IDT70V35L25PF [IDT]

Dual-Port SRAM, 8KX18, 25ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100;
IDT70V35L25PF
型号: IDT70V35L25PF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 8KX18, 25ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100

静态存储器 内存集成电路
文件: 总17页 (文件大小:153K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HIGH-SPEED 3.3V  
8/4K x 18 DUAL-PORT  
STATIC RAM  
PRELIMINARY  
IDT70V35/34S/L  
ꢀeatures  
True Dual-Ported memory cells which allow simultaneous  
IDT70V35/34 easily expands data bus width to 36 bits or  
more using the Master/Slave select when cascading more  
than one device  
M/S = VIH for BUSY output flag on Master  
M/S = VIL for BUSY input on Slave  
reads of the same memory location  
High-speed access  
– Commercial:15/20/25ns (max.)  
Industrial:20ns  
Low-power operation  
BUSY and Interrupt Flag  
On-chip port arbitration logic  
IDT70V35/34S  
Full on-chip hardware support of semaphore signaling  
between ports  
Fully asynchronous operation from either port  
LVTTL-compatible, single 3.3V (±0.3V) power supply  
Available in a 100-pin TQFP  
Active:430mW(typ.)  
Standby: 3.3mW (typ.)  
IDT70V35/34L  
Active:415mW(typ.)  
Standby: 660µW (typ.)  
Separate upper-byte and lower-byte control for multiplexed  
Industrial temperature range (-40°C to +85°C) is available  
for selected speeds  
bus compatibility  
ꢀunctional Block Diagram  
WL  
R/  
R/WR  
UBR  
UBL  
LBR  
CER  
OER  
LBL  
CEL  
OEL  
,
I/O9L-I/O17L  
I/O9R-I/O17R  
I/O  
Control  
I/O  
Control  
I/O0R-I/O8R  
I/O0L-I/O8L  
(2,3)  
BUSYL  
(2,3)  
BUSYR  
(1)  
(1)  
A12R  
A12L  
Address  
Decoder  
MEMORY  
ARRAY  
Address  
Decoder  
A0L  
A0R  
13  
13  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
CER  
OER  
R/WR  
CEL  
OEL  
R/WL  
SEMR  
INTR  
SEML  
INTL  
(3)  
(3)  
M/S  
5624 drw 01  
NOTES:  
1. A12 is a NC for IDT70V34.  
2. (MASTER): BUSY is output; (SLAVE): BUSY is input.  
3. BUSY outputs and INT outputs are non-tri-stated push-pull.  
JULY 2002  
1
DSC-5624/3  
©2002IntegratedDeviceTechnology,Inc.  
IDT70V35/34S/L  
PRELIMINARY  
High-Speed 8/4K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
TheIDT70V35/34is ahigh-speed8/4Kx18Dual-PortStaticRAM. reads or writes to any location in memory. An automatic power down  
TheIDT70V35/34isdesignedtobeusedasastand-aloneDual-PortRAM featurecontrolledbyCEpermitstheon-chipcircuitryofeachporttoenter  
orasacombinationMASTER/SLAVEDual-PortRAMfor36-bitorwider a very low standby power mode.  
memorysystemapplications results infull-speed, error-free operation  
without the need for additional discrete logic.  
FabricatedusingIDT’sCMOShigh-performancetechnology,these  
devices typicallyoperate ononly430mWofpower.  
This device provides two independent ports with separate control,  
The IDT70V35/34 is packaged in a plastic 100-pin Thin Quad  
address,andI/Opinsthatpermitindependent,asynchronousaccessfor Flatpack.  
PinConfigurations(1,2,3,4)  
07/02/02  
Index  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76  
N/C  
N/C  
I/O8L  
I/O17L  
I/O11L  
I/O12L  
I/O13L  
I/O14L  
GND  
1
N/C  
N/C  
N/C  
N/C  
75  
2
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
3
4
5
A
A
A
A
A
A
5L  
4L  
3L  
2L  
1L  
0L  
6
7
8
9
I/O15L  
I/O16L  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
IDT70V35/34PF  
PN100-1  
INT  
L
(5)  
V
CC  
BUSY  
GND  
M/S  
L
GND  
I/O0R  
I/O1R  
I/O2R  
100-Pin TQFP  
(6)  
Top View  
BUSY  
R
INT  
R
V
CC  
A
A
A
A
A
0R  
I/O3R  
I/O4R  
I/O5R  
I/O6R  
I/O8R  
I/O17R  
N/C  
1R  
2R  
3R  
4R  
N/C  
N/C  
N/C  
N/C  
N/C  
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
,
5624 drw 02  
NOTES:  
1. A12 is a NC for IDT70V34.  
2. All VCC pins must be connected to power supply.  
3. All GND pins must be connected to ground.  
4. PN100-1 package body is approximately 14mm x 14mm x 1.4mm.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part marking.  
6.422  
IDT70V35/34S/L  
PRELIMINARY  
High-Speed 8/4K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
Names  
CEL  
CER  
Chip Enable  
WL  
WR  
R/  
R/  
Read/Write Enable  
Output Enable  
OEL  
0L  
OER  
(1)  
(1)  
12L  
0R  
A
12R  
A
- A  
- A  
Address  
0L  
17L  
0R  
17R  
I/O - I/O  
SEML  
UBL  
I/O - I/O  
SEMR  
UBR  
Data Input/Output  
Semaphore Enable  
Upper Byte Select  
Lower Byte Select  
Interrupt Flag  
LBL  
LBR  
INTL  
INTR  
Busy Flag  
BUSYL  
BUSYR  
S
M/  
Master or Slave Select  
Power (3.3V)  
1. A12 is a NC for IDT70V34.  
CC  
V
GND  
Ground (0V)  
5624 tbl 01  
Truth Table I: Non-Contention Read/Write Control  
Inputs(1)  
Outputs  
R/W  
X
X
L
I/O9-17  
High-Z  
High-Z  
DATAIN  
High-Z  
DATAIN  
I/O0-8  
High-Z  
High-Z  
High-Z  
DATAIN  
DATAIN  
High-Z  
DATAOUT  
DATAOUT  
High-Z  
Mode  
CE  
H
X
L
OE  
X
X
X
X
X
L
UB  
X
H
L
LB  
X
H
H
L
SEM  
H
Deselected: Power Down  
Both Bytes Deselected  
Write to Upper Byte Only  
Write to Lower Byte Only  
Write to Both Bytes  
H
H
L
L
H
L
H
L
L
L
H
L
H
H
H
X
L
H
L
H
DATAOUT  
High-Z  
Read Upper Byte Only  
Read Lower Byte Only  
Read Both Bytes  
L
L
H
L
H
L
L
L
H
DATAOUT  
High-Z  
X
H
X
X
X
Outputs Disabled  
5624 tbl 02  
NOTE:  
1. A0L A12L A0R A12R  
Truth Table II: Semaphore Read/Write Control(1)  
Inputs  
Outputs  
R/W  
H
H
I/O9-17  
I/O0-8  
Mode  
Read Data in Semaphore Flag  
CE  
H
X
H
X
L
OE  
L
UB  
X
H
X
H
L
LB  
X
H
X
H
X
L
SEM  
L
DATAOUT  
DATAOUT  
DATAIN  
DATAOUT  
DATAOUT  
DATAIN  
L
L
Read Data in Semaphore Flag  
Write I/O0 into Semaphore Flag  
Write I/O0 into Semaphore Flag  
Not Allowed  
X
X
X
X
L
L
DATAIN  
DATAIN  
____  
____  
X
X
L
____  
____  
L
X
L
Not Allowed  
5624 tbl 03  
NOTE:  
1. There are eight semaphore flags written to via I/O0 and read from all of the I/O's (I/O0-I/O17). These eight semaphores are addressed by A0-A2.  
