IDT70V639S15BCG8 [IDT]

Dual-Port SRAM, 128KX18, 15ns, CMOS, PBGA256, BGA-256;
IDT70V639S15BCG8
型号: IDT70V639S15BCG8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Dual-Port SRAM, 128KX18, 15ns, CMOS, PBGA256, BGA-256

静态存储器 内存集成电路
文件: 总23页 (文件大小:187K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PRELIMINARY  
IDT70V639S  
HIGH-SPEED 3.3V 128K x 18  
ASYNCHRONOUS DUAL-PORT  
STATIC RAM  
Features  
True Dual-Port memory cells which allow simultaneous  
access of the same memory location  
High-speed access  
Fully asynchronous operation from either port  
Separate byte controls for multiplexed bus and bus  
matching compatibility  
Supports JTAG features compliant to IEEE 1149.1  
Due to limited pin count, JTAG is not supported on the  
128-pin TQFP package.  
– Commercial:10/12/15ns (max.)  
Industrial:12/15ns (max.)  
Dual chip enables allow for depth expansion without  
external logic  
IDT70V639 easily expands data bus width to 36 bits or  
more using the Master/Slave select when cascading more  
than one device  
M/S = VIH for BUSY output flag on Master,  
M/S = VIL for BUSY input on Slave  
Busy and Interrupt Flags  
LVTTL-compatible, single 3.3V (±150mV) power supply for  
core  
LVTTL-compatible, selectable 3.3V (±150mV)/2.5V (±100mV)  
power supply for I/Os and control signals on each port  
Available in a 128-pin Thin Quad Flatpack, 208-ball fine  
pitch Ball Grid Array, and 256-ball Ball Grid Array  
Industrial temperature range (–40°C to +85°C) is available  
for selected speeds  
On-chip port arbitration logic  
Full on-chip hardware support of semaphore signaling  
between ports  
Functional Block Diagram  
UB  
L
L
R
UB  
LB  
LB  
R
W
L
R/  
R/  
WR  
B
B
E
1
L
B
E
1
B
E
0
E
0
L
CE0L  
CE0R  
R
R
CE1L  
CE1R  
OEL  
OER  
Dout0-8_L  
Dout9-17_L  
Dout0-8_R  
Dout9-17_R  
128K x 18  
MEMORY  
ARRAY  
Din_L  
I/O0L- I/O17L  
Din_R  
I/O0R - I/O17R  
16R  
0R  
A
16L  
0L  
Address  
Decoder  
Address  
Decoder  
A
ADDR_L  
ADDR_R  
A
A
OE  
L
OER  
ARBITRATION  
INTERRUPT  
SEMAPHORE  
LOGIC  
0R  
CE  
0L  
1L  
CE  
CE  
1R  
CE  
R/  
W
L
R/  
WR  
BUSY  
SEM  
INT  
R
BUSY  
SEM  
INT  
L
L
M/  
S
R
L
R
TMS  
TCK  
TDI  
JTAG  
TDO  
TRST  
5621 drw 01  
NOTES:  
1. BUSY is an input as a Slave (M/S=VIL) and an output when it is a Master (M/S=VIH).  
2. BUSY and INT are non-tri-state totem-pole outputs (push-pull).  
JUNE 2001  
1
DSC-5621/3  
©2001IntegratedDeviceTechnology,Inc.  
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Description  
TheIDT70V639isahigh-speed128Kx18AsynchronousDual-Port address,andI/Opinsthatpermitindependent,asynchronousaccessfor  
Static RAM. The IDT70V639 is designed to be used as a stand-alone reads or writes to any location in memory. An automatic power down  
2304K-bitDual-PortRAMoras acombinationMASTER/SLAVEDual- feature controlled by the chip enables (either CE0 or CE1) permit the  
Port RAM for 36-bit-or-more word system. Using the IDT MASTER/ on-chip circuitry of each port to enter a very low standby power mode.  
SLAVE Dual-Port RAM approach in 36-bit or wider memory system  
The70V639cansupportanoperatingvoltageofeither3.3Vor2.5V  
applicationsresultsinfull-speed,error-freeoperationwithouttheneedfor on one or both ports, controlled by the OPT pins. The power supply for  
additionaldiscretelogic.  
the core ofthe device (VDD)remains at3.3V.  
This device provides two independent ports with separate control,  
PinConfigurations(1,2,3,4)  
1
2
3
4
5
6
7
8
9
11 12 13 14  
10  
16 17  
15  
SS  
16L  
13L  
A
12L  
8L  
V
V
V
DD  
SS  
SS  
0L  
SS  
V
A
B
C
D
E
F
I/O9L  
NC  
V
A
A
NC  
4L  
A
A
L
NC  
I/O8L  
NC  
L
INT  
L
OPT  
TDO  
SEM  
NC  
A
B
C
D
E
F
SS  
9L  
A
NC  
V
NC  
A
5L  
TDI  
1L  
DDQR  
NC  
NC  
A
NC  
UBL  
LBL  
A
V
NC  
CE  
0L  
V
SS  
BUSYL  
A
A
10L  
V
SS  
DDQL  
I/O  
9R  
V
DDQR  
V
DD  
A
14L  
CE1L  
A
6L  
A
2L  
V
DD  
I/O8R  
V
WL  
R /  
NC  
V
SS  
I/O10L  
15L  
11L  
7L  
DD  
DDQL  
A
A
V
NC  
V
I/O  
7L  
I/O  
7R  
NC  
A3L  
V
DD  
NC  
OEL  
V
DDQR I/O10R  
I/O11L  
NC  
NC  
NC  
I/O6L  
V
SS  
V
DDQL  
V
SS  
6R  
I/O11R  
I/O  
V
DDQR  
V
SS  
NC  
NC  
NC  
SS  
12L  
DDQL  
V
I/O  
NC  
V
I/O  
5L  
G
H
J
NC  
NC  
G
H
J
70V639BF  
BF-208(5)  
V
DD  
NC  
V
DDQR  
DD  
V
12R  
I/O  
NC  
SS  
V
5R  
I/O  
V
DD  
V
DDQL  
SS  
V
V
SS  
V
DDQR  
V
DD  
V
SS  
V
SS  
208-Ball BGA  
Top View(6)  
V
DDQL  
I/O3R  
NC  
4R  
V
SS  
I/O  
I/O14R  
NC  
V
SS  
I/O13R  
K
L
V
SS  
K
L
I/O14L  
V
DDQR  
I/O13L  
I/O3L  
NC  
V
SS  
I/O4L  
V
DDQL  
I/O15R  
NC  
V
SS  
NC  
V
SS  
I/O2R  
NC  
V
DDQR  
M
N
P
R
T
M
N
P
R
T
NC  
SS  
V
15L  
DDQL  
1L  
I/O  
I/O1R  
NC  
V
I/O2L  
NC  
16R  
I/O  
16L  
I/O  
DDQR  
DD  
R
4R  
I/O  
SS  
V
V
16R  
12R  
8R  
A
V
INT  
A
NC  
A
A
TRST  
NC  
SEM  
R
V
SS  
V
DDQL  
I/O0R  
V
DDQR  
V
V
SS  
SS  
A
5R  
A
1R  
2R  
A
A
13R  
14R  
A
9R  
NC  
UBR  
LBR  
CE0R  
TCK  
NC  
NC  
V
SS  
NC  
I/O17R  
BUSY  
R
V
SS  
V
SS  
A
NC  
NC  
A
A
6R  
A
10R  
CE1R  
WR  
R/  
NC  
I/O17L  
NC  
V
DDQL TMS  
V
DD  
OPT  
R
NC  
I/O0L  
V
DD  
3R  
A
0R  
A
11R  
A
7R  
S
M/  
V
SS  
V
DD  
OER  
NC  
A
15R  
U
U
5621 tbl 02b  
NOTES:  
1. All VDD pins must be connected to 3.3V power supply.  
2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V) and 2.5V if OPT pin for that port is  
set to VIL (0V).  
3. All VSS pins must be connected to ground.  
4. Package body is approximately 15mm x 15mm x 1.4mm with 0.8mm ball pitch.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part-marking.  
2
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configurations(1,2,3,4,7) (con't.)  
A
A
OPTL  
1L  
1
2
3
4
5
6
7
8
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
A
14L  
0L  
A15L  
A16L  
NC  
IO  
IO  
VSS  
IO  
8L  
9L  
9R  
IO8R  
NC  
V
DDQL  
V
SS  
V
IO10L  
SS  
VDDQL  
IO7L  
IO  
9
10  
IO  
10R  
7R  
V
DDQR  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
V
V
SS  
V
SS  
DDQR  
IO11L  
IO  
IO  
IO  
IO  
6L  
6R  
5L  
5R  
IO  
11R  
IO  
12L  
IO  
12R  
V
V
V
VSS  
IO13R  
IO13L  
DD  
70V639PRF  
PK-128(5)  
VDD  
DD  
V
DD  
V
SS  
V
SS  
SS  
IO4R  
IO4L  
IO3R  
IO  
IO  
IO  
128-Pin TQFP  
Top View(6)  
IO  
14R  
IO  
14L  
3L  
2R  
2L  
IO15R  
IO  
15L  
V
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
DDQL  
V
SS  
V
DDQL  
V
SS  
IO16R  
IO16L  
IO  
IO  
1R  
1L  
V
DDQR  
V
V
SS  
DDQR  
VSS  
IO  
17R  
IO  
IO  
OPT  
A0R  
A1R  
0R  
IO  
17L  
0L  
NC  
R
A
16R  
A15R  
A
14R  
.
5621 drw 02a  
NOTES:  
1. All VDD pins must be connected to 3.3V power supply.  
2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V) and 2.5V if OPT pin for that port is  
set to VIL (0V).  
3. All VSS pins must be connected to ground.  
4. Package body is approximately 14mm x 20mm x 1.4mm.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part-marking.  
7. Due to the restricted number of pins, JTAG is not supported in the PK-128 package.  
3
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Pin Configuration(1,2,3,4) (con't.)  
70V639BC  
BC-256(5)  
256-Pin BGA  
Top View(6)  
A1  
A2  
A3  
A6  
A7  
A8  
A9  
A11  
A12  
A13  
A14  
A4  
A5  
A10  
A15  
A16  
NC  
TDI  
NC  
A11L  
A8L  
NC CE1L  
A5L  
A2L  
A0L  
INTL  
NC  
A14L  
NC  
NC  
OEL  
B1  
B2  
B3  
B6  
B7  
B9  
CE0L  
B11  
B12  
B13  
B4  
B5  
B8  
B10  
B14  
B15  
B16  
NC  
NC TDO  
A12L  
A9L  
NC  
A4L  
A1L  
NC  
A15L  
R/  
NC  
NC  
NC  
UBL  
WL  
C1  
C5  
C6  
C2  
C3  
C4  
C7  
C8  
C9  
C10  
C11  
