IDT70V17L20PFI [IDT]

Dual-Port SRAM, 32KX9, 20ns, CMOS, PQFP100, TQFP-100;
IDT70V17L20PFI
型号: IDT70V17L20PFI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 32KX9, 20ns, CMOS, PQFP100, TQFP-100

静态存储器
文件: 总17页 (文件大小:158K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
IDT70V17L  
HIGH-SPEED 3.3V  
32K x 9 DUAL-PORT  
STATIC RAM  
Features  
True Dual-Ported memory cells which allow simultaneous  
access of the same memory location  
High-speed access  
M/S = VIH for BUSY output flag on Master,  
M/S = VIL for BUSY input on Slave  
Busy and Interrupt Flags  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
LVTTL-compatible, single 3.3V (±0.3V) power supply  
Available in a 100-pin TQFP  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
– Commercial:15/20ns (max.)  
Industrial:20ns (max.)  
Low-power operation  
IDT70V17L  
Active: 440mW (typ.)  
Standby: 660µW (typ.)  
Dual chip enables allow for depth expansion without  
external logic  
IDT70V17 easily expands data bus width to 18 bits or  
more using the Master/Slave select when cascading more  
than one device  
Functional Block Diagram  
R/WL  
CE0L  
CE1L  
R/WR  
CE  
0
R
CE  
1
R
OEL  
OER  
I/O  
Control  
I/O  
Control  
0-8L  
I/O  
0-8R  
I/O  
(1,2)  
(1,2)  
R
BUSY  
L
BUSY  
.
32Kx9  
A
14L  
0L  
A
A
14R  
0R  
MEMORY  
ARRAY  
70V17  
Address  
Decoder  
Address  
Decoder  
A
15  
15  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CE 0L  
CE1L  
CE0R  
CE1R  
OER  
OE  
L
R/WL  
R/WR  
SEM  
INT  
L
L
SEM  
R
(2)  
(2)  
INT  
R
M/S(1)  
NOTES:  
5643 drw 01  
1. BUSY is an input as a Slave (M/S=VIL) and an output when it is a Master (M/S=VIH).  
2. BUSY and INT are non-tri-state totem-pole outputs (push-pull).  
JUNE 2003  
1
DSC-5643/1  
©2003IntegratedDeviceTechnology,Inc.  
IDT70V17L  
Preliminary  
Industrial and Commercial Temperature Ranges  
High-Speed 3.3V 32K x 9 Dual-Port Static RAM  
Description  
The IDT70V17is a high-speed32Kx9Dual-PortStaticRAM. The for reads or writes to any location in memory. An automatic power  
IDT70V17 is designed to be used as a stand-alone 288K-bit Dual-Port down feature controlled by the chip enables (either CE0 or CE1)  
RAM or as a combination MASTER/SLAVE Dual-Port RAM for 18-bit- permit the on-chip circuitry of each port to enter a very low standby  
or-morewordsystem.UsingtheIDTMASTER/SLAVEDual-PortRAM power mode.  
approach in 18-bit or wider memory system applications results in full-  
speed, error-free operation without the need for additional discrete these devices typically operate on only 440mW of power.  
logic. TheIDT70V17ispackagedina100-pinThinQuadFlatpack(TQFP).  
This device provides two independent ports with separate control,  
Fabricated using IDTs CMOS high-performance technology,  
address, and I/O pins that permit independent, asynchronous access  
Pin Configurations(1,2,3)  
06/12/03  
Index  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
NC  
NC  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
NC  
NC  
2
3
A
A
A
7L  
8L  
9L  
A
A
A
A
A
A
A
A
7R  
4
8R  
5
9R  
A
A
A
A
A
10L  
11L  
12L  
13L  
14L  
6
10R  
11R  
12R  
13R  
14R  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
IDT70V17PF  
PN100-1  
NC  
NC  
NC  
NC  
Vss  
NC  
NC  
(4)  
VDD  
100-Pin  
TQFP  
Top View  
NC  
NC  
NC  
NC  
CE0L  
CE1L  
(5  
)
NC  
NC  
CE0R  
CE1R  
SEM  
R/W  
OE  
Vss  
Vss  
NC  
SEM  
R/W  
OE  
L
L
L
R
R
R
Vss  
NC  
NC  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
5643 drw 02  
NOTES:  
1. All VDD pins must be connected to power supply.  
2. All VSS pins must be connected to ground.  
3. Package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part-marking.  
2
IDT70V17L  
Preliminary  
Industrial and Commercial Temperature Ranges  
High-Speed 3.3V 32K x 9 Dual-Port Static RAM  
Pin Names  
Left Port  
Right Port  
Names  
Chip Enables  
CE0L, CE1L  
R/W  
OE  
CE0R, CE1R  
R/W  
OE  
L
R
Read/Write Enable  
Output Enable  
Address  
L
R
A0L - A14L  
A
0R - A14R  
I/O0L - I/O8L  
I/O0R - I/O8R  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
SEM  
INT  
BUSY  
L
SEM  
INT  
BUSY  
M/S  
R
L
R
Busy Flag  
L
R
Master or Slave Select  
Power (3.3V)  
V
DD  
Vss  
Ground (0V)  
5643 tbl 01  
Absolute Maximum Ratings(1)  
Recommended DC Operating  
Conditions  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
Symbol  
Parameter  
Supply Voltage  
Ground  
Min.  
Typ.  
Max.  
3.6  
0
Unit  
V
(2)  
V
TERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +4.6  
V
V
DD  
ss  
IH  
IL  
3.0  
3.3  
V
0
0
V
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
50  
oC  
oC  
____  
V
Input High Voltage  
Input Low Voltage  
2.0  
V
DD+0.3(2)  
V
T
BIAS  
____  
V
-0.3(1)  
0.8  
V
TSTG  
Storage  
Temperature  
5643 tbl 04  
