IDT71V6590385PFGI [IDT]

3.3V Synchronous ZBT SRAMs 3.3V I/O, Burst Counter Flow-Through Outputs;
IDT71V6590385PFGI
型号: IDT71V6590385PFGI
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

3.3V Synchronous ZBT SRAMs 3.3V I/O, Burst Counter Flow-Through Outputs

静态存储器
文件: 总23页 (文件大小:615K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
             
256K x 36, 512K x 18  
IDT71V65703  
IDT71V65903  
3.3VSynchronousZBTSRAMs  
3.3V I/O, Burst Counter  
Flow-Through Outputs  
Features  
256K x 36, 512K x 18 memory configurations  
Address and control signals are applied to the SRAM during one  
clock cycle, and on the next clock cycle the associated data cycle  
occurs, be it read or write.  
The IDT71V65703/5903 contain address, data-in and control  
signal registers. The outputs are flow-through (no output data  
register). Output enable is the only asynchronous signal and can be  
used to disable the outputs at any given time.  
A Clock Enable (CEN) pin allows operation of the IDT71V65703/5903  
tobesuspendedaslongasnecessary.Allsynchronousinputsareignoredwhen  
CEN is high and the internal device registers will hold their previous values.  
There are three chip enable pins (CE1, CE2, CE2) that allow the  
user to deselect the device when desired. If any one of these three  
is not asserted when ADV/LD is low, no new memory operation can  
be initiated. However, any pending data transfers (reads or writes)  
will be completed. The data bus will tri-state one cycle after the chip  
is deselected or a write is initiated.  
Supports high performance system speed - 100 MHz  
(7.5 ns Clock-to-Data Access)  
ZBTTM Feature - No dead cycles between write and read  
cycles  
Internally synchronized output buffer enable eliminates the  
need to control OE  
Single R/W (READ/WRITE) control pin  
4-word burst capability (Interleaved or linear)  
Individual byte write (BW1 - BW4) control (May tie active)  
Three chip enables for simple depth expansion  
3.3V power supply ( 5%)  
3.3V ( 5%) I/O Supply (VDDQ)  
Power down controlled by ZZ input  
Packaged in a JEDEC standard 100-pin plastic thin quad  
TheIDT71V65703/5903haveanon-chipburstcounter.Intheburst  
mode,theIDT71V65703/5903canprovidefourcyclesofdataforasingle  
address presented to the SRAM. The order of the burst sequence is  
defined by the LBO input pin. The LBO pin selects between linear and  
interleaved burst sequence. The ADV/LD signal is used to load a new  
externaladdress(ADV/LD=LOW)orincrementtheinternalburstcounter  
(ADV/LD = HIGH).  
The IDT71V65703/5903 SRAMs utilize a high-performance CMOS  
process and are packaged in a JEDEC Standard 14mm x 20mm 100-  
pin plasticthinquadflatpack(TQFP), 119 ballgridarray(BGA) and a 165  
fine pitch ball grid array (fBGA).  
flatpack (TQFP), 119 ball grid array (BGA) and 165 fine pitch  
ball grid array (fBGA)  
Green parts available, see ordering information  
Description  
The IDT71V65703/5903 are 3.3V high-speed 9,437,184-bit  
(9 Megabit) synchronous SRAMs organized as 256K x 36 / 512K x 18.  
They are designed to eliminate dead bus cycles when turning the bus  
aroundbetweenreadsandwrites, orwritesandreads. Thustheyhave  
been given the name ZBTTM, or Zero Bus Turnaround.  
Pin Description Summary  
A
0
-A18  
Address Inputs  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
I/O  
Synchronous  
Synchronous  
Asynchronous  
Synchronous  
Synchronous  
Synchronous  
N/A  
Chip Enables  
CE , CE  
1
2, CE2  
Output Enable  
OE  
R/W  
Read/Write Signal  
Clock Enable  
CEN  
BW , BW  
CLK  
Individual Byte Write Selects  
Clock  
1
2, BW3, BW4  
ADV/LD  
Advance Burst Address/Load New Address  
Linear/Interleaved Burst Order  
Sleep Mode  
Synchronous  
Static  
LBO  
ZZ  
Asynchronous  
Synchronous  
Static  
I/O  
0-I/O31 , I/OP1-I/OP4  
Data Input/Output  
Core Power, I/O Power  
Ground  
V
V
DD, VDDQ  
SS  
Supply  
Supply  
Static  
5298 tbl 01  
ZBT and Zero Bus Turnaround are trademarks of Integrated Device Technology, Inc. and the architecture is supported by Micron Technology and Motorola, Inc.  
OCTOBER 2014  
1
©2014 Integrated Device Technology, Inc.  
DSC-5298/05  
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
Pin Definitions(1)  
Symbol  
Pin Function  
I/O Active  
Description  
A
0-A18  
Address Inputs  
I
N/A Synchronous Address inputs. The address register is triggered by a combination of the rising edge of  
CLK, ADV/LD low, CEN low, and true chip enables.  
ADV/LD  
Advance / Load  
I
N/A ADV/LD is a synchronous input that is used to load the internal registers with new address and control  
when it is sampled low at the rising edge of clock with the chip selected. When ADV/LD is low with  
the chip deselected, any burst in progress is terminated. When ADV/LD is sampled high then the  
internal burst counter is advanced for any burst that was in progress. The external addresses are  
ignored when ADV/LD is sampled high.  
R/W  
Read / Write  
Clock Enable  
I
I
N/A R/W signal is a synchronous input that identifies whether the current load cycle initiated is a Read or  
Write access to the memory array. The data bus activity for the current cycle takes place one clock  
cycle later.  
LOW Synchronous Clock Enable Input. When CEN is sampled high, all other synchronous inputs, including  
clock are ignored and outputs remain unchanged. The effect of CEN sampled high on the device  
outputs is as if the low to high clock transition did not occur. For normal operation, CEN must be  
sampled low at rising edge of clock.  
CEN  
Individual Byte  
Write Enables  
I
I
LOW Synchronous byte write enables. Each 9-bit byte has its own active low byte write enable. On load  
BW1-BW4  
write cycles (When R/W and ADV/LD are sampled low) the appropriate byte write signal (BW  
must be valid. The byte write signal must also be valid on each cycle of a burst write. Byte Write  
signals are ignored when R/W is sampled high. The appropriate byte(s) of data are written into the  
device one cycle later. BW -BW can all be tied low if always doing write to the entire 36-bit word.  
1-BW4)  
1
4
Chip Enables  
LOW Synchronous active low chip enable. CE  
1
and CE2 are used with CE2 to enable the IDT71V65703/5903  
CE1, CE2  
(CE or CE sampled high or CE  
1
2
2 sampled low) and ADV/LD low at the rising edge of clock, initiates  
a deselect cycle. The ZBTTM has a one cycle deselect, i.e., the data bus will tri-state one clock cycle  
after deselect is initiated.  
CE  
2
Chip Enable  
Clock  
I
I
HIGH Synchronous active high chip enable. CE  
2
is used with CE  
1 and CE2 to enable the chip. CE2 has  
inverted polarity but otherwise identical to CE  
1
and CE  
2.  
CLK  
N/A This is the clock input to the IDT71V65703/5903. Except for OE, all timing references for the device are  
made with respect to the rising edge of CLK.  
I/O  
I/OP1-I/OP4  
0
-I/O31 Data Input/Output I/O  
N/A Data input/output (I/O) pins. The data input path is registered, triggered by the rising edge of CLK. The  
data output path is flow-through (no output register).  
Linear Burst  
Order  
I
I
I
LOW Burst order selection input. When LBO is high the Interleaved burst sequence is selected. When LBO  
is low the Linear burst sequence is selected. LBO is a static input, and it must not change during  
device operation.  
LBO  
Output Enable  
Sleep Mode  
LOW Asynchronous output enable. OE must be low to read data from the 71V65703/5903. When OE is HIGH  
the I/O pins are in a high-impedance state. OE does not need to be actively controlled for read and  
write cycles. In normal operation, OE can be tied low.  
OE  
ZZ  
HIGH Asynchronous sleep mode input. ZZ HIGH will gate the CLK internally and power down the  
IDT71V65703/5903 to its lowest power consumption level. Data retention is guaranteed in Sleep Mode.  
V
DD  
DDQ  
SS  
Power Supply  
Power Supply  
Ground  
N/A  
N/A  
N/A  
N/A 3.3V core power supply.  
N/A 3.3V I/O supply.  
V
V
N/A Ground.  
5298 tbl 02  
NOTE:  
1. AllsynchronousinputsmustmeetspecifiedsetupandholdtimeswithrespecttoCLK.  
6.422  
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
Functional Block Diagram — 256K x 36  
LBO  
256K x 36 BIT  
MEMORY ARRAY  
Address  
Address A [0:17]  
D
D
Q
Q
CE1, CE2 CE2  
R/W  
CEN  
Control  
ADV/LD  
DI  
DO  
BWx  
D
Q
Control Logic  
Clk  
Mux  
Sel  
Clock  
Gate  
OE  
Data I/O [0:31], I/O P[1:4]  
5298 drw 01  
6.42  
3
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
Functional Block Diagram — 512K x 18  
LBO  
512K x 18 BIT  
MEMORY ARRAY  
Address  
Address A [0:18]  
D
D
Q
Q
CE1, CE2 CE2  
R/W  
CEN  
Control  
ADV/LD  
DI  
DO  
BWx  
D
Q
Control Logic  
Clk  
Mux  
Sel  
Clock  
Gate  
OE  
Data I/O [0:15], I/O P[1:2]  
5298 drw 01a  
RecommendedDCOperating  
Conditions  
Symbol  
VDD  
VDDQ  
VSS  
Parameter  
Core Supply Voltage  
I/O Supply Voltage  
Ground  
Min.  
3.135  
3.135  
0
Typ.  
3.3  
Max.  
3.465  
Unit  
V
3.3  
3.465  
V
0
0
V
____  
VIH  
Input High Voltage - Inputs  
Input High Voltage - I/O  
Input Low Voltage  
2.0  
VDD + 0.3  
VDDQ + 0.3  
0.8  
V
____  
____  
VIH  
2.0  
V
VIL  
-0.3(1)  
V
5298 tbl 04  
NOTE:  
1. VIL (min.) = –1.0V for pulse width less than tCYC/2, once per cycle.  
6.442  
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
Recommended Operating  
Temperature and Supply Voltage  
Grade  
Commercial  
Industrial  
Temperature(1)  
0°C to +70°C  
-40°C to +85°C  
V
SS  
V
DD  
VDDQ  
0V  
0V  
3.3V 5%  
3.3V 5%  
3.3V 5%  
3.3V 5%  
5298 tbl 05  
NOTE:  
1. TA is the “instant on” case temperature.  
Pin Configuration — 256K x 36  
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
1
80  
79  
78  
77  
I/OP3  
I/O16  
I/O17  
I/OP2  
I/O15  
I/O14  
2
3
4
VDDQ  
VDDQ  
5
V
SS  
76  
75  
74  
73  
V
SS  
6
I/O18  
I/O19  
I/O20  
I/O21  
I/O13  
I/O12  
I/O11  
I/O10  
7
8
9
72  
71  
70  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
VSS  
V
SS  
VDDQ  
V
DDQ  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
I/O22  
I/O  
I/O  
9
I/O23  
8
(1)  
V
SS  
V
SS  
(1)  
VDD  
VSS  
(2)  
V
DD  
VDD  
VSS  
ZZ  
I/O  
I/O  
I/O24  
I/O25  
7
6
VDDQ  
V
DDQ  
SS  
VSS  
V
I/O26  
I/O27  
I/O28  
I/O29  
I/O  
I/O  
I/O  
I/O  
5
58  
57  
56  
55  
54  
53  
4
3
2
VSS  
V
SS  
VDDQ  
V
DDQ  
I/O30  
I/O31  
I/OP4  
I/O  
I/O  
I/OP1  
1
,
52  
51  
0
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
5298 drw 02  
Top View  
100 TQFP  
NOTES:  
1. Pins 14 and 66 do not have to be connected directly to VSS as long as the input voltage is VIL.  
2. Pin 16 does not have to be connected directly to VDD as long as the input voltage is > VIH.  
3. Pins 84 is reserved for a future 16M.  
4. DNU = Do not use. Pins 38, 39, 42 and 43 are reserved for respective JTAG pins TMS, TDI, TDO and TCK. The  
current die revision allows these pins to be left unconnected, tied LOW (VSS), or tied HIGH (VDD).  
6.42  
5
(TA = +25  
                 