C12  
C13  
C16  
C14  
C15  
NC  
A13L  
A10L  
I/O9L VSS A16L  
A7L  
NC  
A6L  
A3L  
I/O8L  
LBL SEML BUSY  
L
OPTL NC  
D1  
D2  
D6  
D9  
D11  
D3  
D5  
D7  
D8  
D10  
D12  
D13  
D14  
D15  
D16  
D4  
NC I/O9R  
VDDQL  
VDDQL  
VDDQR  
NC  
VDDQL  
VDDQR VDDQR  
VDDQL  
VDDQR VDD  
NC  
NC I/O8R  
VDD  
E5  
E6  
E7  
E8  
E9  
E10  
E11  
E12  
E13  
E1  
E2  
E3  
E4  
E14  
E16  
E15  
VDD VDD  
VSS  
VSS  
VSS  
VSS  
VDD  
VDD VDDQR  
I/O10R I/O10L NC VDDQL  
NC  
I/O7R  
I/O7L  
F7  
F5  
F6  
F9  
F10  
F1  
F2  
F3  
F11  
F13  
F14  
F15  
F16  
F8  
F12  
F4  
VSS  
I/O11L NC I/O11R  
VDD VSS  
VSS  
VSS  
I/O6R NC I/O6L  
VDDQR  
VSS  
VDDQL  
VSS  
VDD  
G1  
G5  
G2  
G4  
G6  
G8  
G9  
G3  
G14  
G15  
G16  
G7  
G10  
G12  
G13  
G11  
NC  
VSS  
NC  
VDDQR  
VSS  
VSS  
VSS  
I/O12L  
I/O5L NC  
NC  
VSS  
VSS  
VSS  
VDDQL  
VSS  
H11  
H12  
H16  
H13  
H7  
H8  
H9  
H10  
H14  
H15  
H5  
H6  
H3  
H4  
H1  
H2  
VSS VSS  
I/O5R  
VDDQL  
VSS VSS  
VSS  
VSS  
NC  
NC  
NC VDDQR VSS  
VSS  
NC I/O12R  
J1  
J2  
J3  
J4  
J5  
J6  
J7  
J8  
J9  
J13  
J10  
J11  
J12  
J14  
J15  
J16  
I/O13L  
VSS  
I/O14R I/O13R VDDQL  
VSS  
VSS  
VSS  
VSS  
VDDQR  
VSS  
VSS  
VSS  
I/O4R  
I/O3R I/O4L  
K6  
K8  
K10  
K12  
K13  
K2  
K4  
K5  
K7  
K9  
K11  
K15  
K16  
K1  
K3  
K14  
VSS  
VSS  
VSS  
VSS  
VDDQR  
NC  
VDDQL VSS  
VSS  
VSS  
VSS  
NC I/O3L  
NC  
I/O14L  
NC  
L7  
L8  
L11  
L12  
L13  
L5  
L6  
L9  
L10  
L3  
L4  
L15  
L16  
L1  
L2  
L14  
VSS  
VSS  
VSS VDD  
VDDQL  
I/O15R VDDQR VDD  
VSS  
VSS  
VSS  
NC I/O2R  
I/O15L NC  
I/O2L  
M5  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M1  
M2  
M3  
M4  
M16  
M14  
M15  
VDD VDD  
VSS  
VSS  
VSS  
VSS  
VDD VDD  
VDDQL  
I/O16R I/O16L NC VDDQR  
NC  
I/O1R I/O1L  
N8  
N12  
N13  
N16  
N4  
N5  
N6  
N7  
N9  
N10  
N11  
N15  
N1  
N2  
N3  
N14  
VDDQL  
VDDQL  
NC  
VDD  
VDD VDDQR VDDQR VDDQL  
VDDQR VDDQR VDDQL  
I/O0R  
NC I/O17R NC  
NC  
P1  
P2  
P3  
P4  
P5  
P7  
P8  
P9  
P10  
P11  
P12  
P14  
P15  
P16  
P6  
P13  
NC I/O17L TMS A16R A13R  
A7R  
NC  
A6R  
NC  
NC  
I/O0L  
LBR SEMR BUSY  
R
A10R  
A3R  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
R16  
R1  
R2  
R3  
R4  
R12  
R13  
R14  
R15  
,
A15R A12R A9R  
R/  
M/  
S
NC  
UBR CE0R  
WR  
NC  
NC  
NC  
A4R  
A1R OPTR  
TRST  
NC  
T2  
T3  
T1  
T4  
T5  
T8  
T9  
T15  
T16  
T6  
T7  
T10  
T11  
T12  
T13  
T14  
TCK  
NC  
NC  
NC  
A14R  
NC  
CE1R  
NC  
NC  
A11R  
A8R  
R
R
INT  
A5R  
A2R  
A0R  
OE  
5621 drw 02c  
NOTES:  
1. All VDD pins must be connected to 3.3V power supply.  
2. All VDDQ pins must be connected to appropriate power supply: 3.3V if OPT pin for that port is set to VIH (3.3V), and 2.5V if OPT pin for that port is  
set to VIL (0V).  
,
3. All VSS pins must be connected to ground supply.  
4. Package body is approximately 17mm x 17mm x 1.4mm, with 1.0mm ball-pitch.  
5. This package code is used to reference the package diagram.  
6. This text does not indicate orientation of the actual part-marking.  
4
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
PinNames  
Left Port  
Right Port  
Names  
Chip Enables  
CE0L CE1L  
CE0R CE1R  
,
,
R/WL  
R/WR  
Read/Write Enable  
Output Enable  
OEL  
OER  
A0L - A16L  
I/O0L - I/O17L  
A0R - A16R  
I/O0R - I/O17R  
Address  
Data Input/Output  
Semaphore Enable  
Interrupt Flag  
SEML  
INTL  
SEMR  
INTR  
Busy Flag  
BUSYL  
UBL  
BUSYR  
UBR  
Upper Byte Select  
Lower Byte Select  
Power (I/O Bus) (3.3V or 2.5V)(1)  
LBL  
LBR  
VDDQ L  
OPTL  
VDDQR  
OPTR  
(1,2)  
Option for selecting VDDQX  
M/S  
Master or Slave Select  
Power (3.3V)(1)  
VDD  
VSS  
Ground (0V)  
NOTES:  
1. VDD, OPTX, and VDDQX must be set to appropriate operating levels prior to  
applying inputs on I/OX.  
TDI  
Test Data Input  
2. OPTX selects the operating voltage levels for the I/Os and controls on that port.  
If OPTX is set to VIH (3.3V), then that port's I/Os and controls will operate at 3.3V  
levels and VDDQX must be supplied at 3.3V. If OPTX is set to VIL (0V), then that  
port's I/Os and controls will operate at 2.5V levels and VDDQX must be supplied  
at 2.5V. The OPT pins are independent of one anotherboth ports can operate  
at 3.3V levels, both can operate at 2.5V levels, or either can operate at 3.3V  
with the other at 2.5V.  
TDO  
TCK  
TMS  
TRST  
Test Data Output  
Test Logic Clock (10MHz)  
Test Mode Select  
Reset (Initialize TAP Controller)  
5621 tbl 01  
5
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table I—Read/Write and Enable Control(1)  
Byte 1  
Byte 0  
1
W
9-17  
0-8  
I/O  
CE  
R/  
I/O  
MODE  
DeselectedPower Down  
DeselectedPower Down  
Both Bytes Deselected  
Write to Byte 0 Only  
Write to Byte 1 Only  
Write to Both Bytes  
OE  
X
X
X
X
X
X
L
SEM  
H
CE0  
H
X
L
UB  
X
X
H
H
L
LB  
X
X
H
L
X
L
X
High-Z  
High-Z  
High-Z  
High-Z  
DIN  
High-Z  
High-Z  
High-Z  
DIN  
H
X
X
L
H
H
H
H
H
H
H
H
H
H
L
H
L
H
L
L
High-Z  
DIN  
H
L
L
L
DIN  
H
L
H
L
L
H
H
H
X
High-Z  
DOUT  
DOUT  
Read Byte 0 Only  
L
H
L
H
L
High-Z  
DOUT  
Read Byte 1 Only  
L
H
L
L
DOUT  
Read Both Bytes  
H
H
L
L
L
High-Z  
High-Z  
Outputs Disabled  
5621 tbl 02  
NOTE:  
1. "H" = VIH, "L" = VIL, "X" = Don't Care.  
Truth Table II – Semaphore Read/Write Control(1)  
Inputs(1)  
Outputs  
(2)  
R/W  
H
I/O1-17  
I/O0  
Mode  
Read Data in Semaphore Flag(3)  
Write I/O0 into Semaphore Flag  
Not Allowed  
CE  
OE  
UB  
L
LB  
L
SEM  
L
H
L
X
X
DATAOUT  
DATAOUT  
H
L
X
L
L
X
DATAIN  
______  
______  
X
X
X
L
5621 tbl 03  
NOTE:  
1. There are eight semaphore flags written to I/O0 and read from all the I/Os (I/O0-I/O17). These eight semaphore flags are addressed by A0-A2.  
2. CE = L occurs when CE0 = VIL and CE1 = VIH.  
3. Each byte is controlled by the respective UB or LB. To read data UB and/or LB = VIL.  
6
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
RecommendedOperating  
TemperatureandSupplyVoltage(1)  
RecommendedDCOperating  
Conditions with VDDQ at 2.5V  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min. Typ.  
Max.  
3.45  
2.6  
0
Unit  
V
Ambient  
Grade  
Commercial  
Temperature  
0OC to +70OC  
-40OC to +85OC  
GND  
0V  
VDD  
VDD  
3.15 3.3  
3.3V + 150mV  
3.3V + 150mV  
VDDQ  
VSS  
2.4  
0
2.5  
V
Industrial  
0V  
0
V
5621 tbl 04  
(2)  
Input High Voltage(3)  
1.7  
V
____  
VDDQ + 100mV  
VIH  
NOTE:  
(Address & Control Inputs)  
1. This is the parameter TA. This is the "instant on" case temperature.  
(3)  
(2)  
____  
____  
VIH  
VIL  
Input High Voltage - I/O  
1.7  
VDDQ + 100mV  
V
Input Low Voltage  
-0.5(1)  
0.7  
V
5621 tbl 06  
NOTES:  
1. VIL > -1.5V for pulse width less than 10 ns.  
2. VTERM must not exceed VDDQ + 100mV.  
AbsoluteMaximumRatings(1)  
3. To select operation at 2.5V levels on the I/Os and controls of a given port, the  
OPTpinforthatportmustbesettoVIL (0V),andVDDQX forthatportmustbesupplied  
as indicated above.  
Symbol  
Rating  
Commercial  
& Industrial  
Unit  
(2)  
VTE RM  
Terminal Voltage  
with Respect to  
GND  
-0.5 to +4.6  
V
Temperature  
Under Bias  
-55 to +125  
-65 to +150  
50  
oC  
oC  
TBIAS  
RecommendedDCOperating  
Conditions with VDDQ at 3.3V  
Storage  
Temperature  
TSTG  
Symbol  
Parameter  
Core Supply Voltage  
I/O Supply Voltage(3)  
Ground  
Min. Typ.  
3.15 3.3  
3.15 3.3  
Max.  
3.45  
3.45  
0
Unit  
V
IOUT  
DC Output Current  
mA  
VDD  
5621 tbl 05  
VDDQ  
VSS  
V
