IDT70V25S35JI [IDT]

HIGH-SPEED 3.3V 8K x 16 DUAL-PORT STATIC RAM; 高速3.3V 8K ×16双口静态RAM
IDT70V25S35JI
型号: IDT70V25S35JI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

HIGH-SPEED 3.3V 8K x 16 DUAL-PORT STATIC RAM
高速3.3V 8K ×16双口静态RAM

存储 内存集成电路 静态存储器
文件: 总22页 (文件大小:179K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 3.3V  
8K x 16 DUAL-PORT  
STATIC RAM  
IDT70V25S/L  
Features  
True Dual-Ported memory cells which allow simultaneous  
IDT70V25 easily expands data bus width to 32 bits or more  
using the Master/Slave select when cascading more than  
one device  
M/S = VIH for BUSY output flag on Master  
M/S = VIL for BUSY input on Slave  
BUSY and Interrupt Flag  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
LVTTL-compatible, single 3.3V (±0.3V) power supply  
Available in 84-pin PGA, 84-pin PLCC and 100-pin TQFP  
Industrial temperature range (-40°C to +85°C) is available  
for selected speeds  
reads of the same memory location  
High-speed access  
– Commercial:15/20/25/35/55ns(max.)  
Industrial:20/25/35/55ns(max.)  
Low-power operation  
IDT70V25S  
Active:400mW(typ.)  
Standby: 3.3mW (typ.)  
IDT70V25L  
Active:380mW(typ.)  
Standby: 660µW (typ.)  
Separate upper-byte and lower-byte control for multiplexed  
bus compatibility  
Functional Block Diagram  
WL  
R/  
R/WR  
UBR  
UBL  
LBR  
CER  
OER  
LBL  
CEL  
OEL  
,
I/O8L-I/O15L  
I/O8R-I/O15R  
I/O  
Control  
I/O  
Control  
I/O0R-I/O7R  
I/O0L-I/O7L  
(1,2)  
BUSYL  
(1,2)  
BUSYR  
A12R  
A12L  
A0L  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A0R  
13  
13  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CER  
OER  
R/WR  
CEL  
OEL  
R/WL  
SEMR  
INTR  
SEML  
INTL  
(2)  
(2)  
M/S  
2944 drw 01  
NOTES:  
1. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
2. BUSY outputs and INT outputs are non-tri-stated push-pull.  
MAY 2000  
1
DSC-2944/8  
©2000IntegratedDeviceTechnology,Inc.  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
reads or writes to any location in memory. An automatic power down  
featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
a very low standby power mode.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typicallyoperate ononly400mWofpower.  
The IDT70V25is a high-speed8Kx16Dual-PortStaticRAM. The  
IDT70V25 is designed to be used as a stand-alone Dual-Port RAM or  
as a combination MASTER/SLAVE Dual-Port RAM for 32-bit or wider  
memorysystemapplications results infull-speed, error-free operation  
without the need for additional discrete logic.  
This device provides two independent ports with separate control,  
The IDT70V25 is packaged in a ceramic 84-pin PGA, an 84-Pin  
PLCC and a 100-pin Thin Quad Flatpack.  
Pin Configurations(1,2,3)  
INDEX  
11 10  
9
8
7
6
5
4
3
2
1 84 83 82 81 80 79 78 77 76 75  
74  
8L  
I/O  
7L  
6L  
5L  
A
A
A
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
I/O9L  
73  
72  
71  
70  
69  
68  
67  
10L  
I/O  
I/O11L  
12L  
A4L  
3L  
A
2L  
A
1L  
A
I/O  
I/O13L  
GND  
A0L  
14L  
I/O  
15L  
I/O  
CC  
V
IDT70V25J  
(4)  
INT  
L
J84-1  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
BUSYL  
GND  
M/S  
84-Pin PLCC  
Top View  
(5)  
GND  
0R  
I/O  
I/O1R  
2R  
BUSY  
R
I/O  
VCC  
3R  
INT  
R
0R  
A
I/O  
I/O4R  
A1R  
2R  
A
3R  
A
4R  
A
5R  
A
6R  
A
5R  
I/O  
6R  
I/O  
7R  
I/O  
8R  
I/O  
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  
2944 drw 02  
Index  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
1
N/C  
N/C  
N/C  
N/C  
I/O10L  
N/C  
N/C  
N/C  
N/C  
A5L  
75  
74  
2
3
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
4
5
11L  
I/O  
6
4L  
A
3L  
A
7
I/O12L  
I/O13L  
GND  
8
A2L  
1L  
9
A
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
I/O14L  
0L  
A
INTL  
IDT70V25PF  
PN100-1  
15L  
I/O  
(4)  
CC  
V
GND  
0R  
I/O  
I/O1R  
I/O2R  
BUSYL  
GND  
M/S  
BUSYR  
INTR  
A0R  
100-Pin TQFP  
(5)  
Top View  
CC  
V
I/O3R  
4R  
A1R  
2R  
A
I/O  
5R  
I/O  
A3R  
A4R  
N/C  
N/C  
N/C  
N/C  
I/O6R  
N/C  
N/C  
N/C  
N/C  
NOTES:  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. J84-1 package body is approximately 1.15 in x 1.15 in x .17 in.  
PN100-1 package body is approximately 14mm x 14mm x 1.4mm.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part marking.  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
,
2944 drw 03  
6.422  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3) (con't.)  
63  
61  
60  
58  
55  
54  
OEL  
49  
UBL  
53  
51  
48  
LBL  
47  
46  
45  
42  
11  
10  
09  
08  
07  
06  
05  
04  
03  
02  
01  
7L  
10L  
11L  
13L  
15L  
0R  
5L  
4L  
2L  
0L  
1L  
11L  
9L  
10L  
8L  
7L  
5L  
I/O  
I/O  
I/O  
I/O  
I/O  
SEML  
A
A
A
66  
64  
62  
59  
56  
50  
CEL  
52  
44  
43  
40  
8L  
6L  
3L  
I/O  
I/O  
I/O  
I/O  
I/O  
12L  
A
A
A
A
67  
65  
57  
41  
39  
L
R/W  
CC  
V
GND  
I/O  
9L  
6L  
3L  
0L  
I/O  
A
4L  
A
69  
68  
38  
37  
I/O  
12L  
I/O  
A
2L  
A
72  
71  
73  
33  
35  
34  
BUSYL  
I/O  
CC  
14L  
V
A
I/O  
INTL  
IDT70V25G  
G84-3(4)  
75  
70  
74  
32  
31  
36  
I/O  
GND  
GND  
M/  
S
GND  
1L  
A
84-Pin PGA  
Top View(5)  
76  
77  
78  
28  
29  
30  
CC  
V
1R  
I/O  
2R  
4R  
7R  
9R  
0R  
A
I/O  
INTR  
BUSYR  
79  
80  
26  
27  
2R  
A
3R  
I/O  
I/O  
1R  
A
81  
83  
7
11  
12  
23  
25  
SEMR  
5R  
I/O  
5R  
A
I/O  
I/O  
GND  
GND  
3R  
A
82  
1
3
2
5
8
10  
14  
17  
20  
22  
24  
6R  
I/O  
10R  
12R  
13R  
14R  
15R  
R
11R  
12R  
8R  
A
6R  
9R  
4R  
A
I/O  
I/O  
I/O  
R/W  
A
A
UBR  
84  
4
6
9
15  
LBR  
13  
16  
18  
19  
21  
8R  
I/O  
11R  
10R  
A
7R  
A
I/O  
I/O  
I/O  
A
OER  
CER  
A
A
B
C
D
E
F
G
H
J
K
L
2944 drw 04  
Index  
NOTES:  
1. All VCC pins must be connected to power supply.  
2. All GND pins must be connected to ground supply.  
3. Package body is approximately 1.12 in x 1.12 in x .16 in.  
4. This package code is used to reference the package diagram.  
5. This text does not indicate orientation of the actual part marking.  
Pin Names  
Left Port  
Right Port  
Names  
CEL  
CER  
WR  
Chip Enable  
WL  
R/  
R/  
Read/Write Enable  
Output Enable  
Address  
OEL  
0L  
OER  
12L  
0R  
A
12R  
A
- A  
- A  
0L  
15L  
0R  
15R  
I/O - I/O  
SEML  
UBL  
I/O - I/O  
SEMR  
UBR  
Data Input/Output  
Semaphore Enable  
Upper Byte Select  
Lower Byte Select  