°
                 
C, f = 1.0MHz)  
(TA = +25  
                                                            
°
                                                            
C, f = 1.0MHz)  
(TA = +25  
                 
°
                 
C, f = 1.0MHz)  
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
Pin Configuration — 512K x 18  
Absolute Maximum Ratings(1)  
Commercial &  
Industrial  
Symbol  
Rating  
Unit  
(2)  
V
V
V
V
TERM  
Terminal Voltage with  
Respect to GND  
-0.5 to +4.6  
V
100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81  
1
80  
79  
78  
77  
NC  
NC  
A
NC  
NC  
10  
(3,6)  
(4,6)  
(5,6)  
2
TERM  
TERM  
TERM  
Terminal Voltage with  
Respect to GND  
-0.5 to VDD  
V
V
V
3
NC  
4
V
DDQ  
VDDQ  
5
V
SS  
76  
75  
74  
73  
V
SS  
Terminal Voltage with  
Respect to GND  
-0.5 to VDD +0.5  
-0.5 to VDDQ +0.5  
6
NC  
NC  
NC  
I/OP1  
7
8
I/O  
8
I/O  
7
9
I/O  
V
9
72  
71  
70  
I/O  
6
Terminal Voltage with  
Respect to GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
SS  
VSS  
VDDQ  
VDDQ  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
I/O10  
I/O5  
I/O4  
I/O11  
(1)  
Commercial  
0 to +70  
-40 to +85  
-55 to +125  
-55 to +125  
2.0  
oC  
oC  
oC  
oC  
W
V
SS  
VSS  
T
A(7)  
(1)  
V
DD  
V
SS  
Industrial  
(2)  
V
DD  
V
DD  
V
SS  
ZZ  
I/O  
I/O  
I/O12  
I/O13  
3
TBIAS  
Temperature Under Bias  
Storage Temperature  
Power Dissipation  
DC Output Current  
2
VDDQ  
V
V
DDQ  
SS  
TSTG  
V
SS  
I/O14  
I/O15  
I/OP2  
NC  
I/O1  
P
T
58  
57  
56  
55  
I/O0  
NC  
NC  
IOUT  
50  
mA  
V
SS  
VSS  
54  
53  
V
DDQ  
NC  
NC  
NC  
VDDQ  
5298 tbl 06  
NC  
NC  
NC  
,
NOTES:  
52  
51  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may  
cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated  
in the operational sections of this specification is not implied. Exposure to absolute  
maximum rating conditions for extended periods may affect reliability.  
2. VDD terminals only.  
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50  
5298 drw 02a  
3. VDDQ terminals only.  
4. Input terminals only.  
5. I/O terminals only.  
6. This is a steady-state DC parameter that applies after the power supply has  
reached its nominal operating value. Power sequencing is not necessary;  
however, the voltage on any input or I/O pin cannot exceed VDDQ during power  
supply ramp up.  
Top View  
100 TQFP  
NOTES:  
1. Pins 14 and 66 do not have to be connected directly to VSS as long as the  
input voltage is < VIL.  
7. TA is the “instant on” case temperature.  
2. Pin 16 does not have to be connected directly to VDD as long as the input  
voltage is >VIH.  
3. Pin 84 is reserved for a future 16M.  
4. DNU = Do not use. Pins 38, 39, 42 and 43 are reserved for respective  
JTAG pins: TMS, TDI, TDO and TCK. The current die revision allows  
these pins to be left unconnected, tied LOW (VSS), or tied HIGH (VDD).  
100 TQFP Capacitance(1)  
119 BGA Capacitance(1)  
Symbol  
Parameter(1)  
Conditions  
IN = 3dV  
OUT = 3dV  
Max. Unit  
Symbol  
Parameter(1)  
Conditions  
IN = 3dV  
OUT = 3dV  
Max. Unit  
CIN  
Input Capacitance  
I/O Capacitance  
V
5
7
pF  
CIN  
Input Capacitance  
I/O Capacitance  
V
7
7
pF  
CI/O  
V
pF  
CI/O  
V
pF  
5298 tbl 07  
5298 tbl 07a  
165 fBGA Capacitance(1)  
Symbol  
Parameter(1)  
Conditions  
VIN = 3dV  
Max. Unit  
CIN  
Input Capacitance  
I/O Capacitance  
TBD  
TBD  
pF  
CI/O  
VOUT = 3dV  
pF  
5298 tbl 07b  
NOTE:  
1. This parameter is guaranteed by device characterization, but not production tested.  
6.462  
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
Pin Configuration — 256K x 36, 119 BGA  
1
2
3
4
5
6
7
DDQ  
6
4
8
16  
DDQ  
V
A
B
C
D
E
F
V
A
A
A
A
A
A
A
NC(3)  
ADV/LD  
2
3
2
9
NC  
NC  
CE  
NC  
NC  
CE2  
7
A
DD  
V
12  
A
15  
A
16  
I/O  
P3  
I/O  
SS  
SS  
SS  
SS  
SS  
SS  
P2  
I/O  
15  
I/O  
V
V
V
NC  
V
V
V
17  
I/O  
18  
I/O  
13  
I/O  
14  
I/O  
1
CE  
DDQ  
20  
19  
I/O  
12  
I/O  
DDQ  
V
V
V
V
OE  
21  
I/O  
11  
I/O  
10  
I/O  
G
H
J
I/O  
A17  
2
BW3  
BW  
22  
I/O  
23  
I/O  
SS  
V
SS  
V
9
I/O  
8
I/O  
R/W  
DDQ  
24  
DD  
DD  
V
DD  
6
DDQ  
7
DD(2)  
SS(1)  
V
V
V
V
V
26  
I/O  
SS  
SS  
K
L
I/O  
V
CLK  
NC  
V
I/O  
I/O  
25  
I/O  
27  
I/O  
4
I/O  
5
I/O  
4
BW  
1
BW  
DDQ  
29  
28  
I/O  
SS  
V
SS  
V
3
I/O  
DDQ  
V
M
N
P
R
T
CEN  
30  
I/O  
SS  
V
1
SS  
V
2
I/O  
1
I/O  
I/O  
A
31  
I/O  
P4  
I/O  
SS  
V
0
SS  
V
P1  
I/O  
0
I/O  
A
,
5
A
DD  
VSS(1)  
14  
13  
NC  
NC  
DDQ  
V
A
A
NC  
ZZ  
LBO  
10  
11  
NC  
A
A
NC  
(4)  
(4)  
(4)  
(4)  
(4)  
DDQ  
V
V
DNU  
DNU  
DNU  
DNU  
DNU  
U
5298 drw 13a  
Top View  
Pin Configuration — 512K x 18, 119 BGA  
1
2
3
4
5
6
7
DDQ  
6
4
8
9
16  
DDQ  
V
A
B
C
D
E
F
V
A
A
A
A
A
A
A
NC(3)  
3
2
NC  
NC  
CE2  
NC  
NC  
NC  
I/O  
CE  
2
ADV/LD  
7
A
DD  
V
13  
17  
A
A
8
I/O  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
NC  
V
V
V
NC  
V
V
V
V
I/O  
9
I/O  
NC  
DDQ  
CE  
1
NC  
I/O  
NC  
I/O  
DDQ  
V
V
NC  
OE  
10  
I/O  
G
H
J
NC  
I/O  
A18  
BW  
2
11  
I/O  
SS  
SS  
NC  
V
V
V
V
V
V
NC  
DDQ  
R/W  
DD(2)  
SS  
SS(1)  
SS  
DDQ  
V
DD  
12  
DD  
V
DD  
V
V
V
K
L
NC  
I/O  
CLK  
NC  
NC  
I/O  
NC  
I/O  
NC  
I/O  
NC  
13  
I/O  
SS  
NC  
V
V
V
V
BW  
1
DDQ  
V
14  
SS  
SS  
SS  
SS  
SS  
SS  
DDQ  
V
M
N
P
R
T