NOTES:  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed VDD + 0.3V.  
DC Output  
Current  
mA  
IOUT  
5643 tbl 02  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability.  
Capacitance(1) (TA = +25°C, f = 1.0MHz)  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2)  
Max. Unit  
2. VTERM must not exceed VDD + 0.3V for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > VDD + 0.3V.  
CIN  
VIN = 3dV  
9
pF  
COUT  
VOUT = 3dV  
10  
pF  
5643 tbl 05  
NOTES:  
Maximum Operating Temperature  
andSupplyVoltage  
1. This parameter is determined by device characterization but is not produc-  
tion tested.  
2. 3dV represents the interpolated capacitance when the input and output signals  
switch from 0V to 3V or from 3V to 0V.  
Grade  
Ambient  
GND  
Vcc  
Temperature(1)  
Commercial  
Industrial  
0OC to +70OC  
0V  
0V  
3.3V  
3.3V  
+
+
0.3V  
0.3V  
-40OC to +85OC  
5643 tbl 03  
NOTES:  
1. This is the parameter TA. This is the "instant on" case temperature.  
3
IDT70V17L  
Preliminary  
Industrial and Commercial Temperature Ranges  
High-Speed 3.3V 32K x 9 Dual-Port Static RAM  
Truth Table I – Chip Enable(1,2)  
CE  
1
Mode  
CE  
CE0  
VIL  
VIH  
Port Selected (TTL Active)  
L
< 0.2V  
>VDD -0.2V  
X
Port Selected (CMOS Active)  
Port Deselected (TTL Inactive)  
Port Deselected (TTL Inactive)  
Port Deselected (CMOS Inactive)  
Port Deselected (CMOS Inactive)  
VIH  
X
VIL  
H
(3)  
>VDD -0.2V  
X
(3)  
X
<0.2V  
5643 bl 06  
NOTES:  
1. Chip Enable references are shown above with the actual CE0 and CE1 levels; CE is a reference only.  
2. 'H' = VIH and 'L' = VIL.  
3. CMOS standby requires 'X' to be either < 0.2V or >VDD-0.2V.  
Truth Table II – Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
CE(2)  
H
OE  
X
X
L
SEM  
H
R/W  
I/O0-8  
Mode  
X
L
High-Z  
DATAIN  
DATAOUT  
High-Z  
Deselected: Power-Down  
Write to Memory  
L
H
L
H
X
H
Read Memory  
X
H
X
Outputs Disabled  
5643 tbl 07  
NOTES:  
1. A0L A14L A0R A14R  
2. Refer to Chip Enable Truth Table.  
Truth Table III – Semaphore Read/Write Control(1)  
Inputs  
Outputs  
(2)  
R/W  
H
I/O0-8  
Mode  
CE  
OE  
L
SEM  
L
H
DATAOUT  
Read Semaphore Flag Data Out  
Write I/O into Semaphore Flag  
Not Allowed  
H
L
X
L
DATAIN  
0
______  
X
X
L
5643 tbl 08  
NOTES:  
1. There are eight semaphore flags written to I/O0 and read from all the I/Os (I/O0-I/O8). These eight semaphore flags are addressed by A0-A2.  
2. Refer to Chip Enable Truth Table.  
4
IDT70V17L  
Preliminary  
Industrial and Commercial Temperature Ranges  
High-Speed 3.3V 32K x 9 Dual-Port Static RAM  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 3.3V ± 0.3V)  
70V17L  
Max.  
Symbol  
|ILI  
|ILO  
Parameter  
Test Conditions  
DD = 3.6V, VIN = 0V to VDD  
CE(2) = VIH, VOUT = 0V to VDD  
OL = +4mA  
OH = -4mA  
Min.  
Unit  
µA  
µA  
V
(1)  
___  
|
Input Leakage Current  
Output Leakage Current  
Output Low Voltage  
V
5
5
___  
___  
|
VOL  
I
0.4  
___  
VOH  
Output High Voltage  
I
2.4  
V
5643 tbl 09  
NOTES:  
1. At VDD < 2.0V, input leakages are undefined.  
2. Refer to Chip Enable Truth Table.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (VDD = 3.3V ± 0.3V)  
70V17L15  
Com'l Only  
70V17L20  
Com'l  
& Ind  
Unit  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(1) Max. Typ.(1) Max.  
mA  
IDD  
Dynamic Operating  
Current  
(Both Ports Active)  
L
L
L
L
L
L
L
L
L
L
145  
235  
135  
135  
35  
205  
220  
55  
CE = VIL, Outputs Disabled  
SEM = VIH  
(2)  
___  
___  
IND  
f = fMAX  
mA  
mA  
mA  
mA  
ISB1  
Standby Current  
(Both Ports - TTL Level  
Inputs)  
COM'L  
IND  
40  
70  
CE  
L
= CE  
R
= VIH  
= VIH  
SEM  
R
= SEM  
L
(2)  
___  
___  
35  
65  
f = fMAX  
(4)  
ISB2  
Standby Current  
(One Port - TTL Level  
Inputs)  
COM'L  
IND  
100  
155  
90  
140  
150  
3.0  
3.0  
135  
145  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(2)  
___  
___  
90  
f=fMAX  
,
SEM  
R
= SEM  
L
= VIH  
ISB3  
Full Standby Current  
(Both Ports - All CMOS  
Level Inputs)  
Both Ports CE  
L
and CE  
R
> VDD - 0.2V,  
COM'L  
IND  
0.2  
3.0  
0.2  
0.2  
90  
V
IN > VDD - 0.2V or VIN < 0.2V, f = 0(3)  
SEM = SEM > VDD- 0.2V  
___  
___  
R
L
(4)  
ISB4  
Full Standby Current  
(One Port - All CMOS  
Level Inputs)  
COM'L  
IND  
95  
150  
CE"A" < 0.2V and CE"B" > VDD - 0.2V  
SEM = SEM > VDD - 0.2V,  
IN > VDD - 0.2V or VIN < 0.2V,  
,
R
L
___  
___  
90  
V
(2)  
Active Port Outputs Disabled, f = fMAX  
5643 tbl 10  
NOTES:  
1. DD = 3.3V, TA = +25°C, and are not production tested. IDDDC = 90mA (Typ.)  
V
2. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using AC Test Conditions" of input levels of GND  
to 3V.  
3. f = 0 means no address or control lines change.  
4. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
5
IDT70V17L  
Preliminary  
