IDT723666L12PFG8 [IDT]

FIFO, 4KX36, 8ns, Synchronous, CMOS, PQFP128, TQFP-128;
IDT723666L12PFG8
型号: IDT723666L12PFG8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FIFO, 4KX36, 8ns, Synchronous, CMOS, PQFP128, TQFP-128

先进先出芯片
文件: 总39页 (文件大小:383K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CMOS TRIPLE BUS SyncFIFOTM WITH BUS-MATCHING  
2,048 x 36 x 2  
4,096 x 36 x 2  
8,192 x 36 x 2  
IDT723656  
IDT723666  
IDT723676  
five default offsets (8, 16, 64, 256 and 1024)  
FEATURES  
Serial or parallel programming of partial flags  
Big- or Little-Endian format for word and byte bus sizes  
Loopback mode on Port A  
Retransmit Capability  
Master Reset clears data and configures FIFO, Partial Reset  
clears data but retains configuration settings  
Memory storage capacity:  
IDT723656  
IDT723666  
IDT723676  
2,048 x 36 x 2  
4,096 x 36 x 2  
8,192 x 36 x 2  
Clock frequencies up to 83 MHz (8ns access time)  
Two independent FIFOs buffer data between one bidirectional  
36-bit port and two unidirectional 18-bit ports (Port C receives  
and Port B transmits)  
18-bit (word) and 9-bit (byte) bus sizing of 18 bits (word) on  
Ports B and C  
Select IDT Standard timing (using EFA , EFB , FFA , and FFC flag  
functions) or First Word Fall Through Timing (using ORA, ORB,  
IRA, and IRC flag functions)  
Mailbox bypass registers for each FIFO  
Free-running CLKA, CLKB and CLKC may be asynchronous or  
coincident (simultaneous reading and writing of data on a single  
clock edge is permitted)  
Auto power down minimizes power dissipation  
Available in a space-saving 128-pin Thin Quad Flatpack (TQFP)  
Pin compatible to the lower density parts, IDT723626/3636/3646  
Industrial temperature range (–40°C to +85°C) is available  
Programmable Almost-Empty and Almost-Full flags; each has  
FUNCTIONAL BLOCK DIAGRAM  
MBF1  
Mail 1  
CLKA  
CSA  
W/RA  
ENA  
MBA  
LOOP  
Register  
Port-A  
Control  
Logic  
18  
B0-B17  
RAM ARRAY  
2,048 x 36  
4,096 x 36  
8,192 x 36  
36  
36  
CLKB  
RENB  
CSB  
Port-B  
Control  
Logic  
FIFO1,  
Mail1  
Reset  
Logic  
MRS1  
PRS1  
MBB  
Read  
Pointer  
Write  
Pointer  
SIZEB  
36  
Status Flag  
Logic  
FFA/IRA  
EFB/ORB  
AFA  
AEB  
FIFO1  
FIFO2  
Common  
Port  
FS2  
FS0/SD  
Control  
Logic  
Programmable Flag  
Offset Registers  
Timing  
Mode  
BE  
FS1/SEN  
(B and C)  
A0-A35  
13  
FWFT  
FFC/IRC  
AFC  
Status Flag  
Logic  
EFA/ORA  
AEA  
Read  
Pointer  
Write  
Pointer  
FIFO2,  
Mail2  
Reset  
Logic  
MRS2  
PRS2  
36  
RT1  
RTM  
RT2  
FIFO1 and  
FIFO2  
Retransmit  
Logic  
RAM ARRAY  
2,048 x 36  
4,096 x 36  
8,192 x 36  
18  
36  
36  
C0-C17  
CLKC  
WENC  
MBC  
Port-C  
Control  
Logic  
Mail 2  
Register  
SIZEC  
5611 drw01  
MBF2  
IDTandtheIDTlogoareregisteredtrademarkofIntegratedDeviceTechnology,Inc. SyncFIFOisatrademarkofIntegratedDeviceTechnology,Inc.  
NOVEMBER 2003  
COMMERCIAL TEMPERATURE RANGE  
1
2003 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
DSC-5611/4  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
18-bitbuses(PortBtransmitsdata,PortCreceivesdata.) FIFOdatacanbe  
readoutofPortBandwrittenintoPortCusingeither18-bitor9-bitformatswith  
achoiceofBig-orLittle-Endianconfigurations.  
These devices are a synchronous (clocked) FIFO, meaning each port  
employsasynchronousinterface. Alldatatransfersthroughaportaregated  
totheLOW-to-HIGHtransitionofaportclockbyenablesignals. Theclocksfor  
DESCRIPTION  
The IDT723656/723666/723676 is a monolithic, high-speed, low-power,  
CMOSTripleBussynchronous(clocked)FIFOmemorywhichsupportsclock  
frequencies up to 83 MHz and has read access times as fast as 8ns. Two  
independent2,048/4,096/8,192x36dual-portSRAMFIFOs onboardeach  
chipbufferdatabetweenabidirectional36-bitbus(PortA)andtwounidirectional  
PIN CONFIGURATION  
INDEX  
1
2
3
4
5
6
7
8
CLKB  
PRS2/RT2  
LOOP  
C17  
C16  
C15  
W/RA  
ENA  
CLKA  
GND  
A35  
A34  
A33  
A32  
Vcc  
A31  
A30  
GND  
A29  
A28  
A27  
A26  
A25  
A24  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
C14  
RTM  
MBC  
C13  
C12  
C11  
C10  
C9  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
C8  
VCC  
C7  
C6  
SIZEB  
GND  
C5  
C4  
C3  
C2  
C1  
A23  
BE/FWFT  
GND  
A22  
Vcc  
A21  
A20  
A19  
A18  
GND  
A17  
A16  
A15  
A14  
A13  
Vcc  
A12  
GND  
A11  
A10  
C0  
GND  
B17  
B16  
SIZEC  
VCC  
B15  
B14  
B13  
B12  
GND  
B11  
B10  
5611 drw02  
TQFP (PK128-1, order code: PF)  
TOP VIEW  
2
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
each port are independent of one another and can be asynchronous or aselectednumberofwordsremainintheFIFOmemory. AFAandAFCindicate  
coincident. The enables for each port are arranged to provide a simple whenthe FIFOcontains more thana selectednumberofwords.  
bidirectionalinterfacebetweenmicroprocessorsand/orbuseswithsynchro-  
nouscontrol.  
FFA/IRA,FFC/IRC,AFAand AFCaretwo-stagesynchronizedtothePort  
Clockthatwritesdataintoitsarray. EFA/ORA,EFB/ORB,AEA,andAEBare  
CommunicationbetweeneachportmaybypasstheFIFOsviatwomailbox two-stage synchronized to the Port Clock that reads data from its array.  
registers. Themailboxregisters'widthmatchestheselectedbuswidthofports Programmableoffsets forAEA, AEB,AFA,AFCareloaded inparallelusing  
BandC. Eachmailboxregisterhas aflag(MBF1and MBF2)tosignalwhen PortAorinserialviatheSDinput. Fivedefaultoffsetsettingsarealsoprovided.  
newmailhas beenstored.  
TheAEAandAEBthresholdcanbesetat8,16, 64,256,and1,024locations  
TwokindsofresetareavailableontheseFIFOs:MasterResetandPartial fromtheemptyboundaryandtheAFAandAFCthresholdcanbesetat8,16,  
Reset. MasterResetinitializesthereadandwritepointerstothefirstlocation 64,256or1,024locationsfromthefullboundary. Allthesechoicesaremade  
ofthememoryarrayandselectsserialflagprogramming,parallelflagprogram- using the FS0, FS1 and FS2 inputs during Master Reset.  
ming,or oneoffivepossibledefaultflagoffsetsettings,8,16,64,256or1,024.  
InterspersedParitycanalsobeselectedduringaMasterResetoftheFIFO.  
Each FIFO has its own, independent Master Reset pin, MRS1 and MRS2. IfInterspersedParityisselectedthenduringparallelprogrammingoftheflag  
PartialResetalsosetsthereadandwritepointerstothefirstlocationofthe offsetvalues,thedevicewillignoredatalineA8. IfNon-InterspersedParityis  
memory. UnlikeMasterReset,anysettingsexistingpriortoPartialReset(i.e., selectedthendatalineA8willbecomeavalidbit.  
programmingmethodandpartialflagdefaultoffsets)areretained. PartialReset  
ALoopbackfunctionisprovidedonPortA. WhentheLoopfeatureisselected  
is useful since it permits flushing of the FIFO memory without changing any viatheLOOPpin,thedataoutputfromFIFO2willbedirectedtothedatainput  
configurationsettings. EachFIFOhasitsown,independentPartialResetpin, ofFIFO1. IfLoopisselectedandPortAisset-upforwriteoperationviaW/RA  
PRS1andPRS2. NotethattheRetransmitMode,RTMpinmustbeLOWatthe pin,thendataoutputfromFIFO2willbewrittentoFIFO1,butwillnotbeplaced  
pointapartialresetisperformed.  
ontheoutputPortA(A0-A35). IfPortAisset-upforreadoperationviaW/RA  
BothFIFO'shaveRetransmitcapability,whenaRetransmitisperformedon thendataoutputfromFIFO2willbewrittenintoFIFO1andplacedontoPortA  
arespectiveFIFOonlythereadpointerisresettothefirstmemorylocation. A (A0-A35). TheLoopwillcontinuetohappenprovidedthatFIFO1isnotfulland  
RetransmitisperformedbyusingtheRetransmitMode,RTMpininconjunction FIFO2isnotempty. IfduringaLoopsequenceFIFO1becomesfullthenany  
withtheRetransmitpinsRT1orRT2,foreachrespectiveFIFO. Notethatthe datathatcontinues tobereadoutfromFIFO2willonlybeplacedonthePort  
twoRetransmitpins RT1andRT2 are muxedwiththe PartialResetpins.  
A (A0-A35) lines, provided that Port A is set-up for read operation. If during  
Thesedeviceshavetwomodesofoperation:IntheIDTStandardmode,the aLoopsequencetheFIFO2becomesempty,thenthelastwordfromFIFO2  
firstwordwrittentoanemptyFIFOisdepositedintothememoryarray. Aread willcontinuetobeclockedintoFIFO1untilFIFO1becomesfulloruntiltheLoop  
operationisrequiredtoaccessthatword(alongwithallotherwordsresiding functionisstopped. TheLoopfeaturecanbeusefulwhenperformingsystem  
inmemory). IntheFirstWordFallThroughmode(FWFT),thefirstwordwritten debuggingandremoteloopbacks.  
to an empty FIFO appears automatically on the outputs, no read operation  
TwoormoreFIFOsmaybeusedinparalleltocreatewiderdatapaths. Such  
required (Nevertheless, accessing subsequent words does necessitate a awidthexpansionrequiresnoadditional,externalcomponents. Furthermore,  
formal read request). The state of the BE/FWFT pin during Master Reset twoIDT723656/723666/723676FIFOscanbecombinedwithunidirectional  
determinesthemodeinuse.  
FIFOs capable of First Word Fall Through timing (i.e. the SuperSync FIFO  
EachFIFOhasacombinedEmpty/OutputReadyFlag(EFA/ORAandEFB/ family)toformadepthexpansion.  
ORB)anda combinedFull/InputReadyFlag(FFA/IRAand FFC/IRC). The  
If, at any time, the FIFO is not actively performing a function, the chip will  
EF and FF functions are selected in the IDT Standard mode. EF indicates automatically power down. During the power down state, supply current  
whetherornottheFIFOmemoryisempty. FFshowswhetherthememoryis consumption(ICC)isataminimum. Initiatinganyoperation(byactivatingcontrol  
fullornot. TheIRandORfunctionsareselectedintheFirstWordFallThrough inputs)willimmediatelytakethedeviceoutofthepowerdownstate.  
mode. IRindicateswhetherornottheFIFOhasavailablememorylocations.  
ORshowswhethertheFIFOhasdataavailableforreadingornot. Itmarksthe to70°C. Industrialtemperaturerange(-40°Cto+85°C)isavailablebyspecial  
presenceofvaliddataontheoutputs. order. They are fabricated using IDTs high speed, submicron CMOS  
TheIDT723656/723666/723676arecharacterizedforoperationfrom0°C  
EachFIFOhasaprogrammableAlmost-Emptyflag(AEAandAEB)anda technology.  
programmableAlmost-Fullflag(AFAandAFC). AEAandAEB indicatewhen  
3
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
PINDESCRIPTIONS  
Symbol  
Name  
PortAData  
I/O  
Description  
A0-A35  
I/O 36-bitbidirectionaldataportforsideA.  
AEA  
PortAAlmost-  
EmptyFlag  
O
O
O
O
ProgrammableAlmost-EmptyflagsynchronizedtoCLKA. ItisLOWwhenthenumberofwordsinFIFO2  
islessthanorequaltothevalueintheAlmost-EmptyAOffsetregister,X2.  
AEB  
AFA  
AFC  
PortBAlmost-  
EmptyFlag  
ProgrammableAlmost-EmptyflagsynchronizedtoCLKB. ItisLOWwhenthenumberofwordsinFIFO1  
islessthanorequaltothevalueintheAlmost-EmptyBOffsetregister,X1.  
PortAAlmost-  
Full Flag  
ProgrammableAlmost-FullflagsynchronizedtoCLKA.ItisLOWwhenthenumberofemptylocations  
inFIFO1is less thanorequaltothevalueintheAlmost-FullAOffsetregister,Y1.  
PortCAlmost-  
Full Flag  
ProgrammableAlmost-FullflagsynchronizedtoCLKC.ItisLOWwhenthenumberofemptylocations  
inFIFO2is less thanorequaltothe value inthe Almost-FullCOffsetregister, Y2.  
B0-B17  
PortBData  
O
I
18-bitoutputdataportforsideB.  
BE/FWFT  
Big-Endian/  
FirstWordFall  
ThroughSelect  
This is a dual purpose pin. During Master Reset, a HIGH on BE will select Big-Endian operation.  
In this case, depending on the bus size, themost significant byte or word on Port A is read from  
PortBfirst(A-to-Bdata flow)oris writtentoPortCfirst(C-to-Adata flow). ALOWonBEwillselect  
Little-Endianoperation.Inthis case,theleastsignificantbyteorwordonPortAis readfromPortBfirst  
(A-to-Bdata flow)oris writtentoPortCfirst(C-to-Adata flow).  
AfterMasterReset,thispinselectsthetimingmode.AHIGHonFWFTselectsIDTStandardmode,a  
LOWselectsFirstWordFallThroughmode.Oncethetimingmodehasbeenselected,thelevelon  
FWFTmustbestaticthroughoutdeviceoperation.  
C0-C17  
CLKA  
PortC Data  
PortAClock  
I
I
18-bitinputdataportforsideC.  
CLKAis acontinuous clockthatsynchronizes alldatatransfers throughPortAandcanbe  
asynchronous or coincident to CLKB. FFA/IRA, EFA/ORA, AFA, and AEA are all synchronized to  
theLOW-to-HIGHtransitionofCLKA.  
CLKB  
CLKC  
CSA  
PortBClock  
PortCClock  
I
I
CLKBis acontinuous clockthatsynchronizes alldatatransfers throughPortBandcanbeasynchronous  
orcoincidenttoCLKA. EFB/ORBandAEBaresynchronizedtotheLOW-to-HIGHtransitionofCLKB.  
CLKCis acontinuous clockthatsynchronizes alldatatransfers throughPortCandcanbeasynchronous  
or coincident to CLKA. FFC/IRC and AFC are synchronized to the LOW-to-HIGHtransitionof CLKC.  
Port A Chip  
Select  
I
CSA mustbe LOWtoenable toLOW-to-HIGHtransitionofCLKAtoreadorwrite onPortA. The A0-A35  
outputsareinthehigh-impedancestatewhenCSAisHIGH.  
CSB  
Port B Chip  
Select  
I
CSB mustbe LOWtoenable a LOW-to-HIGHtransitionofCLKBtoreaddata onPortB. The B0-B17  
outputsareinthehigh-impedancestatewhenCSBisHIGH.  
EFA/ORA  
PortAEmpty/  
OutputReady  
Flag  
O
This is a dualfunctionpin. Inthe IDTStandardmode, the EFA functionis selected. EFA indicates  
whetherornotthe FIFO2memoryis empty. Inthe FWFTmode, the ORAfunctionis selected. ORA  