I/O  
NC  
V
V
V
CEN  
15  
1
I/O  
NC  
A
A
NC  
I/O  
P2  
I/O  
0
5
A
DD  
V
12  
11  
NC  
NC  
DDQ  
V
SS(1)  
A
A
NC  
ZZ  
LBO  
10  
15  
14  
A
A
NC  
A
,
(4)  
(4)  
(4)  
(4)  
(4)  
DDQ  
V
5298 drw 13b  
U
V
DNU  
DNU  
DNU  
DNU  
DNU  
Top View  
NOTES:  
1. R5 and J5 do not have to be directly connected to VSS as long as the input voltage is < VIL.  
2. J3 does not have to be connected directly to VDD as long as the input voltage is VIH.  
3. A4 is reserved for future 16M.  
4. DNU = Do not use; Pin U2, U3, U4, U5 and U6 are reserved for respective JTAG pins: TMS, TDI, TCK, TDO and TRST. The current die revision allows  
these pins to be left unconnected, tied LOW (VSS), or tied HIGH (VDD).  
6.42  
7
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
Pin Configuration — 256K x 36, 165 fBGA  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
NC(3)  
NC  
A
7
6
ADV/LD  
OE  
A
17  
A
A
8
9
NC  
CE  
1
BW  
3
BW  
2
CE  
2
CEN  
R/W  
A
CE  
2
CLK  
NC(3)  
NC(3)  
I/OP2  
I/O14  
I/O12  
I/O10  
BW4  
BW1  
I/OP3  
I/O17  
I/O19  
I/O21  
I/O23  
NC  
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
V
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
SS  
V
V
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
V
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
SS  
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
NC  
I/O16  
I/O18  
I/O20  
I/O22  
V
V
V
V
V
V
V
V
I/O15  
I/O13  
I/O11  
G
H
J
I/O  
9
I/O8  
V
SS(1)  
V
DD(2)  
I/O24  
I/O26  
I/O28  
I/O30  
NC  
NC  
NC  
NC  
ZZ  
I/O25  
I/O27  
I/O29  
I/O31  
I/OP4  
NC  
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
I/O  
I/O  
I/O  
7
I/O  
I/O  
I/O  
I/O  
6
K
L
V
V
V
V
V
V
V
V
5
3
4
2
0
M
N
P
R
I/O  
1
DNU(4)  
DNU(4)  
DNU(4)  
NC  
V
SS(1)  
NC  
I/OP1  
NC  
NC(3)  
NC(3)  
A
A
5
4
A
2
3
A
1
DNU(4)  
DNU(4)  
A
10  
11  
A
13  
12  
A
A
14  
15  
A
A
0
A
A
A16  
LBO  
5298 tbl 25a  
Pin Configuration — 512K x 18, 165 fBGA  
1
2
3
4
5
6
7
8
9
10  
11  
(3)  
A
NC  
NC  
NC  
NC  
NC  
NC  
NC  
A
7
6
NC  
ADV/LD  
A
18  
A
A
8
9
A10  
CE1  
BW  
2
CE  
2
CEN  
R/W  
(3)  
(3)  
B
A
CE  
2
NC  
CLK  
NC  
NC  
BW1  
OE  
C
NC  
V
V
V
V
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
V
V
V
V
V
V
V
V
V
V
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
SS  
V
V
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
V
V
V
V
V
V
V
V
V
SS  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
SS  
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
NC  
NC  
NC  
NC  
NC  
NC  
I/OP1  
D
I/O  
8
V
V
V
V
I/O7  
I/O6  
I/O5  
I/O4  
E
I/O  
9
F
I/O10  
I/O11  
G
H
V
SS(1)  
I/O12  
I/O13  
I/O14  
I/O15  
I/OP2  
NC  
V
DD(2)  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
ZZ  
J
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
V
DDQ  
DDQ  
DDQ  
DDQ  
DDQ  
I/O  
3
NC  
NC  
NC  
NC  
NC  
NC  
K
V
V
V
V
V
V
V
V
I/O  
2
L
I/O1  
M
I/O  
0
N
DNU(4)  
DNU(4)  
DNU(4)  
NC  
V
SS(1)  
NC  
P
R
NC  
A
A
5
4
A
2
3
A
1
DNU(4)  
DNU(4)  
A
11  
A
14  
13  
A
A
15  
16  
(3)  
(3)  
NC  
A
A
0
A
12  
A
A
17  
LBO  
5298 tbl25b  
NOTES:  
1. Pins H1 and N7 do not have to be connected directly to VSS as long as the input voltage is < VIL.  
2. Pin H2 does not have to be connected directly to VDD as long as the input voltage is > VIH.  
3. Pin B9, B11, A1, R2 and P2 are reserved for a future 18M, 36M, 72M, 144M and 288M respectively.  
4. DNU = Do not use. Pins P5, R5, P7, R7 and N5 are reserved for respective JTAG pins: TDI, TMS, TDO, TCK and TRST on future revisions. The current die  
revision allows these pins to be left unconnected, tied LOW (VSS), or tied HIGH (VDD).  
6.482  
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
Synchronous Truth Table(1)  
(5)  
R/W  
ADV/LD  
BWx  
ADDRESS  
USED  
PREVIOUS CYCLE  
CURRENT CYCLE  
I/O  
(One cycle later)  
CEN  
CE  
1,  
CE2  
L
L
L
L
H
X
L
L
L
L
Valid  
X
External  
External  
Internal  
X
X
LOAD WRITE  
LOAD READ  
D(7)  
Q(7)  
D(7)  
X
H
Valid  
LOAD WRITE /  
BURST WRITE  
BURST WRITE  
(Advance burst counter)(2)  
L
X
X
H
X
Internal  
LOAD READ /  
BURST READ  
BURST READ  
(Advance burst counter)(2)  
Q(7)  
L
L
X
X
X
H
X
X
L
H
X
X
X
X
X
X
X
X
DESELECT or STOP(3)  
NOOP  
HIZ  
HIZ  
DESELECT / NOOP  
X
H
SUSPEND(4)  
Previous Value  
5298 tbl 08  
NOTES:  
1. L = VIL, H = VIH, X = Don’t Care.  
2. When ADV/LD signal is sampled high, the internal burst counter is incremented. The R/W signal is ignored when the counter is advanced. Therefore the nature of  
the burst cycle (Read or Write) is determined by the status of the R/W signal when the first address is loaded at the beginning of the burst cycle.  
3. Deselect cycle is initiated when either (CE1, or CE2 is sampled high or CE2 is sampled low) and ADV/LD is sampled low at rising edge of clock. The data bus will  
tri-state one cycle after deselect is initiated.  
4. When CEN is sampled high at the rising edge of clock, that clock edge is blocked from propagating through the part. The state of all the internal registers and the  
I/Osremainsunchanged.  
5. To select the chip requires CE1 = L, CE2 = L and CE2 = H on these chip enable pins. The chip is deselected if any one of the chip enables is false.  
6. Device Outputs are ensured to be in High-Z during device power-up.  
7. Q - data read from the device, D - data written to the device.  
