IDT723622L15PQF [IDT]

CMOS SyncBiFIFOO 256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2; CMOS SyncBiFIFOO 256 ×36× 2 512 ×36× 2 1024 ×36× 2
IDT723622L15PQF
型号: IDT723622L15PQF
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

CMOS SyncBiFIFOO 256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2
CMOS SyncBiFIFOO 256 ×36× 2 512 ×36× 2 1024 ×36× 2

先进先出芯片
文件: 总26页 (文件大小:298K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
IDT723622  
IDT723632  
IDT723642  
CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2,  
1024 x 36 x 2  
Integrated Device Technology, Inc.  
FEATURES:  
• Fast access times of 11ns  
• Available in 132-pin Plastic Quad Flatpack (PQF) or  
space-saving 120-pin Thin Quad Flatpack (PF)  
• Low-power 0.8-Micron Advanced CMOS technology  
• Industrial temperature range (-40oC to +85oC) is avail-  
able, tested to military electrical specifications  
• Free-running CLKA and CLKB may be asynchronous or  
coincident (simultaneous reading and writing of data on a  
single clock edge is permitted)  
• Two independent clocked FIFOs buffering data in oppo-  
site directions  
• Memory storage capacity:  
IDT723622–256 x 36 x 2  
IDT723632–512 x 36 x 2  
DESCRIPTION:  
TheIDT723622/723632/723642isamonolithic,high-speed,  
low-power, CMOS Bidirectional SyncFIFO (clocked) memory  
which supports clock frequencies up to 67MHz and have read  
access times as fast as 11ns. Two independent 256/512/  
1024x36 dual-port SRAM FIFOs on board each chip buffer  
data in opposite directions. Each FIFO has flags to indicate  
empty and full conditions and two programable flags (almost  
IDT723642–1024 x 36 x 2  
• Mailbox bypass register for each FIFO  
• Programmable Almost-Full and Almost-Empty flags  
• Microprocessor Interface Control Logic  
• IRA, ORA, AEA, and AFA flags synchronized by CLKA  
• IRB, ORB, AEB, and AFB flags synchronized by CLKB  
• Supports clock frequencies up to 67MHz  
FUNCTIONAL BLOCK DIAGRAM  
MBF1  
Mail 1  
Register  
CLKA  
Port-A  
Control  
Logic  
CSA  
W/RA  
ENA  
256 x 36  
512 x 36  
1024 x 36  
SRAM  
MBA  
36  
FIFO1,  
Mail1  
Reset  
Logic  
RST1  
Write  
Pointer  
Read  
Pointer  
36  
Status Flag  
Logic  
IRA  
AFA  
ORB  
AEB  
FIFO 1  
Programmable Flag  
Offset Registers  
FS0  
FS1  
B0 - B35  
A0 - A35  
9
FIFO 2  
ORA  
AEA  
Status Flag  
Logic  
IRB  
AFB  
36  
Read  
Pointer  
Write  
Pointer  
36  
FIFO2,  
Mail2  
Reset  
Logic  
RST2  
256 x 36  
512 x 36  
1024 x 36  
SRAM  
CLKB  
CSB  
Port-B  
Control  
Logic  
W/RB  
ENB  
MBB  
Mail 2  
Register  
MBF2  
3022 drw 01  
SyncFIFO is a trademark and the IDT logo is a registered trademark of Integrated Device Technology, Inc.  
COMMERCIAL TEMPERATURE RANGE  
DECEMBER 1996  
1996 Integrated Device Technology, Inc.  
DSC-3022/3  
For latest information contact IDT's web site at www.idt.com or fax-on-demand at 408-492-8391.  
5.22  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
asynchronous or coincident. The enables for each port are  
arranged to provide a simple bidirectional interface between  
microprocessors and/or buses with synchronous control.  
The Input Ready (IRA, IRB) and Almost-Full (AFA, AFB)  
flags of a FIFO are two-stage synchronized to the port clock  
that writes data into its array. The Output Ready (ORA, ORB)  
and Almost-Empty (AEA, AEB) flags of a FIFO are two-stage  
synchronized to the port clock that reads data from its array.  
Offset values for the Almost-Full and Almost-Empty flags of  
both FIFOs can be programmed from Port A.  
DESCRIPTION (CONTINUED)  
Full and almost Empty) to indicate when a selected number of  
words is stored in memory. Communication between each  
port may bypass the FIFOs via two 36-bit mailbox registers.  
Each mailbox register has a flag to signal when new mail has  
been stored. Two or more devices may be used in parallel to  
create wider data paths.  
TheIDT723622/723632/723642isasynchronous(clocked)  
FIFO, meaning each port employs a synchronous interface.  
All data transfers through a port are gated to the LOW-to-  
HIGH transition of a port clock by enable signals. The clocks  
for each port are independent of one another and can be  
The IDT723622/723632/723642 is characterized for op-  
eration from 0°C to 70°C.  
PIN CONFIGURATION  
NC  
B35  
B34  
B33  
B32  
GND  
B31  
B30  
B29  
B28  
B27  
B26  
VCC  
B25  
B24  
GND  
B23  
B22  
B21  
B20  
B19  
B18  
GND  
B17  
B16  
VCC  
B15  
B14  
B13  
B12  
GND  
NC  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
NC  
NC  
A35  
A34  
A33  
A32  
VCC  
A31  
A30  
GND  
A29  
A28  
A27  
A26  
A25  
A24  
A23  
GND  
A22  
VCC  
A21  
A20  
A19  
A18  
GND  
A17  
A16  
A15  
A14  
A13  
VCC  
A12  
NC  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
PQ132-1  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
NC  
84  
3022 drw 02  
PQF Package  
TOP VIEW  
NOTES:  
1. NC – no internal connection  
2. Uses Yamaichi socket IC51-1324-828  
5.22  
2
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
PIN CONFIGURATION  
B35  
B34  
B33  
B32  
GND  
B31  
B30  
B29  
B28  
B27  
B26  
VCC  
B25  
B24  
GND  
B23  
B22  
B21  
B20  
B19  
B18  
GND  
B17  
B16  
VCC  
B15  
B14  
B13  
B12  
GND  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
1
A35  
A34  
A33  
A32  
VCC  
A31  
A30  
GND  
A29  
A28  
A27  
A26  
A25  
A24  
A23  
GND  
A22  
VCC  
A21  
A20  
A19  
A18  
GND  
A17  
A16  
A15  
A14  
A13  
VCC  
A12  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
PN120-1  
3022 drw 03  
TQFP  
TOP VIEW  
5.22  
3
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
PIN DESCRIPTIONS  
Symbol  
A0-A35  
AEA  
Name  
I/O  
I/0  
O
Description  
36-bit bidirectional data port for side A.  
Programmable almost-empty flag synchronized to CLKA. It is LOW  
Port-A Data  
Port-A Almost  
-Empty Flag  
(Port A) when the number of words in FIF02 is less than or equal to the value in the  
almost-empty A offset register, X2.  
AEB  
AFA  
AFB  
Port-B Almost  
-Empty Flag  
O
Programmable almost-empty flag synchronzed to CLKB. It is LOW  
(Port B) when the number of words in FIF01 is less than or equal to the value in the  
almost-empty B offset register, X1.  
Port-A Almost  
-Full Flag  
O
Programmable almost-full flag synchronized to CLKA. It is LOW when  
(Port A) the number of empty locations in FIF01 is less than or equal to the value in  
the almost-full A offset register, Y1.  
Port-B Almost  
-Full Flag  
O
Programmable almost-full flag synchronized to CLKB. It is LOW when  
(Port B) the number of empty locations in FIF02 is less than or equal to the value in  
the almost-full B offset register, Y2.  