indicates the presence ofvaliddata onthe A0-A35outputs, available forreading. EFA/ORAis  
synchronizedtotheLOW-to-HIGHtransitionofCLKA.  
EFB/ORB  
PortBEmpty/  
OutputReadyFlag  
O
This is a dualfunctionpin. Inthe IDTStandardmode, the EFB functionis selected. EFB indicates  
whetherornotthe FIFO1memoryis empty. Inthe FWFTmode, the ORBfunctionis selected. ORB  
indicatesthepresenceofvaliddataontheB0-B17outputs,availableforreading. EFB/ORBissynchronized  
totheLOW-to-HIGHtransitionofCLKB.  
ENA  
PortAEnable  
I
ENAmustbe HIGHtoenable a LOW-to-HIGHtransitionofCLKAtoreadorwrite data onPortA.  
FFA/IRA  
PortAFull/  
Input Ready Flag  
O
This is a dualfunctionpin. Inthe IDTStandardmode, the FFA functionis selected. FFA indicates  
whetherornotthe FIFO1memoryis full. Inthe FWFTmode, the IRAfunctionis selected. IRA  
indicates whetherornotthere is space available forwritingtothe FIFO1memory. FFA/IRAis  
synchronizedtotheLOW-to-HIGHtransitionofCLKA.  
FFC/IRC  
Port C Full/  
Input Ready Flag  
O
This is a dualfunctionpin. Inthe IDTStandardmode, the FFCfunctionis selected. FFC indicates  
whether or not the FIFO2 memory is full. In the FWFT mode, the IRC function is selected. IRC  
indicates whether or not there is space available for writing to the FIFO2 memory. FFC/IRCis  
synchronizedtotheLOW-to-HIGHtransitionofCLKC.  
4
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
PINDESCRIPTIONS(CONTINUED)  
Symbol  
Name  
I/O  
Description  
FS0/SD  
FlagOffsetSelect0/  
SerialData  
I
FS1/SENandFS0/SDaredual-purposeinputsusedforflagOffsetregisterprogramming.DuringMasterReset,  
FS1/SENandFS0/SD,togetherwithFS2,selecttheflagoffsetprogrammingmethod. ThreeOffsetregister  
programming methods are available: automatically load one of five preset values (8, 16, 64, 256 or 1,024),  
parallelloadfromPortA, andserialload.  
FS1/SEN FlagOffsetSelect1/  
I
I
SerialEnable  
WhenserialloadisselectedforflagOffsetregisterprogramming,FS1/SEN isusedasanenablesynchronousto  
the LOW-to-HIGHtransitionofCLKA. WhenFS1/SEN is LOW, a risingedge onCLKAloadthe bitpresenton  
FS0/SDintothe XandYregisters. The numberofbitwrites requiredtoprogramthe Offsetregisters is 44forthe  
IDT723656, 48 for the IDT723666, and 52 for the IDT723676. The first bit write stores the Y-register (Y1) MSB  
andthelastbitwritestores theX-register(X2)LSB.  
FS2(1)  
FlagOffsetSelect2  
LOOP  
LoopbackSelect  
I
I
This pinselects theloopbackfeatureforPortA.DuringLoopbackdatafromFIFO2willbedirectedtotheinputof  
FIFO1. toinitiate a Loopthe LOOP pinmustbe heldLOWandthe ENApinmustbe HIGH.  
MBA  
Port A Mailbox  
Select  
A HIGH level on MBA chooses a mailbox register for a Port A read or write operation. When the A0-A35  
outputsareactive,aHIGHlevelonMBAselectsdatafromthemail2registerforoutputandaLOWlevelselects  
FIFO2output-registerdataforoutput.  
MBB  
Port B Mailbox  
Select  
I
I
A HIGH level on MBB chooses a mailbox register for a Port B read operation. When the B0-B17 outputs are  
active,aHIGHlevelonMBBselectsdatafromthemail1registerforoutputandaLOWlevelselectsFIFO1output  
registerdataforoutput.  
MBC  
Port C Mailbox  
Select  
A HIGH level on MBC chooses the mail2 register for a Port C write operation. This pin must be HIGH during  
MasterReset.  
MBF1  
Mail1Register  
Flag  
O MBF1issetLOWbyaLOW-to-HIGHtransitionofCLKAthatwritesdatatothemail1register.Writestothemail1  
register are inhibited while MBF1 is LOW. MBF1 is set HIGH by a LOW-to-HIGH transition of CLKB when a  
Port B read is selected and MBB is HIGH. MBF1 is set HIGH following either a Master or Partial Reset of FIFO1.  
MBF2  
MRS1  
Mail2Register  
Flag  
O MBF2issetLOWbyaLOW-to-HIGHtransitionofCLKCthatwritesdatatothemail2register.Writestothemail2  
registerare inhibitedwhile MBF2 is LOW. MBF2 is setHIGHbya LOW-to-HIGHtransitionofCLKAwhena  
Port A read is selected and MBA is HIGH. MBF2 is set HIGH following either a Master or Partial Reset of FIFO2.  
MasterReset  
I
ALOWonthis pin initializes theFIFO1readandwritepointers tothefirstlocationofmemoryandsets thePortB  
outputregistertoallzeroes. ALOW-to-HIGHtransitiononMRS1selectstheprogrammingmethod(serialor  
parallel)andone offive programmable flagdefaultoffsets forFIFO1andFIFO2. Italsoconfigures ports Band  
Cforbus size andendianarrangement. FourLOW-to-HIGHtransitions ofCLKAandfourLOW-to-HIGH  
transitionsofCLKBmustoccurwhileMRS1isLOW.  
MRS2  
MasterReset  
I ALOWonthispininitializestheFIFO2readandwritepointerstothefirstlocationofmemoryandsetsthePortA  
outputregistertoallzeroes. ALOW-to-HIGHtransitiononMRS2,toggledsimultaneouslywithMRS1,selects  
theprogrammingmethod(serialorparallel)andoneof thefiveflagdefaultoffsetsforFIFO2.FourLOW-to-HIGH  
transitionsofCLKAandfourLOW-to-HIGHtransitionsofCLKCmustoccurwhileMRS2isLOW.  
PRS1/  
RT1  
PartialReset/  
RetransmitFIFO1  
I
ThispinismuxedforbothPartialReset andRetransmitoperations,itisusedinconjunctionwiththeRTMpin. IfRTM  
isinaLOWcondition,aLOWonthispinperformsaPartialResetonFIFO1andinitializestheFIFO1readandwrite  
pointerstothefirstlocationofmemoryandsetsthePortBoutputregistertoallzeroes.DuringPartialReset,thecurrently  
selectedbussize,endianarrangement,programmingmethod(serialorparallel),andprogrammableflagsettingsare  
allretained. IfRTMis HIGH, a LOWonthis pinperforms a Retransmitandinitializes the FIFO1readpointeronlyto  
thefirstmemorylocation.  
PRS2/  
PartialReset/  
I ThispinismuxedforbothPartialReset andRetransmitoperations,itisusedinconjunctionwiththeRTMpin. IfRTM  
RT2  
RetransmitFIFO2  
isinaLOWcondition,aLOWonthispinperformsaPartialResetonFIFO2andinitializestheFIFO2readandwrite  
selectedbussize,endianarrangement,programmingmethod(serialorparallel),andprogrammableflagsettingsare  
allretained. IfRTMis HIGH, a LOWonthis pinperforms a Retransmitandinitializes the FIFO2readpointeronlyto  
thefirstmemorylocation.  
RENB  
RTM  
Port B Read Enable  
RetransmitMode  
I
RENBmustbe HIGHtoenable a LOW-to-HIGHtransitionofCLKBtoreaddata onPortB.  
I
Thispinisusedinconjunctionwiththe RT1andRT2pins.WhenRTMisHIGHaRetransmitisperformedonFIFO1  
or FIFO2 respectively.  
5
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
PINDESCRIPTIONS(CONTINUED)  
Symbol  
Name  
PortB  
I/O  
Description  
(1)  
SIZEB  
I
SIZEBdetermines the bus widthofPortB. AHIGHonthis pinselects byte (9-bit)bus size. ALOWonthis pin  
selects word(18-bit)bus size. SIZEBworks withSIZECandBEtoselectthe bus size andendianarrangement  
forports BandC. The levelofSIZEBmustbe staticthroughoutdevice operation.  
BusSizeSelect  
(1)  
SIZEC  
Port C  
BusSizeSelect  
I
SIZEC determines the bus width of Port C. A HIGH on this pin selects byte (9-bit) bus size. A LOW on this pin  
selects word(18-bit)bus size. SIZECworks withSIZEBandBEtoselectthe bus size andendianarrangement  
forports BandC. The levelofSIZECmustbe staticthroughoutdevice operation.  
WENC  
W/RA  
PortCWriteEnable  
PortAWrite/  
ReadSelect  
I
I
WENCmustbeHIGHtoenableaLOW-to-HIGHtransitionofCLKCtowritedataonPortC.  
AHIGHselects a write operationanda LOWselects a readoperationonPortAfora LOW-to-HIGHtransitionof  
CLKA. The A0-A35outputs are inthe HIGHimpedance state whenW/RAis HIGH.  
NOTE:  
1. FS2, SIZEB and SIZEC inputs are not TTL compatible. These inputs should be tied to GND or VCC.  
6
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR  
TEMPERATURE RANGE (Unless otherwise noted)(1)  
Symbol  
Rating  
Commercial  
–0.5to+7.0  
–0.5 to VCC+0.5  
–0.5 to VCC+0.5  
±20  
Unit  
V
VCC  
SupplyVoltageRange  
InputVoltageRange  
OutputVoltageRange  
(2)  
VI  
V
(2)  
VO  
V
IIK  
Input Clamp Current (VI < 0 or VI > VCC)  
Output Clamp Current (VO = < 0 or VO > VCC)  
Continuous Output Current (VO = 0 to VCC)  
Continuous Current Through VCC or GND  
StorageTemperatureRange  
mA  
mA  
mA  
mA  
°C  
IOK  
±50  
IOUT  
ICC  
±50  
±400  
TSTG  
–65 to 150  
NOTES:  
1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these  
or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect  
device reliability.  
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.  
RECOMMENDEDOPERATINGCONDITIONS  
Symbol  
VCC  
VIH  
Parameter  
SupplyVoltage  
Min.  
4.5  
2
Max.  
5.5  
0.8  
–4  
Unit  
V
HIGH Level Input Voltage  
LOW-LevelInputVoltage  
HIGH-Level Output Current  
LOW-Level Output Current  
OperatingFree-airTemperature  
V
VIL  
0
V
IOH  
mA  
mA  
°C  
IOL  
8
TA  
70  
ELECTRICALCHARACTERISTICSOVERRECOMMENDEDOPERATINGFREE-  
AIR TEMPERATURE RANGE(Unless otherwise noted)  
IDT723656  
IDT723666  
IDT723676  
Commercial  
tCLK = 12, 15ns  
Symbol  
VOH  
VOL  
Parameter  
OutputLogic"1"Voltage  
Test Conditions  
IOH = –4 mA  
Min.  
2.4  
Typ.(1)  
4
Max.  
0.5  
±10  
±10  
8
Unit  
V
VCC = 4.5V,  
VCC = 4.5V,  
VCC = 5.5V,  
VCC = 5.5V,  
OutputLogic"0"Voltage  
IOL = 8 mA  
V
ILI  
InputLeakageCurrent(AnyInput)  
OutputLeakageCurrent  
VI = VCC or 0  
µ A  
µ A  
mA  
mA  
pF  
ILO  
VO = VCC or 0  
VI = VCC –0.2V or 0V  
VI = VCC –0.2V or 0V  
f = 1 MHz  
ICC2(2)  
ICC3(2)  
Standby Current (with CLKA, CLKB and CLKC running) VCC = 5.5V,  
StandbyCurrent(noclocksrunning)  
InputCapacitance  
VCC = 5.5V,  
VI = 0,  
1
(3)  
CIN  
(3)  
COUT  
OutputCapacitance  
VO = 0,  
f = 1 MHZ  
8
pF  
NOTES:  
1. All typical values are at VCC = 5V, TA = 25°C.  
2. For additional ICC information, see Figure 1, Typical Characteristics: Supply Current (ICC) vs. Clock Frequency (fS).  
3. Characterized values, not currently tested.  
4. Industrial temperature range is available by special order.  
7
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
DETERMINING ACTIVE CURRENT CONSUMPTION AND POWER DISSIPATION  
The ICC(f) current for the graph in Figure 1 was taken while simultaneously reading and writing a FIFO on the IDT723656/723666/723676 with CLKA,  
CLKBandCLKCsettofS. Alldata inputs anddata outputs change state duringeachclockcycle toconsume the highestsupplycurrent. Data outputs were  
disconnectedtonormalizethegraphtoazerocapacitanceload. Oncethecapacitanceloadperdata-outputchannelandthenumberofthesedevice'sinputs  
driven by TTL HIGH levels are known, the power dissipation can be calculated with the equation below.  
CALCULATING POWER DISSIPATION  
WithICC(f) takenfromFigure 1, the maximumpowerdissipation(PT)ofthese FIFOs maybe calculatedby:  
2
PT = VCC x [ICC(f) + (N x ICC x dc)] + Σ(CL x VCC X fo)  
N
where:  
N
ICC  
dc  
CL  
fo  
=
=
=
=
=
number of inputs driven by TTL levels  
increase in power supply current for each input at a TTL HIGH level  
duty cycle of inputs at a TTL HIGH level of 3.4V  
outputcapacitanceload  
switchingfrequencyofanoutput  
300  
250  
200  
150  
f
data = 1/2 fS  
T
A
= 25oC  
L = 0 pF  
C
V
CC = 5.5V  
VCC = 5.0V  
V
CC = 4.5V  
100  
50  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
5611 drw02a  
fS  
Clock Frequency MHz  
Figure 1. Typical Characteristics: Supply Current (ICC) vs. Clock Frequency (fS)  
8
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
TIMING REQUIREMENTS OVER RECOMMENDED RANGES OF SUPPLY  
VOLTAGE AND OPERATING FREE-AIR TEMPERATURE  
(Commercial: VCC = 5V ± 10%, TA = 0°C to +70°C)  
Commercial  
IDT723656L12 IDT723656L15  
IDT723666L12 IDT723666L15  
IDT723676L12 IDT723676L15  
Symbol  
fS  
Parameter  
Min.  
12  
5
Max.  
83  
Min.  
15  
6
Max.  
66.7  
Unit  
MHz  
ns  
Clock Frequency, CLKA, CLKB, or CLKC  
tCLK  
tCLKH  
tCLKL  
tDS  
Clock Cycle Time, CLKA, CLKB, or CLKC  
Pulse Duration, CLKA, CLKB, or CLKC HIGH  
Pulse Duration, CLKA, CLKB, ORCLKCLOW  
Setup Time, A0-A35 before CLKAandC0-C17before CLKC↑  
SetupTime, CSA andW/RAbefore CLKA; CSB before CLKB↑  
ns  
5
6
ns  
3
4
ns  
tENS1  
tENS2  
4
4.5  
4.5  
ns  
Setup Time, ENA, and MBA before CLKA; RENB and MBB before CLKB;  
WENC and MBC before CLKC↑  
3
ns  
(1)  
tRSTS  
tFSS  
Setup Time, MRS1, MRS2, PRS1, PRS2, RT1 or RT2 LOW before CLKAor CLKB↑  
Setup Time, FS0, FS1, FS2 before MRS1 and MRS2 HIGH  
SetupTime, BE/FWFT beforeMRS1 andMRS2 HIGH  
SetupTime,FS0/SDbeforeCLKA↑  
5
7.5  
7.5  
3
5
7.5  
7.5  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tBES  
tSDS  
tSENS  
tFWS  
tRTMS  
tDH  
SetupTime,FS1/SENbeforeCLKA↑  
3
4
SetupTime,BE/FWFTbeforeCLKA↑  
0
0
Setup Time, RTM before RT1; RTM before RT2  
HoldTime, A0-A35afterCLKAandC0-C17afterCLKC↑  
5
5
0.5  
0.5  
1
tENH  
Hold Time, CSA, W/RA, ENA, and MBA after CLKA; CSB, RENB, and MBB after  
CLKB;WENCandMBCafterCLKC↑  
1
(1)  
tRSTH  
tFSH  
Hold Time, MRS1, MRS2, PRS1, PRS2, RT1 or RT2 LOW after CLKAor CLKB↑  
4
2
4
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Hold Time, FS0, FS1, FS2 after MRS1 and MRS2 HIGH  
Hold Time, BE/FWFT after MRS1 and MRS2 HIGH  
HoldTime, FS0/SDafterCLKA↑  
tBEH  
2
2
tSDH  
0.5  
0.5  
2
1
tSENH  
tSPH  
HoldTime,FS1/SENHIGHafterCLKA↑  
1
Hold Time, FS1/SEN HIGH after MRS1 and MRS2 HIGH  
Hold Time, RTM after RT1; RTM after RT2  