Partial Truth Table for Writes(1)  
OPERATION  
(3)  
(3)  
R/W  
H
L
BW1  
X
BW2  
X
BW3  
BW4  
READ  
X
X
WRITE ALL BYTES  
L
L
L
L
WRITE BYTE 1 (I/O[0:7], I/OP1)(2)  
WRITE BYTE 2 (I/O[8:15], I/OP2)(2)  
WRITE BYTE 3 (I/O[16:23], I/OP3)(2,3)  
WRITE BYTE 4 (I/O[24:31], I/OP4)(2,3)  
NO WRITE  
L
L
H
H
H
L
H
L
H
H
L
H
H
L
H
L
H
H
H
L
L
H
H
H
H
5298 tbl 09  
NOTES:  
1. L = VIL, H = VIH, X = Don’t Care.  
2. Multiple bytes may be selected during the same cycle.  
3. N/A for x18 configuration.  
Interleaved Burst Sequence Table (LBO=VDD)  
Sequence 1  
Sequence 2  
Sequence 3  
Sequence 4  
A1  
A0  
0
A1  
A0  
1
A1  
A0  
0
A1  
A0  
First Address  
0
0
1
1
0
0
1
1
1
1
0
0
1
1
0
0
1
Second Address  
Third Address  
1
0
1
0
0
1
0
1
Fourth Address(1)  
1
0
1
0
5298 tbl 10  
NOTE:  
1. Upon completion of the Burst sequence the counter wraps around to its initial state and continues counting.  
6.42  
9
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
Linear Burst Sequence Table (LBO=VSS)  
Sequence 1  
Sequence 2  
Sequence 3  
Sequence 4  
A1  
A0  
0
A1  
0
A0  
1
A1  
A0  
0
A1  
A0  
First Address  
0
0
1
1
1
1
0
0
1
0
0
1
1
Second Address  
Third Address  
1
1
0
1
0
0
1
1
0
1
Fourth Address(1)  
1
0
0
1
0
5298 tbl 11  
NOTE:  
1. UponcompletionoftheBurstsequencethecounterwrapsaroundtoitsinitialstateandcontinuescounting.  
Functional Timing Diagram(1)  
CYCLE  
n+29  
n+30  
n+31  
n+32  
n+33  
n+34  
n+35  
n+36  
n+37  
CLOCK  
(2)  
(2)  
ADDRESS  
A29  
C29  
A30  
C30  
A31  
C31  
A32  
C32  
A33  
C33  
A34  
C34  
A35  
C35  
A36  
C36  
A37  
C37  
(A0 - A17)  
CONTROL  
(R/W, ADV/LD, BWx)  
(2)  
DATA  
D/Q28  
D/Q29  
D/Q30  
D/Q31  
D/Q32  
D/Q33  
D/Q34  
D/Q35  
D/Q36  
I/O [0:31], I/O P[1:4]  
,
5298 drw 03  
NOTES:  
1. This assumes CEN, CE1, CE2 and CE2 are all true.  
2. All Address, Control and Data_In are only required to meet set-up and hold time with respect to the rising edge of clock. Data_Out is valid after a clock-to-data  
delay from the rising edge of clock.  
6.1402  
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
Device Operation - Showing Mixed Load, Burst, Deselect and NOOP Cycles(2)  
(1)  
Cycle  
Address  
R/W  
ADV/LD  
I/O  
Comments  
CEN  
BWx  
X
X
X
X
X
X
X
X
L
OE  
X
L
CE  
1
n
A
0
H
X
H
X
X
H
X
X
L
L
H
L
L
L
D1  
Load read  
Burst read  
n+1  
X
X
L
L
Q0  
n+2  
A
1
L
L
Q0+1 Load read  
n+3  
X
X
L
H
X
L
L
L
Q1 Deselect or STOP  
n+4  
H
L
L
X
X
L
Z
NOOP  
n+5  
A
2
L
Z
Load read  
Burst read  
n+6  
X
X
H
L
X
H
L
L
Q2  
n+7  
L
L
Q2+1 Deselect or STOP  
n+8  
A
3
L
L
X
X
X
X
X
X
X
L
Z
Load write  
Burst write  
Load write  
Deselect or STOP  
NOOP  
n+9  
X
X
L
H
L
X
L
L
L
D3  
n+10  
n+11  
n+12  
n+13  
n+14  
n+15  
n+16  
n+17  
n+18  
n+19  
A
4
L
L
D3+1  
X
X
X
X
L
L
H
X
L
L
X
X
L
D4  
H
L
L
Z
A
5
6
7
L
Z
Load write  
Load read  
Load write  
Burst write  
Load read  
Burst read  
A
A
H
L
L
L
L
X
L
D5  
L
L
L
Q6  
X
X
H
X
L
H
L
X
L
L
L
X
X
L
D7  
A
8
9
L
X
X
L
D7+1  
X
H
L
X
L
L
Q8  
A
L
L
Q8+1 Load write  
5298 tbl 12  
NOTES:  
1. CE2 timing transition is identical to CE1 signal. CE2 timing transition is identical but inverted to the CE1 and CE2 signals.  
2. H = High; L = Low; X = Don't Care; Z = High Impedence.  
6.42  
11  
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
Read Operation(1)  
(2)  
Cycle  
Address  
R/W  
ADV/LD  
I/O  
Comments  
CEN  
L
BWx  
X
OE  
X
CE  
1
n
A
0
H
X
L
L
X
Address and Control meet setup  
n+1  
X
X
X
X
X
L
Q0  
Contents of Address A0 Read Out  
5298 tbl 13  
NOTES:  
1. H = High; L = Low; X = Don’t Care; Z = High Impedance.  
2. CE2 timing transition is identical to CE1 signal. CE2 timing transition is identical but inverted to the CE1 and CE2 signals.  
Burst Read Operation(1)  
(2)  
Cycle  
Address  
R/W  
ADV/LD  
I/O  
Comments  
CEN  
BWx  
X
OE  
X
L
CE  
1
n
A
0
H
X
X
X
X
H
X
H
L
L
L
L
L
L
L
L
L
L
X
Address and Control meet setup  
Address A Read Out, Inc. Count  
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
X
H
H
H
H
L
X
X
X
X
L
X
Q0  
0
X
X
X
X
L
Q0+1  
Address A0+1 Read Out, Inc. Count  
Address A0+2 Read Out, Inc. Count  
X
L
Q
0+2  
0+3  
X
L
Q
Address A0+3 Read Out, Load A1  
A
1
X
L
Q0  
Address A  
Address A  
0
1
Read Out, Inc. Count  
Read Out, Inc. Count  
X
H
L
X
L
X
L
Q1  
A
2
X
L
Q1+1  
Address A1+1 Read Out, Load A2  
5298 tbl 14  
NOTES:  
1. H = High; L = Low; X = Don’t Care; Z = High Impedance.  
2. CE2 timing transition is identical to CE1 signal. CE2 timing transition is identical but inverted to the CE1 and CE2 signals.  
Write Operation(1)  
(2)  
Cycle  
Address  
R/W  
ADV/LD  
I/O  
Comments  
CEN  
BWx  
OE  
X
CE  
1
n
A
0
L
L
L
L
L
L
X
Address and Control meet setup  
n+1  
X
X
X
X
X
X
D0  
Write to Address A0  
5298 tbl 15  
NOTES:  
1. H = High; L = Low; X = Don’t Care; Z = High Impedance.  
2. CE2 timing transition is identical to CE1 signal. CE2 timing transition is identical but inverted to the CE1 and CE2 signals.  
Burst Write Operation(1)  
(2)  
Cycle  
Address  
R/W  
ADV/LD  
I/O  
Comments  
CEN  
BWx  
OE  
X
CE  
1
n
A
0
L
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
L
X
Address and Control meet setup  
Address A Write, Inc. Count  
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
X
H
H
H
H
L
X
X
X
X
L
X
D0  
0
X
X
X
X
D0+1  
Address A0+1 Write, Inc. Count  
Address A0+2 Write, Inc. Count  
