IDT72104L50J8 [IDT]

FIFO, 4KX9, 50ns, Synchronous, CMOS, PQCC44, PLASTIC, LCC-44;
IDT72104L50J8
型号: IDT72104L50J8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FIFO, 4KX9, 50ns, Synchronous, CMOS, PQCC44, PLASTIC, LCC-44

先进先出芯片
文件: 总30页 (文件大小:293K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IDT72103  
IDT72104  
CMOS PARALLEL-SERIAL FIFO  
2,048 x 9 and 4,096 x 9  
Integrated Device Technology, Inc.  
FEATURES:  
• 35ns parallel port access time, 45ns cycle time  
• 50MHz serial input/output frequency  
• Serial-to-parallel, parallel-to-serial, serial-to-serial, and  
parallel-to-parallel operations  
APPLICATIONS:  
• High-speed data acquisition systems  
• Local area network (LAN) buffer  
• High-speed modem data buffer  
• Remote telemetry data buffer  
• FAX raster video data buffer  
• Expandable in both depth and width with no external  
components  
• Laser printer engine data buffer  
• Flexishift™ — Sets programmable serial word width  
from 4 bits to any width with no external components  
• Multiple flags: Full, Almost-Full (Full-1/8),Full-Minus-  
One, Empty, Almost-Empty (Empty + 1/8), Empty-Plus-  
One, and Half-Full  
• High-speed parallel bus-to-bus communications  
• Magnetic media controllers  
• Serial link buffer  
DESCRIPTION:  
Asynchronous and simultaneous read or write operations  
TheIDT72103/72104arehigh-speedParallel-SerialFlFOs  
to be used with high-performance systems for functions such  
as serial communications, laser printer engine control and  
local area networks.  
• Dual-Port, zero fall-through time architecture  
• Retransmit capability in single-device mode  
• Packaged in 44-pin PLCC  
Industrial temperature range (–40oC to +85oC)  
FUNCTIONAL BLOCK DIAGRAM  
SERIAL  
INPUT  
DATA INPUTS (D0  
-D  
8)  
SI  
SIX  
SICP  
SERIAL  
INPUT  
CIRCUITRY  
FLAG  
LOGIC  
SERIAL/  
PARALLEL  
CONTROL  
/PI  
/PO  
RAM ARRAY  
2048 x 9  
WRITE  
POINTER  
READ  
POINTER  
4096 x 9  
RESET  
LOGIC  
DEPTH  
EXPANSION  
LOGIC  
SERIAL  
OUTPUT  
SO  
SOX  
SOCP  
SERIAL  
OUTPUT  
CIRCUITRY  
0
DATA OUTPUTS (Q -Q  
8
)
2753 drw 01  
The IDT logo is a registered trademark of Integrated Device Technology,Inc.  
INDUSTRIAL TEMPERATURE RANGE  
DECEMBER 1999  
©1999 Integrated Device Technology, Inc.  
For latest information contact IDT's web site at www.idt.com or fax-on-demand at 408-492-8391.  
DSC-2753/-  
1
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9, 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
Seven flags are provided to signal memory status of the  
FIFO. The flags are FF (Full), AF (7/8 full), FF–1 (Full-minus-  
one), EF (Empty), AE (1/8 full), EF+1 (Empty-plus-one), and  
HF (Half-full).  
Read (R) and Write (W) control pins are provided for  
asynchronous and simultaneous operations. An Output En-  
able (OE) control pin is available on the parallel output port for  
high-impedancecontrol.ThedepthexpansioncontrolpinsXO  
and Xl are provided to allow cascading for deeper FlFOs.  
TheIDT72103/72104aremanufacturedusingIDT’sCMOS  
technology.  
DESCRIPTION (Continued)  
A serial input, a serial output and two 9-bit parallel ports  
make four modes of data transfer possible: serial-to-parallel,  
parallel-to-serial,serial-to-serial,andparallel-to-parallel.These  
devicesareexpandableinbothdepthandwidthforallofthese  
operational configurations.  
These FIFOs may be configured to handle serial word  
widths of four or greater using IDT’s unique Flexishift feature.  
Flexishift allows serial width and depth expansion without  
external components. For example, you may configure a 4K  
x 24 FIFO using three IDT72104s in a serial width expansion  
configuration.  
PIN CONFIGURATIONS  
INDEX  
6
5 4 3 2  
44 43 42 41 40  
D
0
7
39  
GND  
1
8
9
38  
37  
/PO  
SOX  
SOCP  
SO  
SI  
SICP  
SIX  
10  
11  
36  
35  
12  
13  
34  
33  
14  
15  
16  
17  
32  
31  
30  
29  
Q
GND  
0
18 19 20 21 22 23 24 25 26 27 28  
2753 drw 03  
PLCC (J44-1, order code: J)  
TOP VIEW  
2
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9 AND 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
PIN DESCRIPTION  
Symbol  
D0-D8 Data Inputs  
Serial Input Word  
Name  
I/O  
Description  
I/O In a parallel input configuration – data inputs for 9-bit wide data.  
In a serial input configuration – one of the nine output pins is used to select the serial input  
word width.  
Width Select  
RS  
W
Reset  
I
When RSis set low, internal READ and WRITE pointers are set to the first location of the RAM  
array. EF, EF+1, AEF are all LOW after a reset, while FF, FF-1, HF are HIGH after a reset.  
A parallel word write cycle is initiated on the falling edge of W if the FF is high. When the FIFO  
is full, FF will go low inhibiting further write operations to prevent data overflow. In a serial  
input configuration, data bits are clocked into the input shift register and the write pointer does  
not advance until a full parallel word is assembled. One of the pins, Di, is connected to W and  
advances the write pointer every i-th serial input clock.  
A read cycle is initiated on the falling edge of R if the EF is HIGH. After all the data from the  
FIFO has been read EF will go LOW inhibiting further read operations. In a serial output  
configuration, a data word is read from memory into the output shift register. One of the pins,  
Qj, is connected to R and advances the read pointer every j-th serial output clock.  
This is a dual-purpose pin. In multiple-device mode, FL/RT is grounded to indicate the first  
device loaded. In single-device mode, FL/RT acts as the retransmit input. Single-device mode  
is initiated by grounding the XI pin.  
Write  
Read  
I
R
I
I
FL/RT First Load/  
Retransmit  
Xl  
Expansion In  
I
In single-device mode, XI is grounded. In depth expansion or daisy chain mode, XI is con-  
nected to the XO pin of the previous device.  
OE  
Output Enable  
I
When OEis LOW, both parallel and serial outputs are enabled. When OEis HIGH, the parallel  
output buffers are placed in a high-impedance state.  
Q0-Q8 Data Outputs/Serial  
Output Word Width Select  
O
O
O
O
In a parallel output configuration - data outputs for 9-bit wide data. In a serial output  
configuration - one of nine output pins used to select the serial output word width.  
FF is asserted LOW when the FIFO is full and further write operations are inhibited. When  
the FF is HIGH, the FIFO is not full and data can be written into the FIFO.  
FF-1 goes LOW when the FIFO memory array is one word away from being full. It will remain  
LOW when every memory location is filled.  
HFis LOW when the FIFO is more than half-full in the single device or width expansion modes.  
The HF will remain LOW until the difference between the write and read pointers is less than  
or equal to one-half of the FIFO memory.  
FF  
Full Flag  
FF-1  
Full-1 Flag  
XO/HF Expansion Out/  
Half-Full Flag  