2
tRTMH  
5
5
(2)  
tSKEW1  
SkewTime, betweenCLKAandCLKBfor EFB/ORBand FFA/IRA;betweenCLKA↑  
and CLKCfor EFA/ORA and FFC/IRC  
5
7.5  
(2,3)  
tSKEW2  
SkewTime,betweenCLKAandCLKBforAEBandAFA;betweenCLKAand  
CLKCfor AEA and AFC  
12  
12  
ns  
NOTES:  
1. Requirement to count the clock edge as one of at least four needed to reset a FIFO.  
2. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship among CLKA cycle, CLKB cycle, and CLKC cycle.  
3. Design simulated, not tested.  
4. Industrial temperature range is available by special order.  
9
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY  
VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL = 30PF  
(Commercial: VCC = 5V ± 10%, TA = 0°C to +70°C)  
Commercial  
IDT723656L12 IDT723656L15  
IDT723666L12 IDT723666L15  
IDT723676L12 IDT723676L15  
Symbol  
tA  
Parameter  
Min.  
2
Max.  
Min.  
2
Max.  
10  
8
Unit  
ns  
Access Time,CLKAtoA0-A35andCLKBtoB0-B17  
Propagation Delay Time, CLKAto FFA/IRA and CLKCto FFC/IRC  
PropagationDelayTime,CLKAtoEFA/ORAandCLKBtoEFB/ORB  
PropagationDelayTime,CLKAtoAEAandCLKBtoAEB  
Propagation Delay Time, CLKAto AFA and CLKCto AFC  
8
8
8
8
8
8
tWFF  
tREF  
tPAE  
tPAF  
tPMF  
2
2
ns  
1
1
8
ns  
1
1
8
ns  
1
1
8
ns  
Propagation Delay Time, CLKAto MBF1 LOW or MBF2 HIGH, CLKBto MBF1  
HIGH, andCLKCtoMBF2 LOW  
0
0
8
ns  
tPMR  
tMDV  
tRSF  
Propagation Delay Time, CLKAto B0-B17(1) and CLKCto A0-A35(2)  
2
2
1
8
8
2
2
1
10  
10  
15  
ns  
ns  
ns  
Propagation Delay Time, MBA to A0-A35 valid and MBB to B0-B17 valid  
Propagation Delay Time, MRS1 or PRS1 LOW to AEB LOW, AFA HIGH, and MBF1  
HIGH and MRS2 or PRS2 LOW to AEA LOW, AFC HIGH, and MBF2 HIGH  
10  
tEN  
tDIS  
Enable Time, CSA orW/RALOWtoA0-A35Active andCSB LOWtoB0-B17Active  
2
1
6
6
2
1
10  
8
ns  
ns  
Disable Time, CSA or W/RA HIGH to A0-A35 at high impedance and CSB HIGH  
toB0-B17atHIGHimpedance  
NOTES:  
1. Writing data to the mail1 register when the B0-B17 outputs are active and MBB is HIGH.  
2. Writing data to the mail2 register when the A0-A35 outputs are active and MBA is HIGH.  
3. Industrial temperature range is available by special order.  
10  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
RETRANSMIT ( RT1, RT2 )  
SIGNALDESCRIPTION  
TheFIFO1memoryofthesedevicesundergoesaRetransmitbytakingits  
associatedRetransmit (RT1)inputLOWforatleastfourPortAClock(CLKA)  
and four Port B Clock (CLKB) LOW-to-HIGH transitions. The Retransmit  
initializesthereadpointerofFIFO1tothefirstmemorylocation.  
The FIFO2 memory undergoes a Retransmit by taking its associated  
Retransmit(RT2)inputLOWforatleastfourPortAClock(CLKA)andfourPort  
CClock(CLKC)LOW-to-HIGHtransitions. TheRetransmitinitializestheread  
pointerofFIFO1tothefirstmemorylocation.  
TheRTMpinmustbeHIGHduringthetimeofRetransmit. Notethatthe RT1  
inputismuxedwiththePRS1input,thestateoftheRTMpindeterminingwhether  
thispinperformsaRetransmitorPartialReset. Also,theRT2inputismuxed  
with the PRS2 input, the state of the RTM pin determining whether this pin  
performs a Retransmit or Partial Reset. See Figures 30, 31, 32 and 33 for  
Retransmittimingdiagrams.  
MASTER RESET ( MRS1, MRS2 )  
Afterpowerup,aMasterResetoperationmustbeperformedbyproviding  
a LOW pulse to MRS1 and MRS2 simultaneously. Afterwards, the FIFO1  
memory of the IDT723656/723666/723676 undergoes a complete reset by  
takingitsassociatedMasterReset(MRS1)inputLOWforatleastfourPortAClock  
(CLKA)andfourPortBClock(CLKB)LOW-to-HIGHtransitions. TheFIFO2  
memory undergoes a complete reset by taking its associated Master Reset  
(MRS2)inputLOWforatleastfourPortAClock(CLKA)andfourPortCClock  
(CLKC) LOW-to-HIGH transitions. The Master Reset inputs can switch  
asynchronouslytotheclocks. AMasterResetinitializestheassociatedreadand  
writepointerstothefirstlocationofthememoryandforcestheFull/InputReady  
flag(FFA/IRA,FFC/IRC)LOW,theEmpty/OutputReadyflag(EFA/ORA,EFB/  
ORB)LOW,theAlmost-Emptyflag(AEA,AEB)LOWandtheAlmost-Fullflag  
(AFA,AFC)HIGH. AMasterResetalsoforces the associatedMailboxFlag  
(MBF1,MBF2)oftheparallelmailboxregisterHIGH. AfteraMasterReset,the  
FIFO'sFull/InputReadyflagissetHIGHaftertwoWriteClockcycles. Thenthe  
FIFO is ready to be written to.  
BIG-ENDIAN/FIRST WORD FALL THROUGH ( BE/FWFT )  
— ENDIAN SELECTION  
Thisisadualpurposepin. AtthetimeofMasterReset,theBEselectfunction  
isactive,permittingachoiceofBig-orLittle-Endianbytearrangementfordata  
writtentoPortCorreadfromPortB. This selectiondetermines theorderby  
which bytes (or words) of data are transferred through those ports. For the  
followingillustrations,notethatbothportsB andCareconfiguredtohaveabyte  
(or a word) bus size.  
AHIGHontheBE/FWFTinputwhentheMasterReset(MRS1,MRS2)inputs  
go from LOW to HIGH will select a Big-Endian arrangement. When data is  
movinginthedirectionfromPortAtoPortB,themostsignificantbyte(word)of  
thelongwordwrittentoPortAwillbereadfromPortBfirst;theleastsignificant  
byte(word)ofthelongwordwrittentoPortAwillbereadfromPortBlast. When  
dataismovinginthedirectionfromPortCtoPortA,thebyte(word)writtento  
PortCfirstwillbereadfromPortAasthemostsignificantbyte(word)ofthelong  
word;thebyte(word)writtentoPortClastwillbereadfromPortAastheleast  
significantbyte(word)ofthelongword.  
ALOWontheBE/FWFTinputwhentheMasterReset(MRS1,MRS2)inputs  
gofromLOWtoHIGHwillselectaLittle-Endianarrangement. Whendatais  
movinginthedirectionfromPortAtoPortB,theleastsignificantbyte(word)of  
thelongwordwrittentoPortAwillbereadfromPortBfirst;themostsignificant  
byte(word)ofthelongwordwrittentoPortAwillbereadfromPortBlast. When  
dataismovinginthedirectionfromPortCtoPortA,thebyte(word)writtento  
PortCfirstwillbereadfromPortAastheleastsignificantbyte(word)ofthelong  
word;thebyte(word)writtentoPortClastwillbereadfromPortAasthemost  
significantbyte(word)ofthelongword. RefertoFigure2and3forillustrations  
oftheBEfunction. SeeFigure4(FIFO1MasterReset)and5(FIFO2Master  
Reset)forEndianSelecttimingdiagrams.  
ALOW-to-HIGHtransitionontheFIFO1MasterReset(MRS1)inputlatches  
thevalueoftheBig-Endian(BE)inputfordeterminingtheorderbywhichbytes  
aretransferredthroughPortsBandC. ItalsolatchesthevaluesoftheFlagSelect  
(FS0, FS1 and FS2) inputs for choosing the Almost-Full and Almost-Empty  
offsetsandprogrammingmethod.  
ALOW-to-HIGHtransitionontheFIFO2MasterReset(MRS2)clearstheflag  
offset registers of FIFO2 (X2, Y2). A LOW-to-HIGH transition on the FIFO2  
Master Reset (MRS2) together with the FIFO1 Master Reset input (MRS1)  
latchesthevalueoftheBig-Endian(BE)inputforPortsBandCandalsolatches  
thevaluesoftheFlagSelect(FS0,FS1andFS2)inputsforchoosingtheAlmost-  
FullandAlmost-Emptyoffsetsandprogrammingmethod(fordetailsseeTable  
1,FlagProgramming,andAlmost-EmptyandAlmost-Fullflagoffsetprogram-  
ming section). The relevant Master Reset timing diagrams can be found in  
Figure 4 and 5.  
Note thatMBCmustbe HIGHduringMasterReset(untilFFA/IRAand  
FFC/IRCgoHIGH). MBAandMBBare "don'tcare"inputs1 duringMaster  
Reset.  
PARTIAL RESET (PRS1, PRS2)  
TheFIFO1memoryofthesedevicesundergoesalimitedresetbytakingits  
associatedPartialReset(PRS1)inputLOWforatleastfourPortAClock(CLKA)  
andfourPortBClock(CLKB)LOW-to-HIGHtransitions. TheFIFO2memory  
undergoesalimitedresetbytakingitsassociatedPartialReset(PRS2)input  
LOWforatleastfourPortAClock(CLKA)andfourPortCClock(CLKC)LOW-  
to-HIGHtransitions.TheRTMpinmustbeLOWduringthetimeofpartialreset.  
ThePartialResetinputscanswitchasynchronouslytotheclocks. APartialReset  
initializestheinternalreadandwritepointersandforcestheFull/InputReady  
flag(FFA/IRA,FFC/IRC)LOW,theEmpty/OutputReadyflag(EFA/ORA,EFB/  
ORB)LOW,theAlmost-Emptyflag(AEA,AEB)LOW,andtheAlmost-Fullflag  
(AFA,AFC)HIGH. APartialResetalsoforcestheMailboxFlag(MBF1,MBF2)  
oftheparallelmailboxregisterHIGH. AfteraPartialReset,theFIFO’sFull/Input  
ReadyflagissetHIGHaftertwoWriteClockcycles.  
Whateverflagoffsets,programmingmethod(parallelorserial),andtiming  
mode(FWFTorIDTStandardmode)arecurrentlyselectedatthetimeaPartial  
Resetisinitiated,thosesettingswill remainunchangeduponcompletionofthe  
resetoperation. APartialResetmaybeusefulinthecasewherereprogramming  
aFIFOfollowingaMasterResetwouldbeinconvenient. SeeFigure6and7  
forPartialResettimingdiagrams.  
TIMING MODE SELECTION  
AfterMasterReset,theFWFTselectfunctionisavailable,permittingachoice  
between two possible timing modes: IDT Standard mode or First Word Fall  
Through(FWFT)mode. OncetheMasterReset(MRS1, MRS2)inputisHIGH,  
aHIGHontheBE/FWFTinputduringthenextLOW-to-HIGHtransitionofCLKA  
(forFIFO1)andCLKC(forFIFO2)willselectIDTStandardmode. Thismode  
usestheEmptyFlagfunction(EFA,EFB)toindicatewhetherornotthereare  
anywords presentinthe FIFOmemory. Ituses the FullFlagfunction(FFA,  
FFC)toindicatewhetherornottheFIFOmemoryhasanyfreespaceforwriting.  
InIDTStandardmode,everywordreadfromtheFIFO,includingthefirst,must  
be requestedusinga formalreadoperation.  
NOTE:  
1. Either a HIGH or LOW can be applied to a "don't care" input with no change to the logical operation of the FIFO. Nevertheless, inputs that are temporarily "don't care" (along with unused  
inputs) must not be left open, rather they must be either HIGH or LOW.  
11  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
Once the Master Reset (MRS1, MRS2) input is HIGH, a LOW on the BE/ simultaneouslywithFIFO1MasterReset(MRS1). ForrelevantPresetvalue  
FWFTinputduringthenextLOW-to-HIGHtransitionofCLKA(forFIFO1)and loadingtimingdiagrams, see Figure 4and5.  
CLKC(forFIFO2)willselectFWFTmode. ThismodeusestheOutputReady  
function(ORA,ORB)toindicatewhetherornotthereisvaliddataatthedata — PARALLEL LOAD FROM PORT A  
outputs(A0-A35orB0-B17). ItalsousestheInputReadyfunction(IRA,IRC)  
ToprogramtheX1,X2,Y1,andY2registersfromPortA,performaMaster  
toindicatewhetherornottheFIFOmemoryhasanyfreespaceforwriting. In ResetonbothFlFOs simultaneouslywithFS2HIGHorLOW, FS0andFS1  
theFWFTmode,thefirstwordwrittentoanemptyFIFOgoesdirectlytothedata LOWduringtheLOW-to-HIGHtransitionofMRS1andMRS2. ThestateofFS2  
outputs,noreadrequestnecessary. Subsequentwordsmustbeaccessedby atthispointofresetwilldeterminewhethertheparallelprogrammingmethodhas  
performingaformalreadoperation.  
Interspersed Parity or Non-Interspersed Parity. Refer to Table 1 for Flag  
FollowingMasterReset,thelevelappliedtotheBE/FWFTinputtochoose Programming Flag Offset setup . It is important to note that once parallel  
thedesiredtimingmodemustremainstaticthroughoutFIFOoperation. Refer programminghasbeenselectedduringaMasterResetbyholdingbothFS0  
toFigure4(FIFO1MasterReset)andFigure5(FIFO2MasterReset)forFirst & FS1 LOW, these inputs must remain LOW during all subsequent FIFO  
WordFallThroughselecttimingdiagrams.  
operation. They can only be toggled HIGH when future Master Resets are  
performedandotherprogrammingmethodsaredesired.  
PROGRAMMINGTHEALMOST-EMPTYANDALMOST-FULLFLAGS  
Afterthisresetiscomplete,thefirstfourwritestoFIFO1donotstoredatain  
FourregistersintheseFIFOsareusedtoholdtheoffsetvaluesfortheAlmost- RAM but load the Offset registers in the order Y1, X1, Y2, X2. For Non-  
EmptyandAlmost-Fullflags. ThePortBAlmost-Emptyflag(AEB)Offsetregister InterspersedParitymodethePortAdatainputsusedbytheOffsetregistersare  
islabeledX1andthePortAAlmost-Emptyflag(AEA)Offsetregisterislabeled (A10-A0), (A11-A0), or (A12-A0) for the IDT723656, IDT723666, or  
X2. ThePortAAlmost-Fullflag(AFA)OffsetregisterislabeledY1andthePort IDT723676,respectively. ForInterspersedParitymodethePortAdatainputs  
CAlmost-Fullflag(AFC)OffsetregisterislabeledY2. Theindexofeachregister usedbytheOffsetregistersare(A11-A9,A7-A0),(A12-A9,A7-A0),or(A13-  
namecorrespondstoitsFIFOnumber. TheOffsetregisterscanbeloadedwith A9,A7-A0)fortheIDT723656,IDT723666,orIDT723676,respectively. The  
preset values during the reset of a FIFO, programmed in parallel using the highestnumberedinputisusedasthemostsignificantbitofthebinarynumber  
FIFO’sPortAdatainputs,orprogrammedinserialusingtheSerialData(SD) ineachcase. Validprogrammingvaluesfortheregistersrangefrom1to2,044  
input (see Table 1).  
for the IDT723656; 1 to 4,092 for the IDT723666; and 1 to 8,188 for the  
FS0/SD, FS1/SEN andFS2functionthe same wayinbothIDTStandard IDT723676. AfteralltheOffsetregistersareprogrammedfromPortA,thePort  
andFWFTmodes.  
CFull/InputReadyflag(FFC/IRC)issetHIGH,andbothFIFOsbeginnormal  
operation. Refer to Figure 8 for a timing diagram illustration for parallel  
programmingoftheflagoffsetvalues.  
— PRESET VALUES  
ToloadaFIFO’sAlmost-EmptyflagandAlmost-FullflagOffsetregisterswith  
oneofthefivepresetvalueslistedinTable1,theflagselectinputsmustbeHIGH INTERSPERSED PARITY  
orLOWduringamasterreset. Forexample,toloadthepresetvalueof64into  
InterspersedParityisselectedduringaMasterResetoftheFIFO. Referto  