Interrupt Flag  
LBL  
LBR  
INTL  
INTR  
BUSYL  
BUSYR  
S
Busy Flag  
M/  
Master or Slave Select  
Power  
CC  
V
GND  
Ground  
2944 tbl 01  
6.42  
3
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
R/W  
X
X
L
I/O8-15  
High-Z  
High-Z  
DATAIN  
High-Z  
DATAIN  
I/O0-7  
High-Z  
High-Z  
High-Z  
DATAIN  
DATAIN  
High-Z  
Mode  
Deselected: Power Down  
CE  
H
X
L
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
H
Both Bytes Deselected  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
H
L
L
H
L
H
L
L
L
H
L
H
H
H
X
L
H
L
H
DATAOUT  
High-Z  
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
OUT  
DATA  
L
L
H
L
H
L
L
L
H
DATAOUT  
High-Z  
DATAOUT  
High-Z  
X
H
X
X
X
Outputs Disabled  
2944 tbl 02  
NOTE:  
1. A0L A12L A0R A12R  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
R/W  
H
H
I/O8-15  
I/O0-7  
Mode  
CE  
H
X
H
X
L
OE  
L
UB  
X
H
X
H
L
LB  
X
H
X
H
X
L
SEM  
L
DATAOUT  
DATAOUT  
DATAIN  
DATAOUT  
DATAOUT  
DATAIN  
Read Data in Semaphore Flag  
Read Data in Semaphore Flag  
Write DIN0 into Semaphore Flag  
Write DIN0 into Semaphore Flag  
Not Allowed  
L
L
X
X
X
X
L
L
DATAIN  
DATAIN  
____  
____  
X
X
L
____  
____  
L
X
L
Not Allowed  
2944 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all of the I/O's (I/O0-I/O15). These eight semaphores are addressed by A0-A2.  
6.442  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Absolute Maximum Ratings(1)  
Maximum Operating Temperature  
andSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
Grade  
Ambient  
Temperature  
GND  
Vcc  
(2)  
VTERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +4.6  
V
Commercial  
0OC to +70OC  
0V  
0V  
3.3V+ 0.3V  
3.3V+ 0.3V  
Industrial  
-40OC to +85OC  
Temperature  
Under Bias  
-55 to +125  
-55 to +125  
50  
oC  
oC  
TBIAS  
TSTG  
IOUT  
2944 tbl 05  
NOTES:  
1. This is the parameter TA.  
Storage  
Temperature  
DC Output  
Current  
mA  
2944 tbl 04  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability.  
2. VTERM must not exceed Vcc + 0.3V for more than 25% of the cycle time or 10ns  
maximum, and is limited to < 20mA for the period of VTERM > Vcc + 0.3V.  
Recommended DC Operating  
Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
3.6  
0
Unit  
V
VCC  
Supply Voltage  
3.0  
3.3  
GND Ground  
0
0
V
(2)  
____  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
2.0  
VCC+0.3  
0.8  
V
-0.5(1)  
V
____  
Capacitance(1) (TA = +25°C, f = 1.0MHz)  
2944 tbl 06  
NOTES:  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2 )  
Max. Unit  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 0.3V.  
CIN  
VIN = 3dV  
9
pF  
COUT  
VOUT = 3dV  
10  
pF  
2944 tbl 07  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested.  
2. 3dV references the interpolated capacitance when the input and output  
signals switch from 0V to 3V or from 3V to 0V.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VCC = 3.3V ± 0.3V)  
70V25S  
70V25L  
Min.  
Symbol  
|ILI|  
Parameter  
Test Conditions  
Min.  
Max.  
10  
Max.  
5
Unit  
µA  
µA  
V
(1)  
___  
___  
___  
___  
Input Leakage Current  
VCC = 3.6V, VIN = 0V to VCC  
___  
___  
|ILO|  
Output Leakage Current  
Output Low Voltage  
Output High Voltage  
IH OUT  
CC  
10  
5
CE = V , V = 0V to V  
VOL  
IOL = +4mA  
0.4  
0.4  
___  
___  
VOH  
IOH = -4mA  
2.4  
2.4  
V
2944 tbl 08  
NOTE:  
1. At Vcc < 2.0V input leakages are undefined.  
6.42  
5
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (VCC = 3.3V ± 0.3V)  
70V25X15  
Com'l Only  
70V25X20  
Com'l  
& Ind  
70V25X25  
Com'l  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
150  
140  
215  
185  
140  
130  
200  
175  
130  
125  
190  
165  
mA  
CE = VIL, Outputs Open  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
IND  
S
L
140  
130  
225  
195  
130  
125  
210  
180  
ISB1  
ISB2  
ISB3  
ISB4  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
25  
20  
35  
30  
20  
15  
30  
25  
16  
13  
30  
25  
mA  
mA  
mA  
mA  
CER and CEL = VIH  
SEMR = SEML = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
MIL &  
IND  
S
L
20  
15  
45  
40  
16  
13  
45  
40  
(5)  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
85  
80  
120  
110  
80  
75  
110  
100  
75  
72  
110  
95  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Open,  
(3)  
f=fMAX  
____  
____  
____  
____  
MIL &  
IND  
S
L
80  
75  
130  
115  
75  
72  
125  
110  
SEMR = SEML = VIH  
Full Standby Current  
Both Ports CEL and  
CER > VCC - 0.2V,  
COM'L  
S
L
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
(Both Ports  
-
CMOS Level Inputs)  
VIN > VCC - 0.2V or  
____  
____  
____  
____  
VIN < 0.2V, f = 0(4)  
MIL &  
IND  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
SEMR = SEML > VCC-0.2V  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
COM'L  
S
L
85  
80  
125  
105  
80  
75  
115  
100  
75  
70  
105  
90  
CE"A" < 0.2V and  
(5)  
CE"B" > VCC - 0.2V  
SEMR = SEML > VCC-0.2V  
VIN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Open,  
____  
____  
____  
____  
MIL &  
IND  
S
L
80  
75  
130  
115  
75  
70  
120  
105  
(3)  
f = fMAX  
2944 tbl 09a  
70V25X35  
Com'l  
& Ind  
70V25X55  
Com'l  
& Ind  
Symbol  
Parameter  
Test Condition  
Version  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
COM'L  
S
120  
115  
180  
155  
120  
115  
180  
155  
mA  
CE = VIL, Outputs Open  
SEM = VIH  
L
(3)  
f = fMAX  
IND  
S
L
120  
115  
200  
170  
120  
115  
200  
170  
ISB1  
ISB2  
ISB3  
ISB4  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
13  
11  
25  
20  
13  
11  
25  
20  
mA  
mA  
mA  
mA  
CER and CEL = VIH  
SEMR = SEML = VIH  
(3)  
f = fMAX  
MIL &  
IND  
S
L
13  
11  
40  
35  
13  
11  
40  
35  
(5)  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
70  
65  
100  
90  
70  
65  
100  
90  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Open,  
(3)  
f=fMAX  
MIL &  
IND  
S
L
70  
65  
120  
105  
70  
65  
120  
105  
SEMR = SEML = VIH  
Full Standby Current  
Both Ports CEL and  
CER > VCC - 0.2V,  
COM'L  
S
L
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
(Both Ports  
-
CMOS Level Inputs)  
VIN > VCC - 0.2V or  
VIN < 0.2V, f = 0(4)  
MIL &  
IND  
S
L
1.0  
0.2  
15  
5
1.0  
0.2  
15  
5
SEMR = SEML > VCC-0.2V  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
