IDT70V16L25J8 [IDT]

Multi-Port SRAM, 16KX9, 25ns, CMOS, PQCC68;
IDT70V16L25J8
型号: IDT70V16L25J8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Multi-Port SRAM, 16KX9, 25ns, CMOS, PQCC68

静态存储器 内存集成电路
文件: 总18页 (文件大小:163K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 3.3V  
16/8K X 9 DUAL-PORT  
STATIC RAM  
IDT70V16/5S/L  
Features  
True Dual-Ported memory cells which allow simultaneous  
reads of the same memory location  
High-speed access  
more using the Master/Slave select when cascading more  
than one device  
M/S = VIH for BUSY output flag on Master  
M/S = VIL for BUSY input on Slave  
Busy and Interrupt Flag  
On-chip port arbitration logic  
– Commercial:15/20/25ns(max.)  
– Industrial: 20ns (max.)  
Low-power operation  
– IDT70V16/5S  
Full on-chip hardware support of semaphore signaling  
between ports  
Active:430mW(typ.)  
Standby: 3.3mW (typ.)  
– IDT70V16/5L  
Fully asynchronous operation from either port  
LVTTL-compatible, single 3.3V (+0.3V) power supply  
Available in 68-pin PLCC and an 80-pin TQFP  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
Active:415mW(typ.)  
Standby:660µW(typ.)  
IDT70V16/5 easily expands data bus width to 18 bits or  
FunctionalBlockDiagram  
OEL  
OER  
CER  
CEL  
R/WR  
R/W  
L
I/O0L- I/O8L  
I/O0R-I/O8R  
I/O  
I/O  
Control  
Control  
BUSY (2,3)  
L
(2,3)  
BUSY  
R
(1)  
13L  
(1)  
A
A
13R  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A
0R  
A0L  
14  
14  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE  
OE  
L
L
CE  
OE  
R/W  
R
R
R
R/W  
L
SEM  
L
SEM  
R
M/S  
(3)  
(3)  
INTL  
INT  
R
5669 drw 01  
NOTES:  
1. A13 is a NC for IDT70V15.  
2. In MASTER mode: BUSY is an output and is a push-pull driver  
In SLAVE mode: BUSY is input.  
3. BUSY outputs and INT outputs are non-tri-stated push-pull drivers.  
OCTOBER 2004  
1
DSC 5669/2  
©2004 IntegratedDeviceTechnology,Inc.  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
reads or writes to any location in memory. An automatic power down  
featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
a very low standby power mode.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typically operate on only 430mW of power.  
The IDT70V16/5 is a high-speed 16/8K x 9 Dual-Port Static RAM.  
TheIDT70V16/5isdesignedtobeusedasstand-aloneDual-PortRAMs  
orasacombinationMASTER/SLAVEDual-PortRAMfor18-bit-or-more  
wider systems. Using the IDT MASTER/SLAVE Dual-Port RAM ap-  
proachin18-bitorwidermemorysystemapplicationsresultsinfull-speed,  
error-freeoperationwithouttheneedforadditionaldiscretelogic.  
This device provides two independent ports with separate control,  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
The IDT70V16/5 is packaged in a 64-pin PLCC (Plastic Leaded  
Chip Carriers) and an 80-pinTQFP (Thin Quad Flatpack).  
PinConfigurations(1,2,3,4)  
08/26/02  
INDEX  
9
8
7
6
5
4
3
2
1 68 67 66 65 64 63 62 61  
60  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
A
A
A
A
A
A
5L  
4L  
3L  
2L  
1L  
0L  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
VSS  
I/O6L  
I/O7L  
IDT70V16/5J  
,
INT  
BUSY  
V
M/S  
BUSY  
INT  
L
(5)  
J68-1  
L
VDD  
68-Pin PLCC  
VSS  
SS  
(6)  
Top View  
I/O0R  
I/O1R  
I/O2R  
R
R
VDD  
A
A
A
A
A
0R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
1R  
2R  
3R  
4R  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
5669 drw 02  
NOTES:  
1. A13 is a NC for IDT70V15.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground supply.  
4. Package body is approximately .95 in x .95 in x .17 in.  
5. This package code is used to reference the package diagram.  
6. This text does not imply orientation of Part-marking.  
2
6.42  
E
L
I
M
I
N
A
R
Y
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinConfigurations(1,2,3,4)(con't.)  
08/26/02  
INDEX  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
NC  
1
2
NC  
I/O2L  
I/O3L  
I/O4L  
I/O5L  
A5L  
A4L  
A3L  
A2L  
A1L  
A0L  
3
4
5
6
VSS  
7
I/O6L  
IDT70V16/5PF  
INT  
L
8
I/O7L  
(5)  
PN80-1  
BUSY  
L
9
VDD  
V
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
NC  
80-Pin TQFP  
M/S  
VSS  
(6)  
Top View  
BUSY  
R
I/O0R  
I/O1R  
I/O2R  
INT  
R
A
A
A
A
A
0R  
1R  
2R  
3R  
4R  
VDD  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
NC  
NC  
NC  
5669 drw 03  
NOTES:  
1. A13 is a NC for IDT70V15.  
2. All VDD pins must be connected to power supply.  
3. All VSS pins must be connected to ground supply.  
4. PN80-1 package body is approximately 14mm x 14mm x 1.4mm.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part-marking.  
6.432  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
Names  
Chip Enable  
CE  
R/W  
OE  
L
CE  
R/W  
OE  
R
L
R
Read/Write Enable  
Output Enable  
Address  
L
R
(1)  
(1)  
A
0L - A13L  
A
0R - A13R  
I/O0R - I/O8R  
SEM  
INT  
BUSY  
M/S  
I/O0L - I/O8L  
SEM  
INT  
BUSY  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
L
R
L
R
Busy Flag  
L
R
Master or Slave Select  
Power (3.3V)  
VCC  
GND  
Ground (0V)  
5669 tbl 01  
NOTE:  