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated  
in the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability.  
2. VTERM must not exceed VDD + 150mV for more than 25% of the cycle time or  
4ns maximum, and is limited to < 20mA for the period of VTERM > VDD + 150mV.  
0
0
V
(2)  
____  
Input High Voltage  
(Address & Control Inputs)  
2.0  
VDDQ + 150mV  
V
VIH  
(3)  
(3)  
____  
____  
(2)  
VIH  
Input High Voltage - I/O  
2.0  
VDDQ + 150mV  
V
V
IL  
Input Low Voltage  
-0.3(1)  
0.8  
V
5621 tbl 07  
NOTES:  
1. VIL > -1.5V for pulse width less than 10 ns.  
2. VTERM must not exceed VDDQ + 150mV.  
3. To select operation at 3.3V levels on the I/Os and controls of a given port, the  
OPT pin for that port must be set to VIH (3.3V), and VDDQX for that port must be  
supplied as indicated above.  
Capacitance(1)  
(TA = +25°C, F = 1.0MHZ) TQFP ONLY  
Symbol  
Parameter  
Input Capacitance  
Output Capacitance  
Conditions(2 )  
Max. Unit  
CIN  
VIN = 3dV  
8
pF  
(3 )  
COUT  
VOUT = 3dV  
10.5  
pF  
5621 tbl 08  
NOTES:  
1. These parameters are determined by device characterization, but are not  
production tested.  
2. 3dV references the interpolated capacitance when the input and output switch  
from 0V to 3V or from 3V to 0V.  
3. COUT also references CI/O.  
7
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 3.3V ± 150mV)  
70V639S  
Max.  
Symbol  
|ILI|  
Parameter  
Test Conditions  
VDDQ = Max., VIN = 0V to VDDQ  
Min.  
Unit  
µA  
µA  
V
(1)  
___  
Input Leakage Current  
10  
10  
___  
___  
|ILO|  
Output Leakage Current  
CE0 = VIH or CE1 = VIL, VOUT = 0V to VDDQ  
IOL = +4mA, VDDQ = Min.  
VOL (3.3V) Output Low Voltage(2)  
VOH (3.3V) Output High Voltage(2)  
VOL (2.5V) Output Low Voltage(2)  
VOH (2.5V) Output High Voltage(2)  
0.4  
___  
IOH = -4mA, VDDQ = Min.  
2.4  
V
___  
IOL = +2mA, VDDQ = Min.  
0.4  
V
___  
IOH = -2mA, VDDQ = Min.  
2.0  
V
5621 tbl 09  
NOTE:  
1. At VDD < - 2.0V input leakages are undefined.  
2. VDDQ is selectable (3.3V/2.5V) via OPT pins. Refer to p.5 for details.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(3) (VDD = 3.3V ± 150mV)  
70V639S10  
Com'l Only  
70V639S12  
Com'l  
70V639S15  
Com'l  
& Ind  
& Ind  
Symbol  
Parameter  
Test Condition  
CEL and CER= V ,  
Version  
COM'L  
Typ.(4)  
340  
Max. Typ.(4)  
Max. Typ.(4)  
Max. Unit  
I
DD  
Dynamic Operating  
Current (Both  
Ports Active)  
mA  
440  
IL  
S
S
S
S
S
S
S
S
S
S
500  
315  
365  
90  
465  
515  
125  
150  
325  
365  
15  
300  
350  
Outputs Disabled,  
____  
____  
(1)  
IND  
490  
f = f  
MAX  
I
Standby Current  
(Both Ports - TTL  
Level Inputs)  
mA  
100  
SB1  
CE = CE = V  
IH  
COM'L  
IND  
115  
165  
75  
L
R
(1)  
f = f  
MAX  
____  
____  
100  
115  
200  
225  
3
125  
(5)  
I
Standby Current  
(One Port - TTL  
Level Inputs)  
mA  
315  
SB2  
CE = V and CE = V  
"A"  
IL  
"B"  
IH  
COM'L  
IND  
225  
340  
175  
200  
Active Port Outputs Disabled,  
____  
____  
(1)  
350  
f=f  
MAX  
I
Full Standby Current Both Ports CE and  
mA  
15  
SB3  
L
COM'L  
IND  
3
15  
3
(Both Ports - CMOS CE > V - 0.2V, V > V - 0.2V  
R
DD  
IN  
DD  
____  
____  
or V < 0.2V, f = 0(2)  
6
15  
6
15  
Level Inputs)  
IN  
(5)  
I
Full Standby Current  
(One Port - CMOS  
Level Inputs)  
mA  
310  
SB4  
CE  
CE  
"B"  
< 0.2V and  
> V - 0.2V COM'L  
220  
335  
195  
220  
320  
360  
170  
195  
"A"  
DD  
V > V - 0.2V or V < 0.2V, Active  
IN  
DD  
IN  
____  
____  
(1)  
IND  
345  
Port, Outputs Disabled, f = f  
MAX  
5621 tbl 10  
NOTES:  
1. At f = fMAX, address and control lines (except Output Enable) are cycling at the maximum frequency read cycle of 1/tRC, using "AC TEST CONDITIONS" at input  
levels of GND to 3V.  
2. f = 0 means no address or control lines change. Applies only to input at CMOS level standby.  
3. Port "A" may be either left or right port. Port "B" is the opposite from port "A".  
4. VDD = 3.3V, TA = 25°C for Typ, and are not production tested. IDD DC(f=0) = 120mA (Typ).  
5. CEX = VIL means CE0X = VIL and CE1X = VIH  
CEX = VIH means CE0X = VIH or CE1X = VIL  
CEX < 0.2V means CE0X < 0.2V and CE1X > VCC - 0.2V  
CEX > VCC - 0.2V means CE0X > VCC - 0.2V or CE1X - 0.2V  
"X" represents "L" for left port or "R" for right port.  
8
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Test Conditions (VDDQ - 3.3V/2.5V)  
2.5V  
Input Pulse Levels  
GND to 3.0V / GND to 2.5V  
2ns Max.  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
833  
1.5V/1.25V  
1.5V1.25V  
DATAOUT  
Figures 1 and 2  
5621 tbl 11  
5pF*  
770Ω  
,
Figure 2. Output Test Load  
3.3V  
590Ω  
5pF*  
50  
50Ω  
,
OUT  
DATA  
OUT  
DATA  
1.5V/1.25  
10pF  
435Ω  
(Tester)  
5621 drw 03  
Figure 1. AC Output Test load.  
,
5621 drw 04  
Figure 2. Output Test Load  
(For tCKLZ, tCKHZ, tOLZ, and tOHZ).  
*Including scope and jig.  
10.5pF is the I/O capacitance of this  
device, and 10pF is the AC Test Load  
Capacitance.  
7
6
5
4
3
tAA  
(Typical, ns)  
2
1
,
20.5  
50  
80 100  
200  
30  
-1  
Capacitance (pF)  
5621 drw 05  
Figure 3. Typical Output Derating (Lumped Capacitive Load).  
9
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange(5)  
70V639S10  
Com'l Only  
70V639S12  
Com'l  
& Ind  
70V639S15  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
READ CYCLE  
____  
____  
____  
tRC  
Read Cycle Time  
10  
12  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
____  
____  
____  
tAA  
Address Access Time  
10  
10  
5
12  
12  
6
15  
15  
7
Chip Enable Access Time(3)  
Byte Enable Access Time(3)  
Output Enable Access Time  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tACE  
tABE  
tAOE  
tOH  
tLZ  
5
6
7
____  
____  
____  
Output Hold from Address Change  
Output Low-Z Time(1,2)  
3
0
0
3
0
0
3
0
0
____  
____  
____  
tHZ  
Output High-Z Time(1,2)  
4
6
8
tPU  
tPD  
tSOP  
tSAA  
Chip Enable to Power Up Time(2)  
Chip Disable to Power Down Time(2)  
Semaphore Flag Update Pulse (OE or SEM)  
Semaphore Address Access Time  
0
0
0
____  
____  
____  
____  
____  
____  
10  
4
10  
6
15  
8
____  
____  
____  
3
10  
3
12  
3
20  
ns  
5621 tbl 12  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltage(5)  
70V639S10  
Com'l Only  
70V639S12  
Com'l  
& Ind  
70V639S15  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
WRITE CYCLE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tWC  
tEW  
tAW  
tAS  
Write Cycle Time  
10  
8
12  
10  
10  
0
15  
12  
12  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Chip Enable to End-of-Write(3)  
Address Valid to End-of-Write  
Address Set-up Time(3)  
Write Pulse Width  
8
0
tWP  
8
10  
0
12  
0
tWR  
tDW  
tDH  
Write Recovery Time  
Data Valid to End-of-Write  
Data Hold Time(4)  
0
6
8
10  
0
0
0
(1,2)  
____  
____  
____  
tWZ  
Write Enable to Output in High-Z  
4
4
4
tOW  
tSWRD  
tSPS  
Output Active from End-of-Write(1,2,4)  
SEM Flag Write to Read Time  
SEM Flag Contention Window  
0
5
5
0
5
5
0
5
5
____  
____  
____  
____  
____  
____  
____  
____  
____  
ns  
5621 tbl 13  
NOTES:  
1. Transition is measured 0mV from Low or High-impedance voltage with Output Test Load (Figure 2).  
2. This parameter is guaranted by device characterization, but is not production tested.  
3. To access RAM, CE= VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. Either condition must be valid for the entire tEW time.  
4. The specification for tDH must be met by the device supplying write data to the RAM under all operating conditions. Although tDH and tOW values will vary over voltage  