B0 - B35 Port-B Data  
I/O  
I
36-bit bidirectional data port for side B.  
CLKA  
CLKB  
CSA  
Port-A Clock  
CLKA is a continuous clock that synchronizes all data transfers through port A  
and can be asynchronous or coincident to CLKB. IRA, ORA, AFA, and AEA  
are all synchronized to the LOW-to-HIGH transition of CLKA.  
Port-B Clock  
I
I
CLKB is a continuous clock that synchronizes all data transfers through port B  
and can be asynchronous or coincident to CLKA. IRB, ORB, AFB, and AEB  
are synchronized to the LOW-to-HIGH transition of CLKB.  
Port-A Chip  
Select  
CSA must be LOW to enable to LOW-to-HIGH transition of CLKA to read or  
write on port A. The AO-A35 outputs are in the high-impedance state when  
CSA is HIGH.  
CSB  
Port-B Chip  
Select  
I
CSB must be LOW to enable a LOW-to-HIGH transition of CLKB to read or  
write data on port B. The BO- B35 outputs are in the high-impedance state  
when CSB is HIGH.  
ENA  
ENB  
Port-A Enable  
Port-B Enable  
I
I
I
ENA must be HIGH to enable a LOW-to-HIGH transition of CLKA to read or  
write data on port A.  
ENB must be HIGH to enable a LOW-to-HIGH transition of CLKB to read or  
write data on port B.  
FS1,  
FS0  
Flag Offset  
Selects  
The LOW-to-HIGH transition of a FlFO’s reset input latches the values of FSO  
and FS1. If either FSO or FS1 is HIGH when a reset input goes HIGH, one  
of the three preset values is selected as the offset for the FlFOs almost-full  
and almost-empty flags. If both FIFOs are reset simultaneously and both FSO  
and FS1 are LOW when RST1 and RST2 go HIGH, the first four writes to  
FIFO1 almost empty offsets for both FlFOs.  
IRA  
IRB  
MBA  
Input-Ready  
Flag  
O
IRA is synchronized to the LOW-to-HIGH transition of CLKA. When IRA is  
(Port A) LOW, FIFO1 is full and writes to its array are disabled. IRA is set LOW  
when FIFO1 is reset and is set HIGH on the second LOW-to-HIGH transition  
of CLKA after reset.  
Input-Ready  
Flag  
O
IRB is synchronized to the LOW-to-HIGH transition of CLKB. When IRB is  
(Port B) LOW, FIFO2 is full and writes to its array are disabled. IRB is set LOW when  
FIFO2 is reset and is set HIGH on the second LOW-to-HIGH transition of  
CLKB after reset.  
Port-A Mailbox  
Select  
I
A HIGH level on MBA chooses a mailbox register for a port-A read or  
write operation. When the AO-A35 outputs are active, a HIGH level on MBA  
selects data from the mail2 register for output and a LOW level selects FIF02  
output-register data for output.  
5.22  
4
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
PIN DESCRIPTIONS (CONT.)  
Symbol  
Name  
I/O  
Description  
MBB  
Port-B Mailbox  
Select  
I
A HIGH level on MBB chooses a mailbox register for a port-B read or  
write operation. When the B0-B35 outputs are active, a HIGH level on  
MBB selects data from the mail1 register or output and a LOW level selects  
FIFO1 output-register data for output.  
MBF1  
MBF2  
ORA  
Mail1 Register  
Flag  
O
O
O
MBF1 is set LOW by a LOW-to-HIGH transition of CLKA that writes data  
to the mail1 register. Writes to the mail1 register are inhibited while MBF1 is  
LOW. MBF1 is set HIGH by a LOW-to-HIGH transition of CLKB when a port-B  
read is selected and MBB is HIGH. MBF1 is set HIGH when FIFO1 is reset.  
Mail2 Register  
Flag  
MBF2 is set LOW by a LOW-to-HIGH transition of CLKB that writes data to the  
mail2 register. Writes to the mail2 register are inhibited while MBF2 is LOW.  
MBF2 is set HIGH by a LOW-to-HIGH transition of CLKA when a port-A read is  
selected and MBA is HIGH. MBF2 is also set HIGH when FIFO2 is reset.  
Output-Ready  
Flag  
ORA is synchronized to the LOW-to-HIGH transition of CLKA. When ORA is  
(Port A) LOW, FIFO2 is empty and reads from its memory are disabled. Ready data  
is present on the output register of FIFO2 when ORA is HIGH. ORA is  
forced LOW when FlFO2 is reset and goes HIGH on the third LOW-to-HIGH  
transition of CLKA after a word is loaded to empty memory.  
ORB  
Output-Ready  
Flag  
O
ORB is synchronized to the LOW-to-HIGH transition of CLKB. When ORB  
(Port B) is LOW, FlFO1 is empty and reads from its memory are disabled. Ready data  
is present on the output register of FIFO1 when ORB is HIGH. ORB is forced LOW  
when FIFO1 is reset and goes HIGH on the third LOW-to-HIGH transition of CLKB  
after a word is loaded to empty memory.  
RST1  
RST2  
FIFO1 Reset  
FIFO2 Reset  
I
To reset FIFO1, four LOW-to-HIGH transitions of CLKA and four LOW-to-HIGH  
transitions of CLKB must occur while RST1 is LOW. The LOW-to-HIGH transition  
of RST1 latches the status of FSO and FS1 for AFA and AEB offset selection.  
FIFO1 must be reset upon power up before data is written to its RAM.  
I
To reset FIFO2, four LOW-to-HIGH transitions of CLKA and four LOW-to-HIGH  
transitions of CLKB must occur while RST2 is LOW. The LOW-to-HIGH transition  
of RST2 latches the status of FSO and FS1 for AFB and AEA offset selection.  
FIFO2 must be reset upon power up before data is written to its RAM.  
W/RA  
W/RB  
Port-A Write/  
Read Select  
I
I
A HIGH selects a write operation and a LOW selects a read operation on port A  
for a LOW-to-HIGH transition of CLKA. The AO-A35 outputs are in  
the HIGH impedance state when W/RA is HIGH.  
Port-B Write/  
Read Select  
A LOW selects a write operation and a HIGH selects a read operation on port B  
for a LOW-to-HIGH transition of CLKB. The BO-B35 outputs are in the HIGH  
impedance state when W/RB is LOW.  
5.22  
5
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR TEMPERATURE RANGE (UN-  
LESS OTHERWISE NOTED)(1)  
Symbol  
VCC  
VI(2)  
Rating  
Commercial  
-0.5 to 7  
-0.5 to VCC+0.5  
-0.5 to VCC+0.5  
±20  
Unit  
V
Supply Voltage Range  
Input Voltage Range  
Output Voltage Range  
V
VO(2)  
V
IIK  
Input Clamp Current (VI < 0 or VI > VCC)  
Output Clamp Current (VO = < 0 or VO > VCC)  
Continuous Output Current (VO = 0 to VCC)  
Continuous Current Through VCC or GND  
Operating Free Air Temperature Range  
Storage Temperature Range  
mA  
mA  
mA  
mA  
°C  
°C  
IOK  
±50  
IOUT  
ICC  
±50  
±400  
TA  
0 to 70  
TSTG  
-65 to 150  
NOTES:  
1. Stressesbeyondthoselistedunder"AbsoluteMaximumRatings"maycausepermanentdamagetothedevice. Thesearestressratingsonlyandfunctional  
operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to  
absolute-maximum-rated conditions for extended periods may affect device reliability.  
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
VCC  
VIH  
Parameter  
Min. Max. Unit  
Supply Voltage  
4.5  
2
5.5  
V
V
High-Level Input Voltage  
Low-Level Input Voltage  
High-Level Output Current  
Low-Level Output Current  
VIL  
0.8  
-4  
V
IOH  
mA  
mA  
°C  
IOL  
