IDT72T51246L5BB8 [IDT]

FIFO, 32KX36, 3.6ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256;
IDT72T51246L5BB8
型号: IDT72T51246L5BB8
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FIFO, 32KX36, 3.6ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256

先进先出芯片
文件: 总62页 (文件大小:589K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ADVANCE INFORMATION  
2.5V MULTI-QUEUE FLOW-CONTROL DEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION  
589,824 bits, 1,179,648 bits and 2,359,296 bits  
IDT72T51236  
IDT72T51246  
IDT72T51256  
4 bit parallel flag status on both read and write ports  
FEATURES:  
Provides continuous PAE and PAF status of up to 4 Queues  
Global Bus Matching - (All Queues have same Input Bus Width  
and Output Bus Width)  
User Selectable Bus Matching Options:  
- x36in to x36out  
- x18in to x36out  
- x9in to x36out  
- x36in to x18out  
- x36in to x9out  
FWFT mode of operation on read port  
Packet mode operation  
Partial Reset, clears data in single Queue  
Expansion of up to 8 multi-queue devices in parallel is available  
Power Down Input provides additional power savings in HSTL  
and eHSTL modes.  
JTAG Functionality (Boundary Scan)  
Available in a 256-pin PBGA, 1mm pitch, 17mm x 17mm  
HIGH Performance submicron CMOS technology  
Industrial temperature range (-40°C to +85°C) is available  
Choose from among the following memory density options:  
IDT72T51236  
IDT72T51246  
IDT72T51256  
Total Available Memory = 589,824 bits  
Total Available Memory = 1,179,648 bits  
Total Available Memory = 2,359,296 bits  
Configurable from 1 to 4 Queues  
Queues may be configured at master reset from the pool of  
Total Available Memory in blocks of 256 x 36  
Independent Read and Write access per queue  
User programmable via serial port  
User selectable I/O: 2.5V LVTTL, 1.5V HSTL, 1.8V eHSTL  
Default multi-queue device configurations  
-IDT72T51236: 4,096 x 36 x 4Q  
-IDT72T51246: 8,192 x 36 x 4Q  
-IDT72T51256: 16,384 x 36 x 4Q  
100% Bus Utilization, Read and Write on every clock cycle  
200 MHz High speed operation (5ns cycle time)  
3.6ns access time  
Echo Read Enable & Echo Read Clock Outputs  
Individual, Active queue flags (OV, FF, PAE, PAF, PR)  
FUNCTIONALBLOCKDIAGRAM  
MULTI-QUEUE FLOW-CONTROL DEVICE  
RADEN  
ESTR  
WADEN  
FSTR  
RDADD  
5
WRADD  
WEN  
Q0  
REN  
5
RCLK  
EREN  
WCLK  
ERCLK  
OE  
Q
out  
x9, x18, x36  
D
in  
x9, x18, x36  
DATA IN  
DATA OUT  
OV  
PR  
FF  
Q3  
PAF  
PAFn  
PAE  
PAEn  
PRn  
4
4
6116 drw01  
IDTandtheIDTlogoareregisteredtrademarksofIntegratedDeviceTechnology,Inc  
NOVEMBER 2003  
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES  
1
2003 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
DSC-6116/2  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Theuserhasfullflexibilityconfiguringqueueswithinthedevice,beingable  
toprogramthetotalnumberofqueues between1and4,theindividualqueue  
depthsbeingindependentofeachother.Theprogrammableflagpositionsare  
alsouserprogrammable.Allprogrammingisdoneviaadedicatedserialport.  
Iftheuserdoesnotwishtoprogramthemulti-queuedevice,adefaultoptionis  
availablethatconfiguresthedeviceinapredeterminedmanner.  
BothMasterResetandPartialResetpinsareprovidedonthisdevice.AMaster  
Reset latches in all configuration setup pins and must be performed before  
programmingofthedevicecantakeplace.APartialResetwillresetthereadand  
writepointersofanindividualqueue,providedthatthequeueisselectedonboth  
thewriteportandreadportatthetimeofpartialreset.  
Echo Read Enable, EREN and Echo Read Clock, ERCLK outputs are  
provided.Theseareoutputs fromthereadportofthequeuethatarerequired  
forhighspeeddatacommunication,toprovidetightersynchronizationbetween  
thedatabeingtransmittedfromtheQnoutputsandthedatabeingreceivedby  
theinputdevice.Datareadfromthereadportisavailableontheoutputbuswith  
respecttoERENandERCLK,thisisveryusefulwhendataisbeingreadathigh  
speed.  
Themulti-queueflow-controlhasthecapabilityofoperatingitsIOineither2.5V  
LVTTL, 1.5V HSTL or 1.8V eHSTL mode. The type of IO is selected via the  
IOSELinput.Thecoresupplyvoltage(VCC)tothemulti-queueisalways2.5V,  
howevertheoutputlevelscanbesetindependentlyviaaseparatesupply,VDDQ.  
ThedevicesalsoprovideadditionalpowersavingsviaaPowerDownInput.  
This input disables the write port data inputs when no write operations are  
required.  
AJTAGtestportisprovided,herethemulti-queueflow-controldevicehasa  
fullyfunctionalBoundaryScanfeature,compliantwithIEEE1149.1Standard  
TestAccessPortandBoundaryScanArchitecture.  
DESCRIPTION:  
The IDT72T51236/72T51246/72T51256 multi-queue flow-control de-  
vicesaresinglechipwithinwhichanywherebetween1and4discreteFIFO  
queuescanbesetup.Allqueueswithinthedevicehaveacommondatainput  
bus,(writeport)andacommondataoutputbus,(readport).Datawritteninto  
the write port is directed to a respective queue via an internal de-multiplex  
operation,addressedbytheuser.Datareadfromthereadportisaccessed  
fromarespectivequeueviaaninternalmultiplexoperation,addressedbythe  
user.Datawritesandreadscanbeperformedathighspeedsupto200MHz,  
with access times of 3.6ns. Data write and read operations are totally  
independentofeachother,aqueuemaybeselectedonthewriteportanda  
different queue on the read port or both ports may select the same queue  
simultaneously.  
The device provides Full flag and Output Valid flag status for the queue  
selected for write and read operations respectively. Also a Programmable  
AlmostFullandProgrammableAlmostEmptyflagforeachqueueisprovided.  
Two 4 bit programmable flag busses are available, providing status of all  
queues,includingqueuesnotselectedforwriteorreadoperations,theseflag  
busses provide an individual flag per queue.  
Bus Matchingis availableonthis device,eitherportcanbe9bits,18bits  
or36bitswideprovidedthatatleastoneportis36bitswide.WhenBusMatching  
is usedthe device ensures the logicaltransferofdata throughputina Little  
Endianmanner.  
Apacketmodeofoperationisalsoprovidedwhenthedeviceisconfigured  
for36bitinputand36bitoutputportsizes.ThePacketmodeprovidestheuser  
withaflagoutputindicatingwhenatleastone(ormore)packetsofdatawithin  
a queue is available for reading. The Packet Ready provides the user with  
ameansbywhichtomarkthestartandendofpacketsof data beingpassed  
throughthe queues. The multi-queue device thenprovidestheuserwith  
aninternallygeneratedpacketreadystatus perqueue.  
SeeFigure1,Multi-QueueFlow-ControlDeviceBlockDiagramforanoutline  
ofthefunctionalblockswithinthedevice.  
2
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
D
D
= TEOP  
= TSOP  
D
35  
34  
in  
x9, x18, x36  
- D  
2
D
0
35  
WCLK  
WEN  
TMS  
TDI  
INPUT  
DEMUX  
JTAG  
Logic  
TDO  
TCK  
5
WRADD  
WADEN  
Write Control  
Logic  
TRST  
Write Pointers  
PR  
Packet  
Mode Logic  
4
PAF  
PRn/PAEn  
FSTR  
PAFn  
4
General Flag  
Monitor  
FSYNC  
Upto 4  
FIFO  
Queues  
FXO  
FXI  
Active Q  
Flags  
OV  
PAE  
0.5 Mbit  
1.1 Mbit  
2.3 Mbit  
Dual Port  
Memory  
Active Q  
Flags  
FF  
PAF  
PAE  
General Flag  
Monitor  
SI  
SO  
SCLK  
Serial  
Multi-Queue  
Programming  
ESTR  
ESYNC  
EXI  
SENI  
SENO  
EXO  
Read Pointers  
FM  
IW  
OW  
BM  
5
Reset  
Logic  
RDADD  
RADEN  
NULL-Q  
Read Control  
Logic  
MAST  
PKT  
REN  
RCLK  
ID0  
ID1  
ID2  
DF  
Device ID  
3 Bit  
OUTPUT  
MUX  
PAE/ PAF  
2
Offset  
Q
Q
= REOP  
= RSOP  
DFM  
35  
34  
OUTPUT  
REGISTER  
EREN  
PRS  
MRS  
ERCLK  
6116 drw02  
IOSEL  
Vref  
IO Level Control  
&
Power Down  
OE  
Q
- Q  
0
35  
PD  
Q
x9, x18, x36  
out  
Figure 1. Multi-Queue Flow-Control Device Block Diagram  
3
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINCONFIGURATION  
A1 BALL PAD CORNER  
A
D14  
D15  
D17  
D20  
D23  
D26  
D29  
D32  
GND  
PD  
D13  
D16  
D12  
D11  
D19  
D22  
D25  
D28  
D31  
D34  
D35  
VREF  
D10  
D9  
Q9  
Q8  
Q7  
Q15  
Q19  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
TCK  
TMS  
TDO  
TDI  
ID2  
ID1  
ID0  
Q3  
Q2  
Q1  
Q6  
Q5  
Q4  
Q12  
Q11  
Q10  
Q16  
Q24  
Q14  
Q13  
Q17  
Q21  
Q23  
B
C
D
E
F
D18  
D8  
IOSEL  
Q0  
TRST  
Q18  
Q20  
Q22  
D21  
VDDQ  
V
DDQ  
VDDQ  
VCC  
VCC  
VCC  
VDDQ  
VDDQ  
VDDQ  
VCC  
GND  
GND  
GND  
GND  
GND  
GND  
VDDQ  
VDDQ  
GND  
GND  
D24  
VDDQ  
V
CC  
GND  
GND  
GND  
GND  
GND  
VCC  
VCC  
VCC  
VDDQ  
D27  
VDDQ  
VCC  
GND  
VDDQ  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VCC  
Q27  
Q30  
Q25  
Q28  
Q26  
Q29  
G
H
J
D30  
VCC  
VCC  
V
CC  
GND  
GND  
V
CC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
D33  
VCC  
VCC  
Q33  
PKT  
GND  
Q32  
Q35  
Q31  
Q34  
FM  
NULL-Q  
GND  
VCC  
VCC  
K
L
VCC  
VCC  
VCC  
MAST  
VCC  
GND  
ADVANCE  
VDDQ  
GND  
GND  
GND  
GND  
VCC  
DFM  
DF  
SO  
VCC  
GND  
VDDQ  
BM  
OE  
IW  
OW  
GND  
GND  
SI  
M
N
P
R
T
SENO  
SENI  
VDDQ  
VDDQ  
VCC  
VCC  
GND  
VCC  
VCC  
VDDQ  
VDDQ  
RDADD0 RDADD1  
VDDQ  
WRADD1 WRADD0 SCLK  
GND  
GND  
GND  
VDDQ  
VDDQ  
VDDQ  
VCC  
VCC  
VCC  
VCC  
VDDQ  
VDDQ  
GND  
GND  
GND  
WADEN  
RDADD2 RDADD3 RDADD4  
PAF3  
DNC  
DNC  
PAE  
DNC  
DNC  
FF  
OV  
PAE3  
INFORMATION  
WRADD3 WRADD2 FSYNC  
DNC  
WEN  
6
DNC  
WCLK  
7
DNC  
DNC  
12  
ESTR  
EXO  
ESYNC  
EXI  
FSTR  
ERCLK  
PAE2  
PAE1  
RADEN  
PAF2  
PR  
MRS  
9
PAF  
EREN  
REN  
11  
WRADD4  
FXI  
FXO  
RCLK  
PAE0  
PAF0  
PAF1  
PRS  
1
2
3
4
5
8
10  
13  
14  
15  
16  
6116 drw03  
NOTE:  