and temperature, the actual tDH will always be smaller than the actual tOW.  
5. These values are valid regardless of the power supply level selected for I/O and control signals (3.3V/2.5V). See page 5 for details.  
10  
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Read Cycles(5)  
tRC  
ADDR  
(4)  
tAA  
(4)  
tACE  
CE(6)  
(4)  
tAOE  
OE  
(4)  
tABE  
UB, LB  
R/W  
tOH  
(1)  
tLZ  
VALID DATA(4)  
DATAOUT  
(2)  
tHZ  
BUSYOUT  
(3,4)  
5621 drw 06  
tBDD  
NOTES:  
1. Timing depends on which signal is asserted last, OE, CE, LB or UB.  
2. Timing depends on which signal is de-asserted first CE, OE, LB or UB.  
3. tBDD delay is required only in cases where the opposite port is completing a write operation to the same address location. For simultaneous read operations BUSY  
has no relation to valid output data.  
4. Start of valid data depends on which timing becomes effective last tAOE, tACE, tAA or tBDD.  
5. SEM = VIH.  
Timing of Power-Up Power-Down  
CE  
tPU  
tPD  
ICC  
SB  
50%  
50%  
.
5621 drw 07  
I
11  
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Write Cycle No. 1, R/W Controlled Timing(1,5,8)  
tWC  
ADDRESS  
(7)  
tHZ  
OE  
tAW  
CE SEM(9)  
or  
UB, LB(9)  
(3)  
(2)  
(6)  
tWR  
tAS  
tWP  
W
R/  
(7)  
tOW  
tWZ  
(4)  
(4)  
DATAOUT  
DATAIN  
tDW  
tDH  
5621 drw 08  
Timing Waveform of Write Cycle No. 2, CE Controlled Timing(1,5)  
tWC  
ADDRESS  
tAW  
(9)  
or  
CE SEM  
(6)  
tAS  
(3)  
(2)  
tWR  
tEW  
(9)  
,
UB LB  
R/  
W
tDW  
tDH  
DATAIN  
5621 drw 09  
NOTES:  
1. R/W or CE or BEn = VIH during all address transitions.  
2. A write occurs during the overlap (tEW or tWP) of a CE = VIL and a R/W = VIL for memory array writing cycle.  
3. tWR is measured from the earlier of CE or R/W (or SEM or R/W) going HIGH to the end of write cycle.  
4. During this period, the I/O pins are in the output state and input signals must not be applied.  
5. If the CE or SEM = VIL transition occurs simultaneously with or after the R/W = VIL transition, the outputs remain in the High-impedance state.  
6. Timing depends on which enable signal is asserted last, CE or R/W.  
7. This parameter is guaranteed by device characterization, but is not production tested. Transition is measured 0mV from steady state with the Output Test Load  
(Figure 2).  
8. If OE = VIL during R/W controlled write cycle, the write pulse width must be the larger of tWP or (tWZ + tDW) to allow the I/O drivers to turn off and data to be  
placed on the bus for the required tDW. If OE = VIH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the  
specified tWP.  
9. To access RAM, CE = VIL and SEM = VIH. To access semaphore, CE = VIH and SEM = VIL. tEW must be met for either condition.  
12  
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Timing Waveform of Semaphore Read after Write Timing, Either Side(1)  
tSAA  
A0-A2  
VALID ADDRESS  
VALID ADDRESS  
tAW  
tWR  
tACE  
tEW  
SEM/UB/LB(1)  
tOH  
tSOP  
tDW  
IN  
OUT  
DATA  
VALID(2)  
I/O  
DATA VALID  
tAS  
tWP  
tDH  
R/W  
tSWRD  
tAOE  
OE  
tSOP  
Write Cycle  
Read Cycle  
5621 drw 10  
NOTES:  
1. CE = VIH or UB and LB = VIH for the duration of the above timing (both write and read cycle) (Refer to Chip Enable Truth Table). Refer also to Truth Table II for appropriate  
UB/LB controls.  
2. "DATAOUT VALID" represents all I/O's (I/O0 - I/O17) equal to the semaphore value.  
Timing Waveform of Semaphore Write Contention(1,3,4)  
A0"A"-A2"A"  
MATCH  
(2)  
SIDE "A"  
R/W"A"  
SEM"A"  
tSPS  
A0"B"-A2"B"  
MATCH  
(2)  
SIDE  
R/W"B"  
SEM"B"  
"B"  
5621 drw 11  
NOTES:  
1. DOR = DOL = VIL, CEL = CER = VIH. Refer also to Truth Table II for appropriate UB/LB controls.  
2. All timing is the same for left and right ports. Port "A" may be either left or right port. "B" is the opposite from port "A".  
3. This parameter is measured from R/W"A" or SEM"A" going HIGH to R/W"B" or SEM"B" going HIGH.  
4. If tSPS is not satisfied,the semaphore will fall positively to one side or the other, but there is no guarantee which side will be granted the semaphore flag.  
13  
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70V639S10  
Com'l Only  
70V639S12  
Com'l  
& Ind  
70V639S15  
Com'l  
& Ind  
Symbol  
Parameter  
Unit  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
BUSY TIMING (M/S=VIH)  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tBAA  
tBDA  
tBAC  
tBDC  
tAPS  
tBDD  
tWH  
10  
10  
10  
12  
12  
12  
15  
15  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
BUSY Access Time from Address Match  
BUSY Disable Time from Address Not Matched  
Access Time from Chip Enable Low  
BUSY  
10  
12  
15  
BUSY Disable Time from Chip Enable High  
Arbitration Priority Set-up Time(2)  
5
5
5
____  
____  
____  
BUSY Disable to Valid Data(3)  
Write Hold After BUSY(5)  
____  
____  
____  
10  
12  
15  
____  
____  
____  
8
10  
12  
BUSY TIMING (M/S=VIL)  
BUSY Input to Write(4)  
____  
____  
____  
____  
____  
____  
tWB  
0
8
0
0
ns  
ns  
(5)  
tWH  
Write Hold After  
10  
12  
BUSY  
PORT-TO-PORT DELAY TIMING  
____  
____  
____  
____  
____  
____  
tWDD  
tDDD  
Write Pulse to Data Delay(1)  
22  
20  
25  
22  
30  
25  
ns  
Write Data Valid to Read Data Delay(1)  
ns  
5621 tbl 14  
NOTES:  
1. Port-to-port delay through RAM cells from writing port to reading port, refer to "Timing Waveform of Write with Port-to-Port Read and BUSY (M/S = VIH)".  
2. To ensure that the earlier of the two ports wins.  
3. tBDD is a calculated parameter and is the greater of the Max. spec, tWDD tWP (actual), or tDDD tDW (actual).  
4. To ensure that the write cycle is inhibited on port "B" during contention on port "A".  
5. To ensure that a write cycle is completed on port "B" after contention on port "A".  
14  
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
TimingWaveformof WritewithPort-to-PortReadandBUSY (M/S = VIH)(2,4,5)  
tWC  
MATCH  
ADDR"A"  
R/W"A"  
tWP  
tDW  
tDH  
VALID  
DATAIN "A"  
(1)  
tAPS  
MATCH  
ADDR"B"  
tBAA  
tBDA  
tBDD  
BUSY"B"  
tWDD  
DATAOUT "B"  
VALID  
(3)  
tDDD  
.
5621 drw 12  
NOTES:  
1. To ensure that the earlier of the two ports wins. tAPS is ignored for M/S = VIL (SLAVE).  
2. CEL = CER = VIL.  
3. OE = VIL for the reading port.  
4. If M/S = VIL (slave), BUSY is an input. Then for this example BUSY"A" = VIH and BUSY"B" input is shown above.  
5. All timing is the same for left and right ports. Port "A" may be either the left or right port. Port "B" is the port opposite from port "A".  
Timing Waveform of Write with BUSY (M/S = VIL)  
tWP  
R/W"A"  
(3)  
tWB  
BUSY"B"  
(1)  
tWH  
(2)  
R/W"B"  
5621 drw 13  
NOTES:  
1. tWH must be met for both BUSY input (SLAVE) and output (MASTER).  
2. BUSY is asserted on port "B" blocking R/W"B", until BUSY"B" goes HIGH.  
3. tWB is only for the 'slave' version.  
15  
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of BUSY Arbitration Controlled by CE Timing(M/S = VIH)(1)  
ADDR"A"  
ADDRESSES MATCH  
and "B"  
"A"  
CE  
(2)  
tAPS  
CE"B"  
tBAC  
tBDC  
"B"  
BUSY  
5621 drw 14  
Waveform of BUSY Arbitration Cycle Controlled by Address Match  
Timing(M/S = VIH)(1)  
"A"  
"B"  
"B"  
ADDR  
ADDRESS "N"  
(2)  
tAPS  
ADDR  
MATCHING ADDRESS "N"  
BAA  
BDA  
t
t
BUSY  
5621 drw 15  
NOTES:  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from port A.  