Industrial and Commercial Temperature Ranges  
High-Speed 3.3V 32K x 9 Dual-Port Static RAM  
3.3V  
3.3V  
AC Test Conditions  
Input Pulse Levels  
GND to 3.0V  
590  
590Ω  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
3ns Max.  
1.5V  
DATAOUT  
BUSY  
INT  
DATAOUT  
1.5V  
30pF  
5pF*  
435Ω  
435Ω  
Figures 1 and 2  
5643 tbl 11  
5643 drw 03  
5643 drw 04  
Figure 1. AC Output Load  
Figure 2. Output Test Load  
(for tLZ, tHZ, tWZ, tOW)  
* Including scope and jig.  
Waveform of Read Cycles(5)  
t
RC  
ADDR  
(4)  
t
t
AA  
(4)  
CE(6)  
OE  
ACE  
(4)  
t
AOE  
R/W  
(1)  
t
OH  
t
LZ  
(4)  
DATAOUT  
VALID DATA  
(2)  
tHZ  
BUSYOUT  
(3,4)  
BDD  
5643 drw 05  
t
Timing of Power-Up Power-Down  
CE(6)  
tPU  
tPD  
ICC  
50%  
50%  
.
5643 drw 06  
ISB  
NOTES:  
1. Timing depends on which signal is asserted last, OE or CE.  
2. Timing depends on which signal is de-asserted first CE or OE.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY has no  
relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6. Refer to Chip Enable Truth Table.  
6
IDT70V17L  
Preliminary  
Industrial and Commercial Temperature Ranges  
High-Speed 3.3V 32K x 9 Dual-Port Static RAM  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70V17L15  
Com'l Only  
70V17L20  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
t
RC  
AA  
ACE  
AOE  
OH  
LZ  
HZ  
PU  
PD  
SOP  
SAA  
Read Cycle Time  
15  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
t
Address Access Time  
15  
15  
20  
20  
Chip Enable Access Time(3)  
Output Enable Access Time  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
t
t
10  
12  
____  
____  
t
3
3
____  
____  
t
3
3
Output High-Z Time(1,2)  
10  
10  
____  
____  
t
t
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
0
0
____  
____  
____  
____  
t
15  
20  
____  
____  
t
Semaphore Flag Update Pulse (OE or SEM)  
10  
10  
____  
____  
t
Semaphore Address Access Time  
15  
20  
ns  
5643 tbl 12  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage  
70V17L15  
Com'l Only  
70V17L20  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
t
WC  
EW  
AW  
AS  
WP  
WR  
DW  
HZ  
DH  
WZ  
OW  
SWRD  
SPS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
t
t
t
12  
0
15  
0
t
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
t
10  
15  
____  
____  
t
10  
10  
____  
____  
t
0
0
(1,2)  
____  
____  
t
Write Enable to Output in High-Z  
Output Active from End-of-Write(1, 2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
10  
10  
____  
____  
t
0
5
5
0
5
5
____  
____  
____  
____  
t
t
ns  
5643 tbl 13  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranted by device characterization, but is not production tested.  
3. To access RAM, CE= VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage and  
temperature, the actual tDH will always be smaller than the actual tOW.  
7
IDT70V17L  
Preliminary  
Industrial and Commercial Temperature Ranges  
High-Speed 3.3V 32K x 9 Dual-Port Static RAM  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
t
HZ  
OE  
t
AW  
CE or SEM(9,10)  
(3)  
(6)  
(2)  
t
WP  
tAS  
tWR  
R/W  
DATAOUT  
DATAIN  
(7)  
t
OW  
t
WZ  
(4)  
(4)  
t
DH  
tDW  
5643 drw 07  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
tWC  
ADDRESS  
t
AW  
CE or SEM(9,10)  
(3)  
(6)  
(2)  
tWR  
tAS  
tEW  
R/W  
DATAIN  
tDW  
tDH  
5643 drw 08  
NOTES:  
1. R/W or CE = VIH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL and a R/W = VIL for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load  
(Figure 2).  
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be placed on the bus  
for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
10. Refer to Chip Enable Truth Table.  
8
IDT70V17L  
Preliminary  
Industrial and Commercial Temperature Ranges  
High-Speed 3.3V 32K x 9 Dual-Port Static RAM  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
VALID ADDRESS  
A0-A2  
VALID ADDRESS  
tAW  
tWR  
t
ACE  
tEW  
SEM  
t
OH  
t
DW  
tSOP  
OUT  
DATA  
DATAIN VALID  
I/O  
VALID(2)  
tAS  
tWP  
tDH  
R/W  
tSWRD  
t
AOE  
OE  
tSOP  
Write Cycle  
Read Cycle  
5643 drw 09  
NOTES:  
1. CE = VIH for the duration of the above timing (both write and read cycle) (Refer to Chip Enable Truth Table).  
2. "DATAOUT VALID" represents all I/O's (I/O0 - I/O8) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
(2)  
SIDE "A"  
R/W"A"  
SEM"A"  
t
SPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
5643 drw 10  
NOTES:  
1. DOR = DOL = VIL, CEL = CER = VIH (Refer to Chip Enable Truth Table).  
2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, the semaphore will fall positively to one side or the other, but there is no guarantee which side will be granted the semaphore flag.  
9
IDT70V17L  
Preliminary  
Industrial and Commercial Temperature Ranges  