1. A13 is a NC for IDT70V15.  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
R/W  
Outputs  
I/O0-8  
Mode  
CE  
H
L
OE  
X
SEM  
H
X
L
High-Z  
DATAIN  
DATAOUT  
High-Z  
Deselcted: Power-Down  
Write to Memory  
Read Memory  
X
H
L
H
X
L
H
X
H
X
Outputs Disabled  
5669 tbl 02  
NOTE:  
1. Condition: A0L — A13L A0R — A13R  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
R/W  
H
I/O0-8  
Mode  
- I/O  
CE  
H
OE  
L
SEM  
L
L
L
DATAOUT  
Read Semaphore Flag Data Out (I/O  
Write I/O into Semaphore Flag  
Not Allowed  
0
8)  
H
X
DATAIN  
0
____  
L
X
X
5669 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all I/Os (I/O0-I/O8). These eight semaphores are addressed by A0 - A2.  
4
6.42  
E
L
I
M
I
N
A
R
Y
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AbsoluteMaximumRatings(1)  
MaximumOperating  
TemperatureandSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
V
Grade  
Ambient  
Temperature  
GND  
Vcc  
(2 )  
Terminal Voltage  
with Respect to GND  
-0.5 to +3.6  
V
TERM  
Commercial  
0OC to +70OC  
0V  
0V  
3.3V  
3.3V  
+
+
0.3V  
Industrial  
-40OC to +85OC  
0.3V  
Temperature Under Bias  
-55 to +125  
oC  
(3)  
T
BIAS  
STG  
JN  
OUT  
5669 tbl 05  
T
Storage Temperature  
Junction Temperature  
DC Output Current  
-65 to +150  
+150  
oC  
oC  
NOTES:  
1. This is the parameter TA. This is the "instant on" case temperature.  
T
I
50  
mA  
5669 tbl 04  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any other conditions above  
those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may  
affect reliability.  
RecommendedDCOperating  
Conditions  
Symbol  
Parameter  
Supply Voltage  
Ground  
Min.  
Typ.  
Max.  
Unit  
V
2. VTERM must not exceed VDD + 0.3V.  
3. Ambient Temperature Under Bias. No AC Conditions. Chip Deselected.  
VDD  
VSS  
VIH  
VIL  
3.0  
3.3  
3.6  
0
0
0
V
Input High Voltage  
Input Low Voltage  
2.0  
V
DD+0.3(2)  
0.8  
V
____  
-0.3(1)  
V
____  
5669 tbl 06  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed VDD + 0.3V.  
Capacitance(1)(TA =+25°C, f=1.0MHz)  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions  
IN = 0V  
OUT = 0V  
Max. Unit  
CIN  
V
9
pF  
(2)  
OUT  
C
V
10  
pF  
5669 tbl 07  
NOTES:  
1. This parameter is determined by device characteristics but is not production  
tested.  
2. COUT also references CI/O.  
DC Electrical Characteristics Over the  
Operating Temperature and Supply Voltage Range (VDD = 3.3V ± 0.3V)  
70V16/5S  
70V16/5L  
Symbol  
|ILI  
|ILO  
Parameter  
Input Leakage Current(1)  
Output Leakage Currentt(1)  
Output Low Voltage  
Test Conditions  
DD = 3.6V, VIN = 0V t  
Min.  
Max.  
10  
Min.  
Max.  
Unit  
µA  
µA  
V
___  
___  
___  
___  
___  
___  
|
V
o
V
DD  
5
5
|
10  
CE = VIH, VOUT = 0V t  
OL = +4mA  
OH = -4mA  
o V  
DD  
V
OL  
OH  
I
0.4  
0.4  
___  
___  
V
Output High Voltage  
I
2.4  
2.4  
V
5669 tbl 08  
NOTE:  
1. At VDD < 2.0V, Input leakages are undefined.  
6.452  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (VDD = 3.3V ± 0.3V)  
70V16/5X15  
Com'l Only  
70V16/5X20  
70V16/5X25  
Com'l Only  
Com'l  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2 )  
Max.  
Unit  
IDD  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
150  
140  
215  
185  
140  
130  
200  
175  
130  
125  
190  
165  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
IND  
S
L
140  
130  
225  
195  
I
SB1  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
25  
20  
35  
30  
20  
15  
30  
25  
16  
13  
30  
25  
mA  
mA  
mA  
mA  
CE  
SEM  
f = fMAX  
R
and CE  
L
= VIH  
L = VIH  
R
= SEM  
(3)  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
20  
15  
45  
40  
(5)  
ISB2  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
85  
80  
120  
110  
80  
75  
110  
100  
75  
72  
110  
95  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
80  
75  
130  
115  
SEM  
R
= SEML = VIH  
ISB3  
Full Standby Current  
(Both Ports -  
CMOS Level Inputs)  
Both Ports CE  
L and  
COM'L  
S
L
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
CE  
R
> VDD - 0.2V,  
V
V
IN > VDD - 0.2V or  
____  
____  
____  
____  
____  
____  
____  
____  
IN < 0.2V, f = 0(4)  
SEM  
MIL &  
IND  
S
L
1.0  
0.2  
15  
5
R
= SEML > VDD - 0.2V  
ISB4  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
COM'L  
S
L
85  
80  
125  
105  
80  
75  
115  
100  
75  
70  
105  
90  
CE < 0.2V and  
CE"AB" > VDD - 0.2V(5)  
SEM  
R
= SEML > VDD - 0.2V  
____  
____  
____  
____  
MIL &  
IND  
S
L
80  
75  
130  
115  
V
IN > VDD - 0.2V or VIN < 0.2V  
____  
____  
____  
____  
Active Port Outputs Disabled,  
f = fMAX  
(3)  
5669 tbl 09  
NOTES:  
1. 'X' in part number indicates power rating (S or L)  
2. VDD = 3.3V, TA = +25°C, and are not production tested. IDD DC = 115mA (typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using “AC Test Conditions” of input  
levels of GND to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
Output Loads and AC Test  
Conditions  
3.3V  
3.3V  
