)  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
85  
80  
120  
110  
80  
75  
110  
100  
75  
72  
110  
95  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
80  
75  
130  
115  
SEMR = SEML = VIH  
Full Standby Current  
Both Ports CEL and  
COM'L  
S
L
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
DD  
(Both Ports  
-
CER > V - 0.2V,  
DD  
CMOS Level Inputs)  
VIN > V - 0.2V or  
____  
____  
____  
____  
____  
____  
____  
____  
VIN < 0.2V, f = 0(4)  
SEMR = SEML > V - 0.2V  
MIL &  
IND  
S
L
1.0  
0.2  
15  
5
DD  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
COM'L  
S
L
85  
80  
125  
105  
80  
75  
115  
100  
75  
70  
105  
90  
CE"A" < 0.2V and  
(5)  
DD  
CE"B" > V - 0.2V  
DD  
SEMR = SEML > V - 0.2V  
____  
____  
____  
____  
DD  
MIL &  
IND  
S
L
80  
75  
130  
115  
VIN > V - 0.2V or VIN < 0.2V  
____  
____  
____  
____  
Active Port Outputs Disabled,  
(3)  
f = fMAX  
5669 tbl 09  
NOTES:  
1. 'X' in part number indicates power rating (S or L)  
2. VDD = 3.3V, TA = +25°C, and are not production tested. IDD DC = 115mA (typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using AC Test Conditionsof input  
levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
Output Loads and AC Test  
Conditions  
3.3V  
3.3V  
Input Pulse Levels  
GND to 3.0V  
3ns Max.  
1.5V  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
590  
590Ω  
DATAOUT  
BUSY  
INT  
DATAOUT  
1.5V  
5pF*  
435Ω  
Figures 1 and 2  
30pF  
435Ω  
5669 tbl 10  
,
5669 drw 04  
Figure 1. AC Output Test Load  
Figure 2. Output Test  
Load  
(for tLZ, tHZ, tWZ, tOW)  
*Including scope and jig.  
Timing of Power-Up / Power-Down  
CE  
PU  
t
tPD  
ICC  
50%  
50%  
ISB  
,
5669 drw 07  
6
6.42  
E
L
I
M
I
N
A
R
Y
IDT70V16/5S/L  
PRELIMINARY  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
70V16/5X15  
Com'l Only  
70V16/5X20  
Com'l  
& Ind  
70V16/5X25  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
tRC  
Read Cycle Time  
15  
20  
25  
ns  
ns  
ns  
____  
____  
____  
tAA  
tACE  
Address Access Time  
15  
15  
15  
20  
20  
20  
25  
25  
25  
____  
____  
____  
____  
____  
____  
____  
____  
____  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
ABE  
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output Enable Access Time(3)  
tAOE  
tOH  
tLZ  
10  
12  
13  
____  
____  
____  
Output Hold from Address Change  
3
3
3
Output Low-Z Time(1,2)  
____  
____  
____  
3
3
3
____  
____  
____  
Output High-Z Time(1,2)  
tHZ  
10  
12  
15  
____  
____  
____  
Chip Enable to Power Up Time(1,2)  
tPU  
tPD  
tSOP  
tSAA  
0
0
0
____  
____  
____  
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access(3)  
15  
20  
25  
____  
____  
____  
10  
10  
10  
____  
____  
____  
15  
20  
25  
ns  
5669 tbl 11  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL.  
4. 'X' in part number indicates power rating (S or L).  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
tAA  
(4)  
tACE  
CE  
(4)  
tAOE  
OE  
R/W  
(1)  
tLZ  
t
OH  
(4)  
DATAOUT  
VALID DATA  
(2)  
tHZ  
BUSYOUT  
5669 drw 06  
(3,4)  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first, CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last: tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6.472  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
PRELIMINARY  
Industrial and Commercial Temperature Ranges  
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
70V16/5X15  
Com'l Only  
70V16/5X20  
Com'l  
& Ind  
70V16/5X25  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
tWP  
12  
0
15  
0
20  
0
tWR  
tDW  
tHZ  
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
10  
15  
15  
____  
____  
____  
10  
12  
15  
____  
____  
____  
tDH  
0
0
0
____  
____  
____  
(1,2)  
tWZ  
tOW  
tSWRD  
tSPS  
Write Enable to Output in High-Z  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
12  
15  
____  
____  
____  
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
ns  
5669 tbl 12  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization but not production tested.  
3. To access SRAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the SRAM under all operating conditions. Although tDH and tOW values will vary over  
voltageand temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part numbers indicates power rating (S or L).  
8
6.42  
E
L
I
M
I
N
A
R
Y
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
PRELIMINARY  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM(9)  
(3)  
(2)  
(6)  
tWR  
tAS  
tWP  
R/W  
(7)  
tLZ  
tOW  
tWZ  
(4)  
(4)  