High-Speed 3.3V 32K x 9 Dual-Port Static RAM  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70V17L15  
Com'l Only  
70V17L20  
Com'l  
& Ind  
Symbol  
BUSY TIMING (M/S=VIH  
Parameter  
Min.  
Max.  
Min.  
Max. Unit  
)
____  
____  
____  
____  
____  
____  
____  
____  
t
BAA  
BDA  
BAC  
BDC  
APS  
BDD  
WH  
15  
15  
15  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
t
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable Low  
BUSY Access Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
t
t
15  
17  
____  
____  
t
5
5
____  
____  
BUSY Disable to Valid Data(3)  
Write Hold After BUSY(5)  
t
15  
17  
____  
____  
t
12  
15  
BUSY TIMING (M/S=VIL  
)
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
t
WB  
0
0
ns  
ns  
tWH  
12  
15  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
t
WDD  
Write Pulse to Data Delay(1)  
30  
25  
45  
30  
ns  
tDDD  
Write Data Valid to Read Data Delay(1)  
ns  
5643 tbl 14  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD – tWP (actual), or tDDD – tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
10  
IDT70V17L  
Preliminary  
Industrial and Commercial Temperature Ranges  
High-Speed 3.3V 32K x 9 Dual-Port Static RAM  
TimingWaveformof WritewithPort-to-PortReadandBUSY (M/S =VIH)(2,4,5)  
tWC  
MATCH  
ADDR"A"  
R/W"A"  
tWP  
tDW  
tDH  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
tBAA  
tBDA  
tBDD  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
5643 drw 11  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL, refer to Chip Enable Truth Table.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSY"A" = VIH and BUSY"B" input is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY (M/S = VIL)  
tWP  
R/W"A"  
(3)  
t
WB  
BUSY"B"  
(1)  
tWH  
(2)  
R/W"B"  
5643 drw 12  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the 'slave' version.  
11  
IDT70V17L  
Preliminary  
Industrial and Commercial Temperature Ranges  
High-Speed 3.3V 32K x 9 Dual-Port Static RAM  
Waveform of BUSY Arbitration Controlled by CE Timing(M/S = VIH)(1,3)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
t
APS  
CE"B"  
t
BAC  
tBDC  
BUSY"B"  
5643 drw 13  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(M/S = VIH)(1)  
ADDR"A"  
ADDRESS "N"  
(2)  
t
APS  
ADDR"B"  
MATCHING ADDRESS "N"  
t
BAA  
tBDA  
BUSY"B"  
5643 drw 14  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from port A”.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
3. Refer to Chip Enable Truth Table.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70V17L15  
70V17L20  
Com'l Only  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
t
AS  
WR  
INS  
INR  
Address Set-up Time  
Write Recovery Time  
Interrupt Set Time  
0
0
ns  
ns  
ns  
t
0
0
____  
____  
t
15  
15  
20  
20  
____  
____  
t
Interrupt Reset Time  
ns  
5643 tbl 15  
12  
IDT70V17L  
Preliminary  
Industrial and Commercial Temperature Ranges  
High-Speed 3.3V 32K x 9 Dual-Port Static RAM  
Waveform of Interrupt Timing(1,5)  
tWC  
INTERRUPT SET ADDRESS(2)  
ADDR"A"  
(3)  
(4)  
t
AS  
tWR  
CE"A"  
R/W"A"  
INT"B"  
(3)  
t
INS  
5643 drw 15  
tRC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
t
AS  
OE"B"  
(3)  
tINR  
INT"B"  
5643 drw 16  
NOTES:  
1. All timing is the same for left and right ports. Port A” may be either the left or right port. Port B” is the port opposite from port A”.  
2. Refer to Interrupt Truth Table.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
5. Refer to Chip Enable Truth Table.  
Truth Table IV — Interrupt Flag(1,4,5)  
Left Port  
Right Port  
OE  
R/WL  
A14L-A0L  
R/WR  
A
14R-A0R  
Function  
Set Right INT Flag  
Reset Right INT Flag  
Set Left INT Flag  
Reset Left INT Flag  
CEL  
OEL  
INTL  
CE  
R
R
INTR  
(2)  
L
L
X
X
L
X
X
X
L
7FFF  
X
X
X
X
L
X
L
L
X
X
L
X
7FFF  
7FFE  
X
L
R
(3)  
X
X
H
R
(3)  
X
X
L
X
X
X
L
(2)  
X
7FFE  
H
X
X
L
5643 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTL and INTR must be initialized at power-up.  
5. Refer to Chip Enable Truth Table.  
13  
IDT70V17L  
Preliminary  
Industrial and Commercial Temperature Ranges  
High-Speed 3.3V 32K x 9 Dual-Port Static RAM  
Truth Table V —  
Address BUSY Arbitration(4)  
Inputs  
Outputs  
A
OL-A14L  
(1)  
(1)  
A
OR-A14R  
Function  
Normal  
Normal  
Normal  
CE  
L
CE  
R
BUSY  
L
BUSYR  
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
H
MATCH  
H
MATCH  
(2)  
(2)  
(3)  
Write Inhibit  
5643 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT70V17 are  
push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address and  
enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored when  
BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. Refer to Chip Enable Truth Table.  