8
TA  
Operating Free-Air  
Temperature  
0
70  
5.22  
6
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-AIR TEMPERA-  
TURE RANGE (UNLESS OTHERWISE NOTED)  
IDT723622  
IDT723632  
IDT723642  
Commerical  
tA = 15, 20, 30 ns  
Parameter  
VOH  
Test Conditions  
IOH = -4 mA  
Min. Typ.(1) Max.  
Unit  
V
VCC = 4.5V,  
VCC = 4.5 V,  
VCC = 5.5 V,  
VCC = 5.5 V,  
VCC = 5.5 V,  
VCC = 5.5 V,  
2.4  
0.5  
±5  
±5  
400  
0
VOL  
IOL = 8 mA  
V
ILI  
VI = VCC or 0  
µA  
µA  
µA  
mA  
ILO  
VO = VCC or 0  
VI = VCC -0.2 V or 0  
One Input at 3.4 V,  
ICC  
ICC(2)  
CSA = VIH  
CSB = VIH  
CSA = VIL  
A0-A35  
B0-B35  
A0-A35  
B0-35  
Other Inputs at VCC or GND  
0
1
CSB = VIL  
1
All Other Inputs  
1
CIN  
VI = 0,  
f = 1 MHz  
f = 1 MHZ  
4
pF  
pF  
COUT  
VO = 0,  
8
NOTES:  
1. All typical values are at VCC = 5V, TA = 25°C.  
2. This is the supply current when each input is at least one of the specified TTL voltage levels rather than 0V or VCC.  
5.22  
7
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
TIMING REQUIREMENTS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE AND OPER-  
ATING FREE-AIR TEMPERATURE  
723622-15  
723622-20  
723632-20  
723642-20  
723622-30  
723632-30  
723642-30  
723632-15  
723642-15  
Symbol  
fS  
Parameter  
Min. Max.  
Min. Max. Min. Max.  
50 33.4  
Unit  
MHz  
ns  
Clock Frequency, CLKA or CLKB  
Clock Cycle Time, CLKA or CLKB  
66.7  
tCLK  
15  
6
20  
8
30  
10  
10  
6
tCLKH Pulse Duration, CLKA or CLKB HIGH  
tCLKL Pulse Duration, CLKA and CLKB LOW  
ns  
6
8
ns  
tDS  
Setup Time, A0-A35 before CLKAand B0-B35  
before CLKB↑  
4
5
ns  
tENS  
Setup Time, CSA, W/RA, ENA, and MBA before  
CLKA; CSB, W/RB, ENB, and MBB before CLKB↑  
4.5  
5
5
6
6
7
ns  
ns  
ns  
ns  
ns  
ns  
tRSTS Setup Time, RST1 or RST2 LOW before CLKA↑  
or CLKB(1)  
tFSS  
Setup Time, FS0 and FS1 before RST1 and RST2  
HIGH  
7.5  
1
8.5  
1
9.5  
1
tDH  
Hold Time, A0-A35 after CLKAand B0-B35 after  
CLKB↑  
tENH  
Hold Time, CSA, W/RA, ENA, and MBA after CLKA;  
CSB, W/RB, ENB, and MBB after CLKB↑  
1
1
1
tRSTH Hold Time, RST1 or RST2 LOW after CLKAor  
CLKB(1)  
4
4
5
tFSH  
Hold Time, FS0 and FS1 after RST1 and RST2 HIGH  
2
3
9
3
ns  
ns  
tSKEW1(2) Skew Time, between CLKAand CLKBfor ORA,  
7.5  
11  
ORB, IRA, and IRB  
tSKEW2(2) Skew Time, between CLKAand CLKBfor AEA,  
12  
16  
20  
ns  
AEB, AFA, and AFB  
NOTES:  
1. Requirement to count the clock edge as one of at least four needed to reset a FIFO.  
2. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB  
cycle.  
5.22  
8
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY VOLTAGE  
AND OPERATING FREE-AIR TEMPERATURE, CL = 30 pF  
723622L15  
723632L15  
723642L15  
723622L20  
723632L20  
723642L20  
723622L30  
723632L30  
723642L30  
Min. Max.  
Symbol  
Parameter  
Min. Max. Min. Max.  
Unit  
tA  
Access Time, CLKAto A0-A35 and CLKB↑  
to B0-B35  
3
2
1
1
1
0
11  
3
2
1
1
1
0
13  
10  
10  
10  
10  
10  
3
2
1
1
1
0
15  
12  
12  
12  
12  
12  
ns  
tPIR  
tPOR  
tPAE  
tPAF  
tPMF  
Propagation Delay Time, CLKAto IRA and  
CLKBto IRB  
8
ns  
ns  
ns  
ns  
ns  
Propagation Delay Time, CLKAto ORA and  
CLKBto ORB  
8
Propagation Delay Time, CLKAto AEA and  
CLKBto AEB  
8
Propagation Delay Time, CLKAto AFA and  
and CLKBto AFB  
8
Propagation Delay Time, CLKAto MBF1 LOW or  
MBF2 HIGH and CLKBto MBF2 LOW or MBF1  
HIGH  
8
tPMR  
tMDV  
tPRF  
Propagation Delay Time, CLKAto B0-B35(1) and  
CLKBto A0-A35(2)  
3
3
1
13.5  
11  
3
3
1
15  
13  
20  
3
3
1
17  
15  
30  
ns  
ns  
ns  
Propagation Delay Time, MBA to A0-A35 valid and  
MBB to B0-B35 Valid  
Propagation Delay Time, RST1 LOW to AEB LOW,  
AFA HIGH, and MBF1 HIGH, and RST2 LOW to  
AEA LOW, AFB HIGH, and MBF2 HIGH  
15  
tEN  
Enable Time, CSA and W/RA LOW to A0-A35 Active  
and CSB LOW and W/RB HIGH to B0-B35 Active  
2
1
12  
8
2
1
13  
10  
2
1
14  
11  
ns  
ns  
tDIS  
Disable Time, CSA or W/RA HIGH to A0-A35 at  
high impedance and CSB HIGH or W/RB LOW  
to B0-B35 at HIGH impedance  
NOTES:  
1. Writing data to the mail1 register when the B0-B35 outputs are active and MBB is HIGH.  
2. Writing data to the mail2 register when the A0-A35 outputs are active and MBA is HIGH.  
5.22  
9
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
during the LOW-to-HIGH transition of its reset input. For  
example, to load the preset value of 64 into X1 and Y1, FS0  
and FS1 must be HIGH when FlFO1 reset (RST1) returns  
HIGH. Flag-offset registers associated with FIFO2 are loaded  
withoneofthepresetvaluesinthesamewaywithFIFO2reset  
(RST2). When using one of the preset values for the flag  
offsets, the FlFOs can be reset simultaneously or at different  
times.  
To program the X1, X2, Y1, and Y2 registers from port A,  
both FlFOs should be reset simultaneously with FS0 and FS1  
LOW during the LOW-to-HIGH transition of the reset inputs.  
Afterthisresetiscomplete, thefirstfourwritestoFIFO1donot  
store data in RAM but load the offset registers in the order Y1,  
X1, Y2, X2. The port A data inputs used by the offset registers  
are (A7-A0), (A8-A0), or (A9-A0) for the IDT723622,  
IDT723632, or IDT723642, respectively. The highest num-  
bered input is used as the most significant bit of the binary  
number in each case. Valid programming values for the  
registers ranges from 1 to 252 for the IDT723622; 1 to 508 for  
the IDT723632; and 1 to 1020 for the IDT723642. After all the  
offset registers are programmed from port A, the port-B input-  
ready flag (IRB) is set HIGH, and both FIFOs begin normal  
operation.  
SIGNAL DESCRIPTION  
RESET  
The FIFO memories of the IDT723622/723632/723642  
are reset separately by taking their reset (RST1, RST2) inputs  
LOWforatleastfourport-Aclock(CLKA)andfourport-Bclock  
(CLKB)LOW-to-HIGHtransitions.Theresetinputscanswitch  
asynchronously to the clocks. A FIFO reset initializes the  
internalreadandwritepointersandforcestheinput-readyflag  
(IRA, IRB) LOW, the output-ready flag (ORA, ORB) LOW, the  
almost-empty flag (AEA, AEB) LOW, and the almost-full flag  
(AFA, AFB) HIGH. Resetting a FIFO also forces the mailbox  
flag (MBF1, MBF2) of the parallel mailbox register HIGH. After  
a FlFO is reset, its input-ready flag is set HIGH after two clock  
cycles to begin normal operation. A FIFO must be reset after  
power up before data is written to its memory.  
A LOW-to HIGH transition on a FlFO reset (RST1, RST2)  
input latches the value of the flag-select (FS0, FS1) inputs for  
choosing the almost-full and almost-empty offset program-  
ming method (see almost-empty and almost-full flag offset  
programming below).  
ALMOST-EMPTY FLAG AND ALMOST-FULL FLAG OFF-  
SET PROGRAMMING  