In depth expansion mode, a pulse is written from XO to XI of the next device when the last  
location in the FIFO is filled. Another pulse is sent from XO to Xl of the next device when the  
last FIFO location is read.  
AEF  
Almost-Empty/  
Almost-Full Flag  
O
When AEF is LOW, the FIFO is empty to 1/8 full or 7/8 full to completely full. If AEF is HIGH,  
then the FIFO is greater than 1/8 full, but less than 7/8 full.  
EF+1 Empty+1 Flag  
O
O
EF+ 1 is LOW when there is zero or one word in the FIFO memory array.  
EF goes LOW when the FIFO is empty and further read operations are inhibited. FF is HIGH  
when the FIFO is not empty and data reads are permitted.  
EF  
Empty Flag  
Sl  
SO  
Serial Input Expansion  
Serial Output Expansion  
I
O
I
Data input for serial data.  
Data output for serial data.  
This pin is the serial input clock. On the rising edge of the SICP signal, new serial data bits  
are read into the serial input shift register.  
SICP Serial Input Clock  
SOCP Serial Output  
Clock  
I
I
This pin is the serial output clock. On the rising edge of the SOCP signal, new serial data bits  
are read from the serial output shift register.  
SIX controls the serial input expansion for word widths greater than 9 bits. In a serial input  
configuration, the SIX pin of the least significant device is tied HIGH. The SIX pin of all other  
devices is connected to the D8 pin of the previous device. In parallel input configurations or  
serial input configurations of 9 bits or less, SIX is tied HIGH.  
SIX  
Serial Input  
Expansion  
SOX  
SI/PI  
Serial Output  
Expansion  
I
SOX controls the serial output expansion for word widths greater than 9 bits. In a serial output  
configuration, the SOX pin of the least significant device is tied HIGH. The SOX pin of all other  
devices is connected to the Q8 pin of the previous device. In parallel output configurations or  
serial output configurations of 9 bits or less, SOX is tied HIGH.  
Serial/Parallel Input  
I
I
When this pin is HIGH, the FIFO is in a parallel input configuration and accepts input data through  
D
0
-D  
When this pin is HIGH, the FIFO is in a parallel output configuration and sends output data through  
-Q . When SO/PO is LOW the FIFO is in a serial output configuration and data is input through SO.  
8. When SI/PI is LOW, the FIFO is in a serial input configuration and data is input through Sl.  
SO/PO Serial/Parallel Output  
GND Ground  
Q
0
8
Five ground pins for the PLCC.  
One + 5V power pin.  
VCC  
Power  
2753 tbl 04  
3
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9, 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
ABSOLUTE MAXIMUM RATINGS(1)  
RECOMMENDEDDCOPERATINGCONDITIONS  
Symbol  
Parameter  
Min. Typ. Max. Unit  
Symbol  
Rating  
Commercial  
Unit  
VTERM  
Terminal Voltage  
with Respect to GND  
Storage Temperature  
–0.5 to +7.0  
V
VCC  
Commercial Supply  
Voltage  
4.5  
5.0  
5.5  
V
TSTG  
IOUT  
–55 to +125  
–50 to +50  
°C  
mA  
GND  
VIH  
Supply Voltage  
0
0
0
V
V
DC Output Current  
Input High Voltage  
Commercial  
2.0  
NOTE:  
2753 tbl 01  
1.Stresses greater than those listed under ABSOLUTE MAXIMUM  
RATINGS may cause permanent damage to the device. This is a stress  
rating only and functional operation of the device at these or any other  
conditions above those indicated in the operational sections of this  
specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
VIL(1)  
TA  
Input Low Voltage  
0.8  
85  
V
Operating Temperature -40  
Industrial  
°C  
NOTE:  
2753 tbl 03  
1. 1.5V undershoots are allowed for 10ns once per cycle.  
DC ELECTRICAL CHARACTERISTICS  
(Industrial: VCC = 5.0V ± 10%, TA = -40°C to +85°C)  
IDT72103  
IDT72104  
Industrial  
tA = 35, 50ns  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
ILI(1)  
Input Leakage Current (Any Input)  
–1  
1
µA  
ILO(2)  
VOH  
Output Leakage Current  
–10  
2.4  
10  
µA  
Output Logic "1" Voltage,  
IOUT = –2mA(4)  
V
VOL  
Output Logic "0" Voltage,  
IOUT = 8mA(5)  
0.4  
V
ICC1(3)  
Active Power Supply Current  
90  
8
140  
12  
mA  
mA  
ICC2(3,6)  
Standby Current  
(R = W = RS = FL/RT = VIH)  
(SOCP = SICP = VIL)  
ICC3(3,6)  
Power Down Current  
2
mA  
NOTES:  
2753 tbl 06  
1. Measurements with 0.4 VIN VCC.  
2. R VIH, SOCP VIL, 0.4 VOUT VCC.  
3. Tested with outputs open (IOUT = 0).  
4. For SO, IOUT = –8mA.  
5. For SO, IOUT =16mA.  
6. SOCP = SICP 0.2V; other Inputs = VCC - 0.2V.  
CAPACITANCE (TA = +25°C, f = 1.0MHz)  
Parameter(1)  
Conditions  
Max. Unit  
5V  
Symbol  
CIN  
Input Capacitance  
VIN = 0V  
10  
12  
pF  
pF  
1.1K  
COUT  
Output Capacitance VOUT = 0V  
NOTE:  
2753 tbl 02  
1. This parameter is sampled and not 100% tested.  
D.U.T.  
30pF*  
680Ω  
AC TEST CONDITIONS  
Input Pulse Levels  
GND to 3.0V  
3ns  
Input Rise/Fall Times  
Input Timing Reference Levels  
Output Reference Levels  
Output Load  
2753 drw 04  
1.5V  
or equivalent circuit  
1.5V  
Figure 1. Ouput Load  
*Including jig and scope capacitances  
See Figure 1  
2753 tbl 07  
4
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9 AND 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
AC ELECTRICAL CHARACTERISTICS  
(Industrial: VCC = 5.0V ± 10%, TA = -40°C to +85°C)  
Industrial  
IDT72103L35  
IDT72104L35  
IDT72103L50  
IDT72104L50  
Timing  
Symbol  
fS  
Parameter  
Parallel Shift Frequency  
Min.  
Max.  
22.2  
50  
Min.  
Max.  
15  
Unit Figure  
MHz  
MHz  
MHz  
fSOCP  
fSICP  
Serial-Out Shift Frequency  
Serial-In Shift Frequency  
40  
50  
40  
PARALLEL-OUTPUT MODE TIMINGS  
tA  
Access Time  
10  
35  
45  
5
35  
20  
15  
50  
65  
15  
10  
5
50  
30  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
4
tRR  
Read Recovery Time  
tRPW  
tRC  
Read Pulse Width  
4
Read Cycle Time  
4
tWLZ  
tRLZ  
tRHZ  
tDV  
Write Pulse LOW to Data Bus at Low-Z(1)  
Read Pulse LOW to Data Bus at Low-Z(1)  
Read Pulse HIGH to Data Bus at High-Z(1)  
Data Valid from Read Pulse HIGH  
15  
4
5
5
4
4
PARALLEL-INPUT MODE TIMINGS  
tDS  
Data Set-up Time  
Data Hold Time  
18  
0
20  
0
ns  
ns  
ns  
ns  
ns  
3
3
3
3
3
tDH  
tWC  
tWPW  
tWR  
Write Cycle Time  
Write Pulse Width  
Write Recovery Time  
45  
35  
10  
50  
40  
10  
RESET TIMINGS  
tRSC  
tRS  
Reset Cycle Time  
45  
35  
35  
10  
50  
40  
40  
10  
ns  
ns  
ns  
ns  
2,18  
2,18  
Reset Pulse Width  
Reset Set-up Time  
Reset Recovery Time  
tRSS  
tRSR  
2,18  
2,17,18  
RESET TO FLAG TIMINGS  
tRSF1  
tRSF2  
Reset to EF, AEF, and EF+1 LOW  
Reset to HF, FF, and FF-1 LOW  
45  
45  
65  
65  
ns  
ns  
2
2
RESET TO OUTPUT TIMINGS – SERIAL MODE ONLY  
tRSQL  
tRSQH  
tRSDL  
Reset Going LOW to Q0-8 LOW  
Reset Going HIGH to Q0-8 HIGH  
Reset Going LOW to D0-8 LOW  
20  
20  
20  
20  
20  
20  
ns  
ns  
ns  
18  
18  
17  
RETRANSMIT TIMINGS  
tRTC  
tRT  
Retransmit Cycle Time  
45  
35  
35  
10  
35  
50  
40  
40  
10  
50  
ns  
ns  
ns  
ns  
ns  
5
5
5
5
5
Retransmit Pulse Width  