X1andY1,FS0,FS1andFS2mustbeHIGHwhenFlFO1reset(MRS1)returns Table1fortheset-upconfigurationofInterspersedParity. TheInterspersed  
HIGH. FlagOffsetregistersassociatedwithFIFO2areloadedwithoneofthe Parityfunctionallowstheusertoselectthelocationoftheparitybitsintheword  
preset values in the same way with FIFO2 Master Reset (MRS2) toggled loadedintotheparallelport(A0-An)duringprogrammingoftheflagoffsetvalues.  
TABLE 1 FLAG PROGRAMMING  
FS2  
FS1/SEN  
FS0/SD  
MRS1  
MRS2  
X1 AND Y1 REGlSTERS(1)  
X2 AND Y2 REGlSTERS(2)  
H
H
H
H
H
H
L
L
L
L
L
H
L
H
H
H
H
L
L
H
H
L
L
H
L
L
H
H
L
X
X
X
X
X
X
X
X
X
X
64  
X
X
64  
16  
X
L
X
16  
H
H
H
H
H
H
L
8
X
X
8
256  
X
X
256  
1,024  
X
1,024  
X
SerialprogrammingviaSD  
SerialprogrammingviaSD  
(3,5)  
(3,5)  
L
ParallelprogrammingviaPortA  
ParallelprogrammingviaPortA  
IP Mode(4, 5)  
L
IP Mode(4, 5)  
NOTES:  
1. X1 register holds the offset for AEB; Y1 register holds the offset for AFA.  
2. X2 register holds the offset for AEA; Y2 register holds the offset for AFC.  
3. When this method of parallel programming is selected, Port A will assume Non-Interspersed Parity.  
4. When IP Mode is selected, only parallel programming of the offset values via Port A, can be performed and Port A will assume Interspersed Parity.  
5. IF parallel programming is selected during a Master Reset, then FS0 & FS1 must remain LOW during FIFO operation.  
12  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
TABLE 2 PORT A ENABLE FUNCTION TABLE  
CSA  
W/RA  
ENA  
MBA  
CLKA  
LOOP  
Data A(A0-A35) I/O  
PORT FUNCTION  
H
L
L
L
L
L
L
L
L
X
H
H
H
L
X
L
X
X
L
X
X
X
X
H
H
H
H
H
H
H
H
L
High-Impedance  
Input  
None  
None  
H
H
L
Input  
FIFO1 write  
Mail1write  
H
L
Input  
Output  
Output  
Output  
Output  
Output  
None  
L
H
L
L
FIFO2read  
None  
L
H
H
L
L
H
H
Mail2 read (set MBF2 HIGH)  
H
LoopthedataoutputofFIFO2toinput  
of FIFO1 only  
L
L
H
L
L
Output  
LoopthedataoutputofFIFO2toinput  
of FIFO1 and put data on Port A  
TABLE 3 PORT B ENABLE FUNCTION TABLE  
CSB  
RENB  
MBB  
CLKB  
Data B (B0-B17) Outputs  
PORT FUNCTION  
H
L
L
L
L
X
L
X
L
X
X
X
High-Impedance  
Output  
None  
None  
H
L
L
Output  
FIFO1read  
H
H
Output  
None  
H
Output  
Mail1 read (set MBF1 HIGH)  
TABLE 4 PORT C ENABLE FUNCTION TABLE  
WENC  
MBC  
CLKC  
Data C (C0-C17) Inputs  
PORT FUNCTION  
H
H
L
L
L
H
L
X
X
Input  
Input  
Input  
Input  
FIFO2 write  
Mail2write  
None  
H
None  
IRC)flagalsoremainsLOWthroughouttheserialprogrammingprocess,until  
allregisterbitsarewritten. FFC/IRCissetHIGHbytheLOW-to-HIGHtransition  
ofCLKCafterthelastbitis loadedtoallownormalFIFO2operation.  
SeeFigure9timingdiagram, SerialProgrammingoftheAlmost-FullFlag  
andAlmost-EmptyFlagOffsetValuesafterReset(IDTStandardandFWFT  
Modes).  
IfInterspersedParityisselectedthenduringparallelprogrammingoftheflag  
offsetvalues,thedevicewillignoredatalineA8. IfNon-InterspersedParityis  
selectedthendatalineA8willbecomeavalidbit. IfInterspersedParityisselected  
serialprogrammingoftheoffsetvaluesisnotpermitted,onlyparallelprogram-  
ming can be done.  
— SERIAL LOAD  
FIFO WRITE/READ OPERATION  
ToprogramtheX1,X2,Y1,andY2registersserially,initiateaMasterReset  
withFS2LOW,FS0/SDLOWandFS1/SENHIGHduringtheLOW-to-HIGH  
transitionofMRS1andMRS2. Afterthisresetiscomplete,theXandYregister  
valuesareloadedbit-wisethroughtheFS0/SDinputoneachLOW-to-HIGH  
transitionofCLKAthattheFS1/SENinputisLOW. Thereare44-,48-,or52-  
bitwritesneededtocompletetheprogrammingfortheIDT723656,IDT723666,  
orIDT723676,respectively. ThefourregistersarewrittenintheorderY1,X1,  
Y2andfinally,X2. Thefirst-bitwritestoresthemostsignificantbitoftheY1register  
andthelast-bitwritestorestheleastsignificantbitoftheX2register. Eachregister  
valuecanbeprogrammedfrom1to2,044(IDT723656),1to4,092(IDT723666),  
or 1 to 8,188 (IDT723676).  
The state ofthe PortAdata (A0-A35)outputs is controlledbyPortAChip  
Select(CSA)andPortAWrite/ReadSelect(W/RA). TheA0-A35outputsare  
inthehigh-impedancestatewheneitherCSAorW/RAisHIGH. TheA0-A35  
outputs are active whenbothCSA andW/RAare LOW.  
Data is loaded into FIFO1 from the A0-A35 inputs on a LOW-to-HIGH  
transitionofCLKAwhenCSA is LOW,W/RAis HIGH,ENAis HIGH,MBAis  
LOW,andFFA/IRAisHIGH. DataisreadfromFIFO2totheA0-A35outputs  
byaLOW-to-HIGHtransitionofCLKAwhenCSAisLOW,W/RAisLOW,ENA  
is HIGH, MBA is LOW, and EFA/ORA is HIGH (see Table 2). FIFO reads  
and writes on Port A are independent of any concurrent Port B or Port C  
operation.  
WhentheoptiontoprogramtheOffsetregistersseriallyischosen,thePort  
AFull/InputReady(FFA/IRA)flagremainsLOWuntilallregisterbitsarewritten.  
FFA/IRAissetHIGHbytheLOW-to-HIGHtransitionofCLKAafterthelastbit  
isloadedtoallownormalFIFO1operation. ThePortBFull/InputReady(FFC/  
The state of the Port B data (B0-B17) outputs is controlled by the Port B  
Chip Select (CSB). The B0-B17 outputs are in the high-impedance state  
when CSB is HIGH. The B0-B17 outputs are active when CSB is LOW.  
13  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
Data is read from FIFO1 to the B0-B17 outputs by a LOW-to-HIGH dataresidingintheFIFO’smemoryarrayisclockedtotheoutputregisteronly  
transitionofCLKBwhenCSBisLOW,RENBisHIGH,MBBisLOWandEFB/ whena readis selectedusing CSA, W/RA, ENAandMBAatPortAorusing  
ORB is HIGH (see Table 3). FIFO reads on Port B are independent of any CSB,RENBandMBBatPortB. Relevantwriteandreadtimingdiagramsfor  
concurrentPortAandPortCoperations.  
Port A can be found in Figure 10 and 15. Relevant read and write timing  
Data is loaded into FIFO2 from the C0-C17 inputs on a LOW-to-HIGH diagramsforPortBandPortC,togetherwithBus-MatchingandEndianselect  
transitionofCLKCwhenWENBisHIGH,MBCisLOW,andFFC/IRCisHIGH operation, can be found in Figure 11 to 14.  
(seeTable4). FIFOwritesonPortCareindependentofanyconcurrentPort  
A and Port B operation.  
LOOPBACK(LOOP)  
ThesetupandholdtimeconstraintsforCSAandW/RAwithregardtoCLKA  
ALoopbackfunctionisprovidedonPortAandisselectedbysettingtheLOOP  
as well as CSB with regard to CLKB are only for enabling write and read pinLOW.WhentheLoopfeatureisselected,thedataoutputfromFIFO2willbe  
operationsandarenotrelatedtohigh-impedancecontrolofthedataoutputs. directedtothedatainputofFIFO1. IfLoopisselectedandPortAisset-upfor  
IfENAis LOWduringa clockcycle, either CSA orW/RAmaychange states writeoperationviatheW/RApinbeingHIGH,thendataoutputfromFIFO2will  
duringthesetupandholdtimewindowofthecycle. This is alsotrueforCSB bewrittentoFIFO1,oneveryLOW-to-HIGHtransitionofCLKA,providedCSA  
whenRENBis LOW.  
isLOWandENAisHIGH. However,FIFO2dataoutputwillnotbeplacedon  
WhenoperatingtheFIFOinFWFTmodeandtheOutputReadyflagisLOW, theoutputPortA(A0-A35). IfPortAisset-upforreadoperationviatheW/RA  
thenextwordwrittenisautomaticallysenttotheFIFO’soutputregisterbythe pinbeingLOW,thendataoutputfromFIFO2willbewrittenintoFIFO1onevery  
LOW-to-HIGHtransitionoftheportclockthatsetstheOutputReadyflagHIGH. LOW-to-HIGHtransitionofCLKA,providedCSAisLOWandENAisHIGH. Also  
WhentheOutputReadyflagisHIGH,subsequentdataisclockedtotheoutput FIFO2datawillbeoutputtoPortA(A0-A35). WhentheLOOPpinisHIGHthen  
registersonlywhenareadisselectedusingCSA,W/RA,ENAandMBAatPort PortAoperatesinthenormalmanner. RefertoTable2fortheinputset-upof  
A or using CSB, RENB and MBB at Port B.  
WhenoperatingtheFIFOinIDTStandardmode,thefirstwordwillcausethe  
theLoopfeature.  
TheLoopoperationwillcontinuetohappenprovidedthatFIFO1isnotfull  
EmptyFlagtochangestateonthesecondLOW-to-HIGHtransitionoftheRead andFIFO2isnotempty. IfduringaLoopsequenceFIFO1becomesfullthen  
Clock. Thedatawordwillnotbeautomaticallysenttotheoutputregister. Instead, anydata thatcontinues tobe readoutfromFIFO2willonlybe placedonthe  
TABLE 5 FIFO1 FLAG OPERATION (IDT Standard and FWFT modes)  
Synchronized  
to CLKB  
Synchronized  
to CLKA  
Number of Words in FIFO Memory(1,2)  
(3)  
(3)  
(3)  
IDT723656  
IDT723666  
IDT723676  
EFB/ORB  
AEB  
L
AFA  
H
FFA/IRA  
0
1toX1  
0
1toX1  
0
1toX1  
L
H
H
H
H
H
H
H
H
L
L
H
(X1+1)to[2,048-(Y1+1)]  
(2,048-Y1)to2,047  
2,048  
(X1+1)to[4,096-(Y1+1)]  
(4,096-Y1)to4,095  
4,096  
(X1+1)to[8,192-(Y1+1)]  
(8,192-Y1)to8,191  
8,192  
H
H
H
L
H
L
NOTES:  
1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.  
2. Dataintheoutputregisterdoes notcountas a"wordinFIFOmemory".SinceinFWFTmode,thefirstwordwrittentoanemptyFIFOgoes unrequestedtotheoutputregister(noreadoperation  
necessary), it is not included in the FIFO memory count.  
3. X1 is the almost-empty offset for FIFO1 used by AEB. Y1 is the almost-full offset for FIFO1 used by AFA. Both X1 and Y1 are selected during a FIFO1 reset or port A programming.  
4. The ORB and IRA functions are active during FWFT mode; the EFB and FFA functions are active in IDT Standard mode.  
TABLE 6 FIFO2 FLAG OPERATION (IDT Standard and FWFT modes)  
Synchronized  
to CLKA  
Synchronized  
to CLKC  
Number of Words in FIFO Memory(1,2)  
(3)  
(3)  
(3)  
IDT723656  
IDT723666  
IDT723676  
EFA/ORA  
AEA  
AFC  
FFC/IRC  
0
1toX2  
0
1toX2  
0
1toX2  
L
H
H
H
H
L
L
H
H
H
L
H
H
H
H
L
(X2+1)to[2,048-(Y2+1)]  
(2,048-Y2)to2,047  
2,048  
(X2+1)to[4,096-(Y2+1)]  
(4,096-Y2)to4,095  
4,096  
(X2+1)to[8,192-(Y2+1)]  
(8,192-Y2)to8,191  
8,192  
H
H
H
L
NOTES:  
1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.  
2. Dataintheoutputregisterdoes notcountas a"wordinFIFOmemory".SinceinFWFTmode,thefirstwordwrittentoanemptyFIFOgoes unrequestedtotheoutputregister(noreadoperation  
necessary), it is not included in the FIFO memory count.  
3. X2 is the almost-empty offset for FIFO2 used by AEA. Y2 is the almost-full offset for FIFO2 used by AFC. Both X2 and Y2 are selected during a FIFO2 reset or port A programming.  
4. The ORA and IRC functions are active during FWFT mode; the EFA and FFC functions are active in IDT Standard mode.  
14  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
functionisselected. Forbothtimingmodes,whentheFull/InputReadyflagis  
HIGH,amemorylocationisfreeintheFIFOtoreceivenewdata. Nomemory  
locationsarefreewhentheFull/InputReadyflagisLOWandattemptedwrites  
to the FIFO are ignored.  
Port A (A0-A35) lines, (provided that Port A is set-up for read operation). If  
duringaLoopsequencetheFIFO2becomes empty,thenthelastwordfrom  
FIFO2willcontinuetobeclockedintoFIFO1untilFIFO1becomesfulloruntil  
theLoopfunctionisstopped. TheLoopfeaturecanbeusefulwhenperforming  
systemdebuggingandremoteloopbacks. SeeFigures34and35forLoopback  
timingdiagrams.  
TheFull/InputReadyflagofaFlFOissynchronizedtotheportclockthatwrites  
datatoitsarray. ForbothFWFTandIDTStandardmodes,eachtimeaword  
is writtentoa FIFO, its write pointeris incremented. The state machine that  
controls a Full/Input Ready flag monitors a write pointer and read pointer  
comparatorthatindicateswhentheFlFOmemorystatusisfull,full-1,orfull-2.  
FromthetimeawordisreadfromaFIFO,itspreviousmemorylocationisready  
to be written to in a minimum of two cycles of the Full/Input Ready flag  
synchronizingclock. Therefore,anFull/InputReadyflagis LOWifless than  
twocyclesoftheFull/InputReadyflagsynchronizingclockhaveelapsedsince  
the next memory write location has been read. The second LOW-to-HIGH  
transitionontheFull/InputReadyflagsynchronizingclockafterthereadsets  
theFull/InputReadyflagHIGH.  
SYNCHRONIZED FIFO FLAGS  
EachFIFOissynchronizedtoitsportclockthroughatleasttwoflip-flopstages.  
This is done to improve flag signal reliability by reducing the probability of  
metastableeventswhenCLKAoperatesasynchronouslywithrespecttoeither  
CLKB or CLKC. EFA/ORA, AEA, FFA/IRA, and AFA are synchronized to  
CLKA. EFB/ORB and AEB are synchronized to CLKB. FFC/IRC and AFC  
aresynchronizedtoCLKC. Tables5and6showtherelationshipofeachport  
flag to FIFO1 and FIFO2.  
EMPTY/OUTPUTREADYFLAGS(EFA/ORA,EFB/ORB)  
ALOW-to-HIGHtransitiononaFull/InputReadyflagsynchronizingclock  
beginsthefirstsynchronizationcycleofareadiftheclocktransitionoccursat  
timetSKEW1 orgreateraftertheread.Otherwise,thesubsequentclockcycle  
can be the first synchronization cycle (see Figure 20, 21, 22, and 23).  
Thesearedualpurposeflags. IntheFWFTmode,theOutputReady(ORA,  
ORB)functionisselected. WhentheOutputReadyflagisHIGH,newdatais  
presentintheFIFOoutputregister. WhentheOutputReadyflagisLOW,the  
previousdatawordispresentintheFIFOoutputregisterandattemptedFIFO  
reads are ignored.  
ALMOST-EMPTY FLAGS (AEA, AEB)  
IntheIDTStandardmode,theEmptyFlag(EFA,EFB)functionisselected.  
WhentheEmptyFlagisHIGH,dataisavailableintheFIFO’sRAMmemoryfor  
readingtotheoutputregister. WhentheEmptyFlagisLOW,thepreviousdata  
word is present in the FIFO output register and attempted FIFO reads are  
ignored.  
TheEmpty/OutputReadyflagofaFIFOissynchronizedtotheportclockthat  
reads data fromits array. Forboththe FWFTandIDTStandardmodes, the  
FIFOreadpointerisincrementedeachtimeanewwordisclockedtoitsoutput  