FIFO WRITE/READ OPERATION  
FourregistersintheIDT723622/723632/723642areused  
to hold the offset values for the almost-empty and almost-full  
flags. The port-B almost-empty flag (AEB) offset register is  
labeled X1 and the port-A almost-empty flag (AEA) offset  
register is labeled X2. The port-A almost-full flag (AFA) offset  
register is labeled Y1 and the port-B almost-full flag (AFB)  
offset register is labeled Y2. The index of each register name  
corresponds to its FIFO number. The offset registers can be  
loaded with preset values during the reset of a FIFO or they  
can be programmed from port A (see Table 1 ) .  
The state of the port-A data (A0-A35) outputs is controlled  
by port-A chip select (CSA) and port-A write/read select (W/  
RA). The A0-A35 outputs are in the High-impedance state  
when either CSA or W/RA is HIGH. The A0-A35 outputs are  
active when both CSA and W/RA are LOW.  
Data is loaded into FIFO1 from the A0-A35 inputs on a  
LOW-to-HIGH transition of CLKA when CSA is LOW, W/RA is  
HIGH, ENA is HIGH , MBA is LOW, and IRA is HIGH. Data is  
read from FIFO2 to the A0-A35 outputs by a LOW-to-HIGH  
transition of CLKA when CSA is LOW, W/RA is LOW, ENA is  
HIGH, MBA is LOW, and ORA is HIGH (see Table 2). FIFO  
reads and writes on port A are independent of any concurrent  
To load a FIFO almost-empty flag and almost-full flag  
offset registers with one of the three preset values listed in  
Table1, at least one of the flag-select inputs must be HIGH  
FS1  
H
FS0  
H
X1 AND Y1 REGlSTERS(1)  
X2 AND Y2 REGlSTERS(2)  
RST1  
RST2  
X
X
64  
X
H
H
X
64  
H
L
X
16  
X
H
L
X
X
16  
L
H
X
8
X
L
H
X
X
8
L
L
Programmed from port A  
Programmed from port A  
NOTES:  
1. X1 register holds the offset for AEB; Y1 register holds the offset for AFA.  
2. X2 register holds the offset tor AEA; Y2 register holds the offset for AFB.  
Table 1. Flag Programming  
5.22  
10  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
port-B operation.  
during a clock cycle, the port’s chip select and write/read  
The port-B control signals are identical to those of port A select may change states during the setup and hold time  
with the exception that the port-B write/read select (W/RB) is window of the cycle.  
the inverse of the port-A write/read select (W/RA). The state  
When a FIFO output-ready flag is LOW, the next data  
of the port-B data (B0-B35) outputs is controlled by the port- word is sent to the FIFO output register automatically by the  
B chip select (CSB) and port-B write/read select (W/RB). The LOW-to-HIGH transition of the port clock that sets the output-  
B0-B35 outputs are in the high-impedance state when either ready flag HIGH. When the output-ready flag is HIGH, an  
CSB is HIGH or W/RB is LOW. The B0-B35 outputs are active available data word is clocked to the FIFO output register only  
when CSB is LOW and W/RB is HIGH.  
when a FIFO read is selected by the port’s chip select, write/  
Data is loaded into FIFO2 from the B0-B35 inputs on a read select, enable, and mailbox select.  
LOW-to-HIGH transition of CLKB when CSB is LOW, W/RB is  
LOW, ENB is HIGH, MBB is LOW, and IRB is HIGH. Data is SYNCHRONIZED FIFO FLAGS  
read from FIFO1 to the B0-B35 outputs by a LOW-to-HIGH  
Each FIFO is synchronized to its port clock through at  
transition of CLKB when CSB is LOW, W/RB is HIGH, ENB is least two flip-flop stages. This is done to improve flag-signal  
HIGH, MBB is LOW, and ORB is HIGH (see Table 3) . FIFO reliability by reducing the probability of metastable events  
reads and writes on port B are independent of any concurrent when CLKA and CLKB operate asynchronously to one an-  
port-A operation.  
other. ORA, AEA, IRA, and AFA are synchronized to CLKA.  
The setup and hold time constraints to the port clocks for ORB, AEB, IRB, and AFB are synchronized to CLKB. Tables  
the port chip selects and write/read selects are only for 4 and 5 show the relationship of each port flag to FIFO1 and  
enablingwriteandreadoperationsandarenotrelatedtohigh- FIF02.  
impedance control of the data outputs. If a port enable is LOW  
W/ A  
ENA  
X
MBA  
X
CLKA  
A0-A35 OUTPUTS  
In high-impedance state  
In high-impedance state  
In high-impedance state  
In high-impedance state  
Active, FIFO2 output register  
Active, FIFO2 output register  
Active, mail2 register  
PORT FUNCTION  
CSA  
H
L
R
X
H
H
H
L
X
X
None  
None  
L
X
L
H
L
FIFO1 write  
Mail1 write  
L
H
H
L
L
L
X
None  
L
L
H
L
FIFO2 read  
None  
L
L
L
H
X
L
L
H
H
Active, mail2 register  
Mail2 read (set MBF2 HIGH)  
Table 2. Port-A Enable Functlon Table  
/RB  
W
ENB  
X
MBB  
X
CLKB  
B0-B35 OUTPUTS  
In high-impedance state  
In high-impedance state  
In high-impedance state  
In high-impedance state  
Active, FIFO1 output register  
Active, FIFO1 output register  
Active, mail1 register  
PORT FUNCTION  
CSB  
H
L
X
L
X
X
None  
None  
L
X
L
L
H
L
FIFO2 write  
Mail2 write  
L
L
H
H
L
H
H
H
H
L
L
X
None  
L
H
L
FIFO1 read  
None  
L
L
H
X
L
H
H
Active, mail1 register  
Mail1 read (set MBF1 HIGH)  
Table 3. Port-B Enable Function Table  
5.22  
11  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
OUTPUT-READY FLAGS (ORA, ORB)  
occurs, simultaneously forcing the output-ready flag HIGH  
Theoutput-readyflagofaFIFOissynchronizedtotheport and shifting the word to the FIFO output register.  
clock that reads data from its array. When the output-ready A LOW-to-HIGH transition on an output-ready flag syn-  
flag is HIGH, new data is present in the FIFO output register. chronizing clock begins the first synchronization cycle of a  
When the output-ready flag is LOW, the previous data word is write if the clock transition occurs at time tSKEW1 or greater  
present in the FIFO output register and attempted FIFO reads after the write. Otherwise, the subsequent clock cycle can be  
are ignored.  
A FIFO read pointer is incremented each time a new word  
the first synchronization cycle (see Figures 7 and 8).  
is clocked to its output register. The state machine that  
controlsanoutput-readyflagmonitorsawritepointerandread  
pointer comparator that indicates when the FIFO SRAM  
status is empty, empty+1, or empty+2. From the time a word  
iswrittentoaFIFO, itcanbeshiftedtotheFIFOoutputregister  
in a minimum of three cycles of the output-ready flag synchro-  
nizing clock. Therefore, an output-ready flag is LOW if a word  
in memory is the next data to be sent to the FlFO output  
registerandthreecyclesoftheportClockthatreadsdatafrom  
the FIFO have not elapsed since the time the word was  
written. The output-ready flag of the FIFO remains LOW until  
the third LOW-to-HIGH transition of the synchronizing clock  