Retransmit Set-up Time  
Retransmit Recovery Time  
Retransmit to Flags  
tRTS  
tRTR  
tRTF  
PARALLEL MODE FLAG TIMINGS  
tREF  
tRFF  
tRF  
Read LOW to EF LOW  
35  
35  
30  
30  
45  
45  
30  
30  
45  
45  
40  
40  
45  
45  
65  
65  
45  
45  
65  
65  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6
7
Read HIGH to FF HIGH  
Read HIGH to Transitioning HF, AEF and FF-1  
Read LOW to EF+1 LOW  
8,9,10  
11  
tRE  
tRPE  
tWEF  
tWFF  
tWF  
Read Pulse Width after EF HIGH  
Write HIGH to EF HIGH  
15  
6
Write LOW to FF LOW  
7
Write LOW to Transitioning HF, AEF and FF-1  
Write HIGH to EF+1 HIGH  
8,9,10  
11  
tWE  
tWPF  
NOTE:  
Write Pulse Width after FF HIGH  
16  
2753 tbl 08  
1. Values guaranteed by design, not tested.  
5
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9, 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
AC ELECTRICAL CHARACTERISTICS  
(Industrial: VCC = 5.0V ± 10%, TA = -40°C to +85°C)  
Industrial  
IDT72103L35  
IDT72104L35  
IDT72103L50  
IDT72104L50  
Timing  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit Figure  
DEPTH EXPANSION MODE TIMINGS  
tXOL  
tXOH  
tXI  
Read/Write to XO LOW  
Read/Write to XO HIGH  
XI Pulse Width  
35  
10  
15  
35  
35  
50  
10  
15  
50  
50  
ns  
ns  
ns  
ns  
ns  
13  
13  
14  
14  
14  
tXIR  
tXIS  
XI Recovery Time  
XI Set-up Time  
SERIAL-INPUT MODE TIMINGS  
tS2  
Serial Data In Set-up Time to SICP Rising Edge  
12  
0
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
19  
19  
19  
19  
19  
19  
19  
tH2  
tS3  
Serial Data In Hold Time to SICP Rising Edge  
SIX Set-up Time to SICP Rising Edge  
W Set-up Time to SICP Rising Edge  
W Hold Time to SICP Rising Edge  
Serial In Clock Width High/Low  
5
5
tS4  
5
5
tH4  
tSICW  
tS5  
7
7
8
10  
50  
SI/PI Set-up Time to SICP Rising Edge  
35  
SERIAL-OUTPUT MODE TIMINGS  
tS6  
SO/PO Set-up Time to SOCP Rising Edge  
35  
5
50  
5
ns  
ns  
ns  
ns  
ns  
20  
20  
20  
20  
20  
tS7  
SOX Set-up Time to SOCP Rising Edge  
R Set-up Time to SOCP Rising Edge  
R Hold Time to SOCP Rising Edge  
Serial Out Clock Width HIGH/LOW  
tS8  
5
5
tH8  
7
7
tSOCW  
8
10  
SERIAL MODE RECOVERY TIMINGS  
tREFSO  
tRFFSI  
Recovery Time SOCP after EF Goes HIGH  
Recovery Time SICP after FF Goes HIGH  
35  
15  
80  
15  
ns  
ns  
22  
23  
SERIAL MODE FLAG TIMINGS  
tSOCEF  
tSOCFF  
tSOCF  
tSOCF  
tSICEF  
tSICFF  
tSICF  
SOCP Rising Edge (Bit 0- Last Word) to EF LOW  
20  
30  
30  
30  
45  
30  
45  
45  
25  
40  
40  
40  
65  
40  
65  
65  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
22  
24  
SOCP Rising Edge (Bit 0- First Word) to FF HIGH  
SOCP Rising Edge to FF-1, HF, AEF HIGH  
SOCP Rising Edge to AEF, EF, EF+1 LOW  
SICP Rising Edge (Last Bit-First Word) to EF HIGH  
SICP Rising Edge (Bit 1-Last Word) to FF LOW  
SICP Rising Edge to EF+1, AEF HIGH  
24,26  
22,26  
21  
23  
21,25  
23,25  
tSICF  
SICP Rising Edge to FF-1, HF, AEF HIGH  
SERIAL-INPUT MODE TIMINGS  
SICP Rising Edge to D(1)  
SERIAL-OUTPUT MODE TIMINGS  
tPD1  
5
17  
5
20  
ns  
17,19  
tPD2  
SOCP Rising Edge to Q(1)  
5
5
17  
16  
22  
18  
5
5
20  
16  
22  
18  
ns  
ns  
ns  
ns  
20  
20  
20  
20  
tSOHZ  
tSOLZ  
tSOPD  
SOCP Rising Edge to SO at High-Z(1)  
SOCP Rising Edge to SO at Low-Z(1)  
SOCP Rising Edge to Valid Data on SO  
5
5
OUTPUT ENABLE/DISABLE TIMINGS  
tOEHZ  
tOELZ  
tAOE  
Output Enable to High-Z (Disable)(1)  
Output Enable to Low-Z (Enable)(1)  
Output Enable to Data Valid (Q0-8)  
5
16  
20  
5
16  
22  
ns  
ns  
ns  
12  
12  
12  
NOTE:  
2753 tbl 09  
1. Values guaranteed by design, not tested.  
6
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9 AND 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
GENERAL SIGNAL DESCRIPTION  
Expansion In (XI)  
The XI pin is grounded to indicate an operation in the the  
single-device mode. In the depth expansion or daisy-chain  
mode, the XI pin is connected to the XO pin of the previous  
device.  
INPUTS:  
Data Inputs (D0-D8)  
Theparallel-inmodeisselectedbyconnectingtheSI/PIpin  
to VCC. D0-D8 are the data input lines.  
The serial-input mode is selected by grounding the SI/PI  
pin. The D0-D8 lines are control output pins used to program  
the serial word width.  
Output Enable (OE)  
When OEis HIGH, the parallel output buffers are tristated.  
When OE is LOW, both parallel and serial outputs are en-  
abled.  
Reset (RS)  
Serial Input (SI)  
Reset is accomplished whenever the RS input is taken to  
alowstate. Bothinternalreadandwritepointersaresettothe  
first location during reset. A reset is required after power up  
before a write operation can take place. Both Read (R) and  
Write (W) inputs must be HIGH during reset.  
SerialdataisreadintotheserialinputregisterviatheSlpin.  
In both depth and serial width expansion modes, the serial-  
input signals of the different FlFOs in the expansion array are  
connected together.  
Serial Input Clock (SICP)  
Write (W)  
Serial data is read into the serial input register on the rising  
edge of the SICP signal. In both depth and serial width  
expansion modes, the SICP signals of the different FlFOs in  
the expansion array are connected together.  
A write cycle is initiated on the falling edge of W provided  
the Full Flag (FF) is not asserted. Data set-up and hold times  
must be met with respect to the rising edge of W. Data is  
stored in the RAM array sequentially and independently of  
any on going read operation.  
When the FIFO is full, the FF will go LOW inhibiting further  
write operations to prevent data overflow. After a valid read  
operationiscompleted, theFFwillgoHIGHaftertRFF allowing  
a valid write to begin.  
Serial Output Clock (SOCP)  
New serial data bits are read from the serial output register  
ontherisingedgeoftheSOCPsignal. Inbothdepthandserial  
width expansion modes, the SOCP signals of the different  
FlFOs in the expansion array are connected together.  
Read (R)  
Serial Input Expansion (SIX)  
A read cycle is initiated on the falling edge of R, provided  
the EF is not set. Data is accessed on a first-in/first out basis  
independent of any on going write operations. After R goes  
HIGH, the Data Outputs (Q0-Q8) go to a high-impedance  
condition until the next read operation. When all the data has  
been read from the FIFO, the EFwill go LOW, and Q0-Q8 will  
go to a high-impedance state inhibiting further read opera-  
tions.Afterthecompletionofavalidwriteoperation,theEFwill  
go HIGH after tWEF allowing a valid read to begin.  
The SlX pin is tied HIGH for single-device serial or parallel  
input operation. In a serial input configuration, the SIX pin of  
theleastsignificantdeviceistiedHIGH.TheSIXpinofallother  
devices is connected to the D8 pin of the previous device.  
Serial Output Expansion (SOX)  
TheSOXpinistiedHIGHforsingle-deviceserialorparallel  
output operation. In a serial output configuration, the SOX pin  