COM'L  
S
L
65  
60  
100  
85  
65  
60  
100  
85  
CE"A" < 0.2V and  
(5)  
CE"B" > VCC - 0.2V  
SEMR = SEML > VCC-0.2V  
VIN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Open,  
MIL &  
IND  
S
L
65  
60  
115  
100  
65  
60  
115  
100  
(3)  
f = fMAX  
2944 tbl 09b  
NOTES:  
1. 'X' in part number indicates power rating (S or L)  
2. VCC = 3.3V, TA = +25°C, and are not production tested. Icc dc = 115mA (typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using AC Test Conditionsof input levels of GND  
to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
6.462  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Test Conditions  
Input Pulse Levels  
3.3V  
3.3V  
GND to 3.0V  
3ns Max.  
1.5V  
590  
590Ω  
Input Rise/Fall Times  
OUT  
BUSY  
INT  
DATA  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
DATAOUT  
1.5V  
435  
5pF*  
30pF  
435Ω  
Figures 1 and 2  
,
2944 tbl 10  
2944 drw 05  
Figure 1. AC Output Test Load  
Figure 2. Output Test  
Load  
(For tLZ, tHZ, tWZ, tOW)  
*Including scope and jig.  
Timing of Power-Up Power-Down  
CE  
tPU  
tPD  
ICC  
50%  
50%  
I
SB  
,
2944 drw 06  
6.42  
7
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
70V25X15  
Com'l Only  
70V25X20  
Com'l  
& Ind  
70V25X25  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
tRC  
Read Cycle Time  
15  
20  
25  
ns  
ns  
ns  
____  
____  
____  
tAA  
tACE  
Address Access Time  
15  
15  
15  
20  
20  
20  
25  
25  
25  
____  
____  
____  
____  
____  
____  
____  
____  
____  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
tABE  
tAOE  
tOH  
tLZ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output Enable Access Time(3)  
10  
12  
13  
____  
____  
____  
Output Hold from Address Change  
3
3
3
____  
____  
____  
Output Low-Z Time(1,2)  
3
3
3
____  
____  
____  
Output High-Z Time(1,2)  
tHZ  
10  
12  
15  
____  
____  
____  
Chip Enable to Power Up Time(1,2)  
PU  
t
0
0
0
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access(3)  
____  
____  
____  
tPD  
15  
20  
25  
____  
____  
____  
tSOP  
tSAA  
10  
10  
10  
____  
____  
____  
15  
20  
25  
ns  
2944 tbl 11a  
70V25X35  
Com'l  
& Ind  
70V25X55  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
tRC  
Read Cycle Time  
35  
55  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
tAA  
Address Access Time  
35  
35  
35  
55  
55  
55  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time(3)  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
____  
____  
____  
____  
____  
____  
tACE  
tABE  
tAOE  
tOH  
20  
30  
____  
____  
3
3
____  
____  
tLZ  
3
3
Output High-Z Time(1,2)  
15  
25  
____  
____  
tHZ  
tPU  
Chip Enable to Power Up Time(1,2)  
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access(3)  
0
0
____  
____  
____  
____  
tPD  
35  
50  
____  
____  
tSOP  
tSAA  
15  
15  
____  
____  
35  
55  
ns  
2944 tbl 11b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL.  
4. 'X' in part number indicates power rating (S or L).  
6.482  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
tAA  
(4)  
tACE  
CE  
(4)  
tAOE  
OE  
(4)  
tABE  
UB, LB  
R/W  
(1)  
tOH  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
tHZ  
BUSYOUT  
(3,4)  
2944 drw 07  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE, CE, LB, or UB.  
2. Timing depends on which signal is de-asserted first, CE, OE, LB, or UB.  
3. tBDD delay is required only in case where opposite port is completing a write operation to the same address location for simultaneous read operations BUSY has no  
relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tABE, tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6.42  
9
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
Operating TemperatureandSupplyVoltage(5)  
70V25X15  
Com'l Only  
70V25X20  
Com'l  
& Ind  
70V25X25  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
tWP  
12  
0
15  
0
20  
0
tWR  
tDW  
tHZ  
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
10  
15  
15  
____  
____  
____  
10  
12  
15  
____  
____  
____  
tDH  
0
0
0
(1,2)  
____  
____  
____  
tWZ  
tOW  
tSWRD  
tSPS  
Write Enable to Output in High-Z  
Output Active from End-of-Write(1,2,4)  
10  
12  
15  
____  
____  
____  
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
Flag Write to Read Time  
Flag Contention Window  
SEM  
SEM  
ns  
2944 tbl 12a  
70V25X35  
Com'l  
& Ind  
70V25X55  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
35  
30  
30  
0
55  
45  
45  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
tWP  
25  
0
40  
0
tWR  
tDW  
tHZ  
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
15  
30  
____  
____  
15  
25  
____  
____  
tDH  
0
0
(1,2)  
____  
____  
tWZ  
tOW  
tSWRD  
tSPS  
Write Enable to Output in High-Z  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
15  
25  
____  
____  
0
5
5
0
5
5
____  
____  
____  
____  
ns  
2944 tbl 12b  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access SRAM, CE = VIL, UB or LB = VIL, SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL. Either condition must be valid for the entire  
tEW time.  
4. The specification for tDH must be met by the device supplying write data to the SRAM under all operating conditions. Although tDH and tOW values will vary over voltage and  
temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part number indicates power rating (S or L).  
6.1402  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM(9)  
CE or SEM(9)  
(3)  
tWR  
(2)  
(6)  
tAS  
tWP  
R/W  
DATAOUT  
DATAIN  
(7)  
tWZ  
tOW  
(4)  
(4)  
tDW  
tDH  
2944 drw 08  
Timing Waveform of Write Cycle No. 2, CE, UB, LB Controlled Timing(1,5)  
tWC  
ADDRESS  
tAW  
(9)  
or  
CE SEM  
(3)  
(6)  
(2)  
tWR  
tEW  
tAS  
(9)  
or  
UB LB  
R/  
W
tDW  
tDH  
DATAIN  
2944 drw 09  
NOTES:  
1. R/W or CE or UB & LB must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW UB or LB and a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end-of-write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition the outputs remain in the HIGH-impedance state.  
6. Timing depends on which enable signal is asserted last, CE, R/W, or UB or LB.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with Output Test Load  
(Figure 2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as  