INPUT-READY FLAGS (IRA, IRB)  
The input-ready flag of a FlFO is synchronized to the port  
clock that writes data to its array. When the input-ready flag  
isHIGH, amemorylocationisfreeintheSRAMtoreceivenew  
data. No memory locations are free when the input-ready flag  
is LOW and attempted writes to the FIFO are ignored.  
Each time a word is written to a FIFO, its write pointer is  
incremented. The state machine that controls an input-ready  
flag monitors a write pointer and read pointer comparator that  
indicates when the FlFO SRAM status is full, full-1, or full-2.  
FromthetimeawordisreadfromaFIFO, itspreviousmemory  
locationisreadytobewritteninaminimumoftwocyclesofthe  
ynchronized  
to CLKB  
Synchronized  
to CLKA  
S
Number of Words in FIFO  
IDT723622(1,2)  
IDT723632(1,2)  
IDT723642(1,2)  
ORB  
IRA  
AEB  
AFA  
0
0
0
L
L
H
H
H
H
H
L
1 to X1  
(X1+1) to [256-(Y1+1)]  
(256-Y1) to 255  
256  
1 to X1  
(X1+1) to [512-(Y1+1)]  
(512-Y1) to 511  
512  
1 to X1  
(X1+1) to [1024-(Y1+1)]  
(1024-Y1) to 1023  
1024  
H
H
H
H
L
H
H
H
H
H
L
L
Table 4. FIF01 Flag Operatlon  
Notes:  
1. X1 is the almost-empty offset for FIFO1 used by AEB. Y1 is the almost-full offset for FIFO1 used by AFA. Both X1  
and Y1 are selected during a reset of FIFO1 or programmed from port A.  
2. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.  
ynchronized  
to CLKA  
Synchronized  
to CLKB  
S
Number of Words in FIFO  
IDT723632(1,2)  
IDT723622(1,2)  
IDT723642(1,2)  
ORA  
IRB  
AEA  
AFB  
0
0
1 to X2  
0
L
L
H
H
H
H
H
L
1 to X2  
(X2+1) to [256-(Y2+1)]  
(256-Y2) to 255  
256  
1 to X2  
(X2+1) to [1024-(Y2+1)]  
(1024-Y2) to 1023  
1024  
H
H
H
H
L
H
H
H
H
H
L
(X2+1) to [512-(Y2+1)]  
(512-Y2) to 511  
512  
L
Table 5. FIF02 Flag Operatlon  
Notes:  
1. X2 is the almost-empty offset for FIFO2 used by AEA. Y2 is the almost-full offset for FIFO2 used by AFB. Both X2 and  
Y2 are selected during a reset of FIFO2 or programmed from port A.  
2. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.  
5.22  
12  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
input-ready flag synchronizing clock. Therefore, an input- almost-empty flag and almost-full flag offset programming  
readyflagisLOWiflessthantwocyclesoftheinput-readyflag above). An almost-full flag is LOW when the number of words  
synchronizing clock have elapsed since the next memory in its FIFO is greater than or equal to (256-Y), (512-Y), or  
write location has been read. The second LOW-to-HIGH (1024-Y) for the IDT723622, IDT723632, or IDT723642 re-  
transitionontheinput-readyflagsynchronizingClockafterthe spectively. An almost-full flag is HIGH when the number of  
read sets the input-ready flag HIGH.  
words in its FIFO is less than or equal to [256-(Y+1)], [512-  
A LOW-to-HIGH transition on an input-ready flag syn- (Y+1)], or [1024-(Y+1)] for the IDT723622, IDT723632, or  
chronizing clock begins the first synchronization cycle of a IDT723642 respectively. Note that a data word present in the  
read if the clock transition occurs at time tSKEW1 or greater FIFO output register has been read from memory.  
after the read. Otherwise, the subsequent clock cycle can be  
the first synchronization cycle (see Figures 9 and 10).  
Two LOW-to-HIGH transitions of the almost-full flag syn-  
chronizing clock are required after a FIFO read for its almost-  
full flag to reflect the new level of fill. Therefore, the almost-full  
flag of a FIFO containing [256/512/1024-(Y+1)] or less words  
ALMOST-EMPTY FLAGS (AEA, AEB)  
The almost-empty flag of a FIFO is synchronized to the remains LOW if two cycles of its synchronizing clock have not  
port clock that reads data from its array. The state machine elapsed since the read that reduced the number of words in  
thatcontrolsanalmost-emptyflagmonitorsawritepointerand memory to [256/512/1024-(Y+1)]. An almost-full flag is set  
read pointer comparator that indicates when the FIFO SRAM HIGH by the second LOW-to-HIGH transition of its synchro-  
status is almost empty, almost empty+1, or almost empty+2. nizing clock after the FIFO read that reduces the number of  
The almost-empty state is defined by the contents of register words in memory to [256/512/1024-(Y+1)]. A LOW-to-HIGH  
X1 for AEB and register X2 for AEA. These registers are transition of an almost-full flag synchronizing clock begins the  
loaded with preset values during a FIFO reset or programmed first synchronization cycle if it occurs at time tSKEW2 or greater  
from port A (see almost-empty flag and almost-full flag offset after the read that reduces the number of words in memory to  
programming above). An almost empty Flag is LOW when its [256/512/1024-(Y+1)]. Otherwise, the subsequent synchro-  
FIFO contains X or less words and is HIGH when its FIFO nizing clock cycle may be the first synchronization cycle (see  
contains(X+1)ormorewords.AdatawordpresentintheFIFO Figures 13 and 14).  
output register has been read from memory.  
Two LOW-to-HIGH transitions of the almost-empty flag  
synchronizing clock are required after a FIFO write for its  
almost-empty flag to reflect the new level of fill. Therefore, the  
almost-full flag of a FIFO containing (X+1) or more words  
remains LOW if two cycles of its synchronizing clock have not  
elapsed since the write that filled the memory to the (X+1)  
level. An almost-empty flag is set HIGH by the second LOW-  
to-HIGH transition of its synchronizing clock after the FIFO  
write that fills memory to the (X+1) level. A LOW-to-HIGH  
transition of an almost-empty flag synchronizing clock begins  
the first synchronization cycle if it occurs at time tSKEW2 or  
greater after the write that fills the FIFO to (X+1) words.  
Otherwise, the subsequent synchronizing clock cycle may be  
the first synchronization cycle. (See Figures 11 and 12).  
MAILBOX REGISTERS  
Each FIFO has a 36-bit bypass register to pass command  
and control information between port A and port B without  
putting it in queue. The mailbox-select (MBA, MBB) inputs  
choose between a mail register and a FIFO for a port data  
transfer operation. A LOW-to-HIGH transition on CLKA writes  
A0-A35 data to the mail1 register when a port-A write is  
selected by CSA, W/RA, and ENA and with MBA HIGH. A  
LOW-to-HIGH transition on CLKB writes BO-B35 data to the  
mail2 register when a port-B write is selected by CSB, W/RB,  
and ENB and with MBB HIGH. Writing data to a mail register  
sets its corresponding flag (MBF1 or MBF2) LOW. Attempted  
writes to a mail register are ignored while the mail flag is LOW.  
Whendataoutputsofaportareactive, thedataonthebus  
comes from the FIFO output register when the port mailbox  