OUT  
DATA  
tDW  
tDH  
DATAIN  
5669 drw 08  
Timing Waveform of Write Cycle No. 2,CE Controlled Timing(1,5)  
t
WC  
ADDRESS  
or  
t
AW  
CE  
SEM(9)  
(6)  
tAS  
(3)  
(2)  
tWR  
tEW  
R/  
W
tDW  
tDH  
DATAIN  
5669 drw 09  
NOTES:  
1. R/W or CE must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure  
2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as  
the specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access Semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
6.492  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
PRELIMINARY  
Industrial and Commercial Temperature Ranges  
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
VALID ADDRESS  
VALID ADDRESS  
A0-A2  
SEM  
I/O  
tWR  
tAW  
tACE  
tEW  
tWP  
tOH  
tDW  
DATAIN  
VALID  
tSOP  
DATAOUT  
VALID(2)  
tAS  
tDH  
R/W  
tAOE  
tSWRD  
OE  
Read Cycle  
Write Cycle  
5669 drw 10  
NOTES:  
1. CE = VIH for the duration of the above timing (both write and read cycle).  
2. DATAOUT VALIDrepresents all I/O's (I/O0-I/O8) equal to the semaphore value.  
Timing Waveform of Semaphore Write Condition(1,3,4)  
A0"A"-A2 "A"  
MATCH  
SIDE(2) "A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2 "B"  
R/W"B"  
MATCH  
SIDE(2)  
"B"  
SEM"B"  
5669 drw 11  
NOTES:  
1. DOR = DOL =VIH, CER = CEL =VIH.  
2. All timing is the same for left and right ports. PortAmay be either left or right port. Bis the opposite port from A.  
3. This parameter is measured from R/WAor SEMAgoing HIGH to R/WBor SEMBgoing HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will obtain the semaphore flag.  
10  
6.42  
E
L
I
M
I
N
A
R
Y
IDT70V16/5S/L  
PRELIMINARY  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
70V16/5X15  
Com'l Ony  
70V16/5X20  
Com'l  
& Ind  
70V16/5X25  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S = VIH)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tBAA  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
Access Time from Chip Enable LOW  
BUSY  
15  
17  
17  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
BUSY Disable to Valid Data(3)  
____  
____  
____  
5
5
5
____  
____  
____  
18  
30  
30  
Write Hold After BUSY(5)  
12  
15  
17  
____  
____  
____  
BUSY TIMING (M/S = VIL)  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
PORT-TO-PORT DELAY TIMING  
tWB  
0
0
0
ns  
ns  
tWH  
12  
15  
17  
(1)  
____  
____  
____  
____  
____  
____  
tWDD  
tDDD  
Write Pulse to Data Delay  
30  
25  
45  
35  
50  
35  
ns  
Write Data Valid to Read Data Delay(1)  
ns  
5669 tbl 13  
NOTES:  
1. Port-to-port delay through SRAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD tWP (actual) or tDDD tDW (actual).  
4. To ensure that the write cycle is inhibited during contention.  
5. To ensure that a write cycle is completed after contention.  
6. 'X' in part numbers indicates power rating (S or L).  
Timing Waveform of Read with BUSY(2,4,5) (M/S = VIH)  
tWC  
MATCH  
ADDR"A"  
R/W"A"  
tWP  
tDH  
tDW  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
tWDD  
ADDR"B"  
tBDD  
tBDA  
BUSY"B"  
DATAOUT "B"  
VALID  
(3)  
tDDD  
NOTES:  
5669 drw 12  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S=VIL.  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S=VIL (SLAVE), BUSY is an input. Then for this example BUSYA= VIH and BUSYBinput is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from Port "A".  
6.1412  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
PRELIMINARY  
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with BUSY(3)  
tWP  
R/W"A"  
tWB  
BUSY"B"  
(1)  
tWH  
R/W"B"  
(2)  
5669 drw 13  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from Port "A".  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
and "B"  
ADDRESSES MATCH  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
t
BDC  
BUSY"B"  
5669 drw 14  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
ADDRESS "N"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
5669 drw 15  
NOTES:  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from A.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
12  
6.42  
E
L
I
M
I
N
A
R
Y
IDT70V16/5S/L  
PRELIMINARY  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
70V16/5X15  
Com'l Only  
70V16/5X20  
Com'l  
& Ind  
70V16/5X25  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
IN S  
IN R  
Addre ss Se t-up Time  
Write Re covery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
t
0
0
0
____  
____  
____  
t
15  
15  
20  
20  
20  
20  
____  
____  
____  
t
Inte rrupt Re se t Time  
ns  
5669 tbl 14  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