Input Pulse Levels  
GND to 3.0V  
3ns Max.  
1.5V  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
590  
590Ω  
DATAOUT  
BUSY  
INT  
DATAOUT  
1.5V  
5pF*  
435Ω  
30pF  
Figures 1 and 2  
435Ω  
5669 tbl 10  
,
5669 drw 04  
Figure 1. AC Output Test Load  
Figure 2. Output Test  
Load  
(for tLZ, tHZ, tWZ, tOW)  
*Including scope and jig.  
Timing of Power-Up / Power-Down  
CE  
t
PU  
tPD  
I
CC  
50%  
50%  
I
SB  
,
5669 drw 07  
6
6.42  
E
L
I
M
I
N
A
R
Y
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
70V16/5X15  
Com'l Only  
70V16/5X20  
70V16/5X25  
Com'l Only  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
t
RC  
AA  
ACE  
ABE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
20  
25  
ns  
ns  
ns  
____  
____  
____  
t
Address Access Time  
15  
15  
15  
20  
20  
20  
25  
25  
25  
____  
____  
____  
____  
____  
____  
____  
____  
____  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
t
t
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output Enable Access Time(3)  
t
10  
12  
13  
____  
____  
____  
t
Output Hold from Address Change  
3
3
3
____  
____  
____  
Output Low-Z Time(1,2)  
t
3
3
3
____  
____  
____  
Output High-Z Time(1,2)  
t
10  
12  
15  
____  
____  
____  
Chip Enable to Power Up Time (1,2)  
t
0
0
0
____  
____  
____  
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access(3)  
t
15  
20  
25  
____  
____  
____  
t
10  
10  
10  
____  
____  
____  
t
15  
20  
25  
ns  
5669 tbl 11  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL.  
4. 'X' in part number indicates power rating (S or L).  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
AA  
t
(4)  
tACE  
CE  
OE  
(4)  
tAOE  
R/W  
DATAOUT  
BUSYOUT  
t
OH  
(1)  
tLZ  
VALID DATA(4)  
(2)  
t
HZ  
5669 drw 06  
(3,4)  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first, CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last: tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6.472  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
70V16/5X15  
Com'l Only  
70V16/5X20  
Com'l  
& Ind  
70V16/5X25  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRI TE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
15  
0
20  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
10  
15  
15  
____  
____  
____  
t
10  
12  
15  
____  
____  
____  
t
0
0
0
Write Enable to Output in High-Z(1,2)  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
12  
15  
____  
____  
____  
t
____  
____  
____  
t
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
t
t
ns  
5669 tbl 12  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization but not production tested.  
3. To access SRAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the SRAM under all operating conditions. Although tDH and tOW values will vary over  
voltageand temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part numbers indicates power rating (S or L).  
8
6.42  
E
L
I
M
I
N
A
R
Y
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
t
WC  
ADDRESS  
(7)  
tHZ  
OE  
t
AW  
CE or SEM(9)  
(7)  
t
HZ  
(3)  
(6)  
(2)  
tWR  
tAS  
tWP  
R/W  
(7)  
tLZ  
t
OW  
t
WZ  
(4)  
(4)  
OUT  
DATA  
tDH  
tDW  
IN  
DATA  
,
5669 drw 08  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
t
WC  
ADDRESS  
tAW  
CE or SEM(9)  
R/W  
(6)  
AS  
(3)  
(2)  
tWR  
t
tEW  
tDW  
tDH  
DATAIN  
5669 drw 09  
NOTES:  
1. R/W or CE must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization but is not production tested. Transition is measured 0mV from steady state with the Output Test Load (Figure  
2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as  
the specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access Semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
6.492  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
VALID ADDRESS  
VALID ADDRESS  
t
A0-A2  
tWR  
tAW  
ACE  
tEW  
SEM  
t
OH  
t
DW  
tSOP  
DATAIN  
VALID  
DATAOUT  
VALID(2)  
I/O  
tAS  
tWP  
tDH  
R/W  
t
AOE  
tSWRD  
OE  
Read Cycle  
Write Cycle  
5669 drw 10  
NOTES:  
1. CE = VIH for the duration of the above timing (both write and read cycle).  
2. “DATAOUT VALID” represents all I/O's (I/O0-I/O8) equal to the semaphore value.  
Timing Waveform of Semaphore Write Condition(1,3,4)  
A0"A"-A2 "A"  
MATCH  
SIDE(2) "A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2 "B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
5669 drw 11  
NOTES:  
1. DOR = DOL =VIH, CER = CEL =VIH.  
2. All timing is the same for left and right ports. Port“A” may be either left or right port. “B” is the opposite port from “A”.  
3. This parameter is measured from R/W“A” or SEM“A” going HIGH to R/W“B” or SEM“B” going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will obtain the semaphore flag.  
10  
6.42  
E
L
I
M
I
N
A
R
Y
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
70V16/5X15  
Com'l Ony  
70V16/5X20  
Com'l  
& Ind  
70V16/5X25  
Com'l Only  
Symbol  
BUSY TIMING (M/S = VIH  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