6.42  
3
IDT70V35/34S/L  
PRELIMINARY  
High-Speed 8/4K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Absolute Maximum Ratings(1)  
Maximum Operating Temperature  
andSupplyVoltage(1)  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
Grade  
Ambient  
Temperature  
GND  
Vcc  
(2)  
VTERM  
Terminal Voltage  
with Respect  
to GND  
-0.5 to +4.6  
V
Commercial  
0OC to +70OC  
0V  
0V  
3.3V + 0.3V  
3.3V + 0.3V  
-40OC to +85OC  
Te mp e rature  
Under Bias  
-55 to +125  
-65 to +150  
50  
oC  
oC  
Industrial  
TBIAS  
TSTG  
IOUT  
5624 tbl 05  
NOTE:  
Storage  
Te mp e rature  
1. This is the parameter TA. This is the "instant on" case temperature.  
DC Output  
Current  
mA  
5624 tbl 04  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in  
the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability.  
2. VTERM must not exceed Vcc + 0.3V.  
Recommended DC Operating  
Conditions  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
3.6  
0
Unit  
V
VCC  
Supply Voltage  
3.0  
3.3  
GND Ground  
0
0
V
(2)  
____  
VIH  
VIL  
Input High Voltage  
Input Low Voltage  
2.0  
VCC+0.3  
0.8  
V
-0.3(1)  
V
____  
Capacitance(1) (TA = +25°C, f = 1.0MHz)  
5624 tbl 06  
NOTES:  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2 )  
Max. Unit  
1. VIL > -1.5V for pulse width less than 10ns.  
2. VTERM must not exceed Vcc + 0.3V.  
CIN  
VIN = 3dV  
9
pF  
COUT  
VOUT = 3dV  
10  
pF  
5624 tbl 07  
NOTES:  
1. This parameter is determined by device characterization but is not production  
tested.  
2. 3dV references the interpolated capacitance when the input and output  
signals switch from 0V to 3V or from 3V to 0V.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VCC = 3.3V ± 0.3V)  
70V35/34S  
70V35/34L  
Symbol  
|ILI|  
Parameter  
Test Conditions  
Min.  
Max.  
10  
Min.  
Max.  
5
Unit  
µA  
µA  
V
(1)  
___  
___  
___  
___  
Input Leakage Current  
VCC = 3.6V, VIN = 0V to VCC  
(1)  
___  
___  
|ILO|  
Output Leakage Currentt  
Output Low Voltage  
Output High Voltage  
IH OUT  
CC  
10  
5
CE = V , V = 0V to V  
VOL  
IOL = +4mA  
0.4  
0.4  
___  
___  
VOH  
IOH = -4mA  
2.4  
2.4  
V
5624 tbl 08  
NOTE:  
1. At Vcc < 2.0V leakages are undefined.  
6.442  
IDT70V35/34S/L  
PRELIMINARY  
High-Speed 8/4K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (VCC = 3.3V ± 0.3V)  
70V35/34X15  
Com'l Only  
70V35/34X20  
Com'l  
& Ind  
70V35/34X25  
Com'l Only  
Symbol  
Parameter  
Test Condition  
Version  
COM'L  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Typ.(2)  
Max.  
Unit  
ICC  
Dynamic Operating  
Current  
(Both Ports Active)  
S
L
150  
140  
215  
185  
140  
130  
200  
175  
130  
125  
190  
165  
mA  
CE = VIL, Outputs Disabled  
SEM = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
IND  
S
L
140  
130  
225  
195  
ISB1  
ISB2  
ISB3  
ISB4  
Standby Current  
(Both Ports - TTL  
Level Inputs)  
COM'L  
S
L
25  
20  
35  
30  
20  
15  
30  
25  
16  
13  
30  
25  
mA  
mA  
mA  
mA  
CER and CEL = VIH  
SEMR = SEML = VIH  
(3)  
f = fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
20  
15  
45  
40  
(5)  
Standby Current  
(One Port - TTL  
Level Inputs)  
COM'L  
S
L
85  
80  
120  
110  
80  
75  
110  
100  
75  
72  
110  
95  
CE"A" = VIL and CE"B" = VIH  
Active Port Outputs Disabled,  
(3)  
f=fMAX  
____  
____  
____  
____  
____  
____  
____  
____  
MIL &  
IND  
S
L
80  
75  
130  
115  
SEMR = SEML = VIH  
Full Standby Current  
Both Ports CEL and  
CER > VCC - 0.2V,  
COM'L  
S
L
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
1.0  
0.2  
5
2.5  
(Both Ports  
-
CMOS Level Inputs)  
VIN > VCC - 0.2V or  
____  
____  
____  
____  
____  
____  
____  
____  
VIN < 0.2V, f = 0(4)  
MIL &  
IND  
S
L
1.0  
0.2  
15  
5
SEMR = SEML > VCC-0.2V  
Full Standby Current  
(One Port -  
CMOS Level Inputs)  
COM'L  
S
L
85  
80  
125  
105  
80  
75  
115  
100  
75  
70  
105  
90  
CE"A" < 0.2V and  
(5)  
CE"B" > VCC - 0.2V  
SEMR = SEML > VCC-0.2V  
VIN > VCC - 0.2V or VIN < 0.2V  
Active Port Outputs Disabled,  
____  
____  
____  
____  
MIL &  
IND  
S
L
80  
75  
130  
115  
____  
____  
____  
____  
(3)  
f = fMAX  
5624 tbl 09  
NOTES:  
1. 'X' in part number indicates power rating (S or L)  
2. VCC = 3.3V, TA = +25°C, and are not production tested. Icc dc = 115mA (typ.)  
3. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, and using AC Test Conditionsof input levels of GND  
to 3V.  
4. f = 0 means no address or control lines change.  
5. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
AC Test Conditions  
Input Pulse Levels  
3.3V  
3.3V  
GND to 3.0V  
3ns Max.  
1.5V  
590  
590Ω  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
OUT  
BUSY  
INT  
DATA  
DATAOUT  
1.5V  
435  
5pF*  
30pF  
435Ω  
Figures 1 and 2  
,
5624 tbl 10  
5624 drw 03  
Figure 1. AC Output Test Load  
Figure 2. Output Test  
Load  
(For tLZ, tHZ, tWZ, tOW)  
*Including scope and jig.  
Timing of Power-Up Power-Down  
CE  
tPU  
tPD  
ICC  
50%  
50%  
ISB  
,
5624 drw 04  
6.42  
5
IDT70V35/34S/L  
PRELIMINARY  
High-Speed 8/4K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(4)  
70V35/34X15  
Com'l Only  
70V35/34X20  
70V35/34X25  
Com'l Only  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
tRC  
Read Cycle Time  
15  
20  
25  
ns  
ns  
ns  
____  
____  
____  
tAA  
tACE  
Address Access Time  
15  
15  
15  
20  
20  
20  
25  
25  
25  
____  
____  
____  
____  
____  
____  
____  
____  
____  
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
tABE  
tAOE  
tOH  
tLZ  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Output Enable Access Time(3)  
10  
12  
13  
____  
____  
____  
Output Hold from Address Change  
3
3
3
____  
____  
____  
Output Low-Z Time(1,2)  
3
3
3