Waveform of Interrupt Timing(1)  
tWC  
INTERRUPT SET ADDRESS (2)  
ADDR"A"  
(4)  
(3)  
tWR  
tAS  
CE"A"  
R/  
W"A"  
(3)  
tINS  
INT"B"  
5669 drw 16  
tRC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
tINR  
INT"B"  
5669 drw 17  
NOTES:  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from A.  
2. See Interrupt truth table.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
6.1432  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
PRELIMINARY  
Industrial and Commercial Temperature Ranges  
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Truth Table III — Interrupt ꢀlag(1)  
Left Port  
Right Port  
WL  
R/  
WR  
R/  
A13L-A0L  
3FFF(4)  
X
A13R-A0R  
X
Function  
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
CEL  
L
OEL  
X
INTL  
X
CER  
OER  
X
INTR  
(2)  
L
X
X
X
X
X
L
X
L
L
X
L
(3)  
X
X
X
L
3FFF(4)  
3FFE(4)  
X
H
(3)  
X
X
X
L
X
X
X
(2)  
L
L
3FFE(4)  
H
X
X
Reset Left INTL Flag  
5669 tbl 15  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. A13 is a NC for IDT70V15, therefore Interrupt Addresses are 1FFF and 1FFE.  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
AOL-A13L  
AOR-A13R  
(1)  
(1)  
Function  
Normal  
Normal  
Normal  
CEL  
X
CER  
X
BUSYL  
BUSYR  
NO MATCH  
MATCH  
H
H
H
H
H
X
X
H
MATCH  
H
H
(3)  
L
L
MATCH  
(2)  
(2)  
Write Inhibit  
5669 tbl 16  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYX outputs on the  
IDT70V16/5 are push-pull, not open drain outputs. On slaves the BUSYX input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. A13 a NC for IDT70V15, Address comparison will be for A0 - A12.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0 - D8 Left  
D0 - D8 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
NOTES:  
Left port has semaphore token  
Semaphore free  
5669 tbl 17  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V16/5.  
2. There are eight semaphore flags written to via I/O0 and read from all I/Os (I/O0 - I/O8). These eight semaphores are addressed by A0 - A2.  
e. CE = VIH, SEM = VIL to access the semaphores. Refer to the semaphore Read/Write Truth Table.  
14  
6.42  
E
L
I
M
I
N
A
R
Y
IDT70V16/5S/L  
PRELIMINARY  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
CE  
MASTER  
Dual Port  
RAM  
CE  
SLAVE  
Dual Port  
RAM  
BUSY (R)  
(L)  
BUSY  
(L)  
(R)  
BUSY  
BUSY  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
CE  
CE  
(L)  
BUSY (R)  
(R)  
BUSY  
(L)  
BUSY  
BUSY (R)  
BUSY  
(L)  
BUSY  
5669 drw 18  
Figure 3. Busy and chip enable routing for both width and depth expansion with IDT70V16/5 RAMs.  
ꢀunctionalDescription  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
The BUSY outputs on the IDT70V16/5 RAM in master mode, are  
push-pulltypeoutputs anddonotrequirepullupresistors tooperate.If  
theseRAMsarebeingexpandedindepth,thentheBUSYindicationfor  
the resulting array requires the use of an external AND gate.  
TheIDT70V16/5provides twoports withseparatecontrol,address  
and I/O pins that permit independent access for reads or writes to any  
location in memory. The IDT70V16/5 has an automatic power down  
featurecontrolledbyCE.TheCEcontrolson-chippowerdowncircuitry  
thatpermitstherespectiveporttogointoastandbymodewhennotselected  
(CE HIGH).Whenaportis enabled,access totheentirememoryarray  
ispermitted.  
WidthExpansionBusyLogic  
Master/SlaveArrays  
Interrupts  
When expanding an IDT70V16/5 RAM array in width while using  
BUSYlogic,onemasterpartisusedtodecidewhichsideoftheRAMarray  
willreceiveaBUSYindication,andtooutputthatindication.Anynumber  
ofslavestobeaddressedinthesameaddressrangeasthemasteruse  
theBUSYsignalasawriteinhibitsignal.ThusontheIDT70V16/5RAM  
theBUSYpinisanoutputifthepartisusedasamaster(M/Spin=H),and  
theBUSYpinisaninputifthepartusedasaslave(M/Spin=L)asshown  
in Figure 3.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. Itignores whetheranaccess is a readorwrite. In  
a master/slave array, bothaddress andchipenable mustbe validlong  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwiththeR/Wsignal.Failuretoobservethistimingcan  
resultina glitchedinternalwrite inhibitsignalandcorrupteddata inthe  
slave.  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)is assignedtoeachport. Theleftportinterruptflag  
(INTL) is asserted when the right port writes to memory location 3FFE  
where a write is defined as the CE = R/W= VIL per Truth Table III. The  
leftportclearstheinterruptbyanaddresslocation3FFEaccesswhenCER  
=OER =VIL, R/W is a "don't care". Likewise, the right port interrupt flag  
(INTR) is asserted when the left port writes to memory location 3FFF  