1. DNC - Do Not Connect.  
PBGA (BB256-1, order code: BB)  
TOP VIEW  
4
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
provides a user programmable almost full flag for all 4 queues and when a  
respectivequeueisselectedonthewriteport,thealmostfullflagprovidesstatus  
for that queue. Conversely, the read port has an output valid flag, providing  
statusofthedatabeingreadfromthequeueselectedonthereadport.Aswell  
astheoutputvalidflagthedeviceprovidesadedicatedalmostemptyflag.This  
almostemptyflagissimilartothealmostemptyflagofaconventionalIDTFIFO.  
Thedeviceprovidesauserprogrammablealmostemptyflagforall4queues  
andwhenarespectivequeueisselectedonthereadport,thealmostemptyflag  
providesstatusforthatqueue.  
DETAILEDDESCRIPTION  
MULTI-QUEUE STRUCTURE  
The IDT multi-queue flow-control device has a single data input port and  
singledataoutputportwithupto4FIFOqueuesinparallelbufferingbetween  
thetwoports.Theusercansetupbetween1and4Queueswithinthedevice.  
Thesequeuescanbeconfiguredtoutilizethetotalavailablememory,providing  
theuserwithfullflexibilityandabilitytoconfigurethequeuestobevariousdepths,  
independentofoneanother.  
PROGRAMMABLE FLAG BUSSES  
MEMORYORGANIZATION/ALLOCATION  
Inadditiontothesededicatedflags,full&almostfullonthewriteportandoutput  
valid&almostemptyonthereadport,therearetwoflagstatusbusses.Analmost  
fullflagstatusbusisprovided,thisbusis4bitswide.Also,analmostemptyflag  
statusbusisprovided,againthisbusis4bitswide.Thepurposeoftheseflag  
bussesistoprovidetheuserwithameansbywhichtomonitorthedatalevels  
withinqueuesthatmaynotbeselectedonthewriteorreadport.Asmentioned,  
thedeviceprovidesalmostfullandalmostemptyregisters(programmableby  
the user) for each of the 4 queues in the device.  
The4bitPAEnand4bitPAFnbussesprovideadiscretestatusoftheAlmost  
EmptyandAlmostFullconditionsofall4queue's.Ifthedeviceisprogrammed  
for less than 4 queue's, then there will be a corresponding number of active  
outputs onthePAEnandPAFnbusses.  
Theflagbussescanprovideacontinuousstatusofallqueues.Ifdevicesare  
connectedinexpansionmodetheindividualflagbussescanbeleftinadiscrete  
form,providingconstantstatusofallqueues,orthebussesofindividualdevices  
canbe connectedtogethertoproduce a single bus of4bits. The device can  
then operate in a "Polled" or "Direct" mode.  
Whenoperatinginpolledmodetheflagbusprovidesstatusofeachdevice  
sequentially,thatis,oneachrisingedgeofaclocktheflagbusisupdatedtoshow  
thestatusofeachdeviceinorder.Therisingedgeofthewriteclockwillupdate  
theAlmostFullbusandarisingedgeonthereadclockwillupdatetheAlmost  
Emptybus.  
Thememoryisorganizedintowhatisknownasblocks,eachblockbeing  
256x36bits.Whentheuserisconfiguringthenumberofqueuesandindividual  
queuesizestheusermustallocatethememorytorespectivequeues,inunits  
ofblocks,thatis,asinglequeuecanbemadeupfrom0tomblocks,wherem  
isthetotalnumberofblocksavailablewithinadevice.Alsothetotalsizeofany  
given queue must be in increments of 256 x36. For the IDT72T51236/  
72T51246andIDT72T51256theTotalAvailableMemoryis64,128and256  
blocks respectively(ablockbeing256x36). Queues canbebuiltfromthese  
blocks to make any size queue desired and any number of queues desired.  
BUS WIDTHS  
Theinputportiscommontoallqueueswithinthedevice,asistheoutputport.  
ThedeviceprovidestheuserwithBusMatchingoptionssuchthattheinputport  
andoutputportcanbeeitherx9,x18orx36bitswideprovidedthatatleastone  
of the ports is x36 bits wide, the read and write port widths being set  
independentlyofoneanother.Becausetheportsarecommontoallqueuesthe  
widthofthequeuesisnotindividuallyset,sothattheinputwidthofallqueues  
are equal and the output width of all queues are equal.  
WRITING TO & READING FROM THE MULTI-QUEUE  
Databeingwrittenintothedeviceviatheinputportisdirectedtoadiscrete  
queueviathewritequeueselectaddressinputs.Conversely,databeingread  
fromthedevicereadportisreadfromaqueueselectedviathereadqueueselect  
addressinputs.Datacanbesimultaneouslywrittenintoandreadfromthesame  
queueordifferentqueues.Onceaqueueisselectedfordatawritesorreads,  
the writing and reading operation is performed in the same manner as  
conventionalIDTsynchronous FIFO,utilizingclocks andenables,thereis a  
singleclockandenableperport.Whenaspecificqueueisaddressedonthe  
writeport,dataplacedonthedatainputsiswrittentothatqueuesequentially  
basedontherisingedgeofawriteclockprovidedsetupandholdtimesaremet.  
Conversely,dataisreadontotheoutputportafteranaccesstimefromarising  
edge on a read clock.  
Theoperationofthewriteportiscomparabletothefunctionofaconventional  
FIFOoperatinginstandardIDTmode.Writeoperationscanbeperformedon  
thewriteportprovidedthatthequeuecurrentlyselectedisnotfull,afullflagoutput  
provides status of the selected queue. The operation of the read port is  
comparabletothefunctionofaconventionalFIFOoperatinginFWFTmode.  
Whenaqueueis selectedontheoutputport,thenextwordinthatqueuewill  
automaticallyfallthroughtotheoutputregister.Allsubsequentwordsfromthat  
queue require an enabled read cycle. Data cannot be read from a selected  
queueifthatqueueisempty,thereadportprovidesanOutputValidflagindicating  
whendata readoutis valid. Ifthe userswitches toa queue thatis empty, the  
lastwordfromtheprevious queuewillremainontheoutputregister.  
Asmentioned,thewriteporthasafullflag,providingfullstatusoftheselected  
queue.Alongwiththefullflagadedicatedalmostfullflagisprovided,thisalmost  
fullflagissimilartothealmostfullflagofaconventionalIDTFIFO.Thedevice  
Whenoperatingindirectmodethedevicedrivingtheflagbusisselectedby  
theuser.Theuseraddresses thedevicethatwilltakecontrolofarespective  
flagbus, these PAFnand PAEnflagbusses operatingindependentlyofone  
another.AddressingoftheAlmostFullflagbus is doneviathewriteportand  
addressingoftheAlmostEmptyflagbus is doneviathereadport.  
PACKETMODE  
Themulti-queueflow-controldevicealsooffersaPacketMode”operation.  
PacketModeisuserselectableandrequiresthedevicetobeconfiguredwith  
bothwriteandreadportsas36bitswide.Inpacketmode,userscandefinethe  
lengthofpacketsorframebyusingthetwomostsignificantbitsofthe36-bitword.  
Bit34isusedtomarktheStartofPacket(SOP)andbit35isusedtomarkthe  
EndofPacket(EOP)asshowninTable5).Whenwritingdataintoagivenqueue  
,thefirstwordbeingwrittenis marked,bytheusersettingbit34as theStart  
ofPacket”(SOP)andthelastwordwrittenismarkedastheEndofPacket”(EOP)  
withallwordswrittenbetweentheStartofPacket(SOP)marker(bit34)andthe  
Endofpacket(EOP)packetmarker(bit35)constitutingthe entire packet. A  
packetcanbeanylengththeuserdesires,uptothetotalavailablememoryin  
themulti-queuedevice.ThedevicemonitorstheSOP(bit34)andlooksforthe  
wordthatcontainstheEOP(bit35).Thereadportissuppliedwithanadditional  
statusflag,PacketReady.ThePacketReady(PR)flaginconjunctionwith  
OutputValid(OV)indicateswhenatleastonepacketisavailabletoread.When  
inpacketmodethealmostemptyflagstatus,providespacketreadyflagstatus  
forindividualqueues.  