select input is LOW and from the mail register when the port-  
ALMOST-FULL FLAGS (  
,
)
AFA AFB  
The almost-full flag of a FIFO is synchronized to the port mailbox select input is HIGH. The mail1 register flag (MBF1 )  
clock that writes data to its array. The state machine that is set HIGH by a LOW-to-HIGH transition on CLKB when a  
controls an almost-full flag monitors a write pointer and read port-BreadisselectedbyCSB, W/RB, andENBandwithMBB  
pointer comparator that indicates when the FIFO SRAM HIGH. The mail2 register flag (MBF2) is set HIGH by a LOW-  
status is almost full, almost full-1, or almost full-2. The almost- to-HIGH transition on CLKA when a port-A read is selected by  
full state is defined by the contents of register Y1 for AFA and CSA, W/RA, and ENA and with MBA HIGH. The data in a mail  
register Y2 for AFB. These registers are loaded with preset register remains intact after it is read and changes only when  
values during a FlFO reset or programmed from port A (see new data is written to the register.  
5.22  
13  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLKA  
tRSTH  
CLKB  
tRSTS  
tFSS  
tFSH  
RST1  
FS1,FS0  
0,1  
tPIR  
tPIR  
IRA  
tPOR  
ORB  
tRSF  
AEB  
tRSF  
AFA  
tRSF  
MBF1  
3022 drw 04  
Figure 1. FIFO1 Reset Loading X1 and Y1 with a Preset Value of Eight(1)  
.
NOTE:  
1. FIFO2 is reset in the same manner to load X2 and Y2 with a preset value.  
CLKA  
4
tFSS  
tFSH  
RST1,  
RST2  
0,0  
FS1,FS0  
IRA  
tPIR  
(1)  
tSKEW1  
tENS  
tENH  
ENA  
tDH  
tDS  
A0 - A35  
AEA Offset  
(X2)  
AFB Offset  
(Y2)  
AEB Offset  
(X1)  
AFA Offset  
(Y1)  
First Word to FIFO1  
CLKB  
IRB  
1
2
tPIR  
3022 drw 05  
NOTES:  
1. tSKEW1 is the minimum time between the rising CLKA edge and a rising CLKB edge for IRB to transition HIGH in the next cycle. If the time between the  
rising edge of CLKA and rising edge of CLKB is less than tSKEW1, then IRB may transition HIGH one cycle later than shown.  
2. CSA = LOW, W/RA = HIGH, MBA = LOW. It is not necessary to program offset register on consecutive clock cycles.  
Figure 2. Programming the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset.  
5.22  
14  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
tCLK  
tCLKH  
tCLKL  
CLKA  
IRA  
tENS  
tENH  
tENH  
CSA  
tENS  
W/RA  
MBA  
ENA  
tENH  
tENS  
tENS  
tDS  
tENH  
tDH  
tENH  
tENS  
tENH  
tENS  
(1)  
W2(1)  
A0 - A35  
No Operation  
W1  
3022 drw 06  
NOTE:  
1. Written to FIFO1.  
Figure 3. Port-A Write Cycle Timing for FIFO1  
tCLK  
tCLKH  
tCLKL  
CLKB  
IRB  
t
ENH  
t
ENS  
ENS  
CSB  
t
ENH  
t
W/RB  
MBB  
t
ENH  
tENS  
t
ENH  
tENH  
tENH  
tENS  
tENS  
tENS  
ENB  
t
DH  
t
DS  
(1)  
W2(1)  
B0 - B35  
No Operation  
W1  
3022 drw 07  
NOTE:  
1. Written to FIFO2.  
Figure 4. Port-B Write Cycle Timing for FIFO2.  
5.22  
15  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
tCLK  
tCLKH  
tCLKL  
CLKB  
ORB  
CSB  
W/RB  
MBB  
tENS  
tENH  
tA  
tENH  
tENH  
tENS  
tENS  
ENB  
No  
tDIS  
tMDV  
tA  
Operation  
tEN  
B0 - B35  
W1(1)  
W2(1)  
W3(1)  
3022 drw 08  
NOTE:  
1. Read From FIFO1.  
Figure 5. Port-B Read Cycle Timing for FIFO1.  
tCLK  
tCLKH  
tCLKL  
CLKA  
ORA  
CSA  
W/RA  
MBA  
tENS  
tENH  
tENH  
tA  
tENH  
tENS  
tENS  
ENA  
No  
Operation  
tDMV  
tDIS  
tA  
tEN  
A0 - A35  
(1)  
W2(1)  
W3(1)  
W1  
3022 drw 09  
NOTE:  
1. Read From FIFO2.  
Figure 6. Port-A Read Cycle Timing for FIFO2.  
5.22  
16  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
tCLK  
tCLKL  
tCLKH  
CLKA  
CSA  
LOW  
HIGH  
WRA  
MBA  
tENS  
tENS  
tENH  
tENH  
ENA  
HIGH  
tDS  
tDH  
IRA  
A0 - A35  
W1  
tCLK  
(1)  
tCLKH  
tSKEW1  
tCLKL  
1
2
3
CLKB  
ORB  
tPOR  
tPOR  
Old Data in FIFO1 Output Register  
LOW  
CSB  
HIGH  
LOW  
W/RB  
MBB  
tENS  
tENH  
ENB  
tA  
B0 -B35  
Old Data in FIFO1 Output Register  
W1  
3022 drw 10  
NOTE:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for ORB to transition HIGH and to clock the next word to the FIFO1 output  
register in three CLKB cycles. If the time between the rising CLKA edge and rising CLKB edge is less than tSKEW1, then the transition of ORB HIGH and  
load of the first word to the output register may occur one CLKB cycle later than shown.  
Figure 7. ORB Flag Timing and First Data Word Fallthrough when FIFO1 is Empty.  
5.22  
17  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
tCLK  
tCLKH  
tCLKL  
CLKB  
CSB  
LOW  
LOW  
W/RB  
tENS  
tENS  
tENH  
tENH  
MBB  
ENB  
HIGH  
IRB  
tDH  
tDS  
B0 - B35  
W1  
tCLK  
(1)  
tCLKH  
tCLKL  
tSKEW1  
1
2
3
CLKA  
tPOR  
tPOR  
Old Data in FIFO2 Output Register  
ORA  
CSA  
LOW  
LOW  
LOW  
W/RA  
MBA  
tENS  
tENH  
ENA  
tA  
A0 -A35  
Old Data in FIFO2 Output Register  
W1  
3022 drw 11  
NOTE:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for ORA to transition HIGH and to clock the next word to the FIFO2 output  
register in three CLKA cycles. If the time between the rising CLKB edge and rising CLKA edge is less than tSKEW1, then the transition of ORA HIGH and  
load of the first word to the output register may occur one CLKA cycle later than shown.  
Figure 8. ORA Flag Timing and First Data Word Fallthrough when FIFO2 is Empty.  
5.22  
18  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
tCLK  
tCLKH  
tCLKL  
CLKB  
CSB  
LOW  
HIGH  
LOW  
W/RB  
MBB  
tENH  
tENS  
ENB  
HIGH  
ORB  
tA  
Previous Word in FIFO1 Output Register  
tSKEW1  
Next Word From FIFO1  
tCLK  
B0 -B35  
(1)  
tCLKH  
tCLKL  
1
2
CLKA  
tPIR  
tPIR  
IRA  
FIFO1 Full  
LOW  
CSA  
HIGH  
WRA  
MBA  
tENH  
tENH  
tDH  
tENS  
tENS  
ENA  
A0 - A35  
NOTE:  
tDS  
To FIFO1  
3022 drw 12  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for IRA to transition HIGH in the next CLKA cycle. If the time between  
the rising CLKB edge and rising CLKA edge is less than tSKEW1, then IRA may transition HIGH one CLKA cycle later than shown.  
Figure 9. IRA Flag Timing and First Available Write when FIFO1 is Full.  
5.22  
19  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
tCLK  
tCLKH  
tCLKL  
CLKA  
CSA  
LOW  
LOW  
LOW  
W/RA  
MBA  
ENA  
tENS  
tENH  
HIGH  
ORA  
tA  
Previous Word in FIFO2 Output Register  
tSKEW1  
A0 -A35  
Next Word From FIFO2  
tCLK  
(1)  
tCLKH  
tCLKL  
1
2
CLKB  
IRB  
tPIR  
tPIR  
FIFO2 FULL  
CSB  
WRB  
MBB  
LOW  
LOW  
tENS  
tENS  
tENH  
tENH  
ENB  
tDS  
tDH  
B0 - B35  
To FIFO2  
3022 drw 13  
NOTE:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for IRB to transition HIGH in the next CLKB cycle. If the time between  
the rising CLKA edge and rising CLKB edge is less than tSKEW1, then IRB may transition HIGH one CLKB cycle later than shown.  