of the least significant device is tied HIGH. The SOX pin of all  
other devices is connected to the Q8 pin of the previous  
device.  
First Load/Retransmit (FL/RT)  
Inthedepth-expansionmode, theFL/RTpinisgroundedto  
indicate that it is the first device loaded. In the single-device  
mode, the FL/RTpin acts as the retransmit input. The single-  
device mode is initiated by grounding the Expansion-ln (XI)  
pin.  
The IDT72103/72104 can be made to retransmit data  
when the RTinput is pulsed LOW. A retransmit operation will  
set the internal read pointer to the first location and will not  
affect the write pointer. During retransmit, R and W must be  
set HIGH and theFFwill be affected depending on the relative  
locations of the read and write pointers. This feature is useful  
when less than 2,048/4,096 writes are performed between  
resets. The retransmit feature is not available in the depth  
expansion mode.  
Serial/Parallel Input (SI/PI)  
The SI/PI pin programs whether the IDT72103/72104  
accepts parallel or serial data as input. When this pin is LOW,  
the FIFO expects serial data and the D0-D8 pins become  
output pins used to program the write signal and the serial  
input word width. For instance, connecting D8 to W will  
program a serial word width of 9 bits; connecting D7 to Wwill  
program a serial word width of 8 bits and so on.  
Serial/Parallel Output (SO/PO)  
The SO/PO pin programs whether the IDT72103/72104  
outputsparallelorserialdata. WhenthispinisLOW, theFIFO  
expects serial data and the Q0-Q8 pins output signals used to  
program the read signal and the serial output word width.  
7
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9, 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
rising edge of the read operation.  
In the multiple-device mode, the XI pin is connected to the  
XO pin of the previous device. The XO pin signals a pulse to  
the next device when the previous device reaches the best  
location of memory in the daisy chain configuration.  
OUTPUTS:  
Data Outputs (Q0–Q8)  
Data outputs for 9-bit wide data. These output lines are in  
ahigh-impedanceconditionwheneverRisinahighstate. The  
serial output mode is selected by grounding the SO/PO pin.  
The Q0-Q8 lines are control pins used to program the serial  
word width.  
Almost–Empty or Almost–Full Flag (AEF)  
The AEF asserts LOW if there are 0-255 or 1,793-2,048  
bytes in the IDT72103, 2,048 x 9 FIFO. The AEFasserts LOW  
if there are 0-511 or 3,585-4,096 bytes in the IDT72104,  
4,096 x 9 FIFO.  
Serial Output (SO)  
Serial data is output on the SO pin. In both depth and serial  
width expansion modes the serial output signals of the  
different FlFOs in the expansion array are connected to-  
gether. Following reset, SO is tristated until the first rising  
edge of the Serial Out Clock (SOCP) signal. Data is clocked  
out least significant bit first. In the serial width expansion  
mode, SO is tristated again after the ninth bit is output.  
Empty–Plus–One Flag (EF+1)  
In the parallel-output mode, the EF+1flag is asserted LOW  
when there is one word or less in the FIFO. It will remain LOW  
when the FIFO is empty.  
In the serial-output mode, the EF+1 flag operates as an  
EF+2 flag. It goes LOW when the second to the last word is  
read from the RAM array and is ready to be shifted out.  
Full Flag (FF)  
FFis asserted LOW when the FIFO is full. When the FIFO  
is full, the internal write pointer will not be incremented by any  
additional write pulses.  
Empty Flag (EF) — Parallel–Out Mode  
When the FIFO is in the parallel out mode and there is only  
one word in the FIFO, the falling edge of the R line will cause  
theEFlinetobeassertedLOW. ThisisshowninFigure6. The  
EFis then de-asserted HIGH by either the rising edge of W or  
the rising edge of SICP, as shown in Figure 6.  
Full Flag — Serial In Mode  
WhentheFIFOisloadedserially,theSerialInClock(SICP)  
asserts the FF. On the second rising edge of the SICP for the  
last word in the FIFO, the FFwill assert LOW, and it will remain  
asserted until the next read operation. Note that when the FF  
isasserted,thelastSICPforthatwordwillhavetobestretched  
as shown in Figure 23.  
Empty Flag — Serial–Out Mode  
The use of the EF is important for proper serial-out opera-  
tion when the FIFO is almost empty. The EF flag is asserted  
LOW after the first bit of the last word is shifted out. This is  
shown in Figure 22.  
Full Flag — Parallel–ln Mode  
When the FIFO is in the Parallel-ln mode, the falling edge  
ofWassertsthe FF(LOW). TheFFisthende-asserted(HIGH)  
by subsequent read operations - either serial or parallel.  
TABLE 1 — STATUS FLAGS  
Number of  
Words in FIFO  
IDT72103 IDT72104  
(1)  
FF FF-1 AEF HF EF+1 EF  
Full–Minus — One Flag (FF–1)  
0
1
0
1
H
H
H
H
H
H
H
L
H
H
H
H
H
H
L
L
L
L
H
H
L
L
L
H
H
H
H
L
L
L
L
The FF–1 flag is asserted low when the FIFO is one word  
away from being full. It will remain asserted when the FIFO is  
full.  
H
2-255  
256-1,024  
2-511  
512-2,048  
H
H
H
H
H
H
H
'
H
Expansion Out/Half–Full Flag (XO/HF)  
1,025-1,792 2,049-3,584  
1,793-2,046 3,585-4,094  
H
In the single-device mode, the XO/HFpin operates as aHF  
pin when the Xl pin is grounded. After half of the memory is  
filled, the HFwill be set to LOW at the falling edge of the next  
write operation. It will remain set until the difference between  
the write pointer and read pointer is less than or equal to one-  
half of the FIFO total memory. The HF is then reset by the  
L
H
H
2,047  
2,048  
4,095  
4,096  
L
L
L
H
NOTE:  
1. EF+1 acts as EF+2 in the serial out mode.  
2753 tbl 10  
8
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9 AND 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
PARALLEL TIMINGS:  
t
RSC  
t
RS  
t
RSS  
tRSR  
t
RSS  
RSF1  
t
t
RSF2  
2753 drw 05  
Figure 2. Reset  
tRC  
t
WC  
tRPW  
tRR  
t
WPW  
tWR  
t
DH  
t
DS  
Q0–8  
VALID DATA  
2753 drw 07  
D
0–8  
t
DV  
2753 drw 06  
t
RLZ  
t
A
t
RHZ  
Figure 3. Write Operation in Parallel Data In Mode  
Figure 4. Read Operation in Parallel Data Out Mode  
t
RTC  
t
RT  
t
RTS  
tRTR  
t
RTF  
FLAG VALID  
All Flags  
2753 drw 08  
Figure 5. Retransmit  
9
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9, 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
(1)  
t
WEF  
(2)  
REF  
t
(3)  
2753 drw 09  
NOTES:  
1. Data is valid on this edge.  
2. The Empty Flag is asserted by R in the Parallel-Out mode and is specified by tREF. The EF flag is deasserted by the rising edge of W.  
3. First rising edge of Write after EF is set.  
Figure 6. Empty Flag Timings in Parallel Out Mode  
t
WFF  
(1)  
RFF  
t
2753 drw 10  
NOTE:  
1. For the assertion time, tWFF is used when data is written in the Parallel mode. The FF is de-asserted by the rising edge of R.  
Figure 7. Full Flag Timings in Parallel-In Mode  
t
WF  
t
WF  
t
RF  
t
RF  
Almost  
Empty  
Almost  
Empty  