(1FFFforIDT70V15)andtocleartheinterruptflag(INTR),therightport  
must access location 3FFF.Themessage(9bits)at3FFEor3FFF(1FFE  
or1FFFforIDT70V15)isuser-definedsinceitisinanaddressableSRAM  
location.If the interrupt functionisnotused,addresslocations3FFEand  
3FFF (1FFE and 1FFF for IDT70V15) are not used as mail boxes but  
arestill partoftherandomaccessmemory.RefertoTruthTableIIIforthe  
interruptoperation.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisbusy.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
anduse anyBUSYindicationas aninterruptsource toflagthe eventof  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
Semaphores  
TheIDT70V16/5areextremelyfastDual-Port16/8Kx9StaticRAMs  
withanadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesignerssoftware.Asanexample,thesemaphorecanbe  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
The Dual-PortRAMfeatures a fastaccess time, andbothports are  
6.1452  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
PRELIMINARY  
Industrial and Commercial Temperature Ranges  
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnowayslows theaccess timeoftherightport.Bothports are  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chippowerdowncircuitrythatpermits the respective porttogointo  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table I where CE and SEM are both HIGH.  
SystemswhichcanbestusetheIDT70V16/5containmultipleproces-  
sorsorcontrollersandaretypicallyveryhigh-speedsystemswhichare  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
a performance increase offered by the IDT70V16/5's hardware sema-  
phores,whichprovidealockoutmechanismwithoutrequiringcomplex  
programming.  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof  
theotheraddresspinshasanyeffect.  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
on that side and a one on the other side (see Truth Table V). That  
semaphorecannowonlybemodifiedbythesideshowingthezero.When  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
ispending)andthencanbewrittentobybothsides.Thefactthattheside  
which is able to write a zero into a semaphore subsequently locks out  
writes from the other side is what makes semaphore flags useful in  
interprocessorcommunications.(Athoroughdiscussionontheuseofthis  
featurefollowsshortly.)Azerowrittenintothesamelocationfromtheother  
side willbe storedinthe semaphore requestlatchforthatside untilthe  
semaphoreisfreedbythefirstside.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintoonesidesoutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
Softwarehandshakingbetweenprocessors offers themaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations. The IDT70V16/5 does not use its semaphore flags to  
control any resources through hardware, thus allowing the system  
designertotalflexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableV).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attempts towriteazerotothesamesemaphoreflagitwillfail,as willbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
used instead,systemcontentionproblemscouldhaveoccurredduring  
the gap between the read and write cycles.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation.The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Shouldtheothersidessemaphorerequestlatch  
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
overtotheothersideassoonasaoneiswrittenintothefirstsidesrequest  
latch.ThesecondsidesflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requestedandthe processorwhichrequesteditnolongerneeds the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
How the Semaphore ꢀlags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
that semaphores status or remove its request for that semaphore to  
performanothertaskandoccasionallyattemptagaintogaincontrolofthe  
tokenviathesetandtestsequence.Oncetherightsidehasrelinquished  
thetoken,theleftsideshouldsucceedingainingcontrol.  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites  
aonetothatlatch.  
TheeightsemaphoreflagsresidewithintheIDT70V16/5inaseparate  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe  
semaphore flags) and using the other control pins (Address, OE, and  
R/W)as theywouldbe usedinaccessinga standardstaticRAM. Each  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside  
The criticalcase ofsemaphore timingis whenbothsides requesta  
single token by attempting to write a zero into it at the same time. The  
16  
6.42  
E
L
I
M
I
N
A
R
Y
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
PRELIMINARY  