Truth Table VI — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0  
- D8  
Left  
D0  
- D8  
Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
5643 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V17.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O8). These eight semaphores are addressed by A0 - A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
TheIDT70V17providestwoportswithseparatecontrol,addressand (HEX),whereawriteisdefinedasCER=R/WR=VILpertheTruthTable.  
I/Opinsthatpermitindependentaccessforreadsorwritestoanylocation Theleftportclearstheinterruptthroughaccessofaddresslocation7FFE  
in memory. The IDT70V17 has an automatic power down feature when CEL = OEL = VIL, R/W is a "don't care". Likewise, the right port  
controlled by CE. The CE0 and CE1 control the on-chip power down interruptflag(INTR)isassertedwhentheleftportwritestomemorylocation  
circuitrythatpermitstherespectiveporttogointoastandbymodewhen 7FFF(HEX)andtocleartheinterruptflag(INTR),therightportmustread  
not selected (CE = VIH). When a port is enabled, access to the entire thememorylocation7FFF.Themessage(9bits)at7FFEor7FFFisuser-  
memoryarrayispermitted.  
definedsinceitisanaddressableSRAMlocation.Iftheinterruptfunction  
isnotused,addresslocations7FFEand7FFFarenotusedasmailboxes,  
butaspartoftherandomaccessmemory.RefertoTruthTableIV forthe  
interruptoperation.  
Interrupts  
If the user chooses the interrupt function, a memory location (mail  
boxormessagecenter)is assignedtoeachport. Theleftportinterrupt  
flag(INTL)isassertedwhentherightportwritestomemorylocation7FFE  
14  
IDT70V17L  
Preliminary  
Industrial and Commercial Temperature Ranges  
High-Speed 3.3V 32K x 9 Dual-Port Static RAM  
address signals only. Itignores whetheranaccess is a readorwrite. In  
a master/slave array, bothaddress andchipenable mustbe validlong  
enoughforaBUSYflagtobeoutputfromthemasterbeforetheactualwrite  
pulsecanbeinitiatedwiththeR/Wsignal.Failuretoobservethistimingcan  
resultina glitchedinternalwrite inhibitsignalandcorrupteddata inthe  
slave.  
BusyLogic  
Busy Logic provides a hardware indication that both ports of the  
RAMhave accessedthe same locationatthe same time. Italsoallows  
one of the two accesses to proceed and signals the other side that the  
RAMis “Busy.TheBUSY pincanthenbeusedtostalltheaccess until  
the operation on the other side is completed. If a write operation has  
been attempted from the side that receives a BUSY indication, the  
write signal is gated internally to prevent the write from proceeding.  
The use of BUSY logic is not required or desirable for all applica-  
tions. Insome cases itmaybe usefultologicallyORthe BUSYoutputs  
togetheranduseanyBUSYindicationasaninterruptsourcetoflagthe  
event of an illegal or illogical operation. If the write inhibit function of  
BUSYlogicis notdesirable,the BUSYlogiccanbedisabledbyplacing  
the part in slave mode with the M/S pin. Once in slave mode the BUSY  
pinoperates solelyas awriteinhibitinputpin.Normaloperationcanbe  
programmed by tying the BUSY pins HIGH. If desired, unintended  
write operations can be prevented to a port by tying the BUSY pin for  
that port LOW.  
Semaphores  
TheIDT70V17is anextremelyfastDual-Port32Kx9CMOSStatic  
RAM with an additional 8 address locations dedicated to binary  
semaphore flags. These flags alloweitherprocessoronthe leftorright  
side ofthe Dual-PortRAMtoclaima privilege overthe otherprocessor  
for functions defined by the system designers software. As an ex-  
ample, the semaphore can be used by one processor to inhibit the  
other from accessing a portion of the Dual-Port RAM or any other  
shared resource.  
The Dual-Port RAM features a fast access time, with both ports  
being completely independent of each other. This means that the  
activityonthe leftportinnowayslows the access time ofthe rightport.  
Both ports are identical in function to standard CMOS Static RAM and  
can be read from or written to at the same time with the only possible  
conflict arising from the simultaneous writing of, or a simultaneous  
READ/WRITE of, a non-semaphore location. Semaphores are pro-  
tected against such ambiguous situations and may be used by the  
system program to avoid any conflicts in the non-semaphore portion  
of the Dual-Port RAM. These devices have an automatic power-down  
feature controlled by CE, the Dual-Port RAM enable, and SEM, the  
semaphore enable. The CE and SEM pins control on-chip power  
downcircuitrythatpermits the respective porttogointostandbymode  
when not selected. This is the condition which is shown in Truth Table  
III where CE and SEM are both HIGH.  
TheBUSYoutputsontheIDT70V17RAMinmastermode,arepush-  
pulltypeoutputsanddonotrequirepullupresistorstooperate.Ifthese  
RAMs are being expanded in depth, then the BUSY indication for the  