register. ThestatemachinethatcontrolsanOutputReadyflagmonitorsawrite  
pointer and read pointer comparator that indicates when the FIFO memory  
statusisempty,empty+1,orempty+2.  
TheAlmost-EmptyflagofaFIFOissynchronizedtotheportclockthatreads  
data from its array. The state machine that controls an Almost-Empty flag  
monitorsawritepointerandreadpointercomparatorthatindicateswhenthe  
FIFOmemorystatusisalmost-empty,almost-empty+1,oralmost-empty+2. The  
almost-emptystateisdefinedbythecontentsofregisterX1forAEBandregister  
X2forAEA. TheseregistersareloadedwithpresetvaluesduringaFIFOreset,  
programmedfromPortA,orprogrammedserially(seetheAlmost-Emptyflag  
andAlmost-Fullflagoffsetprogrammingsection).AnAlmost-EmptyflagisLOW  
whenits FIFOcontains Xorless words andis HIGHwhenits FIFOcontains  
(X+1)ormorewords. AdatawordpresentintheFIFOoutputregisterhasbeen  
readfrommemory.  
InFWFTmode,fromthetimeawordiswrittentoaFIFO,itcanbeshiftedto  
theFIFOoutputregisterinaminimumofthreecyclesoftheOutputReadyflag  
synchronizing clock. Therefore, an Output Ready flag is LOW if a word in  
memoryisthenextdatatobesenttotheFlFOoutputregisterandthreecycles  
oftheportclockthatreadsdatafromtheFIFOhavenotelapsedsincethetime  
thewordwas written. TheOutputReadyflagoftheFIFOremains LOWuntil  
thethirdLOW-to-HIGHtransitionofthesynchronizingclockoccurs,simulta-  
neouslyforcingtheOutputReadyflagHIGHandshiftingthewordtotheFIFO  
outputregister.  
InIDTStandardmode,fromthetimeawordiswrittentoaFIFO,theEmpty  
Flagwillindicatethepresenceofdataavailableforreadinginaminimumoftwo  
cyclesoftheEmptyFlagsynchronizingclock. Therefore,anEmptyFlagisLOW  
ifawordinmemoryisthenextdatatobesenttotheFlFOoutputregisterand  
twocyclesoftheportClockthatreadsdatafromtheFIFOhavenotelapsedsince  
thetimethewordwaswritten. TheEmptyFlagoftheFIFOremainsLOWuntil  
thesecondLOW-to-HIGHtransitionofthesynchronizingclockoccurs,forcing  
the Empty Flag HIGH; only then can data be read.  
TwoLOW-to-HIGHtransitionsoftheAlmost-Emptyflagsynchronizingclock  
arerequiredafteraFIFOwriteforitsAlmost-Emptyflagtoreflectthenewlevel  
offill. Therefore,theAlmost-FullflagofaFIFOcontaining(X+1)ormorewords  
remainsLOWiftwocyclesofitssynchronizingclockhavenotelapsedsincethe  
writethatfilledthememorytothe(X+1)level. AnAlmost-EmptyflagissetHIGH  
bythesecondLOW-to-HIGHtransitionofitssynchronizingclockaftertheFIFO  
writethatfillsmemorytothe(X+1)level. ALOW-to-HIGHtransitionofanAlmost-  
Emptyflagsynchronizingclockbeginsthefirstsynchronizationcycleifitoccurs  
at time tSKEW2 or greater after the write that fills the FIFO to (X+1) words.  
Otherwise,thesubsequentsynchronizingclockcyclemaybethefirstsynchro-  
nization cycle. (See Figure 24 and 25).  
ALMOST-FULL FLAGS (AFA, AFC)  
TheAlmost-FullflagofaFIFOissynchronizedtotheportclockthatwrites  
datatoitsarray. ThestatemachinethatcontrolsanAlmost-Fullflagmonitors  
a write pointer and read pointer comparator that indicates when the FIFO  
memorystatusisalmost-full,almost-full-1,oralmost-full-2. Thealmost-fullstate  
isdefinedbythecontentsofregisterY1forAFAandregisterY2forAFC. These  
registersareloadedwithpresetvaluesduringaFlFOreset,programmedfrom  
PortA,orprogrammedserially(see Almost-EmptyflagandAlmost-Fullflag  
offsetprogrammingsection). AnAlmost-FullflagisLOWwhenthenumberof  
words in its FIFO is greater than or equal to (2,048-Y), (4,096-Y), or (8,192-  
Y)fortheIDT723656,IDT723666,orIDT723676respectively. AnAlmost-Full  
flagisHIGHwhenthenumberofwordsinitsFIFOislessthanorequalto[2,048-  
(Y+1)], [4,096-(Y+1)], or [8,192-(Y+1)] for the IDT723656, IDT723666, or  
ALOW-to-HIGHtransitiononanEmpty/OutputReadyflagsynchronizing  
clockbeginsthefirstsynchronizationcycleofawriteiftheclocktransitionoccurs  
attimetSKEW1orgreaterafterthewrite.Otherwise,thesubsequentclockcycle  
can be the first synchronization cycle (see Figure 16, 17, 18 and 19).  
FULL/INPUT READY FLAGS (FFA/IRA, FFC/IRC)  
These are dual purpose flags. In FWFT mode, the Input Ready (IRA and  
IRC)functionisselected. InIDTStandardmode,theFullFlag(FFAandFFC)  
15  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
IDT723676 respectively. Note that a data word present in the FIFO output  
registerhas beenreadfrommemory.  
NotethatMBCmustbeHIGHduringMasterReset(until FFA/IRAand FFC/  
IRCgoHIGH. MBAandMBBaredon'tcareinputsduringMasterReset. For  
TwoLOW-to-HIGHtransitionsoftheAlmost-Fullflagsynchronizingclockare mailregisterandmailregisterflagtimingdiagrams,seeFigure28and29.  
requiredafteraFIFOreadforitsAlmost-Fullflagtoreflectthenewleveloffill.  
Therefore,theAlmost-FullflagofaFIFOcontaining[2,048/4,096/8,192-(Y+1)] BUS SIZING  
orless words remains LOWiftwocycles ofits synchronizingclockhave not  
elapsedsincethereadthatreducedthenumberofwordsinmemoryto[2,048/  
4,096/8,192-(Y+1)]. AnAlmost-FullflagissetHIGHbythesecondLOW-to-  
HIGHtransitionofitssynchronizingclockaftertheFIFOreadthatreducesthe  
numberofwordsinmemoryto[2,048/4,096/8,192-(Y+1)]. ALOW-to-HIGH  
transitionofanAlmost-Fullflagsynchronizingclockbeginsthefirstsynchroni-  
zationcycleifitoccursattimetSKEW2orgreaterafterthereadthatreducesthe  
number of words in memory to [2,048/4,096/8,192-(Y+1)]. Otherwise, the  
subsequentsynchronizingclockcyclemaybethefirstsynchronizationcycle  
(see Figure 26 and 27).  
PortBmaybeconfiguredineitheran18-bitwordora9-bitbyteformatfor  
data readfromFIFO1. PortCmaybe configuredineitheran18-bitwordor  
a 9-bit byte format for data written to FIFO2. The bus size can be selected  
independentlyforPorts BandC. ThelevelappliedtothePortBSizeSelect  
(SIZEB)inputdeterminesthePortBbussizeandthelevelappliedtothePort  
C Size Select (SIZEC) input determines the Port C bus size. These levels  
should be static throughout FIFO operation. Both bus size selections are  
implementedatthecompletionofMasterReset,bythetimetheFull/InputReady  
flag is set HIGH, as shown in Figure 2 and 3.  
TwodifferentmethodsforsequencingdatatransferareavailableforPorts  
BandCregardlessofwhetherthebussizeselectionisbyte-orword-size. They  
arereferredtoasBig-Endian(mostsignificantbytefirst)andLittle-Endian(least  
significant byte first). The level applied to the Big-Endian Select (BE) input  
during the LOW-to-HIGH transition of MRS1 and MRS2 selects the endian  
methodthatwillbeactiveduringFIFOoperation. Thisselectionappliestoboth  
portsBandC. TheendianmethodisimplementedatthecompletionofMaster  
Reset,bythetimetheFull/InputReadyflagis setHIGH,as showninFigure  
2 and 3 (see Endian Selection section).  
MAILBOX REGISTERS  
EachFIFOhasan18-bitbypassregisterallowingthepassageofcommand  
andcontrolinformationfromPortAtoPortBorfromPortCtoPortAwithoutputting  
itinqueue. TheMailboxSelect(MBA,MBB andMBC)inputschoosebetween  
amailregisterandaFIFOforaportdatatransferoperation. Theusablewidth  
ofboththe Mail1andMail2registers matches the selectedbus size forport  
B and C.  
WhensendingdatafromPortAtoPortBviatheMail1Register,thefollowing  
isthecase: ALOW-to-HIGHtransitiononCLKAwritesdatatotheMail1Register  
whena PortAwrite is selectedbyCSA, W/RA, andENAwithMBAHIGH. If  
theselectedPortBbussizeis18bits,thentheusablewidthoftheMail1Register  
employs datalines A0-A17. (Inthis case,A18-A35aredontcareinputs.) If  
theselectedPortBbussizeis9bits,thentheusablewidthoftheMail1Register  
employs data lines A0-A8. (Inthis case, A9-A35are dontcare inputs.)  
WhensendingdatafromPortCtoPortAviatheMail2Register,thefollowing  
isthecase: ALOW-to-HIGHtransitiononCLKCwritesdatatotheMail2Register  
whenaPortCwriteisselectedbyWENCwithMBCHIGH. IftheselectedPort  
Cbussizeis18bits,thentheusablewidthoftheMail2Registeremploysdata  
linesC0-C17. IftheselectedPortCbussizeis9bits,thentheusablewidthof  
theMail2RegisteremploysdatalinesC0-C8. (Inthiscase,C9-C17aredont  
careinputs.)  
Writingdatatoamailregistersetsitscorrespondingflag(MBF1orMBF2)  
LOW. AttemptedwritestoamailregisterareignoredwhilethemailflagisLOW.  
Whendataoutputsofaportareactive,thedataonthebuscomesfromthe  
FIFOoutputregisterwhentheportMailboxselectinputisLOWandfromthe  
mailregisterwhentheportmailboxselectinputisHIGH.  
TheMail1RegisterFlag(MBF1)issetHIGHbyaLOW-to-HIGHtransition  
onCLKBwhenaPortBreadisselectedbyCSB,andRENBwithMBBHIGH.  
Foran18-bitbussize,18bitsofmailboxdataareplacedonB0-B17. Forthe  
9-bitbus size, 9bits ofmailboxdata are placedonB0-B8. (Inthis case, B9-  
B17areindeterminate.)  
Only36-bitlongworddataiswrittentoorreadfromthetwoFIFOmemories  
onthesedevices. Bus-Matchingoperationsaredoneafterdataisreadfrom  
the FIFO1 RAM (Port B) and before data is written to the FIFO2 RAM (Port  
C). TheEndianselectoperationsarenotavailablewhentransferringdatavia  
mailboxregisters. Furthermore,boththeword-andbyte-sizebusselections  
limitthewidthofthedatabusthatcanbeusedformailregisteroperations. In  
thiscase,onlythosebytelanesbelongingtotheselectedword-orbyte-size  
buscancarrymailboxdata. Theremainingdataoutputswillbeindeterminate.  
Theremainingdatainputswillbedontcareinputs. Forexample,whenaword-  
sizebusisselectedonPortB,thenmailboxdatacanbetransmittedonlyfrom  
A0-A17toB0-B17.Whenabyte-sizebusisselectedonPortB,thenmailbox  
data canbe transmittedonlyfromA0-A8toB0-B8. Similarly, whena word-  
sizebusisselectedonPortC,thenmailboxdatacanbetransmittedonlyfrom  
C0-C17toA18-A35. Whenabyte-sizebusisselectedonPortC,thenmailbox  
datacanbetransmittedonlyfromC0-C8toA18-A26.  
BUS-MATCHING FIFO1 READS  
DataisreadfromtheFIFO1RAMin36-bitlongwordincrements. SincePort  
Bcanhave a byte orwordsize, onlythe firstone ortwobytes appearonthe  
selectedportionoftheFIFO1outputregister,withtherestofthelongwordstored  
inauxiliaryregisters. Inthiscase,subsequentFIFO1readsoutputtherestof  
the long word to the FIFO1 output register in the order shown by Figure 2.  
WhenreadingdatafromFIFO1inbyteformat,theunusedB9-B17outputs  
areindeterminate.  
TheMail2RegisterFlag(MBF2)issetHIGHbyaLOW-to-HIGHtransition  
onCLKAwhenaPortAreadis selectedbyCSA,W/RA,andENAwithMBA  
HIGH. Thedatainamailregisterremains intactafteritis readandchanges  
only when new data is written to the register. For an 18-bit bus size, 18 bits  
ofmailboxdataappearon A18-A35. (Inthiscase,A0-A17areindeterminate.)  
Fora9-bitbussize,9bitsofmailboxdataappearonA18-A26. (Inthiscase,  
A0-A17andA27-A35areindeterminate.)  
Thedatainamailregisterremains intactafteritis readandchanges only  
whennewdataiswrittentotheregister. TheEndianSelectfeaturehasnoeffect  
onmailboxdata.  
BUS-MATCHING FIFO2 WRITES  
DataiswrittentotheFIFO2RAMin36-bitlongwordincrements. Datawritten  
toFIFO2withabyteorwordbussizestorestheinitialbytesorwordsinauxiliary  
registers. TheCLKCrisingedgethatwritesthefourthbyteorthesecondword  
oflongwordtoFIFO2alsostorestheentirelongwordintheFIFO2memory.  
The bytes are arranged in the manner shown in Figure 3.  
WhenwritingdatatoFIFO2inbyteformat,theunusedC9-C17inputsare  
don'tcareinputs.  
16  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
A26  
A18  
A8  
A0  
A35  
A27  
A17  
A9  
BYTE ORDER ON PORT A:  
D
A
B
C
Write to FIFO1  
B17  
B9  
B8  
B0  
BYTE ORDER ON PORT B:  
1st: Read from FIFO1  
2nd: Read from FIFO1  
BE  
H
SIZEB  
L
A
B
B17  
B9  
B8  
B0  
C
D
(b) WORD SIZE BIG ENDIAN  
B17  
B9  
B8  
B8  
B0  
B0  
1st: Read from FIFO1  
2nd: Read from FIFO1  
BE  
L
SIZEB  
L
C
D
B17  
B9  
A
B
(c) WORD SIZE LITTLE ENDIAN  
B17  
B17  
B17  
B17  
B9  
B9  
B9  
B9  
B8  
B0  
B0  
B0  
1st: Read from FIFO1  
2nd: Read from FIFO1  
BE  
H
SIZEB  
H
A
B8  
B
B8  
3rd: Read from FIFO1  
4th: Read from FIFO1  
C
B8  
B0  
D
(d) BYTE SIZE BIG ENDIAN  
B17  
B9  
B8  
B0  
B0  
B0  
BE SIZEB  
1st: Read from FIFO1  
2nd: Read from FIFO1  
D
L
H
B17  
B9  
B8  
C
B17  
B9  
B9  
B8  
B
3rd: Read from FIFO1  
B17  
B8  
B0  
A
4th: Read from FIFO1  
5611 drw 03  
(e) BYTE SIZE LITTLE ENDIAN  
Figure 2. Port B Bus Sizing  
17  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
A26  
A18  
A8  
A0  
A35  
A27  
A17  
A9  
BYTE ORDER ON PORT A:  
D
A
B
C
Read from FIFO2  
C17  
C9  
C9  
C8  
C0  
C0  
BYTE ORDER ON PORT C:  
1st: Write to FIFO2  
2nd: Write to FIFO2  
BE  
H
SIZEC  
L
A
B
C17  
C8  
C
D
(b) WORD SIZE BIG ENDIAN  
C17  
C9  
C8  
C0  
C0  
1st: Write to FIFO2  
2nd: Write to FIFO2  
BE  
L
SIZEC  
L
C
D
C17  
C9  
C8  
A
B
(c) WORD SIZE LITTLE ENDIAN  
C17  
C9  
C9  
C9  
C9  
C8  
C8  
C8  
C8  
C0  
1st: Write to FIFO2  
2nd: Write to FIFO2  
BE  
H
SIZEC  
H
A
C17  
C17  
C17  
C0  
B
C0  
C0  
3rd: Write to FIFO2  
4th: Write to FIFO2  
C
D
(d) BYTE SIZE BIG ENDIAN  
C17  
C17  
C17  
C17  
C9  
C9  
C9  
C9  
C8  
C0  
BE SIZEC  
1st: Write to FIFO2  
2nd: Write to FIFO2  
D
L
H
C8  
C8  
C0  
C0  
C
B
3rd: Write to FIFO2  
C8  
C0  
A
4th: Write to FIFO2  
5611 drw 04  
(e) BYTE SIZE LITTLE ENDIAN  
Figure 3. Port C Bus Sizing  
18  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKA  