2. If tAPS is not satisfied, the BUSY signal will be asserted on one side or another but there is no guarantee on which side BUSY will be asserted.  
AC Electrical Characteristics Over the  
OperatingTemperatureandSupplyVoltageRange  
70V639S10  
Com'l Only  
70V639S12  
Com'l  
& Ind  
70V639S15  
Com'l  
& Ind  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
INTERRUPT TIMING  
____  
____  
____  
____  
____  
____  
tAS  
Address Set-up Time  
0
0
0
ns  
ns  
ns  
tWR  
tINS  
tINR  
Write Recovery Time  
Interrupt Set Time  
0
0
0
____  
____  
____  
10  
10  
12  
12  
15  
15  
____  
____  
____  
Interrupt Reset Time  
ns  
5621 tbl 15  
16  
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Waveform of Interrupt Timing(1)  
tWC  
INTERRUPT SET ADDRESS(2)  
ADDR"A"  
(4)  
(3)  
WR  
t
tAS  
"A"  
CE  
R/ "A"  
W
(3)  
INS  
t
"B"  
INT  
5621 drw 16  
tRC  
INTERRUPT CLEAR ADDRESS (2)  
ADDR"B"  
(3)  
tAS  
"B"  
CE  
"B"  
OE  
(3)  
tINR  
"B"  
INT  
5621 drw 17  
NOTES:  
1. All timing is the same for left and right ports. Port Amay be either the left or right port. Port Bis the port opposite from port A.  
2. Refer to Interrupt Truth Table.  
3. Timing depends on which enable signal (CE or R/W) is asserted last.  
4. Timing depends on which enable signal (CE or R/W) is de-asserted first.  
Truth Table III — Interrupt Flag(1,4)  
Left Port  
Right Port  
R/  
L
A16L-A0L  
1FFFF  
X
R/  
R
A16R-A0R  
X
Function  
Set Right INTR Flag  
W
L
L
L
W
R
CE  
OE  
INT  
CE  
OE  
R
INTR  
(2)  
L
X
X
X
L
X
X
L
X
X
X
L
X
X
X
L
X
L
L
X
X
L
L
(3)  
X
1FFFF  
1FFFE  
X
H
Reset Right INTR Flag  
Set Left INTL Flag  
(3)  
X
L
X
X
X
X
(2)  
1FFFE  
H
X
Reset Left INTL Flag  
5621 tbl 16  
NOTES:  
1. Assumes BUSYL = BUSYR =VIH.  
2. If BUSYL = VIL, then no change.  
3. If BUSYR = VIL, then no change.  
4. INTL and INTR must be initialized at power-up.  
17  
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Truth Table IV —  
Address BUSY Arbitration  
Inputs  
Outputs  
A
OL-A16L  
(1 )  
(1 )  
A
OR-A16R  
Function  
No rmal  
No rmal  
No rmal  
CE  
L
CE  
R
BUSY  
L
BUSY  
R
X
H
X
L
X
X
H
L
NO MATCH  
MATCH  
H
H
H
H
MATCH  
H
H
MATCH  
(2)  
(2)  
Write Inhib it(3 )  
5621 tbl 17  
NOTES:  
1. Pins BUSYL and BUSYR are both outputs when the part is configured as a master. Both are inputs when configured as a slave. BUSY outputs on the IDT70V639  
are push-pull, not open drain outputs. On slaves the BUSY input internally inhibits writes.  
2. "L" if the inputs to the opposite port were stable prior to the address and enable inputs of this port. "H" if the inputs to the opposite port became stable after the address  
and enable inputs of this port. If tAPS is not met, either BUSYL or BUSYR = LOW will result. BUSYL and BUSYR outputs can not be LOW simultaneously.  
3. Writes to the left port are internally ignored when BUSYL outputs are driving LOW regardless of actual logic level on the pin. Writes to the right port are internally ignored  
when BUSYR outputs are driving LOW regardless of actual logic level on the pin.  
Truth Table V — Example of Semaphore Procurement Sequence(1,2,3)  
Functions  
D0 - D17 Left  
D0 - D17 Right  
Status  
No Action  
1
0
0
1
1
0
1
1
1
0
1
1
1
1
0
0
1
1
0
1
1
1
Semaphore free  
Left Port Writes "0" to Semaphore  
Right Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "1" to Semaphore  
Right Port Writes "0" to Semaphore  
Right Port Writes "1" to Semaphore  
Left Port Writes "0" to Semaphore  
Left Port Writes "1" to Semaphore  
Left port has semaphore token  
No change. Right side has no write access to semaphore  
Right port obtains semaphore token  
No change. Left port has no write access to semaphore  
Left port obtains semaphore token  
Semaphore free  
Right port has semaphore token  
Semaphore free  
Left port has semaphore token  
Semaphore free  
5621 tbl 18  
NOTES:  
1. This table denotes a sequence of events for only one of the eight semaphores on the IDT70V639.  
2. There are eight semaphore flags written to via I/O0 and read from all I/O's (I/O0-I/O17). These eight semaphores are addressed by A0 - A2.  
3. CE = VIH, SEM = VIL to access the semaphores. Refer to the Semaphore Read/Write Control Truth Table.  
FunctionalDescription  
The IDT70V639 provides two ports with separate control, address  
and I/O pins that permit independent access for reads or writes to any  
locationinmemory.TheIDT70V639hasanautomaticpowerdownfeature  
controlled by CE. The CE0 and CE1 control the on-chip power down  
circuitrythatpermitstherespectiveporttogointoastandbymodewhen  
notselected(CE =HIGH).Whenaportis enabled,access totheentire  
memoryarrayispermitted.  
3FFFE (HEX), where a write is defined as CER = R/WR = VIL per the  
Truth Table. The left port clears the interrupt through access of  
address location 3FFFE when CEL = OEL = VIL, R/W is a "don't care".  
Likewise, the right port interrupt flag (INTR) is asserted when the left  
port writes to memory location 3FFFF (HEX) and to clear the interrupt  
flag (INTR), the right port must read the memory location 3FFFF. The  
message (18 bits) at 3FFFE or 3FFFF is user-defined since it is an  
addressable SRAM location. If the interrupt function is not used,  
address locations 3FFFE and 3FFFF are not used as mail boxes, but  
as part of the random access memory. Refer to Truth Table III for  
theinterruptoperation.  
Interrupts  
If the user chooses the interrupt function, a memory location (mail  
boxormessagecenter)isassignedtoeachport. Theleftportinterrupt  
flag (INTL) is asserted when the right port writes to memory location  
18  
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
address signals only. It ignores whether an access is a read or write.  
In a master/slave array, both address and chip enable must be valid  
long enough for a BUSY flag to be output from the master before the  
actual write pulse can be initiated with the R/W signal. Failure to  
observe this timing can result in a glitched internal write inhibit signal  
andcorrupteddata inthe slave.  
BusyLogic  
BusyLogicprovidesahardwareindicationthatbothportsoftheRAM  
haveaccessedthesamelocationatthesametime.Italsoallowsoneofthe  
twoaccessestoproceedandsignalstheothersidethattheRAMisBusy.  
TheBUSYpincanthenbeusedtostalltheaccessuntiltheoperationon  
theothersideiscompleted.Ifawriteoperationhasbeenattemptedfrom  
thesidethatreceivesaBUSYindication,thewritesignalisgatedinternally  
topreventthewritefromproceeding.  
Semaphores  
TheuseofBUSYlogicisnotrequiredordesirableforallapplications.  
InsomecasesitmaybeusefultologicallyORtheBUSYoutputstogether  
anduse anyBUSY indicationas aninterruptsource toflagthe eventof  
anillegalorillogicaloperation.IfthewriteinhibitfunctionofBUSYlogicis  
notdesirable,theBUSYlogiccanbedisabledbyplacingthepartinslave  
modewiththeM/Spin.OnceinslavemodetheBUSYpinoperatessolely  
asawriteinhibitinputpin.Normaloperationcanbeprogrammedbytying  
the BUSY pins HIGH. If desired, unintended write operations can be  
prevented to a port by tying the BUSY pin for that port LOW.  
The BUSY outputs on the IDT70V639 RAM in master mode, are  
push-pull type outputs and do not require pull up resistors to operate.  
Ifthese RAMs are beingexpandedindepth, thentheBUSY indication  
for the resulting array requires the use of an external AND gate.  
The IDT70V639 is an extremely fast Dual-Port 128K x 18 CMOS  
Static RAM with an additional 8 address locations dedicated to binary  
semaphore flags. These flags alloweitherprocessoronthe leftorright  