X
D
0+2  
0+3  
X
D
Address A0+3 Write, Load A1  
A
1
X
D0  
Address A  
Address A  
0
1
Write, Inc. Count  
Write, Inc. Count  
X
X
L
H
L
X
L
X
D1  
A
2
X
D1+1  
Address A1+1 Write, Load A2  
5298 tbl 16  
NOTES:  
1. H = High; L = Low; X = Don’t Care; Z = High Impedance.  
2. CE2 timing transition is identical to CE1 signal. CE2 timing transition is identical but inverted to the CE1 and CE2 signals.  
6.1422  
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
Read Operation with Clock Enable Used(1)  
(2)  
Cycle  
Address  
R/W  
ADV/LD  
I/O  
Comments  
CEN  
BWx  
OE  
X
X
L
CE  
1
n
A
0
H
X
H
X
X
H
H
H
L
X
L
X
X
L
L
L
L
L
X
X
X
AddressA  
Clock n+1 Ignored  
Address A Read out, Load A  
0 and Control meet setup  
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
X
X
L
X
X
L
L
L
H
L
X
A
1
X
Q0  
Q0  
Q0  
0
1
X
X
H
H
L
X
L
Clock Ignored. Data Q  
0
0
is on the bus.  
is on the bus.  
X
L
Clock Ignored. Data Q  
A
2
3
4
X
L
Q1  
Address A  
Address A  
Address A  
1
2
3
Read out, Load A  
Read out, Load A  
Read out, Load A  
2
3
4
A
A
L
X
L
Q
2
3
L
X
L
Q
5298 tbl 17  
NOTES:  
1. H = High; L = Low; X = Don’t Care; Z = High Impedance.  
2. CE2 timing transition is identical to CE1 signal. CE2 timing transition is identical but inverted to the CE1 and CE2 signals.  
Write Operation with Clock Enable Used(1)  
(2)  
Cycle  
Address  
R/W  
ADV/LD  
I/O  
Comments  
CEN  
BWx  
OE  
CE1  
n
A0  
X
L
X
L
X
X
L
L
L
L
X
L
X
X
L
L
L
L
L
L
X
X
X
Address A0 and Control meet setup.  
Clock n+1 Ignored.  
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
X
H
L
X
X
A1  
X
L
L
X
D0  
X
Write data D0, Load A1.  
Clock Ignored.  
X
H
H
L
X
X
X
X
X
X
X
Clock Ignored.  
A2  
A3  
A4  
L
L
X
D1  
D2  
D3  
Write Data D1, Load A2  
Write Data D2, Load A3  
Write Data D3, Load A4  
L
L
L
X
L
L
L
X
5298 tbl 18  
NOTES:  
1. H = High; L = Low; X = Don’t Care; Z = High Impedance.  
2. CE2 timing transition is identical to CE1 signal. CE2 timing transition is identical but inverted to the CE1 and CE2 signals.  
6.42  
13  
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
Read Operation with Chip Enable Used(1)  
I/O(3)  
(2)  
Cycle  
Address  
R/W  
ADV/LD  
Comments  
CEN  
BWx  
OE  
CE  
1
n
X
X
X
X
H
X
H
X
X
H
X
X
L
L
L
L
L
L
L
L
L
L
H
H
L
L
L
L
L
L
L
L
L
L
L
X
X
X
X
X
X
X
X
X
X
X
X
X
L
?
Z
Z
Deselected.  
Deselected.  
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
n+8  
n+9  
A
0
Address A  
Address A  
Address A  
Address A  
0
0
1
1
and Control meet setup.  
read out, Deselected.  
and Control meet setup.  
read out, Deselected.  
X
H
L
Q0  
A
1
X
L
Z
X
X
H
H
L
Q
Z
Z
1
X
X
L
Deselected.  
A
2
Address A  
Address A  
2
2
and Control meet setup.  
read out, Deselected.  
X
X
H
H
Q2  
X
Z
Deselected.  
5298 tbl 19  
NOTES:  
1. H = High; L = Low; X = Don’t Care; ? = Don’t Know; Z = High Impedance.  
2. CE2 timing transition is identical to CE1 signal. CE2 timing transition is identical but inverted to the CE1 and CE2 signals.  
3. Device outputs are ensured to be in High-Z during device power-up.  
Write Operation with Chip Enable Used(1)  
CE(2)  
Cycle  
Address  
R/W  
ADV/LD  
I/O  
Comments  
CEN  
BWx  
OE  
n
X
X
X
X
L
L
L
L
L
L
L
L
L
L
L
H
L
X
X
?
Z
Z
Deselected.  
Deselected.  
n+1  
n+2  
n+3  
n+4  
n+5  
n+6  
n+7  
n+8  
n+9  
H
L
X
X
A
0
L
L
L
X
Address A  
Data D  
Address A  
Data D Write In, Deselected.  
Deselected.  
Address A  
Data D Write In, Deselected.  
Deselected.  
0
and Control meet setup  
X
X
L
H
L
X
X
D0  
0
Write In, Deselected.  
and Control meet setup  
A
1
L
L
L
X
Z
1
X
X
X
X
L
H
L
X
X
D
Z
Z
1
1
H
L
X
X
A
2
L
L
L
X
2 and Control meet setup  
X
X
X
X
H
L
X
X
D2  
2
H
L
X
X
Z
5298 tbl 20  
NOTES:  
1. H = High; L = Low; X = Don’t Care; ? = Don’t Know; Z = High Impedance.  
2. CE = L is defined as CE1 = L, CE2 = L and CE2 = H. CE = H is defined as CE1 = H, CE2 = H or CE2 = L.  
6.1442  
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range (VDD = 3.3V±5%)  
Symbol  
Parameter  
Test Conditions  
Min.  
Max.  
Unit  
___  
|ILI|  
Input Leakage Current  
V
DD = Max., VIN = 0V to VDD  
5
µA  
LBO Input Leakage Current(1)  
Output Leakage Current  
Output Low Voltage  
___  
___  
___  
|ILI  
|
V
V
DD = Max., VIN = 0V to VDD  
OUT = 0V to VCC  
30  
5
µA  
µA  
V
|ILO  
|
V
OL  
OH  
IOL = +8mA, VDD = Min.  
0.4  
___  
V
Output High Voltage  
IOH = -8mA, VDD = Min.  
2.4  
V
5298 tbl 21  
NOTE:  
1. The LBO pin will be internally pulled to VDD if it is not actively driven in the application and the ZZ pin will be internally pulled to VSS if not actively driven.  
DC Electrical Characteristics Over the Operating  
Temperature and Supply Voltage Range(1) (VDD = 3.3V±5%)  
7.5ns  
8ns  
8.5ns  
Com'l  
Symbol  
Parameter  
Test Conditions  
Unit  
Com'l  
Ind  
Com'l  
Ind  
Ind  
Operating Power  
Device Selected, Outputs Open,  
I
DD  
Supply Current  
ADV/LD = X, VDD = Max.,  
275  
40  
295  
250  
40  
270  
225  
40  
95  
40  
40  
245  
mA  
(2)  
VIN > VIH or < VIL, f = fMAX  
CMOS Standby Power  
Supply Current  
Device Deselected, Outputs Open,  
DD = Max., VIN > VHD or < VLD  
f = 0(2,3)  
I
SB1  
V
,
60  
125  
60  
60  
120  
60  
60  
115  
60  
mA  
mA  
mA  
Clock Running Power  
Supply Current  
Device Deselected, Outputs Open,  
DD = Max., VIN > VHD or < VLD  
I
I
SB2  
SB3  
V
,
105  
40  