resulting array requires the use of an external AND gate.  
A15  
CE  
0
CE  
0
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY  
R
BUSY  
R
BUSY  
L
BUSYL  
CE1  
CE1  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
SystemswhichcanbestusetheIDT70V17containmultipleprocessors  
or controllers and are typically very high-speed systems which are  
softwarecontrolledorsoftwareintensive.Thesesystemscanbenefitfrom  
a performance increase offered by the IDT70V17s hardware sema-  
phores,whichprovidealockoutmechanismwithoutrequiringcomplex  
programming.  
BUSY  
L
BUSYL  
BUSY  
R
BUSY  
R
.
5643 drw 17  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT70V17 RAMs.  
Softwarehandshakingbetweenprocessors offers themaximumin  
system flexibility by permitting shared resources to be allocated in  
varyingconfigurations.TheIDT70V17doesnotuseitssemaphoreflags  
to control any resources through hardware, thus allowing the system  
designertotalflexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methods of hardware arbitration is that wait states are never incurred  
in either processor. This can prove to be a major advantage in very  
high-speed systems.  
Width Expansion with Busy Logic  
Master/Slave Arrays  
WhenexpandinganIDT70V17RAMarrayinwidthwhileusingBUSY  
logic,onemasterpartisusedtodecidewhichsideoftheRAMsarraywill  
receivea BUSYindication,andtooutputthatindication.Anynumberof  
slavestobeaddressedinthesameaddressrangeasthemasterusethe  
BUSY signal as a write inhibit signal. Thus on the IDT70V17 RAM the  
BUSYpinisanoutputifthepartisusedasamaster(M/Spin=VIH),and  
theBUSYpinisaninputifthepartusedasaslave(M/Spin=VIL)as shown  
in Figure 3.  
If two or more master parts were used when expanding in width, a  
splitdecisioncouldresultwithonemasterindicatingBUSYononeside  
of the array and another master indicating BUSY on one other side of  
the array. This would inhibit the write operations from one port for part  
of a word and inhibit the write operations from the other port for the  
other part of the word.  
How the Semaphore Flags Work  
The semaphore logic is a set of eight latches which are indepen-  
dent of the Dual-Port RAM. These latches can be used to pass a flag,  
or token, from one port to the other to indicate that a shared resource  
is in use. The semaphores provide a hardware assist for a use  
assignmentmethodcalledTokenPassingAllocation.”Inthis method,  
the state of a semaphore latch is used as a token indicating that a  
shared resource is in use. If the left processor wants to use this  
resource,itrequeststhetokenbysettingthelatch.Thisprocessorthen  
The BUSY arbitration on a master is based on the chip enable and  
15  
IDT70V17L  
Preliminary  
Industrial and Commercial Temperature Ranges  
High-Speed 3.3V 32K x 9 Dual-Port Static RAM  
tothesamesemaphoreflagitwillfail,aswillbeverifiedbythefactthata  
onewillbereadfromthatsemaphoreontherightsideduringsubsequent  
read. Had a sequence of READ/WRITE been used instead, system  
contention problems could have occurred during the gap between the  
read and write cycles.  
It is important to note that a failed semaphore request must be  
followed by either repeated reads or by writing a one into the same  
location. The reason for this is easily understood by looking at the  
simple logic diagram of the semaphore flag in Figure 4. Two sema-  
phore request latches feed into a semaphore flag. Whichever latch is  
first to present a zero to the semaphore flag will force its side of the  
semaphore flag LOW and the other side HIGH. This condition will  
continueuntilaoneiswrittentothesamesemaphorerequestlatch.Should  
verifiesitssuccessinsettingthelatchbyreadingit. Ifitwassuccessful,it  
proceeds to assume control over the shared resource. If it was not  
successful in setting the latch, it determines that the right side  
processor has set the latch first, has the token and is using the shared  
resource. The left processor can then either repeatedly request that  
semaphores status or remove its request for that semaphore to  
perform another task and occasionally attempt again to gain control of  
the token via the set and test sequence. Once the right side has  
relinquished the token, the left side should succeed in gaining control.  
The semaphore flags are active LOW. A token is requested by  
writing a zero into a semaphore latch and is released when the same  
side writes a one to that latch.  
TheeightsemaphoreflagsresidewithintheIDT70V17inaseparate  
memoryspacefromtheDual-PortRAM.Thisaddressspaceisaccessed  
byplacingalowinputontheSEM pin(whichactsasachipselectforthe  
semaphoreflags)andusingtheothercontrolpins(Address,CE,andR/  
W)as theywouldbeusedinaccessingastandardStaticRAM.Eachof  
the flags has a unique address which can be accessed by either side  