____  
____  
____  
Output High-Z Time(1,2)  
tHZ  
10  
12  
15  
____  
____  
____  
Chip Enable to Power Up Time(1,2)  
PU  
t
0
0
0
Chip Disable to Power Down Time(1,2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access(3)  
____  
____  
____  
tPD  
15  
20  
25  
____  
____  
____  
tSOP  
tSAA  
10  
10  
10  
____  
____  
____  
15  
20  
25  
ns  
5624 tbl 11  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access RAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL.  
4. 'X' in part number indicates power rating (S or L).  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
tAA  
(4)  
tACE  
CE  
(4)  
tAOE  
OE  
(4)  
tABE  
UB, LB  
R/W  
(1)  
tOH  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
tHZ  
BUSYOUT  
(3,4)  
5624 drw 05  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE, CE, LB, or UB.  
2. Timing depends on which signal is de-asserted first, CE, OE, LB, or UB.  
3. tBDD delay is required only in case where opposite port is completing a write operation to the same address location for simultaneous read operations BUSY has no  
relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tABE, tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
6.462  
IDT70V35/34S/L  
PRELIMINARY  
High-Speed 8/4K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
Operating TemperatureandSupplyVoltage(5)  
70V35/34X15  
Com'l Only  
70V35/34X20  
Com'l  
70V35/34X25  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
15  
12  
12  
0
20  
15  
15  
0
25  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
tWP  
12  
0
15  
0
20  
0
tWR  
tDW  
tHZ  
Write Recovery Time  
Data Valid to End-of-Write  
Output High-Z Time(1,2)  
Data Hold Time(4)  
10  
15  
15  
____  
____  
____  
10  
12  
15  
____  
____  
____  
tDH  
0
0
0
(1,2)  
____  
____  
____  
tWZ  
tOW  
tSWRD  
tSPS  
Write Enable to Output in High-Z  
Output Active from End-of-Write(1,2,4)  
10  
12  
15  
____  
____  
____  
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
Flag Write to Read Time  
Flag Contention Window  
SEM  
SEM  
ns  
5624 tbl 12  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with the Output Test Load (Figure 2).  
2. This parameter is guaranteed by device characterization, but is not production tested.  
3. To access SRAM, CE = VIL, UB or LB = VIL, SEM = VIH. To access semaphore, CE = VIH or UB & LB = VIH, and SEM = VIL. Either condition must be valid for the entire  
tEW time.  
4. The specification for tDH must be met by the device supplying write data to the SRAM under all operating conditions. Although tDH and tOW values will vary over voltage and  
temperature, the actual tDH will always be smaller than the actual tOW.  
5. 'X' in part number indicates power rating (S or L).  
6.42  
7
IDT70V35/34S/L  
PRELIMINARY  
High-Speed 8/4K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE or SEM(9)  
CE or SEM(9)  
(3)  
tWR  
(2)  
(6)  
tAS  
tWP  
R/W  
DATAOUT  
DATAIN  
(7)  
tWZ  
tOW  
(4)  
(4)  
tDW  
tDH  
5624 drw 08  
Timing Waveform of Write Cycle No. 2, CE, UB, LB Controlled Timing(1,5)  
tWC  
ADDRESS  
tAW  
(9)  
or  
CE SEM  
(3)  
(6)  
(2)  
tWR  
tEW  
tAS  
(9)  
or  
UB LB  
R/  
W
tDW  
tDH  
DATAIN  
5624 drw 07  
NOTES:  
1. R/W or CE or UB & LB must be HIGH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a LOW UB or LB and a LOW CE and a LOW R/W for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end-of-write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM LOW transition occurs simultaneously with or after the R/W LOW transition the outputs remain in the HIGH-impedance state.  
6. Timing depends on which enable signal is asserted last, CE, R/W, or UB or LB.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with Output Test Load  
(Figure 2).  
8. If OE is LOW during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as  
the specified tWP.  
9. To access SRAM, CE = VIL, UB or LB = VIL, and SEM = VIH. To access Semaphore, CE = VIH or UB and LB = VIH, and SEM = VIL. tEW must be met for either condition.  
6.482  
IDT70V35/34S/L  
PRELIMINARY  
High-Speed 8/4K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
t
OH  
t
SAA  
A -A  
0 2  
VALID ADDRESS  
VALID ADDRESS  
t
WR  
t
ACE  
t
AW  
t
EW  
SEM  
t
SOP  
t
DW  
DATAOUT  
VALID(2)  
DATAIN  
VALID  
I/O  
0
t
AS  
t
WP  
t
DH  
R/W  
t
AOE  
t
SWRD  
OE  
Write Cycle  
Read Cycle  
5624 drw 08  
NOTES:  
1. CE = VIH or UB & LB = VIH for the duration of the above timing (both write and read cycle).  
2. DATAOUT VALIDrepresents all I/O's (I/O0-I/O17) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
SIDE(2)  
"A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
SIDE(2)  
"B"  
R/W"B"  
SEM"B"  
5624 drw 09  
NOTES:  
1. DOR = DOL = VIL, CER = CEL = VIH, or both UB & LB = VIH.  
2. All timing is the same for left and right port. Port Amay be either left or right port. Port Bis the opposite from port A.  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied, there is no guarantee which side will obtain the semaphore flag.  
6.42  
9
IDT70V35/34S/L  
PRELIMINARY  
High-Speed 8/4K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(6)  
70V35/34X15  
Com'l Ony  
70V35/34X20  
Com'l  
70V35/34X25  
Com'l Only  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
BUSY TIMING (M/S = VIH)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tBAA  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
15  
15  
15  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
BUSY Access Time from Chip Enable LOW  
BUSY Disable Time from Chip Enable HIGH  
Arbitration Priority Set-up Time(2)  
15  
17  
17  
____  
____  
____  
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
18  
30  
30  
(5)  
____  
____  
____  
Write Hold After BUSY  
12  
15  
17  
BUSY TIMING (M/S = VIL)  