t
t
t
15  
17  
17  
____  
____  
____  
t
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
t
18  
30  
30  
(5)  
____  
____  
____  
t
Write Hold After BUSY  
12  
15  
17  
BUSY TIMING (M/S = VIL  
)
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
t
WB  
0
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
12  
15  
17  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
30  
25  
45  
35  
50  
35  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
5669 tbl 13  
NOTES:  
1. Port-to-port delay through SRAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual) or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited during contention.  
5. To ensure that a write cycle is completed after contention.  
6. 'X' in part numbers indicates power rating (S or L).  
Timing Waveform of Read with BUSY(2,4,5) (M/S = VIH)  
t
WC  
MATCH  
ADDR"A"  
tWP  
R/W"A"  
t
DH  
tDW  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
t
BDD  
tBDA  
BUSY"B"  
t
WDD  
DATAOUT "B"  
VALID  
(3)  
t
DDD  
NOTES:  
5669 drw 12  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S=VIL.  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S=VIL (SLAVE), BUSY is an input. Then for this example BUSY“A” = VIH and BUSY“B” input is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from Port "A".  
6.1412  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with BUSY(3)  
tWP  
R/W"A"  
t
WB  
BUSY"B"  
(1)  
t
WH  
R/W"B"  
(2)  
5669 drw 13  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from Port "A".  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
and "B"  
ADDRESSES MATCH  
CE"A"  
CE"B"  
(2)  
tAPS  
tBAC  
tBDC  
BUSY"B"  
5669 drw 14  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
ADDRESS "N"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
t
BAA  
tBDA  
5669 drw 15  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from “A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
12  
6.42  
E
L
I
M
I
N
A
R
Y
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
70V16/5X15  
Com'l Only  
70V16/5X20  
Com'l  
& Ind  
70V16/5X25  
Com'l Only  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
0
ns  
ns  
ns  
t
0
0
0
____  
____  
____  
t
15  
15  
20  
20  
20  
20  
____  
____  
____  
t
Interrupt Reset Time  
ns  
5669 tbl 14  
NOTES:  
1. 'X' in part numbers indicates power rating (S or L).  
Waveform of Interrupt Timing(1)  
tWC  
INTERRUPT SET ADDRESS (2)  
ADDR"A"  
(4)  
(3)  
tWR  
t
AS  
CE"A"  
R/W"A"  
INT"B"  
(3)  
tINS  
5669 drw 16  
t
RC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
tINR  
INT"B"  
5669 drw 17  
NOTES:  
1. All timing is the same for left and right ports. Port “A” may be either the left or right port. Port “B” is the port opposite from “A”.  
2. See Interrupt truth table.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
6.1432  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table III — Interrupt Flag(1)  
Left Port  
Right Port  
R/W  
L
A
13L-A0L  
R/W  
R
A
13R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CE  
L
OE  
L
INT  
L
CE  
R
OE  
R
INTR  
L
X
X
X
L
X
X
L
X
3FFF(4)  
X
X
X
L
L
X
X
X
L(2)  
H(3)  
X
R
X
X
X
X
X
L
3FFF(4)  
3FFE(4)  
X
R
X
L(3)  
H(2)  
L
X
L
L
3FFE(4)  
X
X
X
L
5669 tbl 15  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. A13 is a NC for IDT70V15, therefore Interrupt Addresses are 1FFF and 1FFE.  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
A
OL-A13L  
(1)  
(1)  
A
OR-A13R  
Function  
Normal  
Normal  
Normal  
CE  
L
CE  
R
BUSY  
L
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
MATCH  
H
H
MATCH  
(2)  
(2)  
Write Inhibit(3)  
5669 tbl 16  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSYX outputs on the  
IDT70V16/5 are push-pull, not open drain outputs. On slaves the BUSYX input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. A13 a NC for IDT70V15, Address comparison will be for A0 - A12.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D8  
Left  
D0  
- D8  
Right  
Status  
No Action  
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
0
0
1
1
0
1
1
1
0
1
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
NOTES:  
Left port has semaphore token  
Semaphore free  
5669 tbl 17  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V16/5.  
2. There are eight semaphore flags written to via I/O0 and read from all I/Os (I/O0 - I/O8). These eight semaphores are addressed by A0 - A2.  
e. CE = VIH, SEM = VIL to access the semaphores. Refer to the semaphore Read/Write Truth Table.  
14  
6.42  
E
L
I
M
I
N
A
R
Y
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
CE  
MASTER  
Dual Port  
RAM  
CE  
SLAVE  
Dual Port  
RAM  
BUSY (R)  
BUSY (L)  
BUSY (L) BUSY (R)  
MASTER  
Dual Port  
RAM  
SLAVE  
Dual Port  
RAM  
CE  
CE  
BUSY (R)  
BUSY (L) BUSY (R)  
BUSY (L) BUSY (R)  
BUSY (L)  
5669 drw 18  
Figure 3. Busy and chip enable routing for both width and depth expansion with IDT70V16/5 RAMs.  
FunctionalDescription  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