Almost  
Full  
2753 drw 11  
2753 drw 12  
Figure 8. Almost-Empty Flag Region  
Figure 9. Almost-Full Flag Region  
10  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9 AND 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
t
WF  
t
RF  
2753 drw 13  
Figure 10. Half-Full and Full-minus-1 Flag Timings  
t
RE  
t
WE  
2753 drw 14  
Figure 11. Empty+1 Flag Timings  
t
RC  
t
RR  
TERMINATEREADCYCLE  
tA  
SECOND READ BY CONTROLLING  
t
DV  
t
OEHZ  
t
AOE  
OELZ  
t
RLZ  
t
Q0-8  
DATA 1  
DATA 1  
2753 drw 15  
Figure 12. Output Enable Timings  
WRITE TO  
LAST PHYSICAL  
LOCATION  
READ FROM  
LAST PHYSICAL  
LOCATION  
t
XOL  
tXOH  
t
XOL  
tXOH  
2753 drw 16  
Figure 13. Expansion-Out  
11  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9, 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
t
XI  
tXIR  
t
XIS  
WRITE TO  
FIRST PHYSICAL  
LOCATION  
t
XIS  
READ FROM  
FIRST PHYSICAL  
LOCATION  
2573 drw 17  
Figure 14. Expansion-In  
Dn  
t
RPE  
t
REtF  
A
t
WEF  
t
WLZ  
Q
n
DATAOUT VALID  
2753 drw 18  
Figure 15. Read Data Flow-Through Mode  
tWPF  
tWFF  
t
RFF  
t
DH  
t
DS  
DATA IN  
VALID  
Dn  
tA  
DATA  
OUT VALID  
Q
n
2753 drw 19  
Figure 16. Write Data Flow-Through Mode  
12  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9 AND 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
SERIAL TIMINGS:  
tRS  
t
RSR  
t
RSS  
(1)  
0
i
i
SICP  
SICP  
0
i-1  
(1)  
t
PD1  
D0  
tPD1  
tRSDL  
2753 drw 20  
D1-8  
NOTE:  
1. SICP should be in the steady LOW or HIGH during tRSS. The first LOW-HIGH (or HIGH-LOW) transition can begin after tRSR.  
Figure 17. Reset Timings for Serial-In Mode  
t
RSC  
tRS  
tRSS  
tRSR  
SOCP  
SOCP  
(1)  
(1)  
tRSQH  
tRSQL  
Q
0-8  
2753 drw 21  
NOTE:  
1. SOCP should be in the steady LOW or HIGH during tRSS. The first LOW-HIGH (or HIGH-LOW) transition can begin after tRSR.  
Figure 18. Reset Timings for Serial-Out Mode  
13  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9, 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
tSICW  
t
SICW  
1
(1)  
0
2
n – 1  
SICP  
1/tSICP  
/PI(3)  
tS5  
SIX  
SI  
t
S3  
t
S2  
tH2  
Di  
(2)  
S4  
(2)  
H4  
t
t
tPD1  
NOTES:  
1. For the stand alone mode, n 4 and the input bits are numbered 0 to n-1.  
2753 drw 22  
2. For the recommended interconnections, Di is to be directly tied to W and the tS4 and tH4 requirements will be satisfied. For users that modify W  
externally, tS4 and tH4 requirements have to be met.  
3. After SI/PI has been set up, it cannot be dynamically changed; it can only be changed after a reset operation.  
Figure 19. Write Operation In Serial-ln Mode  
t
SOCW  
0
tSOCW  
1
n – 1  
SOCP  
1/tSOCP  
/PO(1)  
SOX  
t
S6  
t
S7  
Qi  
t
S8  
t
PD2  
t
H8  
(2)  
SO  
SO  
t
SOHZ  
t
SOLZ  
SOPD  
t
(3)  
NOTES:  
2753 drw 23  
1. After SO/PO has been set up, it cannot be dynamically changed; it can only be changed after a reset operation.  
2. For single device: Read out the last bit after EF is asserted.  
For Serial Width Expansion mode: Read out the last bit of the current memory location from the active device.  
3. For single device: The operation starts after Reset.  
For Serial Width Expansion mode: Read the first bit of the current memory location from the active device.  
Figure 20. Read Operation In Serial-Out Mode  
14  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9 AND 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
FIRST  
SERIAL-IN WORD  
SECOND  
SERIAL-IN WORD  
THIRD  
SERIAL-IN  
WORD  
0
1
n – 1  
0
1
n – 1  
0
SICP  
Dn-1  
t
PD1  
t
SICEF  
(2)  
t
SICF  
t
REF  
(3)  
t
REE  
(1)  
2753 drw 24  
NOTES:  
1. Parallel Read shown for reference only. Can also use serial output mode.  
2. The Empty Flag is de-asserted after the N–1 rising edge of SICP of the first serial-in word. In the Serial-Out mode, a new read operation can begin  
tREFSO after EF goes HIGH. In the Parallel-Out mode, a new read operation can occur immedately after FF goes HIGH.  
3. The EF+1 Flag is de-asserted after the N–1 rising edge of SICP of the second serial-in word.  
Figure 21. Empty Flag and Empty+1 Flag De-assertion in the Serial-ln Mode  
SERIAL  
WORD A  
SERIAL  
WORD B  
LAST SERIAL  
WORD  
0
1
n-2  
n-1  
0
1
n-2  
n-1  
0
1
n-2  
n-1  
0
1
SOCP  
=Qn-1  
t
SOCF  
t
SOCEF  
tREFSO  
(2)  
t
WEF  
(3)  
(1)  
2753 drw 25  
WORD WORD THIRD  
A
B
WORD  
NOTES:  
1. Parallel write shown for reference only. Can also use serial input mode.  
2. The Empty Flag (EF) is asserted in Serial-Out mode by using the tSOCEF parameter. This parameter is measured in the worst case condition from the  
rising edge of the SOCP used to clock data bit 0. Whenever EF goes LOW, there is only one word to be shifted out. In the Parallel-ln mode, the EF  
flag is de-asserted by the rising edge of W. In the Serial-ln mode, the EF flag is de-asserted by the rising edge of W.  
3. First Write rising edge after EF is set.  
4. Once EF has gone LOW and the last bit of the final word has been shifted out, SOCP should not be clocked until EF goes HIGH.  
Figure 22. Empty Flag and Empty+1 Flag Assertion in the Serial-Out Mode (FIFO Being Emptied)  
15  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9, 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
NEXT TO LAST  
SERIAL WORD  
LAST SERIAL  
WORD  
0
1
n-2  
n-1  
0
1
n-2  
n-1  
0
1
SICP  
=Dn-1  
tSICF  
tSICFF  
tRFFSI  
(1)  
t
RFF  
(2)  
2753 drw 26  
NOTES:  
1. The Full Flag is asserted in the Serial-ln mode by using the tSICFF parameter. This parameter is measured in the worst case condition from the rising  
edge of SICP following a (tPD1+tWFF) delay from the first SICP rising edge of the last word.  
2. First Read rising edge after FF is set.  
3. After FF goes LOW and the last bit of the final word has been clocked in, SICP should not be clocked until FF goes HIGH.  
Figure 23. Full Flag and Full-1 Flag Assertlon in the Serial-ln Mode (FIFO Being Filled)  
FIRST  
SERIAL-OUT WORD  
SECOND  
SERIAL-OUT WORD  
0
1
n – 1  
0
1
n – 1  
SOCP  
Q
n+
t
PD2  
(1)  
(2)  
tSOCF  
t
SOCFF  
tWFF  
t
WF  
2753 drw 27  
NOTES:  
1. The FIFO is full and a new read sequence is started.  
2. On the first rising edge of SOCP, the FF is de-asserted. In the Serial-ln mode, a new write operation can begin following tRFFS1 after FF, goes HIGH.  
In the Parallel-ln mode, a new write operation can occur immediately after FF goes HIGH.  
3. The FF-1 flag is de-asserted after the first SOCP of the second serial word.  
Figure 24. Full Flag and Full-1 Flag De-assertion in the Serial-Out Mode  
16  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9 AND 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
HALF-FULL (1/2)  
SICF  
HALF-FULL + 1  
HALF-FULL + 1  
t
t
t
RF  
0
1
n – 1  
0
SICP  
t
SICF  
ALMOST-FULL + 1  
(7/8 Full + 1)  
ALMOST-FULL + 1  
(7/8 Full + 1)  
ALMOST-FULL  
(7/8 Full)  
RF  
ALMOST-EMPTY – 1  
(1/8 Full–1)  
ALMOST-EMPTY  