____  
____  
____  
____  
____  
____  
BUSY Input to Write(4)  
tWB  
0
0
0
ns  
ns  
(5)  
tWH  
Write Hold After BUSY  
12  
15  
17  
PORT-TO-PORT DELAY TIMING  
(1)  
____  
____  
____  
____  
____  
____  
tWDD  
tDDD  
Write Pulse to Data Delay  
30  
25  
45  
35  
50  
35  
ns  
Write Data Valid to Read Data Delay(1)  
ns  
5624 tbl 13  
NOTES:  
1. Port-to-port delay through SRAM cells from writing port to reading port, refer to "TIMING WAVEFORM OF WRITE PORT-TO-PORT READ AND  
BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of 0, tWDD tWP (actual) or tDDD tDW (actual).  
4. To ensure that the write cycle is inhibited during contention.  
5. To ensure that a write cycle is completed after contention.  
6. 'X' in part number indicates power rating (S or L).  
Timing Waveform of Write Port-to-Port Read and BUSY(2,4,5) (M/S = VIH)  
tWC  
"A"  
ADDR  
MATCH  
tWP  
"A"  
R/W  
tDH  
tDW  
DATAIN "A"  
VALID  
(1)  
tAPS  
ADDR"B"  
MATCH  
tWDD  
tBAA  
tBDA  
tBDD  
BUSY"B"  
DATAOUT "B"  
VALID  
(3)  
tDDD  
NOTES:  
5624 drw 10  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (slave).  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSYA= VIH and BUSYBinput is shown above.  
5. All timing is the same for both left and right ports. Port Amay be either the left or right port. Port B is the port opposite from port A.  
6.1402  
IDT70V35/34S/L  
PRELIMINARY  
High-Speed 8/4K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write with BUSY  
tWP  
R/ "A"  
W
(3)  
tWB  
BUSY"B"  
(1)  
tWH  
(2)  
R/ "B"  
W
,
5624 drw 11  
NOTES:  
1. tWH must be met for both master BUSY input (slave) and output (master).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the slave version.  
Waveform of BUSY Arbitration Controlled by CE Timing(1) (M/S = VIH)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
CE"A"  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
"B"  
BUSY  
5624 drw 12  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(1) (M/S = VIH)  
ADDR"A"  
ADDR"B"  
BUSY"B"  
NOTES:  
ADDRESS "N"  
(2)  
tAPS  
MATCHING ADDRESS "N"  
tBAA  
tBDA  
5624 drw 13  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from A.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
6.42  
11  
IDT70V35/34S/L  
PRELIMINARY  
High-Speed 8/4K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(1)  
70V35/34X15  
Com'l Only  
70V35/34X20  
70V35/34X25  
Com'l Only  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
tAS  
Address Set-up Time  
0
0
0
ns  
ns  
ns  
tWR  
tINS  
tINR  
Write Recovery Time  
Interrupt Set Time  
0
0
0
____  
____  
____  
15  
15  
20  
20  
20  
20  
____  
____  
____  
Interrupt Reset Time  
ns  
5624 tbl 14  
NOTES:  
1. 'X' in part number indicates power rating (S or L).  
Waveform of Interrupt Timing(1)  
tWC  
INTERRUPT SET ADDRESS (2)  
ADDR"A"  
(3)  
tAS  
(4)  
tWR  
CE"A"  
R/  
W"A"  
(3)  
tINS  
INT"B"  
5624 drw 14  
tRC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
CE"B"  
(3)  
tAS  
OE"B"  
(3)  
tINR  
INT"B"  
5624 drw 15  
NOTES:  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from A.  
2. See Interrupt Flag Truth Table III.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
6.1422  
IDT70V35/34S/L  
PRELIMINARY  
High-Speed 8/4K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table III — Interrupt ꢀlag(1)  
Left Port  
Right Port  
(4)  
(4)  
A12R-A0R  
R/WL  
L
A12L-A0L  
1FFF(4)  
X
R/WR  
X
Function  
Set Right INTR Flag  
Reset Right INTR Flag  
Set Left INTL Flag  
CEL  
L
OEL  
X
INTL  
X
CER  
X
OER  
X
INTR  
(2)  
X
L
(3)  
X
X
X
X
X
L
L
1FFF(4)  
1FFE(4)  
X
H
(3)  
X
X
X
X
L
L
L
X
X
X
(2)  
X
L
L
1FFE(4)  
H
X
X
X
Reset Left INTL Flag  
5624 tbl 15  
NOTES:  
1. Assumes BUSYL = BUSYR = VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. A12 is a NC for IDT70V34, therefore Interrupt Addresses are FFF and FFE.  
Truth Table IV — Address BUSY  
Arbitration  
Inputs  
Outputs  
(4)  
A12L-A0L  
12R-A0R  
(1)  
(1)  
A
Function  
Normal  
Normal  
Normal  
CE  
L
CER  
X
BUSYL  
BUSYR  
X
H
X
L
NO MATCH  
MATCH  
H
H
H
X
H
H
MATCH  
H
H
(3)  
L
MATCH  
Note(2)  
Note(2)  
Write Inhibit  
5624 tbl 16  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT70V35/  
34 are push pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. L if the inputs to the opposite port were stable prior to the address and enable inputs of this port. VIH if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs cannot be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
4. A12 is a NC for IDT70V34. Address comparison will be for A0 - A11.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0 - D17 Left  
D0 - D17 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
5624 tbl 17  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V35/34.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O17). These eight semaphores are addressed by A0-A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Tables.  
6.42  
13  
IDT70V35/34S/L  
PRELIMINARY  
High-Speed 8/4K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
SLAVE  
Dual Port  
SRAM  
CE  
CE  
MASTER  
Dual Port  
SRAM  
BUSYR  
BUSYR  
BUSYL  
BUSYL  
MASTER  
Dual Port  
SRAM  
SLAVE  
Dual Port  
SRAM  
CE  
CE  
BUSYR  
BUSYR  
BUSYR  
BUSYL  
BUSYL  
BUSYL  
5624 drw 16  
Figure 3. Busy and chip enable routing for both width and depth expansion with IDT70V35/34 SRAMs.  
ꢀunctionalDescription  
TheIDT70V35/34providestwoportswithseparatecontrol,address programmedbytyingtheBUSYpinsHIGH.Ifdesired,unintendedwrite  
and I/O pins that permit independent access for reads or writes to any operationscanbepreventedtoaportbytyingtheBUSYpinforthatport  
location in memory. The IDT70V35/34 has an automatic power down LOW.  
featurecontrolledbyCE.TheCEcontrolson-chippowerdowncircuitry  