The BUSY outputs on the IDT70V16/5 RAM in master mode, are  
push-pulltypeoutputsanddonotrequirepullupresistorstooperate. If  
theseRAMsarebeingexpandedindepth,thentheBUSYindicationfor  
the resulting array requires the use of an external AND gate.  
TheIDT70V16/5providestwoportswithseparatecontrol, address  
and I/O pins that permit independent access for reads or writes to any  
location in memory. The IDT70V16/5 has an automatic power down  
featurecontrolledbyCE.TheCEcontrolson-chippowerdowncircuitry  
thatpermitstherespectiveporttogointoastandbymodewhennotselected  
(CE HIGH). Whenaportisenabled, accesstotheentirememoryarray  
ispermitted.  
WidthExpansionBusyLogic  
Master/SlaveArrays  
Interrupts  
When expanding an IDT70V16/5 RAM array in width while using  
BUSYlogic,onemasterpartisusedtodecidewhichsideoftheRAMarray  
willreceiveaBUSYindication,andtooutputthatindication.Anynumber  
ofslavestobeaddressedinthesameaddressrangeasthemasteruse  
theBUSYsignalasawriteinhibitsignal.ThusontheIDT70V16/5RAM  
theBUSYpinisanoutputifthepartisusedasamaster(M/Spin=H),and  
theBUSYpinisaninputifthepartusedasaslave(M/Spin=L)asshown  
in Figure 3.  
Iftwoormoremasterpartswereusedwhenexpandinginwidth,asplit  
decisioncouldresultwithonemasterindicatingBUSYononesideofthe  
arrayandanothermasterindicatingBUSYononeothersideofthearray.  
Thiswouldinhibitthewriteoperationsfromoneportforpartofawordand  
inhibitthewriteoperationsfromtheotherportfortheotherpartoftheword.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. It ignores whether an access is a read or write. In  
a master/slave array, both address and chip enable must be valid long  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwiththeR/Wsignal.Failuretoobservethistimingcan  
result in a glitched internal write inhibit signal and corrupted data in the  
slave.  
Iftheuserchoosestheinterruptfunction,amemorylocation(mailbox  
ormessagecenter)isassignedtoeachport. Theleftportinterruptflag  
(INTL) is asserted when the right port writes to memory location 3FFE  
where a write is defined as the CE = R/W= VIL per Truth Table III. The  
leftportclearstheinterruptbyanaddresslocation3FFEaccesswhenCER  
=OER =VIL, R/W is a "don't care". Likewise, the right port interrupt flag  
(INTR) is asserted when the left port writes to memory location 3FFF  
(1FFFforIDT70V15)andtocleartheinterruptflag(INTR),therightport  
must access location 3FFF.Themessage(9bits)at3FFEor3FFF(1FFE  
or1FFFforIDT70V15)isuser-definedsinceitisinanaddressableSRAM  
location.If the interrupt functionisnotused,addresslocations3FFEand  
3FFF (1FFE and 1FFF for IDT70V15) are not used as mail boxes but  
arestill partoftherandomaccessmemory.RefertoTruthTableIIIforthe  
interruptoperation.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisbusy”.  
The BUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
Semaphores  
The IDT70V16/5 are extremely fast Dual-Port 16/8Kx9 Static RAMs  
withanadditional8addresslocationsdedicatedtobinarysemaphoreflags.  
TheseflagsalloweitherprocessorontheleftorrightsideoftheDual-Port  
RAMtoclaimaprivilegeovertheotherprocessorforfunctionsdefinedby  
thesystemdesigner’ssoftware.Asanexample,thesemaphorecanbe  
usedbyoneprocessortoinhibittheotherfromaccessingaportionofthe  
Dual-Port RAM or any other shared resource.  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
and use any BUSYindication as an interrupt source to flag the event of  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
The Dual-Port RAM features a fast access time, and both ports are  
6.1452  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
completelyindependentofeachother.Thismeansthattheactivityonthe  
leftportinnowayslowstheaccesstimeoftherightport. Bothportsare  
identicalinfunctiontostandardCMOSStaticRAMandcanbereadfrom,  
orwrittento,atthesametimewiththeonlypossibleconflictarisingfromthe  
simultaneous writing of, or a simultaneous READ/WRITE of, a non-  
semaphorelocation.Semaphoresareprotectedagainstsuchambiguous  
situationsandmaybeusedbythesystemprogramtoavoidanyconflicts  
inthenon-semaphoreportionoftheDual-PortRAM.Thesedeviceshave  
anautomaticpower-downfeaturecontrolledbyCE,theDual-PortRAM  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol  
on-chip power down circuitry that permits the respective port to go into  
standbymodewhennotselected. Thisistheconditionwhichisshownin  
Truth Table I where CE and SEM are both HIGH.  
SystemswhichcanbestusetheIDT70V16/5containmultipleproces-  
sorsorcontrollersandaretypicallyveryhigh-speedsystemswhichare  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
a performance increase offered by the IDT70V16/5's hardware sema-  
phores,whichprovidealockoutmechanismwithoutrequiringcomplex  
programming.  
throughaddresspinsA0 A2.Whenaccessingthesemaphores,noneof  
theotheraddresspinshasanyeffect.  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel  
iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
on that side and a one on the other side (see Truth Table V). That  