100  
40  
(2,3)  
f = fMAX  
Idle Power  
Supply Current  
Device Selected, Outputs Open,  
CEN > VIH, VDD = Max.,  
(2,3)  
VIN > VHD or < VLD, f = fMAX  
Full Sleep Mode  
Supply Current  
Device Selected, Outputs Open,  
CEN < VIL, VDD = Max., ZZ > VHD  
I
ZZ  
40  
60  
40  
60  
60  
mA  
(2,3)  
VIN > VHD or < VLD, f = fMAX  
5298 tbl 22  
NOTES:  
1. All values are maximum guaranteed values.  
2. At f = fMAX, inputs are cycling at the maximum frequency of read cycles of 1/tCYC; f=0 means no input lines are changing.  
3. For I/Os VHD = VDDQ – 0.2V, VLD = 0.2V. For other inputs VHD = VDD – 0.2V, VLD = 0.2V.  
AC Test Conditions  
Input Pulse Levels  
AC Test Load  
V
DDQ/2  
0 to 3V  
2ns  
50  
Input Rise/Fall Times  
I/O  
Z0 = 50Ω  
,
5298 drw 04  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
1.5V  
6
5
4
3
Figure 1. AC Test Load  
1.5V  
Figure 1  
5298 tbl 23  
tCD  
(Typical, ns)  
2
1
20 30 50  
80 100  
Capacitance (pF)  
200  
5298 drw 05  
,
Figure 2. Lumped Capacitive Load, Typical Derating  
6.42  
15  
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
AC Electrical Characteristics  
(VDD = 3.3V±5%, Commercial and Industrial Temperature Ranges)  
7.5ns  
8ns  
8.5ns  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
____  
____  
____  
____  
____  
____  
tCYC  
Clock Cycle Time  
10  
2.5  
2.5  
10.5  
2.7  
11  
3.0  
3.0  
ns  
ns  
ns  
(1)  
Clock High Pulse Width  
Clock Low Pulse Width  
tCH  
____  
____  
____  
(1)  
2.7  
tCL  
Output Parameters  
____  
____  
____  
tCD  
Clock High to Valid Data  
7.5  
8
8.5  
ns  
ns  
ns  
____  
____  
____  
tCDC  
Clock High to Data Change  
Clock High to Output Active  
Clock High to Data High-Z  
Output Enable Access Time  
2
2
2
____  
____  
____  
(2, 3,4)  
3
3
3
tCLZ  
____  
____  
____  
(2, 3,4)  
5
5
5
ns  
ns  
ns  
ns  
tCHZ  
____  
____  
____  
tOE  
5
5
5
____  
____  
____  
(2,3)  
(2,3)  
Output Enable Low to Data Active  
Output Enable High to Data High-Z  
0
0
0
tOLZ  
____  
____  
____  
5
5
5
tOHZ  
Set Up Times  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
tSE  
Clock Enable Setup Time  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
2.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSA  
Address Setup Time  
tSD  
Data In Setup Time  
tSW  
Read/Write (R/W) Setup Time  
Advance/Load (ADV/LD) Setup Time  
Chip Enable/Select Setup Time  
Byte Write Enable (BWx) Setup Time  
tSADV  
tSC  
tSB  
Hold Times  
tHE  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
____  
Clock Enable Hold Time  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
tHA  
Address Hold Time  
tHD  
Data In Hold Time  
tHW  
Read/Write (R/W) Hold Time  
Advance/Load (ADV/LD) Hold Time  
Chip Enable/Select Hold Time  
Byte Write Enable (BWx) Hold Time  
tHADV  
tHC  
tHB  
ns  
5298 tbl 24  
NOTES:  
1. Measured as HIGH above 0.6VDDQ and LOW below 0.4VDDQ.  
2. Transition is measured 200mV from steady-state.  
3. These parameters are guaranteed with the AC load (Figure 1) by device characterization. They are not production tested.  
4. To avoid bus contention, the output buffers are designed such that tCHZ (device turn-off) is about 1ns faster than tCLZ (device turn-on) at a given temperature and voltage.  
The specs as shown do not imply bus contention because tCLZ is a Min. parameter that is worse case at totally different test conditions (0 deg. C, 3.465V) than tCHZ,  
which is a Max. parameter (worse case at 70 deg. C, 3.135V).  
6.1462  
tCYC  
CLK  
tCH  
tCL  
tSE  
tHE  
CEN  
tSADV  
tHADV  
LD  
ADV/  
tSW  
tSA  
tHW  
tHA  
R/W  
A1  
A2  
ADDRESS  
tSC  
tHC  
(2)  
CE1, CE2  
BW BW  
1 -  
4
OE  
(CEN high, eliminates  
current L-H clock edge)  
(Burst Wraps around  
to initial state)  
tCD  
tCDC  
tCD  
tCLZ  
tCHZ  
Q(A2+1)  
Q(A2+3)  
Q(A2+3)  
tCDC  
Q(A2+2)  
Q(A1)  
Q(A2)  
DATAOUT  
Q(A2)  
Burst Read  
Read  
Read  
5298 drw 06  
NOTES:  
1. Q (A1) represents the first output from the external address A1. Q (A2) represents the first output from the external address A2; Q (A2+1) represents the next output data in the burst sequence  
of the base address A2, etc. where address bits A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBOinput.  
2. CE2 timing transitions are identical but inverted to the CE1 and CE2 signals. For example, when CE1 and CE2 are LOW on this waveform, CE2 is HIGH.  
3. Burst ends when new address and control are loaded into the SRAM by sampling ADV/LD LOW.  
4. R/Wis don’t care when the SRAM is bursting (ADV/LD sampled HIGH). The nature of the burst access (Read or Write) is fixed by the state of the R/Wsignal when new address and control are  
loadedintotheSRAM.  
tCYC  
CLK  
tCH  
tCL  
tSE  
tHE  
CEN  
tSADV  
tHADV  
ADV/LD  
tSW  
tHW  
R/W  
tSA  
tHA  
A2  
A1  
ADDRESS  
tSC  
tHC  
(2)  
CE1, CE2  
tSB  
tHB  
B(A2+1  
)
B(A2+3  
)
B(A2+2  
)
B(A2)  
B(A2)  
B(A1)  
BW1 - BW4  
OE  
(CEN high, eliminates  
(Burst Wraps around  
to initial state)  
tHD  
tSD  
tHD  
tSD  
current L-H clock edge)  
D(A2+1  
)
D(A2+2  
)
D(A2)  
D(A2)  
D(A2+3)  
D(A1)  
DATAIN  
Burst Write  
Write  
Write  
5298 drw 07c  
NOTES:  
1. D (A1) represents the first input to the external address A1. D (A2) represents the first input to the external address A2; D (A2+1) represents the next input data in the burst sequence of the base  