5
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
EXPANSION  
deviceutilizingallmemoryblocksavailabletoproduceasinglequeue.Thisis  
Expansionofmulti-queuedevicesisalsopossible,upto8devicescanbe thedeepestqueuethatcansetupwithinadevice.  
connectedinaparallelfashionprovidingthepossibilityofbothdepthexpansion  
For queue expansion of the 4 queue device, a maximum number of 32 (8  
or queue expansion. Depth Expansion means expanding the depths of x4)queuesmaybesetup,eachqueuebeing2Kx36deep,iflessqueuesare  
individual queues. Queue expansion means increasing the total number of setup,thenmorememoryblockswillbeavailabletoincreasequeuedepthsif  
queuesavailable.Depthexpansionispossiblebyvirtueofthefactthatmore desired.Whenconnectingmulti-queuedevicesinexpansionmodeallrespec-  
memoryblocks withinamulti-queuedevicecanbeallocatedtoincreasethe tive input pins (data & control) and output pins (data & flags), should be  
depth of a queue. For example, depth expansion of 8 devices provides the  
possibilityof8queuesof64Kx36deep,eachqueuebeingsetupwithinasingle  
connected”togetherbetweenindividualdevices.  
6
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
BM  
(L14)  
BusMatching  
LVTTL  
INPUT  
ThispinissetupbeforeMasterResetandmustnottoggleduringanydeviceoperation.Thispinisused  
alongwithIWandOWtosetupthemulti-queueflow-controldevicebuswidth.PleaserefertoTable3  
fordetails.  
D[35:0]  
DataInputBus HSTL-LVTTL These are the 36data inputpins. Data is writtenintothe device via these inputpins onthe risingedge  
Din  
INPUT  
ofWCLKprovidedthatWEN is LOW.Note,thatinPacketmodeD32-D35maybeusedas packet  
markers,pleaseseepacketreadyfunctionaldiscussionformoredetail.Duetobusmatchingnotallinputs  
maybe used, anyunusedinputs shouldbe tiedLOW.  
(See Pin No.  
tablefordetails)  
DF(1)  
(L3)  
DefaultFlag  
DefaultMode  
LVTTL  
INPUT  
Iftheuserrequiresdefaultprogrammingofthemulti-queuedevice,thispinmustbesetupbeforeMaster  
Resetandmustnottoggleduringanydeviceoperation.Thestateofthisinputatmasterresetdetermines  
the value of the PAE/PAF flag offsets. If DF is LOW the value is 8, if DF is HIGH the value is 128.  
(1)  
DFM  
(L2)  
LVTTL  
INPUT  
The multi-queue device requires programmingaftermasterreset. The usercandothis seriallyvia the  
serialport,ortheusercanusethedefaultmethod.IfDFMisLOWatmasterresetthenserialmodewillbe  
selected,ifHIGHthendefaultmodeisselected.  
ERCLK  
(R10)  
RCLK Echo  
HSTL-LVTTL ReadClockEchooutput,thisoutputgeneratesaclockbasedonthereadclockinput,thisisusedforSource  
OUTPUT SynchronousclockingwherethereceivingdevicesutilizestheERCLKtoclockdataoutputfromthequeue.  
HSTL-LVTTL ReadEnableEchooutput,canbeusedinconjunctionwiththeERCLKoutputtoloaddataoutputfromthe  
EREN  
(R11)  
REN Echo  
OUTPUT  
queue intothe receivingdevice.  
ESTR  
(R15)  
PAEn Flag Bus  
Strobe  
LVTTL  
INPUT  
IfdirectoperationofthePAEnbushasbeenselected,theESTRinputisusedinconjunctionwithRCLK  
andtheRDADDbustoselectadeviceforitsqueuestobeplacedontothePAEnbusoutputs.Adevice  
addressed via the RDADD bus is selected on the rising edge of RCLK provided that ESTR is HIGH. If  
Polledoperationshasbeenselected,ESTRshouldbetiedinactive,LOW.Note,thataPAEnflagbus  
selectioncannotbemade,(ESTRmustNOTgoactive)untilprogrammingoftheparthasbeencompleted  
andSENO has gone LOW.  
ESYNC  
(R16)  
PAEn Bus Sync HSTL-LVTTL ESYNCisanoutputfromthemulti-queuedevicethatprovidesasynchronizingpulseforthePAEnbus  
OUTPUT  
duringPolledoperationofthePAEnbus.DuringPolledoperationeachdevice'squeuestatusflagsare  
loadedontothePAEnbus outputs sequentiallybasedonRCLK. The firstRCLKrisingedge loads  
device 1 onto PAEn, the second RCLK rising edge loads device 2 and so on. During the RCLK cycle  
thata selecteddevice is placedontothePAEnbus, the ESYNCoutputwillbe HIGH.  
EXI  
(T16)  
PAEnBus  
ExpansionIn  
LVTTL  
INPUT  
The EXIinputis usedwhenmulti-queue devices are connectedinexpansionmode andPolledPAEn  
bus operationhas beenselected. EXIofdevice ‘Nconnects directlytoEXOofdevice N-1’. The EXI  
receives a tokenfromthe previous device ina chain. Insingle device mode the EXIinputmustbe tied  
LOWifthePAEnbusisoperatedindirectmode.IfthePAEnbusisoperatedinpolledmodetheEXIinput  
mustbeconnectedtotheEXOoutputofthesamedevice.InexpansionmodetheEXIofthefirstdevice  
shouldbetiedLOW,whendirectmodeisselected.  
EXO  
(T15)  
PAEnBus  
ExpansionOut  
LVTTL  
OUTPUT  
EXOis anoutputthatis usedwhenmulti-queuedevices areconnectedinexpansionmodeandPolled  
PAEnbusoperationhasbeenselected.EXOofdeviceNconnectsdirectlytoEXIofdeviceN+1’.This  
pinpulses whendevice Nplaces its PAEstatus ontothe PAEn/PRnbus withrespecttoRCLK. This  
pulse (token)is thenpassedontothe nextdevice inthe chainN+1andonthe nextRCLKrisingedge  
thefirstquadrantofdeviceN+1willbeloadedontothePAEnbus.Thiscontinuesthroughthechainand  
EXOofthelastdeviceis thenloopedbacktoEXIofthefirstdevice.TheESYNCoutputofeachdevice  
inthechainprovides synchronizationtotheuserofthis loopingevent.  
FF  
(P8)  
Full Flag  
HSTL-LVTTL This pinprovides thefullflagoutputfortheactivequeue,thatis,thequeueselectedontheinputport  
OUTPUT  
forwriteoperations,(selectedviaWCLK,WRADDbusandWADEN).OntheWCLKcycleafteraqueue  
selection,thisflagwillshowthestatusofthenewlyselectedqueue.Datacanbewrittentothisqueue  
onthenextcycleprovidedFFisHIGH.ThisflaghasHigh-Impedancecapability,thisisimportantduring  
expansionofdevices,whentheFFflagoutputofupto8devicesmaybeconnectedtogetheronacommon  
line.ThedevicewithaqueueselectedtakescontroloftheFFbus,allotherdevicesplacetheirFFoutput  
intoHigh-Impedance.WhenaqueueselectionismadeonthewriteportthisoutputwillswitchfromHigh-  
ImpedancecontrolonthenextWCLKcycle.Thisflagis synchronizedtoWCLK.  
7
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Name  
I/OTYPE  
Description  
Pin No.  
(1)  
FM  
Flag Mode  
HSTL-LVTTL Thispinissetupbeforeamasterresetandmustnottoggleduringanydeviceoperation.Thestateofthe  
(K16)  
INPUT  
FMpinduringMasterResetwilldetermine whetherthe PAFnandPAEnflagbusses operate ineither  
PolledorDirectmode.Ifthis pinis HIGHthemodeis Polled,ifLOWthenitwillbeDirect.  
FSTR  
(R4)  
PAFn Flag Bus  
Strobe  
LVTTL  
INPUT  
IfdirectoperationofthePAFnbushasbeenselected,theFSTRinputisusedinconjunctionwithWCLK  
andtheWRADDbustoselectadeviceforitsqueuestobeplacedontothePAFnbusoutputs.Adevice  
addressedviatheWRADDbus is selectedontherisingedgeofWCLKprovidedthatFSTRis HIGH.If  
Polledoperations has beenselected,FSTRshouldbetiedinactive,LOW.Note,thataPAFnflagbus  
selectioncannotbemade,(FSTRmustNOTgoactive)untilprogrammingoftheparthasbeencompleted  
andSENO has gone LOW.  
FSYNC  
(R3)  
PAFn Bus Sync  
LVTTL  
OUTPUT  
FSYNCisanoutputfromthemulti-queuedevicethatprovidesasynchronizingpulseforthePAFnbus  
duringPolledoperationofthePAFnbus.DuringPolledoperationeachdevice's queuestatus flags  
areloadedontothePAFnbusoutputssequentiallybasedonWCLK.ThefirstWCLKrisingedgeloads  
device 1 onto PAFn, the second WCLK rising edge loads device 2 and so on. During the WCLK cycle  
thata selecteddevice is placedontothe PAFnbus, the FSYNCoutputwillbe HIGH.  
FXI  
(T2)  
PAFnBus  
ExpansionIn  
LVTTL  
INPUT  
The FXI input is used when multi-queue devices are connected in expansion mode and Polled PAFn  
bus operation has been selected . FXI of device N’ connects directly to FXO of device N-1’. The FXI  
receives a tokenfromthe previous device ina chain. Insingle device mode the FXIinputmustbe tied  
LOWifthePAFnbusisoperatedindirectmode.IfthePAFnbusisoperatedinpolledmodetheFXIinput  
mustbeconnectedtotheFXOoutputofthesamedevice.InexpansionmodetheFXIofthefirstdevice  
shouldbetiedLOW,whendirectmodeisselected.  
FXO  
(T3)  
PAFnBus  
ExpansionOut  
LVTTL  
OUTPUT  
FXOisanoutputthatisusedwhenmulti-queuedevicesareconnectedinexpansionmodeandPolled  
PAFnbusoperationhasbeenselected.FXOofdeviceNconnectsdirectlytoFXIofdeviceN+1’.This  
pinpulses whendeviceNplaces its PAE status ontothePAFn/PRnbus withrespecttoWCLK.  