Figure 10. IRB Flag Timing and First Available Write when FIFO2 is Full.  
CLKA  
tENS  
tENH  
ENA  
(1)  
tSKEW2  
1
2
CLKB  
AEB  
tPAE  
tPAE  
X1 Word in FIFO1  
(X1+1) Words in FIFO1  
tENS  
tENH  
ENB  
3022 drw 14  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AEB to transition HIGH in the next CLKB cycle. If the time between  
the rising CLKA edge and rising CLKB edge is less than tSKEW2, then AEB may transition HIGH one CLKB cycle later than shown.  
2. FIFO1 Write (CSA = LOW, W/RA = LOW, MBA = LOW), FIFO1 read (CSB = LOW, W/RB = HIGH, MBB = LOW). Data in the FIFO1 output register has  
been read from the FIFO.  
Figure 11. Timing for  
when FIFO2 is Almost Empty.  
AEB  
5.22  
20  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLKB  
tENH  
tENS  
ENB  
(1)  
tSKEW2  
1
2
CLKA  
AEA  
tPAE  
tPAE  
X2 Words in FIFO2  
(X2+1) Words in FIFO2  
tENS  
tENH  
ENA  
3022 drw 15  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for AEA to transition HIGH in the next CLKA cycle. If the time between  
the rising CLKB edge and rising CLKA edge is less than tSKEW2, then AEA may transition HIGH one CLKA cycle later than shown.  
2. FIFO2 Write (CSB = LOW, W/RB = LOW, MBB = LOW), FIFO2 read (CSA = LOW, W/RA = LOW, MBA = LOW). Data in the FIFO2 output register has  
been read from the FIFO.  
Figure 12. Timing for  
when FIFO2 is Almost Empty.  
AEA  
(1)  
tSKEW2  
1
2
CLKA  
ENA  
tENH  
tENS  
tPAF  
tPAF  
(D-Y1) Words in FIFO1  
[D-(Y1+1)] Words in FIFO1  
AFA  
CLKB  
ENB  
tENH  
tENS  
3022 drw 16  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AFA to transition HIGH in the next CLKA cycle. If the time between  
the rising CLKA edge and rising CLKB edge is less than tSKEW2, then AFA may transition HIGH one CLKB cycle later than shown.  
2. FIFO1 Write (CSA = LOW, W/RA = HIGH, MBA = LOW), FIFO1 read (CSB = LOW, W/RB = HIGH, MBB = LOW). Data in the FIFO1 output register has  
been read from the FIFO.  
3. D = Maximum FIFO Depth = 256 for the 723622, 512 for the 723632, 1024 for the 723642.  
Figure 13. Timing for  
when FIFO1 is Almost Full.  
AFA  
5.22  
21  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
(1)  
tSKEW2  
1
2
CLKB  
tENH  
tPAF  
tENS  
ENB  
AFB  
tPAF  
(D-Y2) Words in FIFO2  
[D-(Y2+1)] Words in FIFO2  
CLKA  
tENS  
tENH  
ENA  
3022 drw 17  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for AFB to transition HIGH in the next CLKB cycle. If the time between  
the rising CLKB edge and rising CLKA edge is less than tSKEW2, then AFB may transition HIGH one CLKA cycle later than shown.  
2. FIFO2 write (CSB = LOW, W/RB = LOW, MBB = LOW), FIFO2 read (CSA = LOW, W/RA = LOW, MBA = LOW). Data in the FIFO2 output register has  
been read from the FIFO.  
3. D = Maximum FIFO Depth = 256 for the 723622, 512 for the 723632, 1024 for the 723642.  
Figure 14. Timing for  
when FIFO2 is Almost Full.  
AFB  
CLKA  
CSA  
tENH  
tENS  
W/RA  
MBA  
ENA  
tDH  
tDS  
W1  
A0 - A35  
CLKB  
tPMF  
tPMF  
MBF1  
CSB  
W/RB  
MBB  
ENB  
tENH  
tENS  
tMDV  
tEN  
tDIS  
tPMR  
B0 - B35  
W1 (Remains valid in Mail1 Register after read)  
FIFO1 Output Register  
3022 drw 18  
Figure 15. Timing for Mail1 Register and  
Flag.  
MBF1  
5.22  
22  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
CLKB  
tENH  
tENS  
CSB  
W/RB  
MBB  
ENB  
B0 - B35  
CLKA  
tDH  
tDS  
W1  
tPMF  
tPMF  
MBF2  
CSA  
W/RA  
MBA  
ENA  
tENH  
tENS  
tEN  
tMDV  
tDIS  
tPMR  
W1 (Remains valid in Mail 2 Register after read)  
A0 - A35  
FIFO2 Output Register  
3022 drw 19  
Figure 16. Timing for Mail2 Register and  
Flag.  
MBF2  
5.22  
23  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
TYPICAL CHARACTERISTICS  
SUPPLY CURRENT  
vs  
CLOCK FREQUENCY  
300  
f
= 1/2 f  
data  
T = 25°C  
A
C = 0pF  
L
250  
V
CC = 5.5 V  
V
CC = 5.0 V  
200  
150  
100  
V
CC  
= 4.5 V  
50  
0
0
10  
20  
30  
40  
50  
60  
70  
3022 drw 18  
fs – Clock Frequency – MHz  
Figure 17.  
CALCULATING POWER DISSIPATION  
The ICC(f) current for the graph in Figure 17 was taken while simultaneously reading and writing a FIFO on the  
IDT723622/723632/723642 with CLKA and CLKB set to fs. All data inputs and data outputs change state during each  
clock cycle to consume the highest supply current. Data outputs were disconnected to normalize the graph to a zero  
capacitance load. Once the capacitance load per data-output channel and the number of IDT723622/723632/723642  
inputs driven by TTL HIGH levels are known, the power dissipation can be calculated with the equation below.  
With ICC(f) taken from Figure 17, the maximum power dissipation (PT) of the IDT723622/723632/723642 may be  
calculated by:  
PT = VCC x [ICC(f) + (N x ICC x dc)] + (CL x VCC2 X fo)  
where:  
N
=
number of inputs driven by TTL levels  
ICC=  
increase in power supply current for each input at a TTL HIGH level  
duty cycle of inputs at a TTL HIGH level of 3.4 V  
output capacitance load  
dc  
CL  
fo  
=
=
=
switching frequency of an output  
When no read or writes are occurring on the IDT723632, the power dissipated by a single clock (CLKA or CLKB) input  
running at frequency fs is calculated by:  
PT = VCC x fs x 0.184 mA/MHz  
5.22  
24  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
PARAMETER MEASUREMENT INFORMATION  
5 V  
1.1 k  
From Output  
Under Test  
30 pF(1)  
680  
PROPAGATION DELAY  
LOAD CIRCUIT  
GND  
3 V  
3 V  
Timing  
Input  
1.5 V  
High-Level  
1.5 V  
Input  
1.5 V  
1.5 V  
GND  
GND  
t
S
t
h
tW  
3 V  
3 V  
Data,  
Enable  
Input  
1.5 V  
1.5 V  
Low-Level  
1.5 V  
GND  
Input  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VOLTAGE WAVEFORMS  
PULSE DURATIONS  
3 V  
Output  
Enable  
1.5 V  
1.5 V  
tPZL  
GND  
tPLZ  
3 V  
GND  
3 V  
Input  
1.5 V  
1.5 V  
1.5 V  
Low-Level  
Output  
V
OL  
tPD  
tPZH  
tPD  
V
OH  
V
OH  
OV  
In-Phase  
Output  
1.5 V  
1.5 V  
High-Level  
Output  
1.5 V  
V
tPHZ  
OL  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
3022 drw 20  
NOTE:  
1. Includes probe and jig capacitance.  
Figure 18. Load Circuit and Voltage Waveforms.  
5.22  
25  
IDT723622/723632/723642 CMOS SyncBiFIFO  
256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2  
COMMERCIAL TEMPERATURE RANGE  
ORDERING INFORMATION  
IDT  
XXXXXX  
X
XX  
X
X
Device Type Power  
Speed  
Package  
Process/  
Temperature  
Range  
BLANK Commercial (0°C to +70°C)  
PF  
PQF  
Thin Quad Flat Pack  
Plastic Quad Flat Pack  
15  
20  
30  
Commercial Only  
Clock Cycle Time (tCLK)  
Speed in Nanoseconds  
L
Low Power  
723622 256 x 36 Synchronous BiFIFO  
723632 512 x 36 Synchronous BiFIFO  
723642 1024 x 36 Synchronous BiFIFO  
3022 drw 22  
5.22  
26  