semaphorecannowonlybemodifiedbythesideshowingthezero.When  
aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
ispending)andthencanbewrittentobybothsides.Thefactthattheside  
which is able to write a zero into a semaphore subsequently locks out  
writes from the other side is what makes semaphore flags useful in  
interprocessorcommunications.(Athoroughdiscussionontheuseofthis  
featurefollowsshortly.)Azerowrittenintothesamelocationfromtheother  
side will be stored in the semaphore request latch for that side until the  
semaphoreisfreedbythefirstside.  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
azeroreadsasallzeros.Thereadvalueislatchedintooneside’soutput  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
cause either signal (SEM or OE) to go inactive or the output will never  
change.  
Softwarehandshakingbetweenprocessorsoffersthemaximumin  
systemflexibilitybypermittingsharedresourcestobeallocatedinvarying  
configurations. The IDT70V16/5 does not use its semaphore flags to  
control any resources through hardware, thus allowing the system  
designertotalflexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methodsofhardwarearbitrationisthatwaitstatesareneverincurredin  
either processor. This can prove to be a major advantage in very high-  
speedsystems.  
AsequenceWRITE/READmustbeusedbythesemaphoreinorder  
to guarantee that no system level contention will occur. A processor  
requestsaccesstosharedresourcesbyattemptingtowriteazerointoa  
semaphorelocation.Ifthesemaphoreisalreadyinuse,thesemaphore  
requestlatchwillcontainazero,yetthesemaphoreflagwillappearasone,  
afactwhichtheprocessorwillverifybythesubsequentread(seeTruth  
TableV).Asanexample,assumeaprocessorwritesazerototheleftport  
atafreesemaphorelocation.Onasubsequentread,theprocessorwill  
verifythatithaswrittensuccessfullytothatlocationandwillassumecontrol  
overtheresourceinquestion.Meanwhile,ifaprocessorontherightside  
attemptstowriteazerotothesamesemaphoreflagitwillfail, aswillbe  
verifiedbythefactthataonewillbereadfromthatsemaphoreontheright  
side during subsequent read. Had a sequence of READ/WRITE been  
used instead,systemcontentionproblemscouldhaveoccurredduring  
the gap between the read and write cycles.  
Itisimportanttonotethatafailedsemaphorerequestmustbefollowed  
byeitherrepeatedreadsorbywritingaoneintothesamelocation. The  
reasonforthisiseasilyunderstoodbylookingatthesimplelogicdiagram  
ofthesemaphoreflaginFigure4.Twosemaphorerequestlatchesfeed  
into a semaphore flag. Whichever latch is first to present a zero to the  
semaphoreflagwillforceitssideofthesemaphoreflagLOWandtheother  
sideHIGH.Thisconditionwillcontinueuntilaoneiswrittentothesame  
semaphorerequestlatch.Shouldtheotherside’ssemaphorerequestlatch  
havebeenwrittentoazerointhemeantime,thesemaphoreflagwillflip  
overtotheothersideassoonasaoneiswrittenintothefirstside’srequest  
latch.Thesecondside’sflagwillnowstayLOWuntilitssemaphorerequest  
latchiswrittentoaone.Fromthisitiseasytounderstandthat,ifasemaphore  
is requested and the processor which requested it no longer needs the  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
How the Semaphore Flags Work  
Thesemaphorelogicisasetofeightlatcheswhichareindependent  
oftheDual-PortRAM.Theselatchescanbeusedtopassaflag,ortoken,  
fromoneporttotheothertoindicatethatasharedresourceisinuse.The  
semaphores provide a hardware assist for a use assignment method  
calledTokenPassingAllocation.Inthismethod,thestateofasemaphore  
latchisusedasatokenindicatingthatsharedresourceisinuse.Iftheleft  
processorwantstousethisresource,itrequeststhetokenbysettingthe  
latch.Thisprocessorthenverifiesitssuccessinsettingthelatchbyreading  
it. If it was successful, it proceeds to assume control over the shared  
resource.Ifitwasnotsuccessfulinsettingthelatch,itdeterminesthatthe  
rightsideprocessorhassetthelatchfirst, hasthetokenandisusingthe  
sharedresource.Theleftprocessorcantheneitherrepeatedlyrequest  
that semaphore’s status or remove its request for that semaphore to  
performanothertaskandoccasionallyattemptagaintogaincontrolofthe  
tokenviathesetandtestsequence.Oncetherightsidehasrelinquished  
thetoken,theleftsideshouldsucceedingainingcontrol.  
ThesemaphoreflagsareactiveLOW.Atokenisrequestedbywriting  
azerointoasemaphorelatchandisreleasedwhenthesamesidewrites  
aonetothatlatch.  
TheeightsemaphoreflagsresidewithintheIDT70V16/5inaseparate  
memoryspacefromtheDual-PortRAM.This addressspaceisaccessed  
byplacingaLOWinputontheSEMpin(whichactsasachipselectforthe  
semaphore flags) and using the other control pins (Address, OE, and  
R/W) as they would be used in accessing a standard static RAM. Each  
oftheflagshasauniqueaddresswhichcanbeaccessedbyeitherside  
The critical case of semaphore timing is when both sides request a  
single token by attempting to write a zero into it at the same time. The  
16  
6.42  
E
L
I
M
I
N
A
R
Y
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
semaphorelogicisspeciallydesignedtoresolvethisproblem.Ifsimulta- control,itwouldlockouttheleftside.  