This pulse (token)is thenpassedontothe nextdevice inthe chainN+1andonthe nextWCLKrising  
edgethefirstquadrantofdeviceN+1willbeloadedontothePAFnbus.Thiscontinuesthroughthechain  
andFXOofthelastdeviceisthenloopedbacktoFXIofthefirstdevice.TheFSYNCoutputofeachdevice  
inthechainprovides synchronizationtotheuserofthis loopingevent.  
(1)  
ID[2:0]  
Device ID Pins HSTL-LVTTL Forthe4Qmulti-queuedevicetheWRADDandRDADDaddressbussesare5bitswide.Whenaqueue  
ID2-C9  
ID1-A10  
ID0-B10  
INPUT  
selectiontakes placethe3MSbs ofthis 5bitaddress bus areusedtoaddress thespecificdevice(the  
2 LSbs are used to address the queue within that device). During write/read operations the 3 MSbs  
oftheaddressarecomparedtothedeviceIDpins.Thefirstdeviceinachainofmulti-queues(connected  
in expansion mode), may be setup as 000, the second as 001’ and so on through to device 8 which  
is111,howevertheIDdoesnothavetomatchthedeviceorder.Insingledevicemodethesepinsshould  
besetupas000’andthe3MSbsoftheWRADDandRDADDaddressbussesshouldbetiedLOW.The  
ID[2:0]inputssetuparespectivedevicesIDduringmasterreset.TheseIDpinsmustnottoggleduring  
any device operation. Note, the device selected as the Master’ does not have to have the ID of 000.  
IOSEL  
(C8)  
IOSelect  
LVTTL  
INPUT  
This pin is used to select either HSTL or 2.5V LVTTL operation for the I/O. If HSTL or eHSTL I/O are  
required then IOSEL should be tied HIGH. If LVTTL I/O are required then it should be tied LOW.  
(1)  
IW  
InputWidth  
LVTTL  
INPUT  
ThispinisusedinconjunctionwithOWandBMtosetuptheinputandoutputbuswidthstobeacombination  
of x9, x18 or x36, (providing that one port is x36).  
(L15)  
(1)  
MAST  
MasterDevice HSTL-LVTTL ThestateofthisinputatMasterResetdetermineswhetheragivendevice(withinachainofdevices),isthe  
(K15)  
INPUT  
Masterdevice ora Slave. Ifthis pinis HIGH, the device is the masterifitis LOWthenitis a Slave. The  
masterdeviceisthefirsttotakecontrolofalloutputsafteramasterreset,allslavedevicesgotoHigh-  
Impedance,preventingbuscontention.Ifamulti-queuedeviceisbeingusedinsingledevicemode,this  
pinmustbesetHIGH.  
MRS  
MasterReset  
HSTL-LVTTL AmasterresetisperformedbytakingMRSfromHIGHtoLOW,toHIGH.Deviceprogrammingisrequired  
INPUT aftermasterreset.  
HSTL-LVTTL This pin is used on the read port when a Null-Q is required, it is used in conjunction with the RDADD  
(T9)  
NULL-Q  
(J2)  
NullQueue  
Select  
INPUT  
and RADEN address bus to address the Null-Q.  
8
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
OE  
(M14)  
OutputEnable HSTL-LVTTL TheOutputenablesignalisanAsynchronoussignalusedtoprovidethree-statecontrolofthemulti-queue  
INPUT  
dataoutputbus,Qout.IfadevicehasbeenconfiguredasaMaster”device,theQoutdataoutputswill  
beinaLowImpedanceconditioniftheOEinputisLOW.IfOEisHIGHthentheQoutdataoutputswillbe  
inHighImpedance.IfadeviceisconfiguredaSlave”device,thentheQoutdataoutputswillalwaysbe  
inHighImpedanceuntilthatdevicehasbeenselectedontheReadPort,atwhichpointOEprovidesthree-  
stateofthatrespectivedevice.  
OV  
OutputValid  
Flag  
HSTL-LVTTL Thisoutputflagprovidesoutputvalidstatusforthedatawordpresentonthemulti-queueflow-controldevice  
(P9)  
OUTPUT  
dataoutputport,Qout.Thisflagistherefore,2-stagedelayedtomatchthedataoutputpathdelay.That  
is,thereisa2RCLKcycledelayfromthetimeagivenqueueisselectedforreads,tothetimetheOVflag  
representsthedatainthatrespectivequeue.Whenaselectedqueueonthereadportisreadtoempty,  
theOV flagwillgoHIGH, indicatingthatdata onthe outputbus is notvalid. TheOVflagalsohas High-  
Impedancecapability,requiredwhenmultipledevicesareusedandtheOVflagsaretiedtogether.  
(1)  
OW  
(L16)  
OutputWidth  
LVTTL  
INPUT  
ThispinissetupduringMasterResetandmustnottoggleduringanydeviceoperation.Thispinisused  
inconjunctionwithIWandBMtosetupthedatainputandoutputbuswidthstobeacombinationofx9,  
x18 or x36, (providing that one port is x36).  
PAE  
(P10)  
Programmable HSTL-LVTTL ThispinprovidestheAlmost-Emptyflagstatusforthequeuethathasbeenselectedontheoutputport  
Almost-Empty  
Flag  
OUTPUT  
for read operations, (selected via RCLK, RDADD and RADEN). This pin is LOW when the selected  
queueisalmost-empty.ThisflagoutputmaybeduplicatedononeofthePAEnbuslines.Thisflagis  
synchronizedtoRCLK.  
PAEn/PRn  
(PAE3-P13  
PAE2-R13  
PAE1-T13  
PAE0-T14)  
Programmable HSTL-LVTTL On the 4Q device the PAEn/PRn bus is 8 bits wide. During a Master Reset this bus is setup for either  
Almost-Empty  
OUTPUT  
AlmostEmptymodeorPacketmode.ThisoutputbusprovidesPAE/PRnstatusof4queueswithina  
selecteddevice.Duringqueueread/writeoperationstheseoutputsprovideprogrammableemptyflag  
status orpacketreadystatus,ineitherdirectorpolledmode.Themode offlagoperationisdetermined  
duringmasterresetviathestateoftheFMinput.ThisflagbusiscapableofHigh-Impedancestate,this  
isimportantduringexpansionofmulti-queuedevices.DuringdirectoperationthePAEn/PRnbusis  
updatedtoshowthePAE/PRstatusofqueueswithinaselecteddevice.SelectionismadeusingRCLK,  
ESTRandRDADD.DuringPolledoperationthePAEn/PRnbus is loadedwiththePAE/PRnstatus of  
multi-queueflow-controldevicessequentiallybasedontherisingedgeofRCLK.PAEorPRoperation  
isdeterminedbythestateofPKTduringmasterreset.  
FlagBus/Packet  
Ready Flag Bus  
PAF  
(R8)  
Programmable HSTL-LVTTL This pinprovidestheAlmost-Fullflagstatusforthequeuethathasbeenselectedontheinputportfor  
Almost-FullFlag OUTPUT  
writeoperations,(selectedviaWCLK,WRADDandWADEN).ThispinisLOWwhentheselectedqueue  
isalmost-full.ThisflagoutputmaybeduplicatedononeofthePAFnbuslines.Thisflagissynchronized  
toWCLK.  
PAFn  
Programmable HSTL-LVTTL Onthe 4Qdevice the PAFnbus is 8bits wide. This outputbus provides PAF status of4queues within  
(PAF3-P5  
PAF2-R5  
PAF1-T5  
PAF0-T4)  
Almost-FullFlag OUTPUT  
Bus  
aselecteddevice.Duringqueueread/writeoperationstheseoutputsprovideprogrammablefullflag  
status,ineitherdirectorpolledmode.Themodeofflagoperationisdeterminedduringmasterresetvia  
thestateoftheFMinput.ThisflagbusiscapableofHigh-Impedancestate,thisisimportantduring  
expansionofmulti-queuedevices.DuringdirectoperationthePAFnbusisupdatedtoshowthePAFstatus  
ofqueueswithinaselecteddevice.SelectionismadeusingWCLK,FSTR,WRADDandWADEN.During  
PolledoperationthePAFnbusisloadedwiththePAFstatusofmulti-queueflow-controldevicessequentially  
basedonthe risingedge ofWCLK.  
PD  
(K1)  
Power Down  
PacketMode  
HSTL  
INPUT  
This inputis usedtoprovide additionalpowersavings. Whenthe device I/Ois setupforHSTL/eHSTL  
modeaHIGHonthePDinputdisablesthedatainputsonthewriteportonly,providingsignificantpower  
savings. In LVTTL mode this pin has no operation  
(1)  
PKT  
(J14)  
LVTTL  
INPUT  
ThestateofthispinduringaMasterResetwilldeterminewhetherthepartisoperatinginPacketmode  
providingbothaPacketReady(PR)outputandaProgrammableAlmostEmpty(PAE)discreteoutput,  
or standard mode, providing a (PAE) output only. If this pin is HIGH during Master Reset the part will  
operateinpacketmode,ifitisLOWthenalmostemptymode.Ifpacketmodehasbeenselectedthe  
readportflagbus becomes packetreadyflagbus, PRnandthe discrete packetreadyflag, PR is  
functional. Ifalmostemptyoperationhasbeenselectedthentheflagbusprovidesalmostemptystatus,  
PAEnandthediscretealmostemptyflag,PAEisfunctional,thePRflagisinactiveandshouldnotbe  
9
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Name  
I/OTYPE  
Description  
Pin No.  
(1)  
PKT  
PacketMode  
LVTTL  
INPUT  
connected.PacketReadyutilizesusermarkedlocationstoidentifystartandendofpacketsbeingwritten  
intothedevice.PacketModecanonlybeselectedifboththeinputportwidthandoutputport widthare  
36bits.  
(Continued)  
PR  
(R9)  
PacketReady HSTL-LVTTL IfpacketmodehasbeenselectedthisflagoutputprovidesPacketReadystatusoftheQueueselected  
Flag  
OUTPUT  
forreadoperations.DuringamasterresetthestateofthePKTinputdetermineswhetherPacketmode  
ofoperationwillbeused.IfPacketmodeisselected,thentheconditionofthePRflagandOVsignalare  
assertedindicatesapacketisreadyforreading.Theusermustmarkthestartofapacketandtheendof  
apacketwhenwritingdataintoaqueue.UsingtheseStartOfPacket(SOP)andEndOfPacket(EOP)  
markers,themulti-queuedevicesetsPRLOWifoneormorecomplete”packetsareavailableinthequeue.  