TheBUSYoutputsontheIDT70V35/34SRAMinmastermode,are  
thatpermitstherespectiveporttogointoastandbymodewhennotselected push-pulltypeoutputs anddonotrequirepullupresistors tooperate.If  
(CE HIGH).Whenaportis enabled,access totheentirememoryarray theseSRAMsarebeingexpandedindepth,thentheBUSYindicationfor  
ispermitted.  
the resulting array requires the use of an external AND gate.  
Width Expansion with Busy Logic  
Master/Slave Arrays  
Interrupts  
If the user chooses the interrupt function, a memory location (mail  
boxormessagecenter)is assignedtoeachport. Theleftportinterrupt  
flag (INTL) is asserted when the right port writes to memory location  
1FFE (HEX), where a write is defined as the CER = R/WR = VIL per  
Truth Table III. The left port clears the interrupt by an address location  
1FFE access whenCEL = OEL = VIL, R/WL is a "don't care". Likewise,  
the right port interrupt flag (INTR) is set when the left port writes to  
memory location 1FFF (HEX) (FFF for IDT70V34) and to clear the  
interruptflag(INTR),therightportmustreadthememorylocation1FFF.  
The message (16 bits) at 1FFE or 1FFF (FFE or FFF for IDT70V34) is  
user-defined, since itis anaddressable SRAMlocation. Ifthe interrupt  
function is not used, address locations 1FFE and 1FFF (FFE and FFF  
forIDT70V34)arenotusedasmailboxes,butaspartoftherandomaccess  
memory.RefertoTruthTableIIIfortheinterruptoperation.  
WhenexpandinganIDT70V35/34SRAMarrayinwidthwhileusing  
BUSYlogic, one masterpartis usedtodecide whichside ofthe SRAM  
array will receive a BUSYindication, and to output that indication. Any  
number of slaves to be addressed in the same address range as the  
master, use the BUSY signal as a write inhibit signal. Thus on the  
IDT70V35/34SRAMtheBUSYpinisanoutputifthepartisusedasamaster  
(M/Spin=VIH), andthe BUSYpinis aninputifthe partusedas a slave  
(M/S pin = VIL) as shown in Figure 3.  
If two or more master parts were used when expanding in width, a  
splitdecisioncouldresultwithonemasterindicatingBUSYononeside  
of the array and another master indicating BUSY on one other side of  
the array. This would inhibit the write operations from one port for part  
of a word and inhibit the write operations from the other port for the  
other part of the word.  
TheBUSYarbitration,onamaster,isbasedonthechipenableand  
address signals only. It ignores whether an access is a read or write.  
In a master/slave array, both address and chip enable must be valid  
long enough for a BUSY flag to be output from the master before the  
actualwrite pulse canbe initiatedwitheitherthe R/W signalorthe byte  
enables. Failure to observe this timing can result in a glitched internal  
write inhibit signal and corrupted data in the slave.  
Busy Logic  
Busy Logic provides a hardware indication that both ports of the  
SRAM have accessed the same location at the same time. It also  
allows one of the two accesses to proceed and signals the other side  
that the SRAM is busy. The BUSY pin can then be used to stall the  
access until the operation on the other side is completed. If a write  
operation has been attempted from the side that receives a BUSY  
indication, the write signal is gated internally to prevent the write from  
proceeding.  
Semaphores  
The use of BUSY logic is not required or desirable for all applica-  
tions. Insome cases itmaybe usefultologicallyORthe BUSYoutputs  
togetheranduseanyBUSYindicationasaninterruptsourcetoflagthe  
event of an illegal or illogical operation. If the write inhibit function of  
BUSYlogicis notdesirable,the BUSYlogiccanbedisabledbyplacing  
the part in slave mode with the M/Spin. Once in slave mode the BUSY  
pinoperates solelyas awriteinhibitinputpin.Normaloperationcanbe  
The IDT70V35/34 is an extremely fast Dual-Port 8/4K x 18 CMOS  
Static RAM with an additional 8 address locations dedicated to binary  
semaphore flags. These flags alloweitherprocessoronthe leftorright  
side of the Dual-Port SRAM to claim a privilege over the other  
processor for functions defined by the system designers software. As  
anexample,thesemaphorecanbeusedbyoneprocessortoinhibitthe  
6.1442  
IDT70V35/34S/L  
PRELIMINARY  
High-Speed 8/4K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
otherfromaccessingaportionoftheDual-PortSRAMoranyothershared selectforthesemaphoreflags)andusingtheothercontrolpins(Address,  
resource. OE,andR/W)astheywouldbeusedinaccessingastandardstaticRAM.  
TheDual-PortSRAMfeaturesafastaccesstime,andbothportsare Eachoftheflagshasauniqueaddresswhichcanbeaccessedbyeither  
completelyindependentofeachother.Thismeansthattheactivityonthe sidethroughaddresspinsA0A2.Whenaccessingthesemaphores,none  
leftportinnowayslows theaccess timeoftherightport.Bothports are oftheotheraddresspinshasanyeffect.  
identicalinfunctiontostandardCMOSStaticRAMandcanbeaccessed  
Whenwritingtoasemaphore,onlydatapinD0isused.IfaLOWlevel  
atthesametimewiththeonlypossibleconflictarisingfromthesimultaneous iswrittenintoanunusedsemaphorelocation,thatflagwillbesettoazero  
writingof,orasimultaneousREAD/WRITEof,anon-semaphorelocation. on that side and a one on the other side (see Truth Table V). That  
Semaphoresareprotectedagainstsuchambiguoussituationsandmay semaphorecannowonlybemodifiedbythesideshowingthezero.When  
be used by the system program to avoid any conflicts in the non- aoneiswrittenintothesamelocationfromthesameside,theflagwillbe  
semaphore portion of the Dual-Port SRAM. These devices have an settoaoneforbothsides(unlessasemaphorerequestfromtheotherside  
automatic power-down feature controlled by CE, the Dual-Port SRAM ispending)andthencanbewrittentobybothsides.Thefactthattheside  
enable,andSEM,thesemaphoreenable.TheCEandSEMpinscontrol whichisabletowriteazerointoasemaphoresubsequentlylocksoutwrites  