throughaddresspinsA0A2.Whenaccessingthesemaphores,noneof  
theotheraddresspinshasanyeffect.  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel  
is written into an unused semaphore location, that flag will be set to a  
zeroonthatside anda one onthe otherside (see TruthTable VI). That  
semaphore can now only be modified by the side showing the zero.  
When a one is written into the same location from the same side, the  
flag will be set to a one for both sides (unless a semaphore request  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
5643 drw 18  
Figure 4. IDT70V17 Semaphore Logic  
fromtheothersideispending)andthencanbewrittentobybothsides. theothersidessemaphorerequestlatchhavebeenwrittentoazeroin  
The fact that the side which is able to write a zero into a semaphore themeantime,thesemaphoreflagwillflipovertotheothersideassoon  
subsequently locks out writes from the other side is what makes asaoneiswrittenintothefirstsidesrequestlatch.Thesecondsidesflag  
semaphore flags useful in interprocessor communications. (A thor- willnowstayLOWuntilitssemaphorerequestlatchiswrittentoaone.From  
ough discussion on the use of this feature follows shortly.) A zero this it is easy to understand that, if a semaphore is requested and the  
written into the same location from the other side will be stored in the processor which requested it no longer needs the resource, the entire  
semaphore request latch for that side until the semaphore is freed by systemcanhangupuntilaoneiswrittenintothatsemaphorerequestlatch.  
the first side.  
The criticalcase ofsemaphore timingis whenbothsides requesta  
Whena semaphore flagis read, its value is spreadintoalldata bits single token by attempting to write a zero into it at the same time. The  
so that a flag that is a one reads as a one in all data bits and a flag semaphore logic is specially designed to resolve this problem. If  
containinga zeroreads as allzeros. The readvalue is latchedintoone simultaneous requests are made, the logic guarantees that only one  
sides output register when that side's semaphore select (SEM) and side receives the token. If one side is earlier than the other in making  
output enable (OE) signals go active. This serves to disallow the the request, the first side to make the request will receive the token. If  
semaphore from changing state in the middle of a read cycle due to a bothrequests arriveatthesametime,theassignmentwillbearbitrarily  
write cycle from the other side. Because of this latch, a repeated read made to one port or the other.  
of a semaphore in a test loop must cause either signal (SEM or OE) to  
go inactive or the output will never change.  
One caution that should be noted when using semaphores is that  
semaphores alone do not guarantee that access to a resource is  
A sequence WRITE/READ must be used by the semaphore in secure. As with any powerful programming technique, if semaphores  
order to guarantee that no system level contention will occur. A are misused or misinterpreted, a software error can easily happen.  
processor requests access to shared resources by attempting to write  
Initialization of the semaphores is not automatic and must be  
a zero into a semaphore location. If the semaphore is already in use, handled via the initialization program at power-up. Since any sema-  
the semaphore request latch will contain a zero, yet the semaphore phore request flag which contains a zero must be reset to a one,  
flag will appear as one, a fact which the processor will verify by the all semaphores on both sides should have a one written into them  
subsequent read (see Table VI). As an example, assume a processor at initialization from both sides to assure that they will be free  
writes a zero to the left port at a free semaphore location. On a when needed.  
subsequent read, the processor will verify that it has written success-  
fully to that location and will assume control over the resource in  
question.Meanwhile,ifaprocessorontherightsideattemptstowriteazero  
16  
IDT70V17L  
Preliminary  
Industrial and Commercial Temperature Ranges  
High-Speed 3.3V 32K x 9 Dual-Port Static RAM  
Ordering Information  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
PF  
100-pin TQFP (PN100-1)  
15  
20  
Commercial Only  
Speed in nanoseconds  
Commercial & Industrial  
L
Low Power  
70V17 288K (32K x 9) Dual-Port RAM  
5643 drw 19  
PreliminaryDatasheet:  
"PRELIMINARY'datasheetscontaindescriptionsforproductsthatareinearlyrelease.  
DatasheetDocumentHistory:  
06/12/03:  
InitialDataSheet  
CORPORATE HEADQUARTERS  
for SALES:  
for Tech Support:  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
www.idt.com  
408-284-2794  
DualPortHelp@idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
17  