Acompletepacket(s)mustbewrittenbeforetheuserisallowedtoswitchqueues.  
PRS  
(T8)  
PartialReset  
HSTL-LVTTL APartialResetcanbeperformedonasinglequeueselectedwithinthemulti-queuedevice.BeforeaPartial  
INPUT  
Resetcanbe performedona queue, thatqueue mustbe selectedonboththe write portandreadport  
2clockcycles beforetheresetis performed.APartialResetis thenperformedbytakingPRSLOWfor  
one WCLK cycle and one RCLK cycle. The Partial Reset will only reset the read and write pointers to  
thefirstmemorylocation,noneofthedevicesconfigurationwillbechanged.  
Q[35:0]  
DataOutputBus HSTL-LVTTL Thesearethe36dataoutputpins.Dataisreadoutofthedeviceviatheseoutputpinsontherisingedge  
Qout  
(See Pin No.  
tablefordetails)  
OUTPUT  
ofRCLKprovidedthatRENis LOW,OEis LOWandthequeueis selected.Note,thatinPacketmode  
Q32-Q35maybeusedaspacketmarkers,pleaseseepacketreadyfunctionaldiscussionformore  
detail.Duetobusmatchingnotalloutputsmaybeused,anyunusedoutputsshouldnotbeconnected.  
RADEN  
(R14)  
ReadAddress HSTL-LVTTL The RADENinputis usedinconjunctionwithRCLKandthe RDADDaddress bus toselecta queue to  
Enable  
INPUT  
bereadfrom.AqueueaddressedviatheRDADDbusisselectedontherisingedgeofRCLKprovided  
thatRADENisHIGH.RADENshouldbeasserted(HIGH)onlyduringaqueuechangecycle(s).RADEN  
shouldnotbepermanentlytiedHIGH.RADENcannotbeHIGHforthesameRCLKcycleasESTR.Note,  
thatareadqueueselectioncannotbemade,(RADENmustNOTgoactive)untilprogrammingofthe  
parthas beencompletedandSENO has goneLOW.  
RCLK  
(T10)  
ReadClock  
HSTL-LVTTL When enabledbyREN, the risingedge ofRCLKreads data fromthe selectedqueue via the output  
INPUT  
bus Qout. The queue to be read is selected via the RDADD address bus and a rising edge of RCLK  
whileRADENisHIGH.ArisingedgeofRCLKinconjunctionwithESTRandRDADDwillalsoselectthe  
devicetobeplacedonthePAEn/PRnbusduringdirectflagoperation.Duringpolledflagoperationthe  
PAEn/PRnbusiscycledwithrespecttoRCLKandtheESYNCsignalissynchronizedtoRCLK.ThePAE,  
PRandOV outputs are allsynchronizedtoRCLK. Duringdevice expansionthe EXOandEXIsignals  
are based on RCLK. RCLK must be continuous and free-running.  
RDADD  
ReadAddress HSTL-LVTTL For the 4Q device the RDADD bus is 5 bits. The RDADD bus is a dual purpose address bus. The first  
[4:0]  
Bus  
INPUT  
functionofRDADDistoselectaqueuetobereadfrom.Theleastsignificant2bitsofthebus,RDADD[1:0]  
areusedtoaddress1of4possiblequeueswithinamulti-queuedevice.Themostsignificant 3bits,  
RDADD[4:2]areusedtoselect1of8possiblemulti-queuedevicesthatmaybeconnectedinexpansion  
mode. These 3 MSB’s will address a device with the matching ID code. The address present on the  
RDADDbus willbe selectedona risingedge ofRCLKprovidedthatRADENis HIGH, (note, thatdata  
canbeplacedontotheQoutbus,readfromthepreviouslyselectedqueueonthisRCLKedge).Onthe  
next rising RCLK edge after a read queue select, a data word from the previous queue will be placed  
ontotheoutputs,Qout,regardlessoftheRENinput.TwoRCLKrisingedgesafterreadqueueselect,data  
willbeplacedontotheQoutoutputsfromthenewlyselectedqueue,regardlessofRENduetothefirst  
wordfallthrougheffect.  
(RDADD4-P16  
RDADD3-P15  
RDADD2-P14  
RDADD1-M16  
RDADD0-M15)  
The secondfunctionofthe RDADDbus is toselectthe device ofqueues tobe loadedontothe PAEn/  
PRnbus duringstrobedflagmode.Themostsignificant3bits,RDADD[4:2]areagainusedtoselect1  
of8possiblemulti-queuedevicesthatmaybeconnectedinexpansionmode.AddressbitsRDADD[1:0]  
aredontcareduringdeviceselection.ThedeviceaddresspresentontheRDADDbuswillbeselected  
onthe risingedge ofRCLKprovidedthatESTRis HIGH, (note, thatdata canbe placedontothe Qout  
bus,readfromthepreviouslyselectedqueueonthisRCLKedge).PleaserefertoTable2fordetailson  
RDADD bus.  
10  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
REN  
(T11)  
ReadEnable  
HSTL-LVTTL TheRENinputenablesreadoperationsfromaselectedqueuebasedonarisingedgeofRCLK.Aqueue  
INPUT  
tobereadfromcanbeselectedviaRCLK,RADENandtheRDADDaddressbusregardlessofthestate  
ofREN.DatafromanewlyselectedqueuewillbeavailableontheQoutoutputbusonthesecondRCLK  
cycleafterqueueselectionregardlessofRENduetotheFWFToperation.Areadenableisnotrequired  
tocycle the PAEn/PRnbus (inpolledmode)ortoselectthe device, (indirectmode).  
SCLK  
(N3)  
SerialClock  
HSTL-LVTTL Ifserialprogrammingofthemulti-queuedevicehasbeenselectedduringmasterreset,theSCLKinput  
INPUT  
clockstheserialdatathroughthemulti-queuedevice.DatasetupontheSIinputisloadedintothedevice  
ontherisingedgeofSCLKprovidedthatSENIisenabled,LOW.Whenexpansionofdevicesisperformed  
theSCLKofalldevices shouldbeconnectedtothesamesource.  
SENI  
(M2)  
SerialInput  
Enable  
HSTL-LVTTL Duringserialprogrammingofamulti-queuedevice,dataloadedontotheSIinputwillbeclockedintothe  
INPUT  
part(via a risingedge ofSCLK), providedthe SENI inputofthatdevice is LOW. Ifmultiple devices are  
cascaded,theSENIinputshouldbeconnectedtotheSENOoutputofthepreviousdevice.Sowhenserial  
loadingofagivendeviceiscomplete,its SENOoutputgoesLOW,allowingthenextdeviceinthechain  
tobeprogrammed(SENOwillfollowSENIofagivendeviceoncethatdeviceisprogrammed).TheSENI  
inputofthe masterdevice (orsingle device), shouldbe controlledbythe user.  
SENO  
(M1)  
SerialOutput  
Enable  
HSTL-LVTTL Thisoutputisusedtoindicatethatserialprogrammingordefaultprogrammingofthemulti-queuedevice  
OUTPUT hasbeencompleted.SENOfollowsSENIonceprogrammingofadeviceiscomplete.Therefore,SENO  
willgoLOWafterprogrammingprovidedSENIisLOW,onceSENIistakenHIGHagain,SENOwillalso  
goHIGH.WhentheSENOoutputgoesLOW,thedeviceisreadytobeginnormalread/writeoperations.  
Ifmultipledevicesarecascadedandserialprogrammingofthedeviceswillbeused,theSENO output  
shouldbeconnectedtotheSENIinputofthenextdeviceinthechain.Whenserialprogrammingofthe  
firstdeviceiscomplete,SENO willgoLOW,therebytakingtheSENIinputofthenextdeviceLOWand  
soonthroughoutthe chain. Whena givendevice inthe chainis fullyprogrammedthe SENO output  
essentiallyfollowstheSENIinput.TheusershouldmonitortheSENOoutputofthefinaldeviceinthechain.  
WhenthisoutputgoesLOW,serialloadingofalldeviceshasbeencompleted.  
SI  
SerialIn  
HSTL-LVTTL Duringserialprogrammingthispinisloadedwiththeserialdatathatwillconfigurethemulti-queuedevices.  
(L1)  
INPUT  
Data present on SI will be loaded on a rising edge of SCLK provided that SENI is LOW. In expansion  
modetheserialdatainputisloadedintothefirstdeviceinachain.WhenthatdeviceisloadedanditsSENO  
hasgoneLOW,thedatapresentonSIwillbedirectlyoutputtotheSOoutput.TheSOpinofthefirstdevice  
connectstotheSIpinofthesecondandsoon.Themulti-queuedevicesetupregistersareshiftregisters.  
SO  
(M3)  
SerialOut  
HSTL-LVTTL Thisoutputisusedinexpansionmodeandallowsserialdatatobepassedthroughdevicesinthechain  
OUTPUT tocompleteprogrammingofalldevices.TheSIofadeviceconnectstoSOofthepreviousdeviceinthe  
chain. The SOofthe finaldevice ina chainshouldnotbe connected.  
(2)  
TCK  
(A8)  
JTAGClock  
LVTTL  
INPUT  
ClockinputforJTAGfunction.OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.Testoperations  
ofthedevicearesynchronoustoTCK.DatafromTMSandTDIaresampledontherisingedgeofTCKand  
outputschangeonthefallingedgeofTCK.IftheJTAGfunctionisnotusedthissignalneedstobetiedtoGND.  
(2)  
TDI  
JTAGTestData  
Input  
LVTTL  
INPUT  
OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.DuringtheJTAGboundaryscanoperation,  
testdataseriallyloadedviatheTDIontherisingedgeofTCKtoeithertheInstructionRegister,IDRegister  
andBypassRegister.Aninternalpull-upresistorforcesTDIHIGHifleftunconnected.  