the specified tWP.  
9. To access SRAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access Semaphore, CE = VIH or UB and LB = VIH, and SEM = VIL. tEW must be met for either condition.  
6.42  
11  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tOH  
tSAA  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tACE  
tWR  
tAW  
tEW  
SEM  
tSOP  
tDW  
DATAOUT  
VALID(2)  
DATAIN  
VALID  
I/O0  
tAS  
tWP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
Write Cycle  
Read Cycle  
2944 drw 10  
NOTES:  
1. CE = VIH or UB & LB = VIH for the duration of the above timing (both write and read cycle).  
2. DATAOUT VALIDrepresents all I/O's (I/O0-I/O15) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2)  
"A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
2944 drw 11  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH, or both UB & LB = VIH.  
2. All timing is the same for left and right port. Port Amay be either left or right port. Port Bis the opposite from port A.  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will obtain the semaphore flag.  
6.1422  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
70V25X15  
Com'l Ony  
70V25X20  
Com'l  
& Ind  
70V25X25  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S = VIH)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tBAA  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
15  
17  
17  
____  
____  
____  
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
18  
30  
30  
Write Hold After BUSY(5)  
12  
15  
17  
____  
____  
____  
BUSY TIMING (M/S = VIL)  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
Write Hold After BUSY(5)  
PORT-TO-PORT DELAY TIMING  
tWB  
0
0
0
ns  
ns  
tWH  
12  
15  
17  
(1)  
____  
____  
____  
____  
____  
____  
tWDD  
tDDD  
Write Pulse to Data Delay  
30  
25  
45  
35  
50  
35  
ns  
Write Data Valid to Read Data Delay(1)  
ns  
2944 tbl 13a  
70V25X35  
Com'l  
& Ind  
70V25X55  
Com'l  
& Ind  
Symbol  
BUSY TIMING (M/S = VIH)  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
____  
____  
tBAA  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
20  
20  
20  
45  
40  
40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
20  
35  
____  
____  
5
5
____  
____  
BUSY Disable to Valid Data(3)  
35  
40  
Write Hold After BUSY(5)  
25  
25  
____  
____  
BUSY TIMING (M/S = VIL)  
____  
____  
____  
____  
BUSY Input to Write(4)  
BUSY(5)  
tWB  
0
0
ns  
ns  
tWH  
Write Hold After  
25  
25  
PORT-TO-PORT DELAY TIMING  
(1)  
____  
____  
____  
____  
tWDD  
tDDD  
Write Pulse to Data Delay  
60  
45  
80  
65  
ns  
Write Data Valid to Read Data Delay(1)  
ns  
2944 tbl 13b  
NOTES:  
1. Port-to-port delay through SRAM cells from writing port to reading port, refer to "TIMING WAVEFORM OF WRITE PORT-TO-PORT READ AND  
BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD tWP (actual) or tDDD tDW (actual).  
4. To ensure that the write cycle is inhibited during contention.  
5. To ensure that a write cycle is completed after contention.  
6. 'X' in part number indicates power rating (S or L).  
6.42  
13  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Port-to-Port Read and BUSY(2,4,5) (M/S = VIH)  
tWC  
ADDR"A"  
R/W"A"  
MATCH  
tWP  
tDH  
tDW  
DATAIN "A"  
VALID  
(1)  
tAPS  
ADDR"B"  
MATCH  
tBAA  
tBDA  
tBDD  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
2944 drw 12  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (slave).  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSYA= VIH and BUSYBinput is shown above.  
5. All timing is the same for both left and right ports. Port Amay be either the left or right port. Port B is the port opposite from port A.  
6.1442  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with BUSY  
tWP  
R/ "A"  
W
(3)  
tWB  
BUSY"B"  
(1)  
tWH  
(2)  
R/ "B"  
W
,
2944 drw 13  
NOTES:  
1. tWH must be met for both master BUSY input (slave) and output (master).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the slave version.  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
"B"  
BUSY  
2944 drw 14  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
NOTES:  
ADDRESS "N"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
2944 drw 15  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from A.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
6.42  
15  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
70V25X15  
Com'l Only  
70V25X20  
Com'l  
& Ind  
70V25X25  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
tAS  
Address Set-up Time  
0
0
0
ns  
ns  
ns  
tWR  
tINS  
tINR  
Write Recovery Time  
Interrupt Set Time  
0
0
0
____  
____  
____  
15  
15  
20  
20  
20  
20  
____  
____  
____  
Interrupt Reset Time  
ns  
2944 tbl 14a  
70V25X35  
Com'l  
& Ind  
70V25X55  
Com'l  
& Ind  
Symbol  
INTERRUPT TIMING  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
tAS  
Address Set-up Time  
0
0
ns  
ns  
ns  
WR  
t
Write Recovery Time  
Interrupt Set Time  
0
0
____  
____  
tINS  
tINR  
25  
25  
40  
40  
____  
____  
Interrupt Reset Time  
ns  
2944 tbl 14b  
NOTES:  
1. 'X' in part number indicates power rating (S or L).  
6.1462  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
tWC  
ADDR"A"  
INTERRUPT SET ADDRESS (2)  
(3)  
tAS  
(4)  
tWR  
CE"A"  
R/  
W"A"  
(3)  
tINS  
INT"B"  
2944 drw 16  
tRC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
tINR  
INT"B"  
2944 drw 17  
NOTES:  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from A.  
2. See Interrupt Flag Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
6.42  
17  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table III — Interrupt Flag(1)  
Left Port  
Right Port  
R/WL  
L
A12L-A0L  
1FFF  
X
R/WR  
X
A12R-A0R  
X
Function  
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
CEL  
L
OEL  
X
INTL  
X
CER  
X
OER  
X
INTR  
(2)  
L
(3)  
X
X
X
X
X
L
L
1FFF  
1FFE  
X
H
(3)  
X
X
X
X
L
L
L
X
X
X
(2)  
X
L
L
1FFE  
H
X
X
X
Reset Left INTL Flag  
2944 tbl 15  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
A12L-A0L  
12R-A0R  
(1)  
(1)  
A
Function  
Normal  
Normal  
Normal  
CE  
L
CER  
X
BUSYL  
BUSYR  
X
H
X
L
NO MATCH  
MATCH  
H
H
H
H
X
H
MATCH  
H
H
L
MATCH  
(2)  
(2)  
Write Inhibit(3)  
2944 tbl 16  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT70V25 are  
push pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. L if the inputs to the opposite port were stable prior to the address and enable inputs of this port. VIH if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0 - D15 Left  
D0 - D15 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
2944 tbl 17  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V25.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O15). These eight semaphores are addressed by A0-A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Tables.  
6.1482  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
SLAVE  
Dual Port  
SRAM  
CE  
CE  
MASTER  
Dual Port  
SRAM  
BUSYR  
BUSYR  
BUSYL  
BUSYL  
MASTER  
Dual Port  
SRAM  
SLAVE  
Dual Port  
SRAM  
CE  
CE  
BUSYR  
BUSYR  
BUSYR  
BUSYL  
BUSYL  
BUSYL  
2944 drw 18  
Figure 3. Busy and chip enable routing for both width and depth expansion with IDT70V25 SRAMs.  
Functional Description  
The IDT70V25 provides two ports with separate control, address writeoperationscanbepreventedtoaportbytyingtheBUSYpinforthat  
and I/O pins that permit independent access for reads or writes to any portLOW.  
location in memory. The IDT70V25 has an automatic power down  
The BUSY outputs on the IDT 70V25 SRAM in master mode, are  
featurecontrolledbyCE.TheCEcontrolson-chippowerdowncircuitry push-pulltypeoutputs anddonotrequirepullupresistors tooperate.If  
that permits the respective port to go into a standby mode when not theseSRAMsarebeingexpandedindepth,thentheBUSYindicationfor  
selected (CE HIGH). When a port is enabled, access to the entire the resulting array requires the use of an external AND gate.  
memory array is permitted.  
Width Expansion with Busy Logic  
Master/Slave Arrays  
Interrupts  
If the user chooses the interrupt function, a memory location (mail  
boxormessagecenter)is assignedtoeachport. Theleftportinterrupt  
flag (INTL) is asserted when the right port writes to memory location  
1FFE (HEX), where a write is defined as the CER = R/WR = VIL per  
Truth Table III. The left port clears the interrupt by an address location  
1FFE access when CEL = OEL = VIL, R/WL is a "don't care". Likewise,  
the right port interrupt flag (INTR) is set when the left port writes to  
memorylocation1FFF(HEX)andtoclearthe interruptflag(INTR), the  
rightportmustreadthememorylocation1FFF. Themessage(16bits)  
at 1FFE or 1FFF is user-defined, since it is an addressable SRAM  
location. If the interrupt function is not used, address locations 1FFE  
and1FFFarenotusedasmailboxes,butaspartoftherandomaccess  
memory. Refer to Truth Table III for the interrupt operation.  
When expanding an IDT70V25 SRAM array in width while using  
BUSYlogic, one masterpartis usedtodecide whichside ofthe SRAM  
array will receive a BUSYindication, and to output that indication. Any  
number of slaves to be addressed in the same address range as the  
master, use the BUSY signal as a write inhibit signal. Thus on the  
IDT70V25 SRAM the BUSY pin is an output if the part is used as a  
master (M/S pin = VIH), and the BUSY pin is an input if the part used  
as a slave (M/S pin = VIL) as shown in Figure 3.  
If two or more master parts were used when expanding in width, a  
splitdecisioncouldresultwithonemasterindicatingBUSYononeside  
of the array and another master indicating BUSY on one other side of  
the array. This would inhibit the write operations from one port for part  
of a word and inhibit the write operations from the other port for the  
other part of the word.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. It ignores whether an access is a read or write.  
In a master/slave array, both address and chip enable must be valid  
long enough for a BUSY flag to be output from the master before the  
actualwrite pulse canbe initiatedwitheitherthe R/W signalorthe byte  
enables. Failure to observe this timing can result in a glitched internal  
write inhibit signal and corrupted data in the slave.  
Busy Logic  
Busy Logic provides a hardware indication that both ports of the  
SRAM have accessed the same location at the same time. It also  
allows one of the two accesses to proceed and signals the other side  
that the SRAM is busy. The BUSY pin can then be used to stall the  
access until the operation on the other side is completed. If a write  
operation has been attempted from the side that receives a BUSY  
indication, the write signal is gated internally to prevent the write from  
proceeding.  
Semaphores  
The use of BUSY logic is not required or desirable for all applica-  
tions. Insome cases itmaybe usefultologicallyORthe BUSYoutputs  
togetheranduseanyBUSYindicationasaninterruptsourcetoflagthe  
event of an illegal or illogical operation. If the write inhibit function of  
BUSYlogicis notdesirable,the BUSYlogiccanbedisabledbyplacing  
the part in slave mode with the M/Spin. Once in slave mode the BUSY  
pinoperates solelyas awriteinhibitinputpin.Normaloperationcanbe  
programmed by tying the BUSY pins HIGH. If desired, unintended  
TheIDT70V25is anextremelyfastDual-Port8Kx16CMOSStatic  
RAM with an additional 8 address locations dedicated to binary  
semaphore flags. These flags alloweitherprocessoronthe leftorright  
side of the Dual-Port SRAM to claim a privilege over the other  
processor for functions defined by the system designers software. As  
an example, the semaphore can be used by one processor to inhibit  
the otherfromaccessinga portionofthe Dual-PortSRAMoranyother  
6.42  
19  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
sharedresource.  
as a chip select for the semaphore flags) and using the other  
The Dual-Port SRAM features a fast access time, and both ports control pins (Address, OE, and R/W) as they would be used in  
are completelyindependentofeachother. This means thatthe activity accessing a standard static RAM. Each of the flags has a unique  
on the left port in no way slows the access time of the right port. Both address which can be accessed by either side through address pins  
ports are identical in function to standard CMOS Static RAM and can A0 A2. When accessing the semaphores, none of the other address  
be accessed at the same time with the only possible conflict arising pins has any effect.  
from the simultaneous writing of, or a simultaneous READ/WRITE of,  