CLKB  
1
2
tRSTH  
t
RSTS  
MRS1  
tBEH  
t
BES  
tFWS  
BE/FWFT  
BE  
0,1  
FWFT  
t
FSS  
tFSH  
FS2,FS1  
,FS0  
t
WFF  
t
WFF  
FFA/IRA  
(2)  
REF  
t
EFB/ORB  
t
RSF  
AEB  
t
RSF  
AFA  
t
RSF  
MBF1  
RTM  
LOW  
HIGH  
5611 drw 05  
LOOP  
NOTES:  
1. PRS1 and MBC must be HIGH during Master Reset until the rising edge of FFA/IRA goes HIGH.  
2. If BE/FWFT is HIGH, then EFB/ORB will go LOW one CLKB cycle earlier than in this case where BE/FWFT is LOW.  
Figure 4. FIFO1 Master Reset and Loading X1 and Y1 with a Preset Value of Eight (IDT Standard and FWFT Modes)  
1
2
CLKC  
CLKA  
tRSTH  
t
RSTS  
MRS2(3)  
t
BES  
tBEH  
tFWS  
BE/FWFT  
BE  
0,1  
FWFT  
t
FSS  
tFSH  
FS2,FS1  
,FS0  
t
WFF  
tWFF  
FFC/IRC  
EFA/ORA  
AEA  
(2)  
REF  
t
t
t
RSF  
RSF  
AFC  
t
RSF  
MBF2  
RTM  
LOW  
HIGH  
5611 drw 06  
LOOP  
NOTES:  
1. PRS2 and MBC must be HIGH during Master Reset until the rising edge of FFC/IRC goes HIGH.  
2. If BE/FWFT is HIGH, then EFA/ORA will go LOW one CLKA cycle earlier than in this case where BE/FWFT is LOW.  
3. MRS2 must toggle simultaneously with MRS1.  
Figure 5. FIFO2 Master Reset and Loading X2 and Y2 with a Preset Value of Eight (IDT Standard and FWFT Modes)  
19  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
1
2
CLKA  
CLKB  
tRSTH  
tRSTS  
PRS1  
tWFF  
tWFF  
FFA/IRA  
(2)  
tREF  
EFB/ORB  
AEB  
tRSF  
tRSF  
tRSF  
AFA  
MBF1  
RTM  
LOW  
5611 drw 07  
NOTES:  
1. MRS1 must be HIGH during Partial Reset.  
2. If BE/FWFT is HIGH, then EFB/ORB will go LOW one CLKB cycle earlier than in this case where BE/FWFT is LOW.  
Figure 6. FIFO1 Partial Reset (IDT Standard and FWFT Modes)  
CLKC  
CLKA  
t
RSTS  
tRSTH  
PRS2  
t
WFF  
t
WFF  
FFC/IRC  
(2)  
REF  
t
EFA/ORA  
t
RSF  
AEA  
t
RSF  
AFC  
t
RSF  
MBF1  
5611 drw 08  
NOTES:  
1. MRS2 must be HIGH during Partial Reset.  
2. If BE/FWFT is HIGH, then EFA/ORA will go LOW one CLKA cycle earlier than in this case where BE/FWFT is LOW.  
Figure 7. FIFO2 Partial Reset (IDT Standard and FWFT Modes)  
20  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKA  
4
MRS1,  
MRS2  
t
FSS  
t
FSH  
FS2  
t
FSS  
t
FSH  
0,0  
FS1,FS0  
t
WFF  
FFA/IRA  
(1)  
tSKEW1  
tENS2  
tENH  
ENA  
tDH  
tDS  
A0-A35  
First Word to FIFO1  
AEA Offset  
AFA Offset  
AEB Offset  
AFC Offset  
(Y2)  
(X2)  
(Y1)  
(X1)  
CLKC  
1
2
t
WFF  
FFC/IRC  
5611 drw 09  
NOTES:  
1. tSKEW1 is the minimum time between the rising CLKA edge and a rising CLKC edge for FFC/IRC to transition HIGH in the next cycle. If the time between the rising edge of CLKA and rising  
edge of CLKC is less than tSKEW1, then FFC/IRC may transition HIGH one CLKC cycle later than shown.  
2. CSA = LOW, W/RA = HIGH, MBA = LOW. It is not necessary to program Offset register on consecutive clock cycles.  
Figure 8. Parallel Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset (IDT Standard and FWFT Modes)  
CLKA  
4
MRS1,  
MRS2  
t
FSH  
t
FSS  
FS2  
t
WFF  
(1)  
SKEW  
t
FFA/IRA  
FS1/SEN  
FS0/SD(3)  
t
SENS  
t
SENH  
t
FSS  
t
SENS  
tSENH  
tSPH  
tSDS  
t
SDH  
tSDS  
tSDH  
AFA Offset  
(Y1) MSB  
AEA Offset  
(X2) LSB  
CLKC  
4
t
WFF  
5611 drw 10  
FFC/IRC  
NOTES:  
1. tSKEW1 is the minimum time between the rising CLKA edge and a rising CLKC edge for FFC/IRC to transition HIGH in the next cycle. If the time between the rising edge of CLKA and rising  
edge of CLKC is less than tSKEW1, then FFC/IRC may transition HIGH one CLKC cycle later than shown.  
2. It is not necessary to program Offset register bits on consecutive clock cycles. FIFO write attempts are ignored until FFA/IRA, FFC/IRC is set HIGH.  
3. Programmable offsets are written serially to the SD input in the order AFA offset (Y1), AEB offset (X1), AFC offset (Y2), and AEA offset (X2).  
Figure 9. Serial Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset (IDT Standard and FWFT Modes)  
21  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKA  
FFA/IRA HIGH  
t
ENH  
ENH  
t
ENS1  
CSA  
t
t
ENS1  
W/RA  
tENH  
tENS2  
MBA  
ENA  
tENH  
tENH  
tENH  
tENS2  
tENS2  
tENS2  
tDH  
t
DS  
W1(1)  
W2(1)  
A0-A35  
No Operation  
5611 drw11  
NOTE:  
1. Written to FIFO1.  
Figure 10. Port A Write Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)  
CLKC  
FFC/IRC  
HIGH  
t
ENS2  
ENS2  
t
ENS2  
ENS2  
t
ENH  
t
ENH  
MBC  
t
t
t
ENH  
tENH  
WENC  
tDH  
tDS  
C0-C17  
5611 drw12  
DATA SIZE TABLE FOR WORD WRITES TO FIFO2  
(1)  
SIZE MODE  
WRITE  
NO.  
DATA WRITTEN  
TO FIFO2  
DATA READ FROM FIFO2  
SIZEC  
BE  
C17-C9  
C8-C0  
A35-A27  
A26-A18  
A17-A9  
A8-A0  
L
L
H
1
2
A
C
B
D
A
B
C
D
L
1
2
C
A
D
B
A
B
C
D
NOTE:  
1. BE is selected at Master Reset; SIZEB and SIZEC must be static throughout device operation.  
Figure 11. Port C Word Write Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)  
22  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKC  
FFC/IRC HIGH  
t
ENS2  
ENS2  
t
ENH  
ENH  
t
ENH  
MBC  
tENS2  
t
t
t
ENH  
WENC  
tDS  
tDH  
C0-C8  
5611 drw 13  
DATA SIZE TABLE FOR BYTE WRITES TO FIFO2  
SIZE MODE(1)  
WRITE  
NO.  
DATA WRITTEN  
TO FIFO2  
C8-C0  
DATA READ FROM FIFO2  
SIZEC  
BE  
A35-A27  
A26-A18  
A17-A9  
A8-A0  
1
2
3
4
1
2
3
4
A
B
C
D
D
C
B
A
H
H
H
A
B
C
D
L
A
B
C
D
NOTE:  
1. BE is selected at Master Reset; SIZEB and SIZEC must be static throughout device operation.  
Figure 12. Port C Byte Write Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)  
CLKB  
EFB/ORB HIGH  
CSB  
MBB  
tENS2  
tENH  
RENB  
No Operation  
Read 2  
t
DIS  
DIS  
t
A
t
MDV  
t
A
t
EN  
B0-B17  
Read 1  
Read 2  
Previous Data  
(Standard Mode)  
OR  
t
t
MDV  
t
A
t
A
tEN  
B0-B17  
(FWFT Mode)  
Read 1  
Read 3  
5611 drw 14  
DATA SIZE TABLE FOR WORD READS FROM FIFO1  
SIZE MODE(1)  
DATA WRITTEN TO FIFO1  
READ  
NO.  
DATA READ FROM FIFO1  
SIZEB  
BE  
A35-A27  
A26-A18  
A17-A9  
A8-A0  
B17-B9  
B8-B0  
B
H
H
H
A
B
C
D
1
2
1
2
A
C
C
A
D
L
A
B
C
D
D
B
NOTE:  
1. BE is selected at Master Reset; SIZEB and SIZEC must be static throughout device operation.  
Figure 13. Port B Word Read Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)  
23  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKB  
EFB/ORB  
HIGH  
CSB  
MBB  
tENS2  
tENH  
RENB  
No Operation  
t
DIS  
DIS  
t
MDV  
t
A
t
A
t
A
tA  
t
EN  
B0-B8  
Previous Data  
Read 2  
Read 3  
Read 4  
Read 5  
Read 1  
(Standard Mode)  
t
t
MDV  
OR  
tA  
tA  
t
A
t
A
t
EN  
B0-B8  
Read 1  
Read 2  
Read 3  
Read 4  
(FWFT Mode)  
5611 drw 15  
NOTE:  
1. Unused bytes B9-B17 are indeterminate for byte-size reads.  
DATA SIZE TABLE FOR BYTE READS FROM FIFO1  
SIZE MODE(1)  
DATA WRITTEN TO FIFO1  
READ  
NO.  
DATA READ FROM FIFO1  
B8-B0  
SIZEB  
BE  
A35-A27  
A26-A18  
A17-A9  
A8-A0  
1
2
3
4
A
B
C
D
H
H
H
A
B
C
D
1
2
3
4
D
C
B
A
L
A
B
C
D
NOTE:  
1. BE is selected at Master Reset; SIZEB must be static throughout device operation.  
Figure 14. Port B Byte Read Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)  
tCLK  
tCLKH  
tCLKL  
CLKA  
EFA/ORA  
HIGH  
CSA  
W/RA  
MBA  
tENH  
tENH  
tENH  
tENS2  
tENS2  
tENS2  
ENA  
No Operation  
W2(1)  
t
MDV  
tDIS  
t
A
tA  
t
EN  
A0-A35  
W1(1)  
W2(1)  
Previous Data  
(
Standard Mode)  
tDIS  
t
MDV  
OR  
tA  
t
A
t
EN  
A0-A35  
(FWFT Mode)  
W3(1)  
W1(1)  
5611 drw16  
NOTE:  
1. Read From FIFO2.  
Figure 15. Port A Read Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)  
24  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
t
CLK  
t
CLKL  
t
CLKH  
CLKA  
LOW  
CSA  
WRA HIGH  
tENS2  
tENH  
MBA  
tENS2  
tENH  
ENA  
IRA  
HIGH  
tDS  
tDH  
W1  
A0-A35  
CLKHt  
CLKtCLKL  
(1)  
SKEW1  
t
t
CLKB  
3
1
2
t
REF  
t
REF  
FIFO1 Empty  
LOW  
ORB  
CSB  
MBB LOW  
tENS2  
tENH  
RENB  
tA  
tA  
Read 1  
Read 2  
B0-B17  
5611 drw17  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for ORB to transition HIGH and to clock the next word to the FIFO1 output register in three CLKB cycles.  
If the time between the rising CLKA edge and rising CLKB edge is less than tSKEW1, then the transition of ORB HIGH and load of the first word to the output register may occur one CLKB  
cycle later than shown.  
2. If Port B size is word or byte, ORB is set LOW by the last word or byte read from FIFO1, respectively (the word-size case is shown).  
Figure 16. ORB Flag Timing and First Data Word Fall Through when FIFO1 is Empty (FWFT Mode)  
25  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
t
CLK  
t
CLKH  
tCLKL  
CLKA  
LOW  
HIGH  
CSA  
WRA  
tENH  
tENS2  
MBA  
tENS2  
tENH  
ENA  
FFA  
HIGH  
tDS  
tDH  
A0-A35  
W1  
CLKHtCLK  
tCLKL  
(1)  
SKEW1  
t
t
CLKB  
1
2
t
REF  
t
REF  
EFB  
CSB  
FIFO1 Empty  
LOW  
MBB LOW  
tENS2  
tENH  
RENB  
tA  
tA  
B0-B17  
Read 1  
Read 2  
5611 drw18  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for EFB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising  
CLKB edge is less than tSKEW1, then the transition of EFB HIGH may occur one CLKB cycle later than shown.  
2. If Port B size is word or byte, EFB is set LOW by the last word or byte read from FIFO1, respectively (the word-size case is shown).  
Figure 17. EFB Flag Timing and First Data Read Fall Through when FIFO1 is Empty (IDT Standard Mode)  
26  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKC  
tENS2  
tENS2  
tENH  
tENH  
MBC  
WENC  
IRC  
HIGH  
tDS  
tDH tDS  
tDH  
Write 1  
Write 2  
C0-C17  
tCLK  
tCLKH tCLKL  
(1)  
tSKEW1  
CLKA  
1
2
3
tREF  
tREF  
ORA FIFO2 Empty  
CSA LOW  
LOW  
LOW  
W/RA  
MBA  
tENS2  
tENH  
ENA  
tA  
Old Data in FIFO2 Output Register  
A0-A35  
W1  
5611 drw19  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKC edge and a rising CLKA edge for ORA to transition HIGH and to clock the next word to the FIFO2 output register in three CLKA cycles.  
If the time between the CLKC edge and the rising CLKA edge is less than tSKEW1, then the transition of ORA HIGH and load of the first word to the output register may occur one CLKA  
cycle later than shown.  
2. If Port C size is word or byte, tSKEW1 is referenced to the rising CLKC edge that writes the last word or byte write of the long word, respectively.  
Figure 18. ORA Flag Timing and First Data Word Fall through when FIFO2 is Empty (FWFT Mode)  
27  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
t
CLK  
CLKH  
tCLKL  
t
CLKC  
tENS2  
tENH  
MBC  
tENS2  
tENH  
WENC  
FFC  
HIGH  
tDS  
tDH  
t
DS  
tDH  
Write 1  
Write 2  
C0-C17  
t
CLK  
(1)  
SKEW1  
t
CLKH  
t
tCLKL  
1
2
CLKA  
t
REF  
t
REF  
EFA  
CSA  
FIFO2 Empty  
LOW  
LOW  
LOW  
W/RA  
MBA  
tENS2  
tENH  
ENA  
tA  
A0-A35  
W1  
5611 drw20  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKC edge and a rising CLKA edge for EFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKC edge and rising  
CLKA edge is less than tSKEW1, then the transition of EFA HIGH may occur one CLKA cycle later than shown.  
2. If Port C size is word or byte, tSKEW1 is referenced to the rising CLKC edge that writes the last word or byte of the long word, respectively.  
Figure 19. EFA Flag Timing and First Data Read when FIFO2 is Empty (IDT Standard Mode)  
28  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKB  
CSB LOW  
LOW  
MBB  
tENS2  
tENH  
RENB  
ORB  
HIGH  
tA  
tA  
Read 1  
Read 2  
B0-B17  
Previous Word in  
FIFO1 Output Register  
(1)  
tSKEW1  
t
CLK tCLKL  
tCLKH  
CLKA  
IRA  
1
2
t
WFF  
t
WFF  
FIFO1 Full  
CSA LOW  
W/RA HIGH  
tENH  
tENS2  
MBA  
tENS2  
tENH  
ENA  
tDS  
tDH  
Write  
A0-A35  
To FIFO1  
5611 drw21  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for IRA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising  
CLKA edge is less than tSKEW1, then IRA may transition HIGH one CLKA cycle later than shown.  
2. If Port B size is word or byte, tSKEW1 is referenced to the rising CLKB edge that reads the last word or byte write of the long word, respectively (the word-size case is shown).  
Figure 20. IRA Flag Timing and First Available Write when FIFO1 is Full (FWFT Mode)  
29  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKB  
CSB  
LOW  
LOW  
MBB  
tENS2  
tENH  
RENB  
EFB  
HIGH  
tA  
tA  
Read 1  
Read 2  
B0-B17  
Previous Word in  
FIFO1 Output Register  
(1)  
tSKEW1  
t
t
CLKH CLK tCLKL  
CLKA  
1
2
t
WFF  
t
WFF  
FFA  
FIFO1 Full  
CSA LOW  
W/RA  
HIGH  
tENS2  
tENH  
MBA  
tENS2  
tENH  
ENA  
tDS  
tDH  
Write  
A0-A35  
5611 drw22  
To FIFO1  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for FFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising  
CLKA edge is less than tSKEW1, then FFA may transition HIGH one CLKA cycle later than shown.  
2. If Port B size is word or byte, tSKEW1 is referenced from the rising CLKB edge that reads the last word or byte of the long word, respectively (the word-size case is shown).  