side ofthe Dual-PortRAMtoclaima privilege overthe otherprocessor  
for functions defined by the system designers software. As an ex-  
ample, the semaphore can be used by one processor to inhibit the  
other from accessing a portion of the Dual-Port RAM or any other  
sharedresource.  
The Dual-Port RAM features a fast access time, with both ports  
being completely independent of each other. This means that the  
activityontheleftportinnowayslows theaccess timeoftherightport.  
Both ports are identical in function to standard CMOS Static RAM and  
can be read from or written to at the same time with the only possible  
conflict arising from the simultaneous writing of, or a simultaneous  
READ/WRITE of, a non-semaphore location. Semaphores are pro-  
tected against such ambiguous situations and may be used by the  
system program to avoid any conflicts in the non-semaphore portion  
of the Dual-Port RAM. These devices have an automatic power-down  
feature controlled by CE, the Dual-Port RAM enable, and SEM, the  
semaphore enable. The CE and SEM pins control on-chip power  
downcircuitrythatpermits the respective porttogointostandbymode  
whennotselected.  
A17  
CE0  
CE0  
MASTER  
Dual Port RAM  
SLAVE  
Dual Port RAM  
BUSY  
BUSY  
R
R
BUSY  
BUSY  
L
L
CE1  
CE1  
R
MASTER  
SLAVE  
Dual Port RAM  
Dual Port RAM  
Systems which can best use the IDT70V639 contain multiple  
processors or controllers and are typically very high-speed systems  
which are software controlled or software intensive. These systems  
can benefit from a performance increase offered by the IDT70V639s  
hardware semaphores, which provide a lockout mechanism without  
requiringcomplexprogramming.  
BUSY  
BUSY  
L
L
BUSY  
BUSY  
R
.
5621 drw 18  
Figure 3. Busy and chip enable routing for both width and depth  
expansion with IDT70V639 RAMs.  
Softwarehandshakingbetweenprocessors offers themaximumin  
system flexibility by permitting shared resources to be allocated in  
varying configurations. The IDT70V639 does not use its semaphore  
flags to control any resources through hardware, thus allowing the  
systemdesignertotalflexibilityinsystemarchitecture.  
An advantage of using semaphores rather than the more common  
methods of hardware arbitration is that wait states are never incurred  
in either processor. This can prove to be a major advantage in very  
high-speedsystems.  
Width Expansion with Busy Logic  
Master/SlaveArrays  
When expanding an IDT70V639 RAM array in width while using  
BUSYlogic, one master part is used to decide which side of the RAMs  
array will receive aBUSY indication, and to output that indication. Any  
number of slaves to be addressed in the same address range as the  
master use the BUSY signal as a write inhibit signal. Thus on the  
IDT70V639 RAM the BUSY pin is an output if the part is used as a  
master (M/S pin = VIH), and the BUSY pin is an input if the part used  
as a slave (M/S pin = VIL) as shown in Figure 3.  
If two or more master parts were used when expanding in width, a  
splitdecisioncouldresultwithonemasterindicatingBUSYononeside  
of the array and another master indicating BUSY on one other side of  
the array. This would inhibit the write operations from one port for part  
of a word and inhibit the write operations from the other port for the  
other part of the word.  
How the Semaphore Flags Work  
The semaphore logic is a set of eight latches which are indepen-  
dent of the Dual-Port RAM. These latches can be used to pass a flag,  
or token, from one port to the other to indicate that a shared resource  
is in use. The semaphores provide a hardware assist for a use  
assignmentmethodcalledTokenPassingAllocation.Inthis method,  
the state of a semaphore latch is used as a token indicating that a  
shared resource is in use. If the left processor wants to use this  
resource,itrequeststhetokenbysettingthelatch.Thisprocessorthen  
The BUSY arbitration on a master is based on the chip enable and  
19  
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
question. Meanwhile, if a processor on the right side attempts to write  
a zero to the same semaphore flag it will fail, as will be verified by the  
fact that a one will be read from that semaphore on the right side  
during subsequent read. Had a sequence of READ/WRITE been  
usedinstead,systemcontentionproblemscouldhaveoccurredduring  
the gap between the read and write cycles.  
It is important to note that a failed semaphore request must be  
followed by either repeated reads or by writing a one into the same  
location. The reason for this is easily understood by looking at the  
simple logic diagram of the semaphore flag in Figure 4. Two sema-  
phore request latches feed into a semaphore flag. Whichever latch is  
first to present a zero to the semaphore flag will force its side of the  
semaphore flag LOW and the other side HIGH. This condition will  
verifiesitssuccessinsettingthelatchbyreadingit. Ifitwassuccessful,it  
proceeds to assume control over the shared resource. If it was not  
successfulinsettingthelatch,itdeterminesthattherightsideprocessor  
has set the latch first, has the token and is using the shared resource.  
The left processor can then either repeatedly request that  
semaphores status or remove its request for that semaphore to  
perform another task and occasionally attempt again to gain control of  
the token via the set and test sequence. Once the right side has  
relinquishedthetoken,theleftsideshouldsucceedingainingcontrol.  
The semaphore flags are active LOW. A token is requested by  
writing a zero into a semaphore latch and is released when the same  
sidewritesaonetothatlatch.  
The eight semaphore flags reside within the IDT70V639 in a  
separate memoryspace fromthe Dual-PortRAM. This address space  
is accessedbyplacingalowinputonthe SEM pin(whichacts as achip  
select for the semaphore flags) and using the other control pins  
(Address, CE, R/W and LB/UB) as they would be used in accessing a  
standard Static RAM. Each of the flags has a unique address which  
can be accessed by either side through address pins A0 A2. When  
accessing the semaphores, none of the other address pins has  
anyeffect.  
L PORT  
R PORT  
SEMAPHORE  
REQUEST FLIP FLOP  
SEMAPHORE  
REQUEST FLIP FLOP  
0
D
0
D
D
D
Q
Q
WRITE  
WRITE  
Whenwritingtoasemaphore,onlydatapinD0 isused.Ifalowlevel  
is written into an unused semaphore location, that flag will be set to  
a zero on that side and a one on the other side (see Truth Table V).  
Thatsemaphorecannowonlybemodifiedbythesideshowingthezero.  
When a one is written into the same location from the same side, the  
SEMAPHORE  
READ  
SEMAPHORE  
READ  
5621 drw 19  
Figure 4. IDT70V639 Semaphore Logic  
flag will be set to a one for both sides (unless a semaphore request continue until a one is written to the same semaphore request latch.  
fromtheothersideispending)andthencanbewrittentobybothsides. Should the other sides semaphore request latch have been written to  
The fact that the side which is able to write a zero into a semaphore a zero in the meantime, the semaphore flag will flip over to the other  
subsequently locks out writes from the other side is what makes side as soon as a one is written into the first sides request latch. The  
semaphore flags useful in interprocessor communications. (A thor- secondsides flagwillnowstay LOWuntilits semaphore requestlatch  