When writing to a semaphore, only data pin D0 is used. If a LOW  
a non-semaphore location. Semaphores are protected against such level is written into an unused semaphore location, that flag will be set  
ambiguous situations and may be used by the system program to to a zero on that side and a one on the other side (see Truth Table V).  
avoid any conflicts in the non-semaphore portion of the Dual-Port That semaphore can now only be modi-fied by the side showing the  
SRAM. These devices have an automatic power-down feature con- zero. When a one is written into the same location from the same side,  
trolled by CE, the Dual-Port SRAM enable, and SEM, the semaphore the flagwillbe settoa one forbothsides (unless a semaphore request  
enable. The CE and SEM pins control on-chip power down circuitry fromtheothersideispending)andthencanbewrittentobybothsides.  
that permits the respective port to go into standby mode when not The fact that the side which is able to write a zero into a semaphore  
selected. This is the condition which is shown in Truth Table I where subsequently locks out writes from the other side is what makes  
CE and SEM are both HIGH.  
semaphore flags useful in interprocessor communications. (A thor-  
Systems which can best use the IDT70V25 contain multiple ough discussion on the use of this feature follows shortly.) A zero  
processors or controllers and are typically very high-speed systems written into the same location from the other side will be stored in the  
which are software controlled or software intensive. These systems semaphore request latch for that side until the semaphore is freed by  
can benefit from a performance increase offered by the IDT70V25's the first side.  
hardware semaphores, which provide a lockout mechanism without  
requiring complex programming.  
Whena semaphore flagis read, its value is spreadintoalldata bits  
so that a flag that is a one reads as a one in all data bits and a flag  
Softwarehandshakingbetweenprocessors offers themaximumin containinga zeroreads as allzeros. The readvalue is latchedintoone  
system flexibility by permitting shared resources to be allocated in sides output register when that side's semaphore select (SEM) and  
varying configurations. The IDT70V25 does not use its semaphore output enable (OE) signals go active. This serves to disallow the  
flags to control any resources through hardware, thus allowing the semaphore from changing state in the middle of a read cycle due to a  
system designer total flexibility in system architecture.  
write cycle from the other side. Because of this latch, a repeated read  
An advantage of using semaphores rather than the more common of a semaphore in a test loop must cause either signal (SEM or OE) to  
methods of hardware arbitration is that wait states are never incurred go inactive or the output will never change.  
in either processor. This can prove to be a major advantage in very  
high-speed systems.  
A sequence WRITE/READ must be used by the semaphore in  
order to guarantee that no system level contention will occur. A  
processor requests access to shared resources by attempting to write  
a zero into a semaphore location. If the semaphore is already in use,  
the semaphore request latch will contain a zero, yet the semaphore  
flag will appear as one, a fact which the processor will verify by the  
subsequent read (see Truth Table V). As an example, assume a  
processorwritesazerototheleftportatafreesemaphorelocation.On  
asubsequentread,theprocessorwillverifythatithas writtensuccess-  
fully to that location and will assume control over the resource in  
question. Meanwhile, if a processor on the right side attempts to write  
a zero to the same semaphore flag it will fail, as will be verified by the  
factthataonewillbereadfromthatsemaphoreontherightsideduring  
subsequent read. Had a sequence of READ/WRITE been used  
instead, system contention problems could have occurred during the  
gap between the read and write cycles.  
It is important to note that a failed semaphore request must be  
followed by either repeated reads or by writing a one into the same  
location. The reason for this is easily understood by looking at the  
simple logic diagram of the semaphore flag in Figure 4. Two sema-  
phore request latches feed into a semaphore flag. Whichever latch is  
first to present a zero to the semaphore flag will force its side of the  
semaphore flag LOW and the other side HIGH. This condition will  
continue until a one is written to the same semaphore request latch.  
Should the other sides semaphore request latch have been written to  
a zero in the meantime, the semaphore flag will flip over to the other  
side as soon as a one is written into the first sides request latch. The  
How the Semaphore Flags Work  
The semaphore logic is a set of eight latches which are indepen-  
dentofthe Dual-PortSRAM. These latches canbe usedtopass a flag,  
or token, from one port to the other to indicate that a shared resource  
is in use. The semaphores provide a hardware assist for a use  
assignmentmethodcalledTokenPassingAllocation.Inthis method,  
thestateofasemaphorelatchisusedasatokenindicatingthatshared  
resource is in use. If the left processor wants to use this resource, it  
requests the token by setting the latch. This processor then verifies its  
success in setting the latch by reading it. If it was successful, it  
proceeds to assume control over the shared resource. If it was not  
successful in setting the latch, it determines that the right side  
processor has set the latch first, has the token and is using the shared  
resource. The left processor can then either repeatedly request that  
semaphores status or remove its request for that semaphore to  
perform another task and occasionally attempt again to gain control of  
the token via the set and test sequence. Once the right side has  
relinquished the token, the left side should succeed in gaining control.  
The semaphore flags are active LOW. A token is requested by  
writing a zero into a semaphore latch and is released when the same  
side writes a one to that latch.  
The eight semaphore flags reside within the IDT70V25 in a  
separate memory space from the Dual-Port SRAM. This address  
space is accessed by placing a LOW input on the SEM pin (which acts  