Industrial and Commercial Temperature Ranges  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta- control,itwouldlockouttheleftside.  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
Once the left side was finished with its task, it would write a one to  
thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst Semaphore 0 and may then try to gain access to Semaphore 1. If  
sidetomaketherequestwillreceivethetoken.Ifbothrequestsarriveat Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
thesametime,theassignmentwillbearbitrarilymadetooneportorthe itssemaphorerequestandperformothertasksuntilitwasabletowrite,then  
other.  
readazerointoSemaphore1.Iftherightprocessorperformsasimilartask  
One caution that should be noted when using semaphores is that withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap  
semaphoresalonedonotguaranteethataccesstoaresourceissecure. 8Kblocks ofDual-PortRAMwitheachother.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
ormisinterpreted, a software errorcaneasilyhappen.  
The blocks do not have to be any particular size and can even be  
variable, depending upon the complexity of the software using the  
Initializationofthesemaphoresisnotautomaticandmustbehandled semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual-  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest PortRAMorothersharedresources intoeightparts. Semaphores can  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides given a common meaning as was shown in the example above.  
to assure that they will be free when needed.  
Semaphores are a useful form of arbitration in systems like disk  
interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring  
atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse  
ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea  
wasoff-limitstotheCPU,boththeCPUandtheI/Odevicescouldaccess  
theirassignedportionsofmemorycontinuouslywithoutanywaitstates.  
SemaphoresarealsousefulinapplicationswherenomemoryWAIT”  
stateisavailableononeorbothsides.Onceasemaphorehandshakehas  
been performed, both processors can access their assigned RAM  
segmentsatfullspeed.  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
mayberesponsibleforbuildingandupdatingadatastructure.Theother  
processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
processorreadsanincompletedatastructure,amajorerrorconditionmay  
exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
is completed, the data structure block is released. This allows the  
interpretingprocessortocomebackandreadthecompletedatastructure,  
therebyguaranteeingaconsistentdatastructure.  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
resource markers forthe IDT70V16/5s Dual-PortRAM. Saythe 16Kx  
9RAMwastobedividedintotwo8Kx9blockswhichweretobededicated  
atanyonetimetoservicingeithertheleftorrightport.Semaphore0could  
be used to indicate the side which would control the lower section of  
memory,andSemaphore1couldbedefinedastheindicatorfortheupper  
sectionofmemory.  
Totakearesource,inthis examplethelower8KofDual-PortRAM,  
the processor on the left port could write and then read a zero in to  
Semaphore0.Ifthistaskweresuccessfullycompleted(azerowasread  
backratherthana one), the leftprocessorwouldassume controlofthe  
lower8K.Meanwhiletherightprocessorwasattemptingtogaincontrolof  
theresourceaftertheleftprocessor,itwouldreadbackaoneinresponse  
tothezeroithadattemptedtowriteintoSemaphore0.Atthis point,the  
softwarecouldchoosetotryandgaincontrolofthesecond8Ksectionby  
writing,thenreadingazerointoSemaphore1.Ifitsucceededingaining  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
5669 drw 19  
Figure 4. IDT70V16/5 Semaphore Logic  
6.1472  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
PRELIMINARY  
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
OrderingInformation  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Blank  
I(1)  
PF  
J
80-pin TQFP (PN80-1)  
68-pin PLCC (J68-1)  
15  
20  
25  
Commercial Only  
Commercial & Industrial  
Commercial Only  
Speed in Nanoseconds  
S
L
Standard Power  
Low Power  
70V16 144K (16K x 9-Bit) 2.5V Dual-Port RAM  
70V15  
72K (8K x 9-Bit) 2.5V Dual-Port RAM  
5669 drw 20  
NOTE:  
1. Contact your local sales office for industrial temp range for other speeds, packages and powers.  
DatasheetDocumentHistory  
08/26/02:  
InitialPublicRelease  
CORPORATE HEADQUARTERS  
for SALES:  
for Tech Support:  
2975StenderWay  
Santa Clara, CA 95054  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
831-754-4613  
DualPortHelp@idt.com  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
18  
6.42  