(1/8 Full)  
ALMOST-EMPTY  
(1/8 Full)  
2753 drw 28  
Figure 25. Half-Full, Almost-Full and Almost-Empty Timings for Serial-In Mode  
HALF-FULL +1  
HALF-FULL (1/2)  
n – 1 0  
HALF-FULL (1/2)  
t
SOCF  
t
WF  
0
1
SOCP  
t
SOCF  
ALMOST-FULL  
(7/8 Full)  
ALMOST-FULL  
(7/8 Full)  
ALMOST-FULL + 1  
(7/8 Full+1)  
tWF  
ALMOST-EMPTY  
(1/8 Full)  
ALMOST-EMPTY – 1  
(1/8 Full–1)  
ALMOST-EMPTY – 1  
(1/8 Full–1)  
2753 drw 29  
Figure 26. Half-Full, Almost-Full and Almost-Empty Timings for Serial-Out Mode  
17  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9, 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
Single Device Mode  
OPERATING DESCRIPTION  
Asingle IDT172103/72104 maybeusedwhenapplication  
requirementsarefor2,048/4,096wordsorless. TheIDT72103/  
72104 is in the Single Device Configuration when the Expan-  
sion In (Xl) control input is grounded (See Figure 27). In this  
mode, the HF/XO is used as a Half-Full flag.  
PARALLEL OPERATING MODES:  
Parallel Data Input  
By setting SI/PI HIGH, data is written into the FIFO in  
parallel through the D0-D8 input data lines.  
Wldth Expanslon Mode  
Parallel Data Output  
Word width may be increased simply by connecting the  
corresponding input control signals of multiple devices. Sta-  
tus flags can be detected from any one of the connected  
devices. Figure 28 demonstrates an 18-bit word width by  
using two IDT72103/72104s. Any word width can be attained  
by adding additional IDT72103/72104s.  
By setting SO/PO HIGH, the parallel-out mode is chosen.  
In the parallel-out mode, as shown in Figure 4, data is  
available tA after the falling edge of R and the output bus Q  
goes into high-impedance after R goes HIGH.  
Alternately, the user can access the FIFO by keeping R  
LOW and enabling data on the bus by asserting OE. When R  
is LOW, theOEis HIGH and the output bus is tri-stated. When  
R is HIGH, the output bus is disabled irrespective of OE. The  
enable and disable timings for OE are shown in Figure 12.  
HALF-FULL FLAG  
V
CC  
VCC  
/PI)  
WRITE )  
(
/PO)  
) READ  
9
9
DATA IN  
(D)  
(Q)  
DATA OUT  
IDT  
72103  
72104  
) EMPTY FLAG  
FULL FLAG
)
) EMPTY-PLUS-ONE  
) ALMOST-EMPTY  
) RETRANSMIT  
FULL-MINUS-ONE
ALMOST-FULL (  
RESET (  
)
)
)
) OUTPUT ENABLE  
2573 drw 30  
EXPANSION IN ( )  
Figure 27. Block Diagram of Single 2,048 x 9 and 4,096 x 9 FIFO in Parallel Mode  
18  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9 AND 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
INPUT CONFIGURATION TABLE  
Serial Input  
Width Expansion  
All Other  
Parallel  
Input  
Single  
Device  
Least Significant  
Device  
Most Significant  
Device  
Pin  
/PI  
Devices  
HIGH  
LOW  
Input Data  
Input Clock  
HIGH  
LOW  
Input Data  
Input Clock  
HIGH  
LOW  
LOW  
Sl  
HIGH or LOW  
HIGH or LOW  
HIGH  
Input Data  
Input Clock  
Input Data  
Input Clock  
SICP  
SIX  
D8  
of next least  
significant device  
D
8
of next least  
significant device  
of most  
D
i
Write Control  
Input Data  
Di  
Di  
of most  
Di of most  
significant device  
significant device  
significant device  
D
0
-D  
8
No connect  
No connect except D  
8
No connect except D  
8
No connect except Di  
except D  
i
D(1)  
i
of all devices  
D8  
SIX of next most  
significant device  
SIX of next most  
significant device  
2753 tbl 11  
NOTE:  
1. Di refers to the most significant bit of the serial word. If multiple devices are width cascaded. Di is the most significant bit from the most significant  
device.  
OUTPUT CONFIGURATION TABLE  
Serial Output  
Width Expansion  
Parallel  
Output  
Single  
Device  
Least Significant  
Device  
All Other  
Devices  
Most Significant  
Device  
Pin  
/PO  
SO  
HIGH  
LOW  
LOW  
LOW  
LOW  
Output Data  
Output Clock  
HIGH  
Output Data  
Output Clock  
HIGH  
Output Data  
Output Clock  
Output Data  
Output Clock  
SOCP HIGH or LOW  
SOX  
HIGH  
Q8  
of next least  
Q8  
of next least  
significant device  
significant device  
Read Control  
Output Data  
Q
i
Q
i
of most  
Q
i
of most  
Qi of most  
significant device  
significant device  
significant device  
Q
0
-Q8  
No connect  
No connect except Q  
8
No connect except Q  
8
No connect except Qi  
except D  
i
Q (1)  
i
of all devices  
Q
8
SOX of next most  
significant device  
SOX of next most  
significant device  
2753 tbl 12  
NOTE:  
1. Qi refers to the most significant bit of the serial word. If multiple devices are width cascaded. Qi isthe most significant bit from the most significant  
device.  
19  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9, 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
18  
9
9
DATA IN  
(D)  
/PO)  
V
CC  
/PO)  
) OUTPUT ENABLE  
WRITE
)
)
) READ  
IDT  
72103  
72104  
FULL FLAG
IDT  
72103  
72104  
) EMPTY FLAG  
) RETRANSMIT  
RESET
)
9
9
/PI)  
/PI)  
V
CC  
)
)
(Q) DATA OUT  
18  
2753 drw 31  
NOTE:  
1. Flag detection is accomplished by monitoring all the flag signals of either (any) device used in the width expansion configuration. Do not connect any  
flag signals together.  
Figure 28. Block Diagram of 2,048 x 18 and 4,096 x 18 FIFO Memory Used in Width Expansion in Parallel Mode  
TRUTH TABLES  
TABLE 2: RESET AND RETRANSMIT —  
SINGLE DEVICE CONFIGURATION/WIDTH EXPANSION IN PARALLEL MODE  
(2)  
(1)  
Inputs  
Internal Status  
Outputs  
RS  
0
FL  
X
0
XI  
0
AEF EF  
FF  
HF  
I
Mode  
Reset  
Read Pointer  
Location Zero  
Location Zero  
Write Pointer  
Location Zero  
Unchanged  
,
0
X
X
1
1
Retransmit  
Read/Write  
NOTES:  
1
0
X
X
X
(1)  
(1)  
1
1
0
Increment  
Increment  
X
2753 tbl 13  
1. Pointer will increment if appropriate flag is HIGH.  
RS  
FL RT  
EF  
FF  
XI  
= Expansion Input.  
2.  
= Reset Input,  
/
= First Load/Retransmit,  
= Empty Flag Output,  
= Full Flag Output,  
20  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9 AND 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
3. The Expansion Out (XO) pin of each device must be tied  
to the Expansion In (Xl) pin of the next device. See  
Figure 29.  
4. External logic is needed to generate a composite  
Full Flag (FF) and Empty Flag (EF). This requires the  
OR-ing of all EFs and OR-ing of all FFs (i.e., all must be  
set to generate the correct composite FF or EF). See  
Figure 29.  
DEPTH EXPANSION (DAISY CHAIN) MODE  
The IDT72103/72104 can be easily adapted to applica-  
tionswheretherequirementsareforgreaterthan2,048/4,096  
words. Figure 29 demonstrates Depth Expansion using three  
IDT72103/72104s. Any memory depth can be attained by  
adding additional IDT72103/72104s. The IDT72103/72104  
operates in the Depth Expansion configuration when the  
following conditions are met:  
5. The Retransmit (RT) function and Half-Full Flag (HF) are  
not available in the Depth Expansion mode.  
1. The first device must be designated by grounding the  
First Load (FL) control input pin.  