(B9)  
(2)  
TDO  
(A9)  
JTAGTestData  
Output  
LVTTL  
OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.DuringtheJTAGboundaryscanoperation,  
OUTPUT testdataseriallyloadedoutputviatheTDOonthefallingedgeofTCKfromeithertheInstructionRegister,  
IDRegisterandBypassRegister.Thisoutputishighimpedanceexceptwhenshifting,whileinSHIFT-  
DRandSHIFT-IRcontrollerstates.  
TMS(2)  
(B8)  
JTAGMode  
Select  
LVTTL  
INPUT  
TMSisaserialinputpin.OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.TMSdirectsthe  
devicethroughitsTAPcontrollerstates.Aninternalpull-upresistorforcesTMSHIGHifleftunconnected.  
(2)  
TRST  
(C7)  
JTAGReset  
LVTTL  
INPUT  
TRSTisanasynchronousresetpinfortheJTAGcontroller.TheJTAGTAPcontrollerdoesnotautomatically  
resetuponpower-up,thusitmustberesetbyeitherthissignalorbysettingTMS=HIGHforfiveTCKcycles.  
IftheTAPcontrollerisnotproperlyresetthentheoutputswillalwaysbeinhigh-impedance.IftheJTAG  
function is used but the user does not want to use TRST, thenTRST can be tied with MRS to ensure  
properqueue operation. Ifthe JTAGfunctionis notusedthenthis signalneeds tobe tiedtoGND. An  
internalpull-upresistorforcesTRSTHIGHifleftunconnected.  
11  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PINDESCRIPTIONS(CONTINUED)  
Symbol &  
Pin No.  
Name  
I/OTYPE  
Description  
WADEN  
(P4)  
WriteAddress HSTL-LVTTL TheWADENinputisusedinconjunctionwithWCLKandtheWRADDaddressbustoselectaqueueto  
Enable  
INPUT  
bewritteninto.AqueueaddressedviatheWRADDbusisselectedontherisingedgeofWCLKprovided  
thatWADENisHIGH.WADENshouldbeasserted(HIGH)onlyduringaqueuechangecycle(s).WADEN  
shouldnotbepermanentlytiedHIGH.WADENcannotbeHIGHforthesameWCLKcycleasFSTR.Note,  
thatawritequeueselectioncannotbemade,(WADENmustNOTgoactive)untilprogrammingofthepart  
has beencompletedandSENO has goneLOW.  
WCLK  
(T7)  
WriteClock  
HSTL-LVTTL WhenenabledbyWEN,therisingedgeofWCLKwritesdataintotheselectedqueueviatheinputbus,  
INPUT  
Din.ThequeuetobewrittentoisselectedviatheWRADDaddressbusandarisingedgeofWCLKwhile  
WADENisHIGH.ArisingedgeofWCLKinconjunctionwithFSTRandWRADDwillalsoselecttheflag  
quadranttobeplacedonthePAFnbusduringdirectflagoperation.DuringpolledflagoperationthePAFn  
busiscycledwithrespecttoWCLKandtheFSYNCsignalissynchronizedtoWCLK.ThePAFn,PAFand  
FFoutputsareallsynchronizedtoWCLK.DuringdeviceexpansiontheFXOandFXIsignalsarebased  
onWCLK.TheWCLKmustbecontinuous andfree-running.  
WEN  
(T6)  
WriteEnable  
HSTL-LVTTL TheWENinputenableswriteoperationstoaselectedqueuebasedonarisingedgeofWCLK.Aqueue  
INPUT  
tobewrittentocanbeselectedviaWCLK,WADENandtheWRADDaddressbusregardlessofthestate  
ofWEN.DatapresentonDincanbewrittentoanewlyselectedqueueonthesecondWCLKcycleafter  
queueselectionprovidedthatWENisLOW.AwriteenableisnotrequiredtocyclethePAFnbus(inpolled  
mode)ortoselectthePAFnquadrant, (indirectmode).  
WRADD  
WriteAddress HSTL-LVTTL Forthe 4Qdevice the WRADDbus is 5bits. The WRADDbus is a dualpurpose address bus. The first  
[4:0]  
Bus  
INPUT  
functionofWRADDistoselectaqueuetobewrittento.Theleastsignificant2bitsofthebus,  
WRADD[1:0]areusedtoaddress1of4possiblequeueswithinamulti-queuedevice.Themostsignificant  
3bits,WRADD[4:2]areusedtoselect1of8possiblemulti-queuedevices thatmaybeconnectedin  
expansionmode.These3MSBswilladdressadevicewiththematchingIDcode.Theaddresspresent  
ontheWRADDbuswillbeselectedonarisingedgeofWCLKprovidedthatWADENisHIGH,(note,that  
data presentonthe Dinbus canbe writtenintothe previouslyselectedqueue onthis WCLKedge and  
onthe nextrisingWCLKalso, providingthatWEN is LOW). TwoWCLKrisingedges afterwrite queue  
select,datacanbewrittenintothenewlyselectedqueue.  
(WRADD4-T1  
WRADD3-R1  
WRADD2-R2  
WRADD1-N1  
WRADD0-N2)  
ThesecondfunctionoftheWRADDbusistoselectthedeviceofqueuestobeloadedontothePAFnbus  
duringstrobedflagmode.Themostsignificant3bits,WRADD[4:2]areagainusedtoselect1of8possible  
multi-queuedevicesthatmaybeconnectedinexpansionmode.AddressbitsWRADD[1:0]aredontcare  
duringdevice selection. The device address presentonthe WRADDbus willbe selectedonthe rising  
edgeofWCLKprovidedthatFSTRisHIGH,(note,thatdatacanbewrittenintothepreviouslyselected  
queue on this WCLK edge). Please refer to Table 1 for details on the WRADD bus.  
VCC (See pin. +2.5VSupply  
tablefordetails)  
Power  
Power  
These are VCC power supply pins and must all be connected to a +2.5V supply rail.  
VDDQ  
O/PRailVoltage  
Thesepinsmustbetiedtothedesiredoutputrailvoltage.ForLVTTLI/Othesepinsmustbeconnected  
to+2.5V,forHSTLthesepinsmustbeconnectedto+1.5VandforeHSTLthesepinsmustbeconnected  
to+1.8V.  
(See Pin No.  
tablefordetails)  
GND (See pin GroundPin  
tablefordetails)  
Ground  
These are Ground pins and must all be connected to the GND supply rail.  
Vref  
(K3)  
Reference  
Voltage  
HSTL  
INPUT  
ThisisaVoltageReferenceinputandmustbeconnectedtoavoltageleveldeterminedfromthetable  
"RecommendedDCOperatingConditions". The inputprovides the reference levelforHSTL/eHSTL  
inputs. ForLVTTLI/Omode this inputshouldbe tiedtoGND.  
NOTES:  
1. Inputs should not change after Master Reset.  
2. These pins are for the JTAG port. Please refer to pages 57-61 and Figure 34-36.  
12  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PIN NUMBER TABLE  
Symbol  
Name  
I/OTYPE  
Pin Number  
D[35:0]  
Din  
DataInputBus  
HSTL-LVTTL D35-J3, D(34-32)-H(3-1), D(31-29)-G(3-1), D(28-26)-F(3-1), D(25-23)-E(3-1), D(22-20)-D(3-1),  
INPUT  
D(19-17)-C(3-1), D(16,15)-B(2,1), D(14-12)-A(1-3), D11-B3, D10-A4, D9-B4, D8-C4, D7-A5, D6-B5,  
D5-C5, D4-A6, D3-B6, D2-C6, D1-A7, D0-B7  
Q[35:0]  
Qout  
DataOutputBus HSTL-LVTTL Q(35,34)-J(15,16), Q(33-31)-H(14-16), Q(30-28)-G(14-16), Q(27-25)-F(14-16), Q(24-22)-E(14-16),  
OUTPUT Q(21,20)-D(15,16), Q19-B16, Q(18,17)-C(16,15), Q16-D14, Q(15,14)-A(16,15), Q13-B15, Q12-A14,  
Q11-B14, Q10-C14, Q9-A13, Q8-B13, Q7-C13, Q6-A12, Q5-B12, Q4-C12, Q3-A11, Q2-B11,  
Q(1,0)-C(11,10)  
VCC  
+2.5VSupply  
O/PRailVoltage  
GroundPin  
Power  
Power  
Ground  
None  
D(7-10),E(6,7,10,11),F(5,12),G(4,5,12,13),H(4,13),J(4,13),K(4,5,12,13),L(5,12),M(6,7,10,11),N(7-10)  
D(4-6,11-13), E(4,5,12,13), F(4,13), L(4,13), M(4,5,12,13), N(4-6,11-13)  
E(8-9), F(6-11), G(6-11), H(5-12), J(1,5-12), K(2,6-11,14), L(6-11), M(8-9), N(14-16), P(1-3)  
P(6,7,11,12), R(6,7,12), T12  
VDDQ  
GND  
DNC  
DoNotConnect  
13  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ABSOLUTEMAXIMUMRATINGS  
CAPACITANCE(TA = +25°C, f = 1.0MHz)  
Symbol  
Rating  
Commercial  
–0.5to+3.6(2)  
Unit  
Symbol  
Parameter(1)  
Conditions  
Max.  
Unit  
VTERM  
TerminalVoltage  
with respect to GND  
V
(2,3)  
CIN  
Input  
Capacitance  
VIN = 0V  
10(3)  
pF  
TSTG  
IOUT  
StorageTemperature  
DCOutputCurrent  
–55 to +125  
–50 to +50  
°C  
mA  
(1,2)  
COUT  
Output  
Capacitance  
VOUT = 0V  
15  
pF  
NOTES:  
NOTES:  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation  
of the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
1. With output deselected, (OE VIH).  
2. Characterized values, not currently tested.  
3. CIN for Vref is 20pF.  
2. Compliant with JEDEC JESD8-5. VCC terminal only.  
RECOMMENDEDDCOPERATINGCONDITIONS  
Symbol  
VCC  
Parameter  
Min.  
2.375  
0
Typ.  
2.5  
0
Max.  