Figure 21. FFA Flag Timing and First Available Write when FIFO1 is Full (IDT Standard Mode)  
30  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKA  
CSA  
LOW  
LOW  
W/RA  
LOW  
MBA  
tENS2  
tENH  
ENA  
ORA  
HIGH  
tA  
Previous Word in FIFO2 Output Register  
SKEW1  
Next Word From FIFO2  
A0-A35  
(1)  
tCLK  
t
tCLKH  
tCLKL  
CLKC  
1
2
t
WFF  
t
WFF  
IRC FIFO2 Full  
tENS2  
tENH  
MBC  
WENC  
C0-C17  
t
ENS2  
t
ENH  
tDS  
tDS  
tDH  
tDH  
Write  
5611 drw23  
To FIFO2  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKC edge and a rising CLKC edge for IRC to transition HIGH in the next CLKC cycle. If the time between the rising CLKA edge and rising  
CLKC edge is less than tSKEW1, then IRC may transition HIGH one CLKC cycle later than shown.  
2. If Port C size is word or byte, IRC is set LOW by the last word or byte write of the long word, respectively (the word-size case is shown).  
Figure 22. IRC Flag Timing and First Available Write when FIFO2 is Full (FWFT Mode)  
31  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKA  
CSA  
LOW  
LOW  
W/RA  
LOW  
MBA  
ENA  
tENS2  
tENH  
EFA  
HIGH  
tA  
Previous Word in FIFO2 Output Register  
Next Word From FIFO2  
A0-A35  
(1)  
tCLK  
tSKEW1  
tCLKH  
tCLKL  
CLKC  
1
2
t
WFF  
tWFF  
FIFO2 Full  
FFC  
tENS2  
tENH  
MBC  
ENC  
tENS2  
tENH  
tDH  
tDS  
tDS  
tDH  
Write  
C0-C17  
To FIFO2  
5611 drw24  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKC edge for FFC to transition HIGH in the next CLKC cycle. If the time between the rising CLKA edge and rising  
CLKC edge is less than tSKEW1, then FFC may transition HIGH one CLKC cycle later than shown.  
2. If Port C size is word or byte, FFC is set LOW by the last word or byte write of the long word, respectively (the word-size case is shown).  
Figure 23. FFC Flag Timing and First Available Write when FIFO2 is Full (IDT Standard Mode)  
CLKA  
tENH  
tENS2  
ENA  
(1)  
tSKEW2  
CLKB  
1
2
t
PAE  
t
PAE  
AEB  
X1 Word in FIFO1  
(X1+1) Words in FIFO1  
ENS2  
t
tENH  
RENB  
5611 drw 25  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AEB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising  
CLKB edge is less than tSKEW2, then AEB may transition HIGH one CLKB cycle later than shown.  
2. FIFO1 Write (CSA = LOW, W/RA = LOW, MBA = LOW), FIFO1 read (CSB = LOW, MBB = LOW). Data in the FIFO1 output register has been read from the FIFO.  
3. If Port B size is word or byte, AEB is set LOW by the last word or byte read from FIFO1, respectively.  
Figure 24. Timing for AEB when FIFO1 is Almost-Empty (IDT Standard and FWFT Modes)  
32  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKC  
tENH  
tENS2  
WENC  
CLKA  
(1)  
tSKEW2  
1
2
t
PAE  
t
PAE  
AEA  
X2 Words in FIFO2  
(X2+1) Words in FIFO2  
ENS2  
t
tENH  
ENA  
5611 drw 26  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKC edge and a rising CLKA edge for AEA to transition HIGH in the next CLKA cycle. If the time between the rising CLKC edge and rising  
CLKA edge is less than tSKEW2, then AEA may transition HIGH one CLKA cycle later than shown.  
2. FIFO2 Write (MBC = LOW), FIFO2 read (CSA = LOW, W/RA = LOW, MBA = LOW). Data in the FIFO2 output register has been read from the FIFO.  
3. If Port C size is word or byte, tSKEW2 is referenced to the rising CLKC edge that writes the last word or byte of the long word, respectively.  
Figure 25. Timing for AEA when FIFO2 is Almost-Empty (IDT Standard and FWFT Modes)  
(1)  
tSKEW2  
1
2
CLKA  
ENA  
tENS2  
tENH  
t
PAF  
tPAF  
(D-Y1) Words in FIFO1  
ENH  
[D-(Y1+1)] Words in FIFO1  
AFA  
CLKB  
t
tENS2  
RENB  
5611 drw 27  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKA edge and rising  
CLKB edge is less than tSKEW2, then AFA may transition HIGH one CLKA cycle later than shown.  
2. FIFO1 Write (CSA = LOW, W/RA = HIGH, MBA = LOW), FIFO1 read (CSB = LOW, MBB = LOW). Data in the FIFO1 output register has been read from the FIFO.  
3. D = Maximum FIFO Depth = 2,048 for the IDT723656, 4,096 for the IDT723666, 8,192 for the IDT723676.  
4. If Port B size is word or byte, tSKEW2 is referenced from the rising CLKB edge that reads the last word or byte of the long word, respectively.  
Figure 26. Timing for AFA when FIFO1 is Almost-Full (IDT Standard and FWFT Modes)  
(1)  
tSKEW2  
1
2
CLKC  
tENH  
tENS2  
WENC  
AFC  
t
PAF  
t
PAF  
(D-Y2) Words in FIFO2  
[D-(Y2+1)] Words in FIFO2  
CLKA  
tENS2  
tENH  
ENA  
5611 drw 28  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKC edge and a rising CLKA edge for AFC to transition HIGH in the next CLKC cycle. If the time between the rising CLKC edge and rising  
CLKA edge is less than tSKEW2, then AFC may transition HIGH one CLKC cycle later than shown.  
2. FIFO2 write (MBC = LOW), FIFO2 read (CSA = LOW, W/RA = LOW, MBA = LOW). Data in the FIFO2 output register has been read from the FIFO.  
3. D = Maximum FIFO Depth = 2,048 for the IDT723656, 4,096 for the IDT723666, 8,192 for the IDT723676.  
4. Port C size is word or byte, AFC is set LOW by the last word or byte write of the long word, respectively.  
Figure 27. Timing for AFC when FIFO2 is Almost-Full (IDT Standard and FWFT Modes)  
33  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKA  
tENS1  
tENH  
CSA  
W/RA  
MBA  
ENA  
t
ENS1  
t
ENH  
t
ENS2  
t
ENH  
ENH  
tENS2  
t
tDH  
tDS  
W1  
A0-A35  
CLKB  
MBF1  
t
PMF  
t
PMF  
CSB  
MBB  
tENH  
tENS2  
RENB  
t
PMR  
tDIS  
tEN  
t
MDV  
W1 (Remains valid in Mail1 Register after read)  
FIFO1 Output Register  
B0-B17  
5611 drw29  
NOTE:  
1. If Port B is configured for word size, data can be written to the Mail1 register using A0-A17 (A18-A35 are don't care inputs). In this first case B0-B17 will have valid data. If Port  
B is configured for byte size, data can be written to the Mail1 Register using A0-A8 (A9-A35 are don't care inputs). In this second case, B0-B8 will have valid data (B9-B17 will  
be indeterminate).  
Figure 28. Timing for Mail1 Register and MBF1 Flag (IDT Standard and FWFT Modes)  
CLKC  
tENS2  
tENH  
MBC  
ENC  
tENS2  
tENH  
tDH  
tDS  
C0-C17  
CLKA  
W1  
t
PMF  
t
PMF  
MBF2  
CSA  
W/RA  
MBA  
ENA  
tENS2  
tENH  
t
PMR  
tEN  
t
DIS  
t
MDV  
A0-A35  
W1 (Remains valid in Mail2 Register after read)  
FIFO2 Output Register  
5611 drw30  
NOTE:  
1. IfPortCis configuredforwordsize, data canbe writtentothe Mail2registerusingC0-C17. Inthis firstcase, A18-A35willhave validdata (A0-A17willbe indeterminate). IfPortCis configured  
for byte size, data can be written to the Mail2 register using C0-C8 (C9-C17 are don't care inputs). In this second case, A18-A26 will have valid data (A0-A17 and A27-A35 will be  
indeterminate).  
Figure 29. Timing for Mail2 Register and MBF2 Flag (IDT Standard and FWFT Modes)  
34  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKA  
CLKB  
4
1
2
3
2
3
4
1
tENS2  
tENH  
RENB  
RT1  
t
RSTH  
t
RSTS  
t
RTMS  
t
RTMH  
RTM  
(2)  
REF  
t
REF(2)  
t
EFB  
B0-Bn  
NOTES:  
tA  
Wx  
W1  
5611 drw31  
1. CSB = LOW  
2. Retransmit setup is complete after EFB returns HIGH, only then can a read operation begin.  
3. W1 = first word written to the FIFO1 after Master Reset on FIFO1.  
4. No more than D-2 may be written to the FIFO1 between Reset of FIFO1 (Master or Partial) and Retransmit setup. Therefore, FFA will be LOW throughout the Retransmit  
setup procedure. D = 2,048, 4,096 and 8,192 for the IDT723656, IDT723666 and IDT723676 respectively.  
Figure 30. Retransmit Timing for FIFO1 (IDT Standard Mode)  
CLKC  
CLKA  
4
1
2
3
2
3
4
1
tENS2  
tENH  
ENA  
RT2  
t
RSTH  
t
RSTS  
t
RTMS  
t
RTMH  
RTM  
EFA  
(2)  
REF  
t
REF(2)  
t
tA  
A0-An  
Wx  
W1  
5611 drw32  
NOTES:  
1. CSA = LOW  
2. Retransmit setup is complete after EFA returns HIGH, only then can a read operation begin.  
3. W1 = first word written to the FIFO1 after Master Reset on FIFO2.  
4. No more than D-2 may be written to the FIFO1 between Reset of FIFO2 (Master or Partial) and Retransmit setup. Therefore, FFC will be LOW throughout the Retransmit  
setup procedure. D = 2,048, 4,096 and 8,192 for the IDT723656, IDT723666 and IDT723676 respectively.  
Figure 31. Retransmit Timing for FIFO2 (IDT Standard Mode)  
35  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKA  
CLKB  
4
1
2
3
2
3
4
1
RENB  
RT1  
LOW  
t
RSTH  
t
RSTS  
t
RTMS  
t
RTMH  
RTM  
ORB  
REF(2)  
t
REF(2)  
t
tA  
B0-Bn  
Wx  
W1  
5611 drw33  
NOTES:  
1. CSB = LOW  
2. Retransmit setup is complete after ORB returns HIGH, only then can a read operation begin.  
3. W1 = first word written to the FIFO1 after Master Reset on FIFO1.  
4. No more than D-2 may be written to the FIFO1 between Reset of FIFO1 (Master or Partial) and Retransmit setup. Therefore, IRA will be LOW throughout the Retransmit  
setup procedure. D = 2,049, 4,097 and 8,193 for the IDT723656, IDT723666 and IDT723676 respectively.  
Figure 32. Retransmit Timing for FIFO1 (FWFT Mode)  
CLKC  
CLKA  
4
1
2
3
2
3
4
1
ENA  
RT2  
RTM  
LOW  
t
RSTH  
t
RSTS  
t
RTMS  
t
RTMH  
REF(2)  
t
t
REF(2)  
t
ORA  
A
A0-An  
Wx  
W1  
5611 drw34  
NOTES:  
1. CSA = LOW  
2. Retransmit setup is complete after ORA returns HIGH, only then can a read operation begin.  
3. W1 = first word written to the FIFO2 after Master Reset on FIFO2.  
4. No more than D-2 may be written to the FIFO2 between Reset of FIFO2 (Master or Partial) and Retransmit setup. Therefore, IRC will be LOW throughout the Retransmit  
setup procedure. D = 2,049, 4,097 and 8,193 for the IDT723656, IDT723666 and IDT723676 respectively.  
Figure 33. Retransmit Timing for FIFO2 (FWFT Mode)  
36  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKA  
LOOP  
CSA  
W/RA  
MBA  
ENA  
t
ENS2  
t
ENS2  
t
ENH  
tENH  
t
ENH  
t
ENS2  
No Operation  
Wn+1  
t
MDV  
tDIS  
t
A
tA  
tEN  
Wn-1(1)  
A0-A35  
Wn(1)  
Write to FIFO 1  
5611 drw35  
Write to FIFO 1  
NOTES:  
1. Data is read from FIFO2 and written into FIFO1 & placed on Port A simultaneously. The first data word written into FIFO1 is the Previous Data Word (Wn-1)  
2. All FIFO status flags operate as normal, based on the contents of respective FIFO's.  
3. Loopback is available in both Standard IDT and FWFT modes. The diagram above is for both.  
Figure 34. Loopback Operation (FIFO2 data transfer to FIFO1 and Port A)  
tCLK  
tCLKH  
tCLKL  
CLKA  
LOOP  
CSA  
W/RA  
MBA  
ENA  
t
ENS2  
t
ENS2  
t
ENH  
t
ENH  
tENH  
t
ENS2  
No Operation  
Wn+1  
t
MDV  
tDIS  
tA  
tA  
tEN  
(4) WRITE  
to FIFO 1  
Wn(1)  
Write to FIFO 1  
Wn-1(1)  
Write to FIFO 1  
A0-A35  
HIGH-Z  
5611 drw36  
NOTES:  
1. Data is read from FIFO2 and written into FIFO1 only. The data from FIFO2 is NOT placed on Port A. Port A is held in the high impedance state.  
2. All FIFO status flags operate as normal, based on the contents of respective FIFO's.  
3. Loopback is available in both Standard IDT and FWFT modes. The diagram above is for both.  
4. Write operations to FIFO1 cannot be accessed via Port A.  
Figure 35. Loopback Operation (FIFO2 data transfer to FIFO1)  
37  
IDT723656/723666/723676CMOSTRIPLEBUSSyncFIFOTM WITH  
BUS MATCHING 2,048 x 36 x 2, 4,096 x 36 x 2 and 8,192 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
PARAMETER MEASUREMENT INFORMATION  
5.0V  
1.1KΩ  
From Output  
Under Test  
30 pF (1)  
680Ω  
PROPAGATION DELAY  
LOAD CIRCUIT  
3V  
3V  
Timing  
Input  
1.5V  
High-Level  
1.5V  
Input  
GND  
1.5V  
GND  
3V  
t
S
th  
tW  
3V  
Data,  
Enable  
Input  
1.5V  
1.5V  
Low-Level  
1.5V  
1.5V  
GND  
Input  
GND  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VOLTAGE WAVEFORMS  
PULSE DURATIONS  
3V  
Output  
Enable  
1.5V  
1.5V  
tPZL  
GND  
tPLZ  
3V  
3V  
Input  
1.5V  
1.5V  
1.5V  
Low-Level  
Output  
GND  
V
OL  
tPD  
t
PZH  
tPD  
V
OH  
V
OH  
In-Phase  
Output  
1.5V  
1.5V  
High-Level  
Output  
1.5V  
V
t
PHZ  
OL  
OV  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
4665 drw 37  
NOTE:  
1. Includes probe and jig capacitance.  
Figure 36. Load Circuit and Voltage Waveforms  
38  
ORDERING INFORMATION  
IDT  
XXXXXX  
X
XX  
XX  
X
Device Type Power  
Speed  
Package  
Process/  
Temperature  
Range  
Commercial (0°C to +70°C)  
BLANK  
PF  
Thin Quad Flat Pack (TQFP, PK128-1)  
Clock Cycle Time (tCLK  
)
12  
15  
Commercial Only  
Low Power  
Speed in Nanoseconds  
L
723656  
723666  
723676  
2,048 x 36 x 2 Triple Bus SyncFIFO  
4,096 x 36 x 2 Triple Bus SyncFIFO  
8,192 x 36 x 2 Triple Bus SyncFIFO  
with Bus-Matching  
with Bus-Matching  
with Bus-Matching  
5611 drw 38  
NOTE:  
1. Industrial temperature range is available by special order.  
DATASHEETDOCUMENTHISTORY  
12/21/2000  
03/21/2001  
08/01/2001  
11/03/2003  
pgs. 13 and 22.  
pgs. 7 and 8.  
pgs. 7, 9, 10 and 39.  
pg. 1.  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
for TECH SUPPORT:  
408-330-1753  
e-mail:FIFOhelp@idt.com  
www.idt.com  
39  