相关型号:

IDT70V17L20PFI8

Dual-Port SRAM, 32KX9, 20ns, CMOS, PQFP100, TQFP-100
IDT

IDT70V18L

HIGH-SPEED 3.3V 64K x 9 DUAL-PORT STATIC RAM
IDT

IDT70V18L15PF

HIGH-SPEED 3.3V 64K x 9 DUAL-PORT STATIC RAM
IDT

IDT70V18L15PF8

Dual-Port SRAM, 64KX9, 15ns, CMOS, PQFP100, TQFP-100
IDT

IDT70V18L15PF9

Dual-Port SRAM, 64KX9, 15ns, CMOS, PQFP100, TQFP-100
IDT

IDT70V18L15PFG

Dual-Port SRAM, 64KX9, 15ns, CMOS, PQFP100, TQFP-100
IDT

IDT70V18L15PFI

HIGH-SPEED 3.3V 64K x 9 DUAL-PORT STATIC RAM
IDT

IDT70V18L20PF

HIGH-SPEED 3.3V 64K x 9 DUAL-PORT STATIC RAM
IDT

IDT70V18L20PF8

Dual-Port SRAM, 64KX9, 20ns, CMOS, PQFP100, TQFP-100
IDT

IDT70V18L20PF9

Dual-Port SRAM, 64KX9, 20ns, CMOS, PQFP100, TQFP-100
IDT

IDT70V18L20PFG

暂无描述
IDT

IDT70V18L20PFGI

Dual-Port SRAM, 64KX9, 20ns, CMOS, PQFP100, TQFP-100
IDT