相关型号:

IDT70V15S20JG

Dual-Port SRAM, 8KX9, 20ns, CMOS, PQCC68, 0.95 X 0.95 INCH, 0.17 INCH HEIGHT, PLASTIC, LCC-68
IDT

IDT70V15S20JGI

Dual-Port SRAM, 8KX9, 20ns, CMOS, PQCC68, 0.95 X 0.95 INCH, 0.17 INCH HEIGHT, PLASTIC, LCC-68
IDT

IDT70V15S20JI

HIGH-SPEED 3.3V 16/8K X 9 DUAL-PORT STATIC RAM
IDT

IDT70V15S20JI8

Multi-Port SRAM, 8KX9, 20ns, CMOS, PQCC68
IDT

IDT70V15S20PF

HIGH-SPEED 3.3V 16/8K X 9 DUAL-PORT STATIC RAM
IDT

IDT70V15S20PF8

Dual-Port SRAM, 8KX9, 20ns, CMOS, PQFP80, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-80
IDT

IDT70V15S20PFGI

Dual-Port SRAM, 8KX9, 20ns, CMOS, PQFP80, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-80
IDT

IDT70V15S20PFI

HIGH-SPEED 3.3V 16/8K X 9 DUAL-PORT STATIC RAM
IDT

IDT70V15S25J

HIGH-SPEED 3.3V 16/8K X 9 DUAL-PORT STATIC RAM
IDT

IDT70V15S25JG

Dual-Port SRAM, 8KX9, 25ns, CMOS, PQCC68, 0.95 X 0.95 INCH, 0.17 INCH HEIGHT, PLASTIC, LCC-68
IDT

IDT70V15S25JI

HIGH-SPEED 3.3V 16/8K X 9 DUAL-PORT STATIC RAM
IDT

IDT70V15S25PF

HIGH-SPEED 3.3V 16/8K X 9 DUAL-PORT STATIC RAM
IDT