6.2402  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
secondsidesflagwillnowstayLOWuntilitssemaphorerequestlatchis control of the second 4K section by writing, then reading a zero into  
writtentoaone.Fromthisitiseasytounderstandthat,ifasemaphoreis Semaphore 1. If it succeeded in gaining control, it would lock out the  
requested and the processor which requested it no longer needs the left side.  
resource, the entire system can hang up until a one is written into that  
semaphorerequestlatch.  
Once the left side was finished with its task, it would write a one to  
Semaphore 0 and may then try to gain access to Semaphore 1. If  
The critical case of semaphore timing is when both sides request Semaphore 1 was still occupied by the right side, the left side could  
a single tokenbyattemptingtowrite a zerointoitatthe same time. The undo its semaphore request and perform other tasks until it was able  
semaphore logic is specially designed to resolve this problem. If to write, then read a zero into Semaphore 1. If the right processor  
simultaneous requests are made, the logic guarantees that only one performsasimilartaskwithSemaphore0,thisprotocolwouldallowthe  
side receives the token. If one side is earlier than the other in making twoprocessors toswap4Kblocks ofDual-PortSRAMwitheachother.  
the request, the first side to make the request will receive the token. If  
bothrequests arriveatthesametime,theassignmentwillbearbitrarily variable, depending upon the complexity of the software using the  
made to one port or the other. semaphore flags. All eight semaphores could be used to divide the  
The blocks do not have to be any particular size and can even be  
One caution that should be noted when using semaphores is that Dual-Port SRAM or other shared resources into eight parts. Sema-  
semaphores alone do not guarantee that access to a resource is phores can even be assigned different meanings on different sides  
secure. As with any powerful programming technique, if semaphores rather than being given a common meaning as was shown in the  
are misused or misinterpreted, a software error can easily happen.  
Initialization of the semaphores is not automatic and must be  
example above.  
Semaphores are a useful form of arbitration in systems like disk  
handled via the initialization program at power-up. Since any sema- interfaces where the CPU must be locked out of a section of memory  
phore request flag which contains a zero must be reset to a one, all during a transfer and the I/O device cannot tolerate any wait states.  
semaphores on both sides should have a one written into them at With the use of semaphores, once the two devices has determined  
initialization from both sides to assure that they will be free when which memory area was off-limitsto the CPU, both the CPU and the  
needed.  
I/O devices could access their assigned portions of memory continu-  
ously without any wait states.  
Semaphores are also useful in applications where no memory  
WAITstate is available on one or both sides. Once a semaphore  
handshake has been performed, both processors can access their  
assigned RAM segments at full speed.  
UsingSemaphores—SomeExamples  
Perhaps the simplest application of semaphores is their applica-  
tionasresourcemarkersfortheIDT70V25sDual-PortSRAM.Saythe  
8K x 16 SRAM was to be divided into two 4K x 16 blocks which were  
to be dedicated at any one time to servicing either the left or right port.  
Semaphore 0 could be used to indicate the side which would control  
thelowersectionofmemory,andSemaphore1couldbedefinedasthe  
indicator for the upper section of memory.  
To take a resource, in this example the lower 4K of Dual-Port  
SRAM, the processor on the left port could write and then read a zero  
in to Semaphore 0. If this task were successfully completed (a zero  
was read back rather than a one), the left processor would assume  
control of the lower 4K. Meanwhile the right processor was attempting  
to gain control of the resource after the left processor, it would read  
back a one in response to the zero it had attempted to write into  
Semaphore 0. At this point, the software could choose to try and gain  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
case, block arbitration is very important. For this application one  
processor may be responsible for building and updating a data  
structure. The other processor then reads and interprets that data  
structure. If the interpreting processor reads an incomplete data  
structure, a major error condition may exist. Therefore, some sort of  
arbitration must be used between the two different processors. The  
building processor arbitrates for the block, locks it and then is able to  
goinandupdatethedatastructure.Whentheupdateiscompleted,the  
data structure blockis released. This allows the interpretingprocessor  
to come back and read the complete data structure, thereby guaran-  
teeing a consistent data structure.  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
2944 drw 19  
Figure 4. IDT70V25 Semaphore Logic  
6.42  
21  
IDT70V25S/L  
High-Speed 8K x 16 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Ordering Information(1)  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
PF  
G
J
100-pin TQFP (PN100-1)  
84-pin PGA (G84-3)  
84-pin PLCC (J84-1)  
15  
20  
25  
35  
55  
Commercial Only  
,
Commercial & Industrial  
Commercial & Industrial  
Commercial & Industrial  
Commercial & Industrial  
Speed in Nanoseconds  
S
L
Standard Power  
Low Power  
128K (8K x 16) 3.3V Dual-Port RAM  
70V25  
2944 drw 20  
Datasheet Document History  
3/8/99:  
Initiated datasheet document history  
Converted to new format  
Cosmetic and typographical corrections  
Pages 2 and 3 Added additional notes to pin configurations  
Page 9 Fixed typographical error  
Changed drawing format  
Page1Chaged660mWto660µW  
Replaced IDT logo  
5/19/99:  
6/10/99:  
8/30/99:  
11/12/99:  
11/18/99:  
3/10/00:  
Page 2 Fixed pin 55 in PN100 package  
Added 15 & 20ns speed grades  
UpgradedDCparameters  
AddedIndustrialTemperatureinformation  
Changed±200mVto0mVinnotes  
Page5FixednoteforAbsoluteMaximumRatingstable  
5/16/00:  
CORPORATE HEADQUARTERS  
2975 Stender Way  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.2422  