2.625  
0
Unit  
V
SupplyVoltage  
SupplyVoltage  
GND  
V
VIH  
InputHighVoltage  
LVTTL  
eHSTL  
HSTL  
1.7  
VREF+0.2  
VREF+0.2  
3.45  
V
V
V
VIL  
InputLowVoltage  
LVTTL  
eHSTL  
HSTL  
-0.3  
0.7  
VREF-0.2  
VREF-0.2  
V
V
V
VREF  
(HSTL only)  
VoltageReferenceInput eHSTL  
HSTL  
0.8  
0.68  
0.9  
0.75  
1.0  
0.9  
V
V
TA  
OperatingTemperatureCommercial  
OperatingTemperatureIndustrial  
0
70  
85  
°C  
°C  
TA  
-40  
NOTE:  
1. VREF is only required for HSTL or eHSTL inputs. VREF should be tied LOW for LVTTL operation.  
14  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
DCELECTRICALCHARACTERISTICS  
(Commercial: VCC = 2.5V ± 0.125V, TA = 0°C to +70°C;Industrial: VCC = 2.5V ± 0.125V, TA = -40°C to +85°C)  
Symbol  
ILI  
Parameter  
Min.  
–10  
–10  
Max.  
10  
Unit  
µA  
µA  
V
V
V
InputLeakageCurrent  
OutputLeakageCurrent  
ILO  
10  
(3)  
VOH  
OutputLogic1Voltage, IOH = –8 mA @VDDQ = 2.5V ± 0.125V (LVTTL)  
IOH = –8 mA @VDDQ = 1.8V ± 0.1V (eHSTL)  
VDDQ-0.4  
VDDQ-0.4  
VDDQ-0.4  
IOH = –8 mA @VDDQ = 1.5V ± 0.1V (HSTL)  
VOL  
OutputLogic0Voltage, IOL = 8 mA @VDDQ = 2.5V ± 0.125V (LVTTL)  
IOL = 8 mA @VDDQ = 1.8V ± 0.1V (eHSTL)  
0.4V  
0.4V  
0.4V  
V
V
V
IOL = 8 mA @VDDQ = 1.5V ± 0.1V (HSTL)  
ICC1(1,2)  
ICC2(1)  
ICC3(1)  
Active VCC Current (VCC = 2.5V)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
80  
150  
150  
mA  
mA  
mA  
Standby VCC Current (VCC = 2.5V)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
25  
100  
100  
mA  
mA  
mA  
Standby VCC Current in Power Down mode(VCC = 2.5V) I/O = LVTTL  
50  
50  
mA  
mA  
mA  
I/O = HSTL  
I/O = eHSTL  
(1,2)  
IDDQ  
ActiveVDDQ Current (VDDQ =2.5VLVTTL)  
(VDDQ = 1.5V HSTL)  
I/O = LVTTL  
I/O = HSTL  
I/O = eHSTL  
10  
10  
10  
mA  
mA  
mA  
(VDDQ = 1.8V eHSTL)  
NOTES:  
1. Both WCLK and RCLK toggling at 20MHz.  
2. Data inputs toggling at 10MHz.  
3. Total Power consumed: PT = [(VCC x ICC) + (VDDQ x IDDQ)].  
4. Outputs are not 3.3V tolerant.  
5. The following inputs should be pulled to GND: WRADD, RDADD, WADEN, FSTR, ESTR, SCLK, SI, EXI, FXI and all Data Inputs.  
The following inputs should be pulled to VCC: WEN, REN, SENI, PRS, MRS, TDI, TMS and TRST.  
All other inputs are don't care and should be at a known state.  
15  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
HSTL  
AC TEST LOADS  
1.5V AC TEST CONDITIONS  
V
DDQ/2  
InputPulseLevels  
0.25to1.25V  
0.4ns  
InputRise/FallTimes  
50Ω  
InputTimingReferenceLevels  
OutputReferenceLevels  
0.75  
Z0 = 50Ω  
VDDQ/2  
I/O  
6116 drw04  
NOTE:  
1. VDDQ = 1.5V±.  
Figure 2a. AC Test Load  
EXTENDEDHSTL  
1.8V AC TEST CONDITIONS  
6
5
4
3
2
1
InputPulseLevels  
0.4 to 1.4V  
0.4ns  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
0.9  
VDDQ/2  
NOTE:  
1. VDDQ = 1.8V±.  
20 30 50 80 100  
200  
Capacitance (pF)  
6116 drw04a  
2.5VLVTTL  
2.5V AC TEST CONDITIONS  
Figure 2b. Lumped Capacitive Load, Typical Derating  
InputPulseLevels  
GND to 2.5V  
1ns  
InputRise/FallTimes  
InputTimingReferenceLevels  
OutputReferenceLevels  
VCC/2  
VDDQ/2  
NOTE:  
1. For LVTTL VCC = VDDQ.  
OUTPUT ENABLE & DISABLE TIMING  
Output  
Enable  
Output  
Disable  
VIH  
OE  
VIL  
tOE &  
tOLZ  
tOHZ  
Output  
Normally  
LOW  
V
CC/2  
OL  
V
CC/2  
100mV  
100mV  
100mV  
V
V
OH  
Output  
Normally  
HIGH  
100mV  
VCC/2  
VCC/2  
6116 drw04b  
NOTE:  
1. REN is HIGH.  
16  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ACELECTRICALCHARACTERISTICS  
(Commercial: VCC = 2.5V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 2.5V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)  
Commercial  
Com'l & Ind'l(1)  
IDT72T51236L5  
IDT72T51246L5  
IDT72T51256L5  
IDT72T51236L6  
IDT72T51246L6  
IDT72T51256L6  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Unit  
fS  
Clock Cycle Frequency (WCLK & RCLK)  
DataAccessTime  
0.6  
5
200  
3.6  
3.6  
3.6  
3.6  
10  
0.6  
6
166  
3.7  
3.7  
3.7  
3.7  
10  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tA  
tCLK  
tCLKH  
tCLKL  
tDS  
Clock Cycle Time  
Clock High Time  
2.3  
2.3  
1.5  
0.5  
1.5  
0.5  
30  
2.7  
2.7  
2.0  
0.5  
2.0  
0.5  
30  
Clock Low Time  
DataSetupTime  
tDH  
DataHoldTime  
tENS  
tENH  
tRS  
EnableSetupTime  
EnableHoldTime  
ResetPulseWidth  
tRSS  
tRSR  
tPRSS  
tPRSH  
ResetSetupTime  
15  
15  
ResetRecoveryTime  
10  
10  
PartialResetSetup  
1.5  
0.5  
0.6  
0.6  
0.6  
100  
45  
2.0  
0.5  
0.6  
0.6  
0.6  
100  
45  
PartialResetHold  
(2)  
tOLZ(OE-Qn)  
OutputEnabletoOutputinLow-Impedance  
OutputEnabletoOutputinHigh-Impedance  
OutputEnabletoDataOutputValid  
Clock Cycle Frequency (SCLK)  
Serial Clock Cycle  
(2)  
tOHZ  
tOE  
fC  
tSCLK  
tSCKH  
tSCKL  
tSDS  
20  
20  
Serial Clock High  
Serial Clock Low  
45  
45  
SerialDataInSetup  
20  
20  
tSDH  
tSENS  
tSENH  
tSDO  
tSENO  
tSDOP  
tSENOP  
tPCWQ  
tPCRQ  
tAS  
Serial Data In Hold  
1.2  
20  
1.2  
20  
SerialEnableSetup  
SerialEnableHold  
1.2  
1.5  
1.5  
20  
1.2  
1.5  
1.5  
20  
SCLK to Serial Data Out  
SCLK to Serial Enable Out  
SerialDataOutPropagationDelay  
SerialEnablePropagationDelay  
ProgrammingCompletetoWriteQueueSelection  
ProgrammingCompletetoReadQueueSelection  
AddressSetup  
20  
20  
3.7  
3.7  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
20  
20  
1.5  
1.0  
1.5  
0.5  
1.5  
1.0  
0.6  
0.6  
0.6  
0.6  
2.5  
1.5  
2.0  
0.5  
2.0  
0.5  
0.6  
0.6  
0.6  
0.6  
tAH  
Address Hold  
tWFF  
tROV  
tSTS  
Write Clock to Full Flag  
ReadClocktoOutputValid  
PAE/PAF Strobe Setup  
PAE/PAF Strobe Hold  
QueueSetup  
tSTH  
tQS  
tQH  
QueueHold  
tWAF  
tRAE  
WCLK to PAF flag  
RCLK to PAE flag  
Write ClocktoSynchronous Almost-FullFlagBus  
Read Clock to Synchronous Almost-Empty Flag Bus  
tPAF  
tPAE  
NOTES:  
1. Industrial temperature range product for the 6ns is available as a standard device. All other speed grades available by special order.  
2. Values guaranteed by design, not currently tested.  
17  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ACELECTRICALCHARACTERISTICS(CONTINUED)  
(Commercial: VCC = 2.5V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 2.5V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)  
Commercial  
Com'l & Ind'l(1)  
IDT72T51236L5  
IDT72T51246L5  
IDT72T51256L5  
IDT72T51236L6  
IDT72T51246L6  
IDT72T51256L6  
Symbol  
tERCLK  
Parameter  
RCLK to Echo RCLK Output  
Min.  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
4
Max.  
Min.  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
0.6  
4.5  
6
Max.  
4.2  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
3.7  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4.0  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
tCLKEN  
RCLK to Echo REN Output  
(2)  
tPAELZ  
RCLK to PAE Flag Bus to Low-Impedance  
RCLK to PAE Flag Bus to High-Impedance  
WCLK to PAF Flag Bus to Low-Impedance  
WCLK to PAF Flag Bus to High-Impedance  
WCLKtoFullFlagtoHigh-Impedance  
(2)  
tPAEHZ  
(2)  
tPAFLZ  
(2)  
tPAFHZ  
(2)  
tFFHZ  
(2)  
tFFLZ  
WCLKtoFullFlagtoLow-Impedance  
(2)  
tOVLZ  
RCLKtoOutputValidFlagtoLow-Impedance  
RCLKtoOutputValidFlagtoHigh-Impedance  
WCLK to PAF Bus Sync to Output  
WCLK to PAF Bus Expansion to Output  
RCLK to PAE Bus Sync to Output  
(2)  
tOVHZ  
tFSYNC  
tFXO  
tESYNC  
tEXO  
RCLK to PAE Bus Expansion to Output  
RCLK to Packet Ready Flag  
tPR  
tSKEW1  
tSKEW2  
tSKEW3  
tSKEW4  
tSKEW5  
tXIS  
SKEW time between RCLK and WCLK for FF and OV  
SKEW time between RCLK and WCLK for PAF and PAE  
SKEW time between RCLK and WCLK for PAF[0:3] and PAE[0:3]  
SKEW time between RCLK and WCLK for PR and OV  
SKEW time between RCLK and WCLK for OV when in Packet Mode  
ExpansionInputSetup  
5
5
6
5
6
8
10  
1.0  
0.5  
1.0  
0.5  
tXIH  
ExpansionInputHold  
NOTES:  
1. Industrial temperature range product for the 6ns is available as a standard device. All other speed grades available by special order.  