on-chippowerdowncircuitrythatpermits the respective porttogointo fromtheothersideiswhatmakessemaphoreflagsusefulininterprocessor  
standbymodewhennotselected.Thisistheconditionwhichisshownin communications.(Athoroughdiscussionontheuseofthisfeaturefollows  
Truth Table I where CE and SEM are both HIGH.  
shortly.)Azerowrittenintothesamelocationfromtheothersidewillbe  
Systems which can best use the IDT70V35/34 contain multiple storedinthesemaphorerequestlatchforthatsideuntilthesemaphoreis  
processors or controllers and are typically very high-speed systems freedbythefirstside.  
which are software controlled or software intensive. These systems  
Whenasemaphoreflagisread,itsvalueisspreadintoalldatabitsso  
canbenefitfromaperformanceincreaseofferedbytheIDT70V35/34's thataflagthatisaonereadsasaoneinalldatabitsandaflagcontaining  
hardware semaphores, which provide a lockout mechanism without azeroreadsasallzeros.Thereadvalueislatchedintoonesidesoutput  
requiringcomplexprogramming.  
registerwhenthatside'ssemaphoreselect(SEM)andoutputenable(OE)  
Softwarehandshakingbetweenprocessors offers themaximumin signalsgoactive.Thisservestodisallowthesemaphorefromchanging  
system flexibility by permitting shared resources to be allocated in stateinthemiddleofareadcycleduetoawritecyclefromtheotherside.  
varying configurations. The IDT70V35/34 does not use its semaphore Becauseofthislatch,arepeatedreadofasemaphoreinatestloopmust  
flagstocontrolanyresourcesthroughhardware,thusallowingthesystem cause either signal (SEM or OE) to go inactive or the output will never  
designertotalflexibilityinsystemarchitecture.  
change.  
A sequence WRITE/READ must be used by the semaphore in  
An advantage of using semaphores rather than the more common  
methods of hardware arbitration is that wait states are never incurred order to guarantee that no system level contention will occur. A  
in either processor. This can prove to be a major advantage in very processor requests access to shared resources by attempting to write  
high-speed systems.  
a zero into a semaphore location. If the semaphore is already in use,  
the semaphore request latch will contain a zero, yet the semaphore  
flag will appear as one, a fact which the processor will verify by the  
subsequent read (see Truth Table V). As an example, assume a  
processorwritesazerototheleftportatafreesemaphorelocation.On  
asubsequentread,theprocessorwillverifythatithas writtensuccess-  
fully to that location and will assume control over the resource in  
question. Meanwhile, if a processor on the right side attempts to write  
a zero to the same semaphore flag it will fail, as will be verified by the  
factthataonewillbereadfromthatsemaphoreontherightsideduring  
subsequent read. Had a sequence of READ/WRITE been used  
instead, system contention problems could have occurred during the  
gap between the read and write cycles.  
It is important to note that a failed semaphore request must be  
followed by either repeated reads or by writing a one into the same  
location. The reason for this is easily understood by looking at the  
simple logic diagram of the semaphore flag in Figure 4. Two sema-  
phore request latches feed into a semaphore flag. Whichever latch is  
first to present a zero to the semaphore flag will force its side of the  
semaphore flag LOW and the other side HIGH. This condition will  
continue until a one is written to the same semaphore request latch.  
Should the other sides semaphore request latch have been written to  
a zero in the meantime, the semaphore flag will flip over to the other  
side as soon as a one is written into the first sides request latch. The  
secondsidesflagwillnowstayLOWuntilitssemaphorerequestlatchis  
writtentoaone.Fromthisitiseasytounderstandthat,ifasemaphoreis  
How the Semaphore ꢀlags Work  
The semaphore logic is a set of eight latches which are indepen-  
dentofthe Dual-PortSRAM. These latches canbe usedtopass a flag,  
or token, from one port to the other to indicate that a shared resource  
is in use. The semaphores provide a hardware assist for a use  
assignmentmethodcalledTokenPassingAllocation.Inthis method,  
thestateofasemaphorelatchisusedasatokenindicatingthatshared  
resource is in use. If the left processor wants to use this resource, it  
requests the token by setting the latch. This processor then verifies its  
success in setting the latch by reading it. If it was successful, it  
proceeds to assume control over the shared resource. If it was not  
successful in setting the latch, it determines that the right side  
processor has set the latch first, has the token and is using the shared  
resource. The left processor can then either repeatedly request that  
semaphores status or remove its request for that semaphore to  
perform another task and occasionally attempt again to gain control of  
the token via the set and test sequence. Once the right side has  
relinquished the token, the left side should succeed in gaining control.  
The semaphore flags are active LOW. A token is requested by  
writing a zero into a semaphore latch and is released when the same  
side writes a one to that latch.  
The eight semaphore flags reside within the IDT70V35/34 in a  
separatememoryspacefromtheDual-PortSRAM.Thisaddressspace  
isaccessedbyplacingaLOWinputontheSEMpin(whichactsasachip  
6.42  
15  
IDT70V35/34S/L  
PRELIMINARY  
High-Speed 8/4K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
requested and the processor which requested it no longer needs the Semaphore 1. If it succeeded in gaining control, it would lock out the  
resource, the entire system can hang up until a one is written into that leftside.  
semaphorerequestlatch.  
Once the left side was finished with its task, it would write a one to  