neousrequestsaremade,thelogicguaranteesthatonlyonesidereceives  
Once the left side was finished with its task, it would write a one to  
thetoken.Ifonesideisearlierthantheotherinmakingtherequest,thefirst Semaphore 0 and may then try to gain access to Semaphore 1. If  
sidetomaketherequestwillreceivethetoken.Ifbothrequestsarriveat Semaphore1wasstilloccupiedbytherightside,theleftsidecouldundo  
thesametime,theassignmentwillbearbitrarilymadetooneportorthe itssemaphorerequestandperformothertasksuntilitwasabletowrite,then  
other.  
readazerointoSemaphore1.Iftherightprocessorperformsasimilartask  
One caution that should be noted when using semaphores is that withSemaphore0,thisprotocolwouldallowthetwoprocessorstoswap  
semaphoresalonedonotguaranteethataccesstoaresourceissecure. 8K blocks of Dual-Port RAM with each other.  
Aswithanypowerfulprogrammingtechnique,ifsemaphoresaremisused  
or misinterpreted, a software error can easily happen.  
The blocks do not have to be any particular size and can even be  
variable, depending upon the complexity of the software using the  
Initializationofthesemaphoresisnotautomaticandmustbehandled semaphoreflags.AlleightsemaphorescouldbeusedtodividetheDual-  
viatheinitializationprogramatpower-up.Sinceanysemaphorerequest Port RAM or other shared resources into eight parts. Semaphores can  
flagwhichcontainsazeromustberesettoaone,allsemaphoresonboth evenbeassigneddifferentmeaningsondifferentsidesratherthanbeing  
sidesshouldhaveaonewrittenintothematinitializationfrombothsides given a common meaning as was shown in the example above.  
to assure that they will be free when needed.  
Semaphores are a useful form of arbitration in systems like disk  
interfaceswheretheCPUmustbelockedoutofasectionofmemoryduring  
atransferandtheI/Odevicecannottolerateanywaitstates.Withtheuse  
ofsemaphores,oncethetwodeviceshasdeterminedwhichmemoryarea  
wasoff-limitstotheCPU,boththeCPUandtheI/Odevicescouldaccess  
theirassignedportionsofmemorycontinuouslywithoutanywaitstates.  
SemaphoresarealsousefulinapplicationswherenomemoryWAIT”  
stateisavailableononeorbothsides.Onceasemaphorehandshakehas  
been performed, both processors can access their assigned RAM  
segmentsatfullspeed.  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
case,blockarbitrationisveryimportant.Forthisapplicationoneprocessor  
mayberesponsibleforbuildingandupdatingadatastructure.Theother  
processorthenreadsandinterpretsthatdatastructure.Iftheinterpreting  
processorreadsanincompletedatastructure,amajorerrorconditionmay  
exist.Therefore,somesortofarbitrationmustbeusedbetweenthetwo  
differentprocessors.Thebuildingprocessorarbitratesfortheblock,locks  
itandthenisabletogoinandupdatethedatastructure.Whentheupdate  
is completed, the data structure block is released. This allows the  
interpretingprocessortocomebackandreadthecompletedatastructure,  
therebyguaranteeingaconsistentdatastructure.  
UsingSemaphores—SomeExamples  
Perhapsthesimplestapplicationofsemaphoresistheirapplicationas  
resource markers for the IDT70V16/5’s Dual-Port RAM. Say the 16K x  
9RAMwastobedividedintotwo8Kx9blockswhichweretobededicated  
atanyonetimetoservicingeithertheleftorrightport.Semaphore0could  
be used to indicate the side which would control the lower section of  
memory,andSemaphore1couldbedefinedastheindicatorfortheupper  
sectionofmemory.  
Totakearesource, inthisexamplethelower8KofDual-PortRAM,  
the processor on the left port could write and then read a zero in to  
Semaphore0.Ifthistaskweresuccessfullycompleted(azerowasread  
back rather than a one), the left processor would assume control of the  
lower8K.Meanwhiletherightprocessorwasattemptingtogaincontrolof  
theresourceaftertheleftprocessor,itwouldreadbackaoneinresponse  
tothezeroithadattemptedtowriteintoSemaphore0. Atthispoint, the  
softwarecouldchoosetotryandgaincontrolofthesecond8Ksectionby  
writing,thenreadingazerointoSemaphore1.Ifitsucceededingaining  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
5669 drw 19  
Figure 4. IDT70V16/5 Semaphore Logic  
6.1472  
P
R
E
L
I
M
I
N
A
R
Y
P
R
E
IDT70V16/5S/L  
High-Speed 3.3V 16/8K x 9 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
OrderingInformation  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Blank  
I(1)  
PF  
J
80-pin TQFP (PN80-1)  
68-pin PLCC (J68-1)  
15  
20  
25  
Commercial Only  
Commercial & Industrial  
Commercial Only  
Speed in Nanoseconds  
S
L
Standard Power  
Low Power  
70V16 144K (16K x 9-Bit) 2.5V Dual-Port RAM  
70V15  
72K (8K x 9-Bit) 2.5V Dual-Port RAM  
5669 drw 20  
NOTE:  
1. Contact your local sales office for industrial temp range for other speeds, packages and powers.  
DatasheetDocumentHistory  
08/26/02:  
10/19/04:  
InitialPublicRelease  
RemovedPreliminarystatus  
Page 9 Updated Timing Waveform of Write Cycle No. 1, R/WControlled Timing  
Page 1 & 18 Replaced old IDT ® logo with new IDT TM logo  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
18  
6.42  