相关型号:

IDT723666L15PF

CMOS TRIPLE BUS SyncFIFOTM WITH BUS-MATCHING
IDT

IDT723666L15PF8

Bi-Directional FIFO, 4KX36, 10ns, Synchronous, CMOS, PQFP128, TQFP-128
IDT

IDT723666L15PF9

FIFO, 4KX36, 10ns, Synchronous, CMOS, PQFP128, TQFP-128
IDT

IDT723666L15PFG8

FIFO, 4KX36, 10ns, Synchronous, CMOS, PQFP128, TQFP-128
IDT

IDT723666L20PF

Bi-Directional FIFO, 4KX36, 12ns, Synchronous, CMOS, PQFP128, TQFP-128
IDT

IDT723672

CMOS SyncBiFIFO
IDT

IDT723672L12PF

CMOS SyncBiFIFO
IDT

IDT723672L12PF8

Bi-Directional FIFO, 8KX36, 8ns, Synchronous, CMOS, PQFP120, TQFP-120
IDT

IDT723672L12PFG

Bi-Directional FIFO, 8KX36, 8ns, Synchronous, CMOS, PQFP120, GREEN, TQFP-120
IDT

IDT723672L12PFG8

Bi-Directional FIFO, 8KX36, 8ns, Synchronous, CMOS, PQFP120, TQFP-120
IDT

IDT723672L12PQF

CMOS SyncBiFIFO
IDT

IDT723672L12PQFG

Bi-Directional FIFO, 8KX36, 8ns, Synchronous, CMOS, PQFP132, GREEN, PLASTIC, QFP-132
IDT