The critical case of semaphore timing is when both sides request Semaphore 0 and may then try to gain access to Semaphore 1. If  
a single tokenbyattemptingtowrite a zerointoitatthe same time. The Semaphore 1 was still occupied by the right side, the left side could  
semaphore logic is specially designed to resolve this problem. If undo its semaphore request and perform other tasks until it was able  
simultaneous requests are made, the logic guarantees that only one to write, then read a zero into Semaphore 1. If the right processor  
side receives the token. If one side is earlier than the other in making performsasimilartaskwithSemaphore0,thisprotocolwouldallowthe  
the request, the first side to make the request will receive the token. If twoprocessors toswap4Kblocks ofDual-PortSRAMwitheachother.  
bothrequests arriveatthesametime,theassignmentwillbearbitrarily  
made to one port or the other.  
The blocks do not have to be any particular size and can even be  
variable, depending upon the complexity of the software using the  
One caution that should be noted when using semaphores is that semaphore flags. All eight semaphores could be used to divide the  
semaphores alone do not guarantee that access to a resource is Dual-Port SRAM or other shared resources into eight parts. Sema-  
secure. As with any powerful programming technique, if semaphores phores can even be assigned different meanings on different sides  
are misused or misinterpreted, a software error can easily happen. rather than being given a common meaning as was shown in the  
Initialization of the semaphores is not automatic and must be example above.  
handled via the initialization program at power-up. Since any sema-  
Semaphores are a useful form of arbitration in systems like disk  
phore request flag which contains a zero must be reset to a one, all interfaces where the CPU must be locked out of a section of memory  
semaphores on both sides should have a one written into them at during a transfer and the I/O device cannot tolerate any wait states.  
initialization from both sides to assure that they will be free when With the use of semaphores, once the two devices has determined  
needed.  
which memory area was off-limitsto the CPU, both the CPU and the  
I/O devices could access their assigned portions of memory continu-  
ously without any wait states.  
Semaphores are also useful in applications where no memory  
WAITstate is available on one or both sides. Once a semaphore  
handshake has been performed, both processors can access their  
assigned RAM segments at full speed.  
Anotherapplicationisintheareaofcomplexdatastructures.Inthis  
case, block arbitration is very important. For this application one  
processor may be responsible for building and updating a data  
structure. The other processor then reads and interprets that data  
structure. If the interpreting processor reads an incomplete data  
structure, a major error condition may exist. Therefore, some sort of  
arbitration must be used between the two different processors. The  
building processor arbitrates for the block, locks it and then is able to  
goinandupdatethedatastructure.Whentheupdateiscompleted,the  
data structure blockis released. This allows the interpretingprocessor  
to come back and read the complete data structure, thereby guaran-  
teeing a consistent data structure.  
UsingSemaphores—SomeExamples  
Perhaps the simplest application of semaphores is their applica-  
tionas resource markers forthe IDT70V35/34s Dual-PortSRAM. Say  
the8Kx18SRAMwastobedividedintotwo4Kx18blockswhichwere  
to be dedicated at any one time to servicing either the left or right port.  
Semaphore 0 could be used to indicate the side which would control  
thelowersectionofmemory,andSemaphore1couldbedefinedasthe  
indicator for the upper section of memory.  
To take a resource, in this example the lower 4K of Dual-Port  
SRAM, the processor on the left port could write and then read a zero  
in to Semaphore 0. If this task were successfully completed (a zero  
was read back rather than a one), the left processor would assume  
control of the lower 4K. Meanwhile the right processor was attempting  
to gain control of the resource after the left processor, it would read  
back a one in response to the zero it had attempted to write into  
Semaphore 0. At this point, the software could choose to try and gain  
control of the second 4K section by writing, then reading a zero into  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
,
5624 drw 17  
Figure 4. IDT70V35/34 Semaphore Logic  
6.1462  
IDT70V35/34S/L  
PRELIMINARY  
High-Speed 8/4K x 18 Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Ordering Information(1)  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I(1)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
PF  
100-pin TQFP (PN100-1)  
,
15  
20  
25  
Commercial Only  
Commercial & Industrial  
Commercial Only  
Speed in Nanoseconds  
S
L
Standard Power  
Low Power  
144K (8K x 18-Bit) 3.3V Dual-Port RAM  
72K (4K x 18-Bit) 3.3V Dual-Port RAM  
70V35  
70V34  
5624 drw 18  
NOTES:  
1. Contact your local sales office for Industrial temp range for other speeds, packages and powers.  
PreliminaryDatasheet:  
"PRELIMINARY'datasheetscontaindescriptionsforproductsthatareinearlyrelease.  
DatasheetDocumentHistory  
6/8/00:  
8/9/01:  
InitialPublicOffering  
Page 1 Corrected I/O numbering  
Page 5-7, 10&12 RemovedIndustrialtemperature range offeringfor25ns fromDC&ACElectricalCharacteristics  
Page17 RemovedIndustrialtemperaturerangeofferingfor25nsspeedfromtheorderinginformation  
AddedIndustrialtemperatureofferingfootnote  
7/2/02:  
Page 2 Addeddate revisionforpinconfiguration  
Added70V34todatasheet  
CORPORATE HEADQUARTERS  
2975 Stender Way  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
17  