相关型号:

IDT70V16L25JG

Dual-Port SRAM, 16KX9, 25ns, CMOS, PQCC68, 0.95 X 0.95 INCH, 0.17 INCH HEIGHT, PLASTIC, LCC-68
IDT

IDT70V16L25JI

HIGH-SPEED 3.3V 16/8K X 9 DUAL-PORT STATIC RAM
IDT

IDT70V16L25PF

HIGH-SPEED 3.3V 16/8K X 9 DUAL-PORT STATIC RAM
IDT

IDT70V16L25PF8

Dual-Port SRAM, 16KX9, 25ns, CMOS, PQFP80, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-80
IDT

IDT70V16L25PFG

Dual-Port SRAM, 16KX9, 25ns, CMOS, PQFP80, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-80
IDT

IDT70V16L25PFI

HIGH-SPEED 3.3V 16/8K X 9 DUAL-PORT STATIC RAM
IDT

IDT70V16S15J

HIGH-SPEED 3.3V 16/8K X 9 DUAL-PORT STATIC RAM
IDT

IDT70V16S15JG

Dual-Port SRAM, 16KX9, 15ns, CMOS, PQCC68, 0.95 X 0.95 INCH, 0.17 INCH HEIGHT, PLASTIC, LCC-68
IDT

IDT70V16S15JI

HIGH-SPEED 3.3V 16/8K X 9 DUAL-PORT STATIC RAM
IDT

IDT70V16S15PF

HIGH-SPEED 3.3V 16/8K X 9 DUAL-PORT STATIC RAM
IDT

IDT70V16S15PF8

Dual-Port SRAM, 16KX9, 15ns, CMOS, PQFP80, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-80
IDT

IDT70V16S15PFG

Dual-Port SRAM, 16KX9, 15ns, CMOS, PQFP80, 14 X 14 MM, 1.40 MM HEIGHT, TQFP-80
IDT