2. All other devices must have the FL pin in the high state.  
R
IDT  
9
9
9
9
9
72103  
72104  
Q
D
Vcc  
IDT  
72103  
72104  
IDT  
72103  
72104  
2753 drw 32  
NOTE:  
1. SI/PI and SO/PO pins are tied to VCC.  
Figure 29. Block Diagram of 6,144 x 9 and 12,288 x 9-FIFO Memory, Depth Expansion in Parallel Mode  
21  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9, 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
achieved by pairing IDT72103/72104 as shown in Figure 30.  
Both Depth Expansion and Width Expansion may be used in  
this mode.  
BIDIRECTIONAL MODE  
Applicationsrequiringdatabufferingbetweentwosystems  
(each system capable of Read and Write operations) can be  
B
B
A
A
IDT  
72103  
72104  
B
DA0-8  
QB0-8  
SYSTEM A  
SYSTEM B  
QA0-8  
DB0-8  
IDT  
72103  
72104  
B
B
A
A
A
2573 drw 33  
NOTE:  
1. SI/PI and SO/PO pins are tied to VCC.  
Figure 30. Bidirectional FIFO Mode  
COMPOUND EXPANSION MODE  
The two expansion techniques described above can be  
applied together in a straightforward manner to achieve large  
FIFO arrays (see Figure 31).  
Q
N–8 - QN  
Q
0
- Q8  
Q
9
9
- Q17  
- Q17  
Q0  
- Q8  
Q
Q
N–8 - Q  
N
IDT72103  
IDT72104  
DEPTH  
EXPANSION  
BLOCK  
IDT72103  
IDT72104  
DEPTH  
EXPANSION  
BLOCK  
IDT72103  
IDT72104  
DEPTH  
EXPANSION  
BLOCK  
D0  
- D8  
D
N–8 - D  
N
D9  
- D17  
D0 - DN  
D9 - DN  
D18 - D  
N
DN–8 - DN  
2753 drw 34  
NOTES:  
1. SI/PI and SO/PO pins are tied to VCC.  
2. For depth expansion block see DEPTH EXPANSION Section and Figure 29.  
3. For Flag Detection see WIDTH EXPANSION SECTION and Figure 28.  
Figure 31. Compound FIFO Expansion  
22  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9 AND 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
TABLE 3: RESET AND FIRST LOAD TRUTH TABLE —  
DEPTH EXPANSION/COMPOUND EXPANSION MODE  
Inputs(2)  
Internal Status  
Outputs  
RS  
FL  
XI  
I
EF  
FF  
Mode  
Read Pointer  
Write Pointer  
Reset-First  
Device  
0
0
1
(1)  
(1)  
(1)  
Location Zero  
Location Zero  
0
1
Retransmit all  
Other Devices  
0
1
Location Zero  
X
Location Zero  
X
0
1
Read/Write  
X
X
X
NOTES:  
2753 tbl 14  
XI  
XO  
of previous device.  
1.  
is connected to  
RS  
FL RT  
EF  
FF  
XI  
= Expansion Input.  
2.  
= Reset Input,  
/
= First Load/Retransmit,  
= Empty Flag Ouput,  
= Full Flag Output,  
SERIAL OPERATING MODES:  
Serial Data Input  
connected to W, goes HIGH. On the next clock cycle, after W  
is HIGH, all of the D lines go LOW again and a new serial word  
input starts.  
The Serial Input mode is selected by grounding the Sl/PI  
line. The D0-8 lines are then outputs which are used to  
programthewidthoftheserialword. Theyaretapsoffadigital  
delay line which are meant for connection to the W input. For  
instance, connecting D6 to Wwill program a serial word width  
of 7 bits, connecting D7 to W will program a serial word width  
of 8 bits and so on.  
By programming the serial word width, an economy of  
clock cycles is achieved. As an example, if the word width is  
6 bits, then on every 6th clock cycle the serial data register is  
written in parallel into the FIFO RAM array. Thus, the possible  
In the cascaded case, the first LOW-to-HlGH SICP clock  
edge for a serial word will cause all timed outputs (D) to go  
LOW except for D0 of the least significant device. The D  
outputs of the least significant device will go high on consecu-  
tive clock cycles until D8. When D8 goes HlGH, the SlX of the  
next device goes HlGH. On the next cycle after the SIX input  
is brought HIGH, the D0 goes HIGH; then on the next cycle D1  
and so on. A Di output from the most significant device is  
issued to create the W for all cascaded devices.  
The minimum serial word width is 4 bits and the maximum  
clock cycles for an extra 3 bits of width in the RAM array are is virtually unlimited.  
not required.  
WhenintheSerialmode,theLeastSignificantBitofaserial  
The SIX signal is used for Serial-ln Expansion. When the stream is shifted in first. If the FIFO output is in the Parallel  
serial word width is 9 or less, the SIX input must be tied HIGH. mode, the first serial bit will come out on Q0. The second bit  
When more than 9 bits of serial word width is required, more shifted in is on Q1 and so on.  
than one device is required. The SIX input of the least  
In the Serial Cascade mode, the serial input (Sl) pins must  
significant device must be tied HIGH. The D8 pin of the least be connected together. Each of the devices then receives  
significant device must be tied to SIX of the next significant serial information together and uses the SIX and D0-8 lines to  
device. In other words, the SIX input of the most significant determine whether to store it or not.  
andintermediatedevicesmustalwaysbeconnectedtotheD8  
of the next least significant device.  
The example shown in Figure 34 shows the interconnec-  
tions for a serializing FIFO that transfers data to the internal  
Figure32showstherelationshipoftheSIX, SICPand D0-8 RAM in 16-bit quantities (i.e. every 16 SlCP cycles). This  
lines. In the stand alone case (Figure 32), on the first LOW-to- corresponds to incrementing the write pointer every 16 SICP  
HlGH of SICP, the D1-8 lines go LOW and the D0 line remains cycles.  
HIGH. On the next SICP clock edge, the D1 goes HIGH, then  
Once W goes HIGH With the last serial bit in, SICP should  
D2 and so on. This continues until the D line, which is not be clocked again until FF goes HIGH.  
23  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9, 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
SINGLE DEVICE SERIAL INPUT CONFIGURATION  
V
CC  
GND  
/PI  
/PO  
SICP  
SI  
SERIAL-IN CLOCK  
SERIAL-IN DATA  
Q
0-7  
IDT72103/72104  
8
V
CC  
SIX  
D0 D1 D2 D3 D4 D5 D6 D7 D8  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
SICP  
=1  
D0  
D
1
2
3
4
5
6
D
D
D
D
D
D7  
2753 drw 35  
Figure 32. Serial-In Mode Where 8-Bit Parallel Output Data is Read  
SERIAL DATA IN DATA IN/TIMED  
OUTPUTS D0-8  
SERIAL-INPUT  
CLOCK  
RGTR  
9
9
MUX  
/PI  
DELAYED  
TIMING  
GENERATOR  
DATA IN TO  
FIFO RAM  
Figure 33. Serial-Input Circuitry  
24  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9 AND 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
SERIAL INPUT WIDTH EXPANSION  
VCC  
VCC  
/PO  
GND  
GND  
/PI  
/PI  
/PO  
SERIAL-IN  
SI  
SI  
DATA  
SERIAL-IN  
IDT72103/72104  
FIFO #1  
IDT72103/72104  
FIFO #2  
SICP  
SICP  
SIX  
CLOCK  
VCC  
SIX  
Q0-8  
D8  
D6 Q0-6  
7
9
9
16-BIT  
PARALLEL  
OUTPUT  
0
1
7
8
9
10  
14  
15  
0
SICP  
8
D OF FIFO #1  
AND SIX OF  
FIFO #2  
6
D OF FIFO #2  
ANOF  
FIFO #1 AND  
FIFO #2  
2753 drw 37  
Figure 34. Serial-In Configuration for Serial-In to Parallel-Out Data of 16 bits  
SERIAL INPUT WITH DEPTH EXPANSION  
Q0-7  
VCC  
GND  
VCC  
/PI  
SIX  
/PO  
Q0-7  
IDT72104  
7
D
SOX SI SICP  
VCC  
SICP  
VCC  
/PI  
SIX  
/RT  
/PO  
GND  
Q
0-7  
IDT72104  
SICP  
VCC  
7