相关型号:

IDT70V35L25PF8

Dual-Port SRAM, 8KX18, 25ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
IDT

IDT70V35L25PF9

Dual-Port SRAM, 8KX18, 25ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
IDT

IDT70V35L25PFG

Dual-Port SRAM, 8KX18, 25ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, GREEN, PLASTIC, TQFP-100
IDT

IDT70V35L25PFGI

Dual-Port SRAM, 8KX18, 25ns, CMOS, PQFP100, TQFP-100
IDT

IDT70V35S15PF

Dual-Port SRAM, 8KX18, 15ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
IDT

IDT70V35S15PF8

Dual-Port SRAM, 8KX18, 15ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
IDT

IDT70V35S15PF9

Dual-Port SRAM, 8KX18, 15ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
IDT

IDT70V35S15PFG

Dual-Port SRAM, 8KX18, 15ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, GREEN, PLASTIC, TQFP-100
IDT

IDT70V35S20PF

Dual-Port SRAM, 8KX18, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
IDT

IDT70V35S20PF8

Dual-Port SRAM, 8KX18, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
IDT

IDT70V35S20PF9

Dual-Port SRAM, 8KX18, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, PLASTIC, TQFP-100
IDT

IDT70V35S20PFG

Dual-Port SRAM, 8KX18, 20ns, CMOS, PQFP100, 14 X 14 MM, 1.40 MM HEIGHT, GREEN, PLASTIC, TQFP-100
IDT