ough discussion on the use of this feature follows shortly.) A zero is written to a one. From this it is easy to understand that, if a  
written into the same location from the other side will be stored in the semaphore is requested and the processor which requested it no  
semaphore request latch for that side until the semaphore is freed by longer needs the resource, the entire system can hang up until a one  
thefirstside.  
Whena semaphore flagis read, its value is spreadintoalldata bits  
iswrittenintothatsemaphorerequestlatch.  
The critical case of semaphore timing is when both sides request  
so that a flag that is a one reads as a one in all data bits and a flag a single tokenbyattemptingtowrite a zerointoitatthe same time. The  
containinga zeroreads as allzeros. The readvalue is latchedintoone semaphore logic is specially designed to resolve this problem. If  
sides output register when that side's semaphore, byte select (SEM, simultaneous requests are made, the logic guarantees that only one  
LB/UB)andoutputenable(OE)signalsgoactive.Thisservestodisallow side receives the token. If one side is earlier than the other in making  
thesemaphorefromchangingstateinthemiddleofareadcycleduetoa the request, the first side to make the request will receive the token. If  
write cycle from the other side. Because of this latch, a repeated read bothrequests arriveatthesametime,theassignmentwillbearbitrarily  
of a semaphore in a test loop must cause either signal (SEM or OE) to made to one port or the other.  
go inactive or the output will never change. However, during reads LB  
andUBfunctiononlyasanoutputforsemaphore.Theydonothaveany semaphores alone do not guarantee that access to a resource is  
influenceonthesemaphorecontrollogic. secure. As with any powerful programming technique, if semaphores  
A sequence WRITE/READ must be used by the semaphore in are misusedormisinterpreted, a software errorcaneasilyhappen.  
order to guarantee that no system level contention will occur. A Initialization of the semaphores is not automatic and must be  
One caution that should be noted when using semaphores is that  
processor requests access to shared resources by attempting to write handled via the initialization program at power-up. Since any sema-  
a zero into a semaphore location. If the semaphore is already in use, phore request flag which contains a zero must be reset to a one,  
the semaphore request latch will contain a zero, yet the semaphore all semaphores on both sides should have a one written into them  
flag will appear as one, a fact which the processor will verify by the at initialization from both sides to assure that they will be free  
subsequent read (see Table V). As an example, assume a processor when needed.  
writes a zero to the left port at a free semaphore location. On a  
subsequent read, the processor will verify that it has written success-  
fully to that location and will assume control over the resource in  
20  
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
JTAGTimingSpecifications  
t
JCYC  
t
JR  
t
JF  
t
JCL  
t
JCH  
TCK  
Device Inputs(1)/  
TDI/TMS  
tJDC  
t
JS  
t
JH  
Device Outputs(2)/  
TDO  
t
JRSR  
tJCD  
TRST  
x
5621 drw 20  
t
JRST  
NOTES:  
1. Device inputs = All device inputs except TDI, TMS, and TRST.  
2. Device outputs = All device outputs except TDO.  
JTAG AC Electrical  
Characteristics(1,2,3,4)  
Symbol  
tJCYC  
tJCH  
Parameter  
JTAG Clock Input Period  
JTAG Clock HIGH  
JTAG Clock Low  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
JTAG Reset  
Min.  
100  
40  
Max.  
Units  
ns  
____  
____  
____  
ns  
tJCL  
40  
ns  
(1)  
____  
tJR  
3
ns  
(1)  
____  
tJF  
3
ns  
____  
____  
JRST  
t
50  
ns  
tJRSR  
tJCD  
tJDC  
tJS  
JTAG Reset Recovery  
JTAG Data Output  
JTAG Data Output Hold  
JTAG Setup  
50  
ns  
____  
25  
ns  
____  
0
ns  
____  
____  
15  
15  
ns  
JH  
t
JTAG Hold  
ns  
5621 tbl 19  
NOTES:  
1. Guaranteed by design.  
2. 30pF loading on external output signals.  
3. Refer to AC Electrical Test Conditions stated earlier in this document.  
4. JTAG operations occur at one speed (10MHz). The base device may run at  
any speed specified in this datasheet.  
21  
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Identification Register Definitions  
Instruction Field  
Value  
Description  
Revision Number (31:28)  
0x0  
Reserved for version number  
IDT Device ID (27:12)  
0x30C  
0x33  
1
Defines IDT part number  
IDT JEDEC ID (11:1)  
Allows unique identification of device vendor as IDT  
Indicates the presence of an ID register  
ID Register Indicator Bit (Bit 0)  
5621 tbl 20  
ScanRegisterSizes  
Register Name  
Bit Size  
Instruction (IR)  
4
1
Bypass (BYR)  
Identification (IDR)  
32  
Boundary Scan (BSR)  
Note (3)  
5621 tbl 21  
SystemInterfaceParameters  
Instruction  
Code  
Description  
EXTEST  
0000  
Forces contents of the boundary scan cells onto the device outputs(1) .  
Places the boundary scan register (BSR) between TDI and TDO.  
BYPASS  
IDCODE  
1111  
Places the by pass registe r (BYR) between TDI and TDO.  
0010  
Loads the ID register (IDR) with the vendor ID code and places the  
register between TDI and TDO.  
0100  
Places the bypass register (BYR) between TDI and TDO. Forces all  
device output drivers to a High-Z state.  
HIGHZ  
CLAMP  
Uses BYR. Forces contents of the boundary scan cells onto the device  
outputs. Places the bypass register (BYR) between TDI and TDO.  
0011  
0001  
SAMPLE/PRELOAD  
Places the boundary scan register (BSR) between TDI and TDO.  
SAMPLE allows data from device inputs(2) and outputs(1) to be captured  
in the boundary scan cells and shifted serially through TDO. PRELOAD  
allows data to be input serially into the boundary scan cells via the TDI.  
RESERVED  
All other codes  
Several combinations are reserved. Do notuse codes other than those  
identified above.  
5621 tbl 22  
NOTES:  
1. Device outputs = All device outputs except TDO.  
2. Device inputs = All device inputs except TDI, TMS, and TRST.  
3. The Boundary Scan Descriptive Language (BSDL) file for this device is available on the IDT website (www.idt.com), or by contacting your local  
IDT sales representative.  
22  
IDT70V639S  
Preliminary  
High-Speed 3.3V 128K x 18 Asynchronous Dual-Port Static RAM  
Industrial and Commercial Temperature Ranges  
Ordering Information  
IDT XXXXX  
A
999  
A
A
Device  
Type  
Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank  
I
Commercial (0 C to +70 C)  
°
°
Industrial (-40 C to +85 C)  
°
°
BF  
PRF  
BC  
208-ball fpBGA (BF-208)  
128-pin TQFP (PK-128)  
256-ball BGA (BC-256)  
10  
12  
15  
Commercial Only  
Commercial & Industrial  
Commercial & Industrial  
Speed in nanoseconds  
S
Standard Power  
70V639 2304K (128K x 18) Asynchronous Dual-Port RAM  
5621 drw 21  
PreliminaryDatasheet:Definition  
"PRELIMINARY'datasheetscontaindescriptionsforproductsthatareinearlyrelease.  
DatasheetDocumentHistory:  
6/1/00:  
8/7/00:  
6/20/01:  
InitialPublicOffering.  
Pages6,13,20InsertedadditionalLBandUBinformation.  
AddedJTAGinformationforTQFPpackage onpage 1.  
Increased BUSY TIMINGparameters tBDA,tBAC,tBDC andtBDD forallspeeds onpage14.  
Changed maximumvalueforJTAGACElectricalCharacteristics fortJCD from20ns to25ns onpage21.  
CORPORATE HEADQUARTERS  
2975 Stender Way  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
831-754-4613  
DualPortHelp@idt.com  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
23  