相关型号:

IDT723622L15PQFG

FIFO, 256X36, 10ns, Synchronous, CMOS, PQFP132, PLASTIC, QFP-132
IDT

IDT723622L20PF

CMOS SyncBiFIFOO 256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2
IDT

IDT723622L20PFI

FIFO, 256X36, 12ns, Synchronous, CMOS, PQFP120, TQFP-120
IDT

IDT723622L20PQF

CMOS SyncBiFIFOO 256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2
IDT

IDT723622L20PQFI

暂无描述
IDT

IDT723622L30PF

CMOS SyncBiFIFOO 256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2
IDT

IDT723622L30PQF

CMOS SyncBiFIFOO 256 x 36 x 2, 512 x 36 x 2, 1024 x 36 x 2
IDT

IDT723623

CMOS BUS-MATCHING SyncFIFOTM 256 x 36, 512 x 36, 1,024 x 36
GOOD-ARK

IDT723623L12

CMOS BUS-MATCHING SyncFIFOTM 256 x 36, 512 x 36, 1,024 x 36
GOOD-ARK

IDT723623L12PF

CMOS BUS-MATCHING SyncFIFOTM 256 x 36, 512 x 36, 1,024 x 36
GOOD-ARK

IDT723623L12PF

FIFO, 256X36, 8ns, Synchronous, CMOS, PQFP128, TQFP-128
IDT

IDT723623L12PF8

FIFO, 256X36, 8ns, Synchronous, CMOS, PQFP128, TQFP-128
IDT