相关型号:

IDT70V25S35PF

HIGH-SPEED 3.3V 8K x 16 DUAL-PORT STATIC RAM
IDT

IDT70V25S35PF8

Dual-Port SRAM, 8KX16, 35ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
IDT

IDT70V25S35PF9

Dual-Port SRAM, 8KX16, 35ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
IDT

IDT70V25S35PFGI

Dual-Port SRAM, 8KX16, 35ns, CMOS, PQFP100, TQFP-100
IDT

IDT70V25S35PFI

HIGH-SPEED 3.3V 8K x 16 DUAL-PORT STATIC RAM
IDT

IDT70V25S55G

HIGH-SPEED 3.3V 8K x 16 DUAL-PORT STATIC RAM
IDT

IDT70V25S55GG

Dual-Port SRAM, 8KX16, 55ns, CMOS, CPGA84, 1.120 X 1.120 INCH, 0.160 INCH HEIGHT, GREEN, CERAMIC, PGA-84
IDT

IDT70V25S55GI

HIGH-SPEED 3.3V 8K x 16 DUAL-PORT STATIC RAM
IDT

IDT70V25S55J

HIGH-SPEED 3.3V 8K x 16 DUAL-PORT STATIC RAM
IDT

IDT70V25S55JG

Dual-Port SRAM, 8KX16, 55ns, CMOS, PQCC84, 1.150 X 1.150 INCH, 0.170 INCH HEIGHT, GREEN, PLASTIC, LCC-84
IDT

IDT70V25S55JI

HIGH-SPEED 3.3V 8K x 16 DUAL-PORT STATIC RAM
IDT

IDT70V25S55PF

HIGH-SPEED 3.3V 8K x 16 DUAL-PORT STATIC RAM
IDT