address A2, etc. where address bits A0 and A1 are advancing for the four word burst in the sequence defined by the state of the LBO input.  
2. CE2 timing transitions are identical but inverted to the CE1 and CE2 signals. For example, when CE1 and CE2 are LOW on this waveform, CE2 is HIGH.  
3. Burst ends when new address and control are loaded into the SRAM by sampling ADV/LD LOW.  
4. R/Wisdon’tcarewhentheSRAMisbursting(ADV/LD sampledHIGH). Thenatureoftheburstaccess(ReadorWrite)isfixedbythestateoftheR/W signalwhennewaddressandcontrolare  
loadedintotheSRAM.  
5. Individual Byte Write signals (BWx) must be valid on all write and burst-write cycles. A write cycle is initiated when R/W signal is sampled LOW. The byte write information comes in one  
cycle before the actual data is presented to the SRAM.  
NOTES:  
1. Q (A1) represents the first output from the external address A1. D (A2) represents the input data to the SRAM corresponding to address A2.  
2. CE2 timing transitions are identical but inverted to the CE1 and CE2 signals. For example, when CE1 and CE2 are LOW on this waveform, CE2 is HIGH.  
3. Individual Byte Write signals (BWx) must be valid on all write and burst-write cycles. A write cycle is initiated when R/W signal is sampled LOW. The byte write information comes in one  
cycle before the actual data is presented to the SRAM.  
NOTES:  
1. Q (A1) represents the first output from the external address A1. D (A2) represents the input data to the SRAM corresponding to address A2.  
2. CE2 timing transitions are identical but inverted to the CE1 and CE2 signals. For example, when CE1 and CE2 are LOW on this waveform, CE2 is HIGH.  
3. CEN when sampled high on the rising edge of clock will block that L-H transition of the clock from propogating into the SRAM. The part will behave as if the L-H clock transition did not occur.  
All internal registers in the SRAM will retain their previous state.  
4. Individual Byte Write signals (BWx) must be valid on all write and burst-write cycles. A write cycle is initiated when R/W signal is sampled LOW. The byte write information comes in one  
cycle before the actual data is presented to the SRAM.  
NOTES:  
1. Q (A1) represents the first output from the external address A1. D (A3) represents the input data to the SRAM corresponding to address A3 etc.  
2. CE2 timing transitions are identical but inverted to the CE1 and CE2 signals. For example, when CE1 and CE2 are LOW on this waveform, CE2 is HIGH.  
3. When either one of the Chip enables (CE1, CE2, CE2) is sampled inactive at the rising clock edge, a deselect cycle is initiated. The data-bus tri-states one cycle after the initiation of the  
deselect cycle. This allows for any pending data transfers (reads or writes) to be completed.  
4. Individual Byte Write signals (BWx) must be valid on all write and burst-write cycles. A write cycle is initiated when R/W signal is sampled LOW. The byte write information comes in one  
cycle before the actual data is presented to the SRAM.  
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
Timing Waveform of OE Operation(1)  
NOTE:  
1. A read operation is assumed to be in progress.  
Ordering Information  
NOTE:  
1. 71V65703 only.  
6.2422  
IDT71V65703, IDT71V65903, 256K x 36, 512K x 18, 3.3V Synchronous ZBT™ SRAMs with  
3.3V I/O, Burst Counter, and Flow-Through Outputs  
Commercial and Industrial Temperature Ranges  
Datasheet Document History  
12/31/99  
04/20/00  
Created new part number and datasheet from 71V657/59 to 71v65703/5903  
Pg.5,6  
AddJTAGresetpinstoTQFPpinconfiguration;removedfootnote  
AddclarificationnotetoRecommendedOperatingTemperatureandAbsoluteMaxRatingstables  
AddnotetoBGApinconfiguration;correctedtypowithinpinout  
InsertTQFPPackageDiagramOutline  
Pg. 7  
Pg. 21  
05/23/00  
07/28/00  
Add new package offering: 13mm x 15mm, 165 fine pitch ball grid array  
Correction on 119 Ball Grid Array Package diagram Outline  
Remove JTAG pins from TQFP, BG119 and BQ165 pinouts, refer to IDT71V656xx and  
IDT71V658xx device errata sheet  
Pg. 23  
Pg. 5-8  
Pg. 7,8  
Pg. 23  
Pg. 8  
Correct error in pinout, B2 on BG119 and B1 on BQ165 pinout  
UpdateBG119packagediagramdimensions  
Add reference note to pin N5 on the BQ165 pinout, reserved for JTAG TRST  
AddIzztoDCElectricalCharacteristics  
11/04/00  
Pg. 15  
12/04/02 Pg. 1-25  
Changed datasheet from Preliminary to final release  
Pg. 5,6,15,16,25 Added I temp to datasheet  
12/18/02 Pg. 1,2,5,6,7,8  
Pg. 7  
10/16/14 Pg. 1  
Pg. 15  
Removed JTAG functionality for current die revision  
Corrected pin configuration on the x36, 119 BGA. Switched pins I/O0 and I/OP1.  
Added green availability to Features and corrected a typo  
DC Electrical Chars Table corrected typos for IDD in the Industrial Temp range for the  
8.0ns & 8.5ns speed grades  
Pg. 22  
Removed IDT from and added green and T&R indicators to the ordering information  
Added footnote annotation to 75 access speed in the ordering information table  
(1)  
Added the corresponding footnote to the text “71V65703 only”.  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Rd  
San Jose, CA 95138  
for SALES:  
for Tech Support:  
sramhelp@idt.com  
408-284-4532  
800-345-7015 or 408-284-8200  
fax:408-284-2775  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
6.42  
23  