D
SI  
SOX  
VCC  
2753 drw 38  
SI  
NOTE:  
1. All SI/PI pins are tied to GND and SO/PO pins are tied to VCC. OE is tied LOW. For FF and EF connections see Figure 29.  
Figure 35. An 8,192 x 8 Serial-In, Parallel-Out FIFO  
25  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9, 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
SERIAL INPUT WITH WIDTH AND DEPTH EXPANSION  
SERIAL  
DATA IN  
VCC  
SI  
D
8
SI  
D
8
SI  
D5  
SIX  
SIX  
SIX  
IDT72104  
IDT72104  
SICP  
SICP  
SICP  
IDT72104  
Q0-8  
Q0-8  
Q0-5  
V
CC  
SIX  
SIX  
SIX  
SI D5  
SI  
D
8
SI  
D
8
SERIAL  
INPUT  
CLOCK  
SICP  
SICP  
SICP  
IDT72104  
IDT72104  
IDT72104  
READ  
Q0-8  
Q0-8  
Q0-5  
P0-8  
P9-17  
P18-23  
2753 drw 39  
PARALLEL DATA OUT  
NOTE:  
1. All SI/PI pins are tied to GND. SO/PO pins are tied to VCC. For FL/RT, FF and EF connections see Figure 29.  
Figure 36. An 8,192 x 24 Serial-In, Parallel-Out FIFO Using Six IDT72104s  
In the cascaded case, word width of more than 9 bits can  
beachievedbyusingmorethanonedevice. BytyingtheSOX  
line of the least significant device HIGH and the SOX of the  
subsequent devices to Q8 of the previous device, a cascaded  
serial word is achieved. On the first LOW-to-HIGH clock edge  
of SOCP, all the Q lines go low except for Q0. Just as in the  
stand alone case, on each consecutive clock cycle, each Q  
line goes HIGH in the order of least to most significant. When  
Q8 (which is connected to the SOX input of the next device)  
goes HIGH, the D0 of that device goes HIGH, thus cascading  
from one device to the next. The Q line of the most significant  
device, which programs the serial word width, is connected to  
all R inputs.  
The Serial Data Output (SO) of each device in the serial  
word must be tied together. Since the SO pin is tri-stated, only  
thedevicewhichiscurrentlyshiftingoutisenabledanddriving  
the 1-bit bus.  
Figure 39 shows an example of the interconnections for a  
16-bit serialized FIFO.  
SERIAL DATA OUTPUT  
The Serial Output mode is selected by setting the SO/PO  
line LOW. When in the Serial-Out mode, one of the Q1-8 lines  
shouldbeusedtocontroltheRsignal. IntheSerial-Outmode,  
the Q0-8 are taps off a digital delay line. By selecting one of  
these taps and connecting it to R, the width of the serial word  
to be read and shifted is programmed. For instance, if the Q5  
line is connected to the R input, on every sixth clock cycle a  
new word is read from the FIFO RAM array and begins to be  
shifted out. The serial word is shifted out Least Significant Bit  
first. If the input mode of the FIFO is parallel, the information  
that was written into the D0 bit will come out as the first bit of  
the serial word. The second bit of the serial stream will be the  
D1 bit and so on.  
In the stand alone case, the SOX line is tied HIGH and not  
used. On the first LOW-to-HIGH of the SOCP clock, all of the  
Q outputs except for Q0 go LOW and a new serial word is  
started. On the next clock cycle, Q1 will go HIGH, Q2 on the  
next clock cycle and so on, as shown in Figure 37. This  
continues until the Q line, which is connected to R, goes HIGH  
at which point all of the Q lines go LOW on the next clock and  
a new word is started.  
OnceR goesHIGHwiththelastserialbitout,SOCPshould  
not be clocked again until EF goes HIGH.  
26  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9 AND 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
VCC  
GND  
PARALLEL DATA IN  
D0-7  
/PI  
/PO  
SOCP  
SERIAL-OUT CLOCK  
SERIAL-OUT DATA  
SO  
IDT72103/72104  
GND  
VCC  
SOX  
Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8  
0
1
2
3
4
5
6
7
0
1
2
3
4
5
6
7
0
SOCP  
=1  
Q
0
Q
1
2
3
4
5
6
Q
Q
Q
Q
Q
Q
7
2753 drw 40  
NOTE:  
1. Input data is loaded in 8-bit quantities and read out serially.  
Figure 37. Serial-Out Configuration  
27  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9, 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
SOCP-SERIAL  
OUTPUT CLOCK  
OUTPUT FROM  
RAM ARRAY  
/PO  
9
DELAYED  
TIMING  
GENERATOR  
CONTROL  
CIRCUIT  
SERIAL-  
OUTPUT  
DATA  
SERIAL-OUT  
REGISTER  
/PO  
MUX  
(SO)  
9
PARALLEL-OUT DATA/  
TIMED OUTPUT Q 0-8  
2753 drw 41  
Figure 38. Serial-Output Circuitry  
PARALLEL DATA IN  
16-BITS WIDE  
SERIAL-OUT  
DATA  
9
7
VCC  
GND  
VCC  
GND  
/PI  
FIFO #1  
/PO  
/PI  
FIFO #2  
/PO  
D
0-8  
D0-6  
SO  
SO  
SERIAL-OUTPUT  
CLOCK  
SOCP  
SOX  
SOCP  
SOX  
VCC  
Q8  
Q6  
0
1
7
8
9
10  
14  
15  
0
SOCP  
Q
8
OF FIFO #1  
AND SOX OF  
FIFO #2  
6
Q OF FIFO #2  
AND OF FIFO  
#1 AND FIFO #2  
2753 drw 42  
NOTE:  
1. The parallel Data In is tied to D0-8 of FIFO #1 and D0-6 of FIFO #2.  
Figure 39. Serial-Output for 16-Bit Parallel Data In  
28  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9 AND 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
SERIAL OUTPUT WITH DEPTH EXPANSION  
D0-7  
D0-7  
IDT72104  
SO SOCP  
7
Q
SOX  
VCC  
SOCP  
D0-7  
IDT72104  
SO SOCP  
VCC  
7
Q
SOX  
VCC  
2753 drw 43  
SO  
NOTE:  
1. All SI/PI pins are tied to VCC and SO/PO pins are tied to GND. OE is tied LOW. For FF and EF connections see Figure 17.  
Figure 40. An 8,192 x 8 Parallel-In Serial-Out FIFO  
SERIAL IN AND SERIAL OUT WITH WIDTH AND DEPTH EXPANSION  
SICP  
SI  
VCC  
6
D
SIX  
SI SICP  
IDT72104  
SOX SO SOCP  
D8  
SIX  
SI SICP  
IDT72104  
SOX SO SOCP  
8
Q
6
Q
VCC  
FULL  
FLAG  
EMPTY  
FLAG  
VCC  
VCC  
VCC  
VCC  
SI SICP  
D8  
SI SICP  
D
6
SIX  
XI XO  
IDT72104  
SOX SO SOCP  
SIX  
XI XO  
IDT72104  
SOX SO SOCP  
8
Q
6
Q
SOCP  
SO  
2753 drw 44  
NOTE:  
1. All RS pins are connected together. All OE pins are connected LOW. All SI/PI and SO/PO pins are grounded.  
Figure 41. 131,072 x 1 Serial-In Serial-Out FIFO  
29  
IDT72103, IDT72104  
CMOS PARALLEL-SERIAL FIFO 2,048 x 9, 4,096 x 9  
INDUSTRIAL TEMPERATURE RANGE  
ORDERING INFORMATION  
XXXXX  
IDT  
X
XXX  
X
X
DeviceType Power  
Speed  
Package  
Process/  
Temperature  
Range  
Blank Industrial (-40°C to +85°C)  
J
Plastic Leaded Chip Carrier (PLCC, J44-1)  
35  
50  
(50MHz serial shift rate)  
(40MHz serial shift rate)  
L
Low Power  
2,048 x 9-Bit Configurable Parallel-Serial FIFO  
4,096 x 9-Bit Configurable Parallel-Serial FIFO  
72103  
72104  
2753 drw 45  
30  

相关型号:

IDT72104L50L

Multi-Mode FIFO
ETC

IDT72104L50LB

FIFO, 4KX9, 50ns, Asynchronous, CMOS, CQCC44, LCC-44
IDT

IDT72104L50P

FIFO, 4KX9, 50ns, Asynchronous, CMOS, PDIP40, 0.600 INCH, 0.100 INCH PITCH, PLASTIC, DIP-40
IDT

IDT72104L65D

Multi-Mode FIFO
ETC

IDT72104L65J

Multi-Mode FIFO
ETC

IDT72104L65J8

FIFO, 4KX9, 65ns, Asynchronous, CMOS, PQCC44, PLASTIC, LCC-44
IDT

IDT72104L65L

Multi-Mode FIFO
ETC

IDT72104L65LB

FIFO, 4KX9, 65ns, Asynchronous, CMOS, CQCC44, LCC-44
IDT

IDT72104L65P

Multi-Mode FIFO
ETC

IDT72104L80D

Multi-Mode FIFO
ETC

IDT72104L80DB

FIFO, 4KX9, 80ns, Asynchronous, CMOS, CDIP40, 0.600 INCH, CERDIP-40
IDT

IDT72104L80J

Multi-Mode FIFO
ETC