相关型号:

IDT70V639S15BCGI

Dual-Port SRAM, 128KX18, 15ns, CMOS, PBGA256, 17 X 17 MM, 1.40 MM HEIGHT, 1 MM PITCH, GREEN, BGA-256
IDT

IDT70V639S15BCI

HIGH-SPEED 3.3V 128K x 18 ASYNCHRONOUS DUAL-PORT STATIC RAM
IDT

IDT70V639S15BCI8

Application Specific SRAM, 128KX18, 15ns, CMOS, PBGA256
IDT

IDT70V639S15BF

HIGH-SPEED 3.3V 128K x 18 ASYNCHRONOUS DUAL-PORT STATIC RAM
IDT

IDT70V639S15BF8

Dual-Port SRAM, 128KX18, 15ns, CMOS, PBGA208, 15 X 15 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, FPBGA-208
IDT

IDT70V639S15BFG

Dual-Port SRAM, 128KX18, 15ns, CMOS, PBGA208, 15 X 15 MM, 1.40 MM HEIGHT, 0.80 MM PITCH, GREEN, FPBGA-208
IDT

IDT70V639S15BFGI

暂无描述
IDT

IDT70V639S15BFI

HIGH-SPEED 3.3V 128K x 18 ASYNCHRONOUS DUAL-PORT STATIC RAM
IDT

IDT70V639S15BFI8

Application Specific SRAM, 128KX18, 15ns, CMOS, PBGA208
IDT

IDT70V639S15PRF

HIGH-SPEED 3.3V 128K x 18 ASYNCHRONOUS DUAL-PORT STATIC RAM
IDT

IDT70V639S15PRF8

Dual-Port SRAM, 128KX18, 15ns, CMOS, PQFP128, 14 X 20 MM, 1.40 MM HEIGHT, TQFP-128
IDT

IDT70V639S15PRF9

Dual-Port SRAM, 128KX18, 15ns, CMOS, PQFP128, 14 X 20 MM, 1.40 MM HEIGHT, TQFP-128
IDT