相关型号:

IDT71V6590385PFGI8

3.3V Synchronous ZBT SRAMs 3.3V I/O, Burst Counter Flow-Through Outputs
IDT

IDT71V65903S75BG

256K x 36, 512K x 18 3.3V Synchronous ZBT SRAMs
IDT

IDT71V65903S75BG8

ZBT SRAM, 512KX18, 7.5ns, CMOS, PBGA119, 14 X 22 MM, PLASTIC, MS-026AA, BGA-119
IDT

IDT71V65903S75BGG

暂无描述
IDT

IDT71V65903S75BGI

256K x 36, 512K x 18 3.3V Synchronous ZBT SRAMs
IDT

IDT71V65903S75BQ

256K x 36, 512K x 18 3.3V Synchronous ZBT SRAMs
IDT

IDT71V65903S75BQGI

ZBT SRAM, 512KX18, 7.5ns, CMOS, PBGA165, 13 X 15 MM, FPBGA-165
IDT

IDT71V65903S75BQI

256K x 36, 512K x 18 3.3V Synchronous ZBT SRAMs
IDT

IDT71V65903S75PF

256K x 36, 512K x 18 3.3V Synchronous ZBT SRAMs
IDT

IDT71V65903S75PF8

ZBT SRAM, 512KX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, MO-136DJ, PLASTIC, TQFP-100
IDT

IDT71V65903S75PFG

ZBT SRAM, 512KX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, MO-136DJ, GREEN, PLASTIC, TQFP-100
IDT

IDT71V65903S75PFG8

ZBT SRAM, 512KX18, 7.5ns, CMOS, PQFP100, 14 X 20 MM, 1.40 MM HEIGHT, MO-136DJ, GREEN, PLASTIC, TQFP-100
IDT