2. Values guaranteed by design, not currently tested.  
18  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
port on a rising edge of SCLK (serial clock), provided that SENI (serial in  
enable),isLOW.Onceserialprogrammingofthedevicehasbeensuccessfully  
completedthedevicewillindicatethisviatheSENO(serialoutputenable)going  
active,LOW.Upondetectionofcompletionofprogramming,theusershould  
ceaseallprogrammingandtakeSENIinactive,HIGH.Note,SENOfollowsSENI  
onceprogrammingofadeviceiscomplete.Therefore,SENOwillgoLOWafter  
programmingprovidedSENIisLOW,onceSENIistakenHIGHagain,SENO  
willalsogoHIGH.TheoperationoftheSOoutputissimilar,whenprogramming  
ofagivendeviceiscomplete,theSOoutputwillfollowtheSIinput.  
FUNCTIONALDESCRIPTION  
MASTERRESET  
AMasterResetisperformedbytogglingtheMRSinputfromHIGHtoLOW  
toHIGH.Duringamasterresetallinternalmulti-queuedevicesetupandcontrol  
registersareinitializedandrequireprogrammingeitherseriallybytheuservia  
theserialport,orusingthedefaultsettings.Duringamasterresetthestateof  
thefollowinginputsdeterminethefunctionalityofthepart,thesepinsshouldbe  
held HIGH or LOW.  
Ifdevicesarebeingusedinexpansionmodetheserialportsofdevicesshould  
becascaded.Theusercanloadalldevicesviatheserialinputportcontrolpins,  
SI & SENI, of the first device in the chain. Again, the user may utilize the C’  
programtogeneratetheserialbitstream,theprogrampromptingtheuserfor  
the numberofdevices tobe programmed. The SENO andSO(serialout)of  
thefirstdeviceshouldbeconnectedtotheSENI andSIinputs ofthesecond  
devicerespectivelyandsoon,withtheSENO&SOoutputsconnectingtothe  
SENI&SIinputsofalldevicesthroughthechain.Alldevicesinthechainshould  
beconnectedtoacommonSCLK.Theserialoutputportofthefinaldeviceshould  
be monitored by the user. When SENO of the final device goes LOW, this  
indicates thatserialprogrammingofalldevices has beensuccessfullycom-  
pleted.Upondetectionofcompletionofprogramming,theusershouldceaseall  
programmingandtakeSENIofthefirstdeviceinthechaininactive,HIGH.  
Asmentioned,thefirstdeviceinthechainhasitsserialinputportcontrolled  
bytheuser,thisisthefirstdevicetohaveitsinternalregistersseriallyloaded  
bytheserialbitstream.Whenprogrammingofthisdeviceiscompleteitwilltake  
its SENOoutputLOWandbypasstheserialdataloadedontheSIinputtoits  
SOoutput.Theserialinputoftheseconddeviceinthechainisnowloadedwith  
thedatafromtheSOofthefirstdevice,whiletheseconddevicehasitsSENI  
input LOW. This process continues through the chain until all devices are  
programmedandtheSENO ofthefinaldevicegoesLOW.  
PKT–PacketMode  
FM – Flag bus Mode  
IW,OW,BMBusMatchingoptions  
MAST – Master Device  
ID0, 1, 2 – Device ID  
DFMProgrammingmode,serialordefault  
DF – Offset value for PAE and PAF  
Onceamasterresethastakenplace,thedevicemustbeprogrammedeither  
seriallyorviathedefaultmethodbeforeanyread/writeoperationscanbegin.  
See Figure 5, Master Reset for relevant timing.  
PARTIALRESET  
APartialResetisameansbywhichtheusercanresetboththereadandwrite  
pointers of a single queue that has been setup within a multi-queue device.  
Beforeapartialresetcantakeplaceonaqueue,therespectivequeuemustbe  
selectedonboththereadportandwriteportaminimumof2RCLKand2WCLK  
cyclesbeforethePRSgoesLOW.Thepartialresetisthenperformedbytoggling  
thePRSinputfromHIGHtoLOWtoHIGH,maintainingtheLOWstateforatleast  
oneWCLKandoneRCLKcycle.Onceapartialresethastakenplaceaminimum  
of3WCLKand3RCLKcyclesmustoccurbeforeenabledwritesorreadscan  
occur.  
Once all serial programming has been successfully completed, normal  
operations,(queueselectionsonthereadandwriteports)maybegin.When  
connected in expansion mode, the IDT72T51236/72T51246/72T51256  
devices requireatotalnumberofseriallyloadedbits perdevicetocomplete  
serial programming, (SCLK cycles with SENI enabled), calculated by:  
n[19+(Qx72)]whereQisthenumberofqueuestheuserwishestosetupwithin  
the device, where n is the number of devices in the chain.  
APartialResetonlyresets thereadandwritepointers ofagivenqueue,a  
partialresetwillnoteffecttheoverallconfigurationandsetupofthemulti-queue  
deviceandits queues.  
See Figure 6, PartialReset for relevant timing.  
SERIAL PROGRAMMING  
Themulti-queueflow-controldeviceisafullyprogrammabledevice,provid-  
ingtheuserwithflexibilityinhowqueuesareconfiguredintermsofthenumber  
of queues, depth of each queue and position of the PAF/PAE flags within  
respective queues. All user programming is done via the serial port after a  
master reset has taken place. Internally the multi-queue device has setup  
registerswhichmustbeseriallyloaded,theseregisterscontainvaluesforevery  
queuewithinthedevice, suchas thedepthandPAE/PAF offsetvalues.The  
IDT72T51236/72T51246/72T51256 devices are capable of up to 4 queues  
andthereforecontain4setsofregistersforthesetupofeachqueue.  
DuringaMasterResetiftheDFM(DefaultMode)inputisLOW,thenthedevice  
willrequire serialprogrammingbythe user. Itis recommendedthatthe user  
utilizeaC’programprovidedbyIDT,thisprogramwillprompttheuserforall  
informationregardingthemulti-queuesetup.Theprogramwillthengenerate  
aserialbitstreamwhichshouldbeseriallyloadedintothedeviceviatheserial  
port.FortheIDT72T51236/72T51246/72T51256devicestheserialprogram-  
mingrequiresatotalnumberofseriallyloadedbitsperdevice,(SCLKcycles  
withSENIenabled),calculatedby:19+(Qx72)whereQisthenumberofqueues  
the user wishes to setup within the device. Please refer to the separate  
ApplicationNote,AN-303forrecommendedcontroloftheserialprogramming  
port.  
SeeFigure7,SerialPortConnectionandFigure8,SerialProgrammingfor  
connectionandtiminginformation.  
DEFAULTPROGRAMMING  
Duringa MasterResetifthe DFM(DefaultMode)inputis HIGHthe multi-  
queuedevicewillbeconfiguredfordefaultprogramming,(serialprogramming  
is not permitted). Default programming provides the user with a simpler,  
howeverlimitedmeansbywhichtosetupthemulti-queueflow-controldevice,  
rather than using the serial programming method. The default mode will  
configure a multi-queue device such that the maximum number of queues  
possiblearesetup,withallofthepartsavailablememoryblocksbeingallocated  
equallybetweenthequeues.ThevaluesofthePAE/PAFoffsetsisdetermined  
bythe state ofthe DF(default)pinduringa masterreset.  
FortheIDT72T51236/72T51246/72T51256devicesthedefaultmodewill  
setup4queues,eachqueuebeing4,096x36,8,192x36and16,384x36deep  
respectively.ForbothdevicesthevalueofthePAE/PAFoffsetsisdetermined  
atmasterresetbythestateoftheDFinput.IfDFisLOWthenboththePAE&  
PAF offsetwillbe 8, ifHIGHthenthe value is 128.  
WhenconfiguringtheIDT72T51236/72T51246/72T51256devicesinde-  
faultmodetheusersimplyhastoapplyWCLKcyclesafteramasterreset,until  
SENOgoesLOW,thissignalsthatdefaultprogrammingiscomplete.Theseclock  
Once the master reset is complete and MRS is HIGH, the device can be  
seriallyloaded.DatapresentontheSI(serialin),inputisloadedintotheserial  
19  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
cyclesarerequiredforthedevicetoloaditsinternalsetupregisters.Whena addressenable(WADEN)isHIGH.ThestateofWENdoesnotimpactthequeue  
singlemulti-queuedeviceis used,thecompletionofdeviceprogrammingis selection. The queue selectionrequires 1WCLKcycle. Allsubsequentdata  
signaledbytheSENOoutputofadevicegoingfromHIGHtoLOW.Note,that writeswillbetothisqueueuntilanotherqueueisselected.  
SENImustbeheldLOWwhenadeviceissetupfordefaultprogrammingmode.  
Standardmodeoperationisdefinedasindividualwordswillbewrittentothe  
Whenmulti-queuedevicesareconnectedinexpansionmode,theSENIof deviceasopposedtoPacketModewherecompletepacketsmaybewritten.  
the first device in a chain can be held LOW. The SENO of a device should Thewriteportisdesignedsuchthat100%busutilizationcanbeobtained.This  
connecttotheSENIofthenextdeviceinthechain.TheSENOofthefinaldevice means that data can be written into the device on every WCLK rising edge  
isusedtoindicatethatdefaultprogrammingofalldevicesiscomplete.Whenthe includingthe cycle thata newqueue is beingaddressed.  
finalSENOgoesLOWnormaloperationsmaybegin.Again,alldeviceswillbe  
Changingqueues requires aminimumof3WCLKcycles onthewriteport  
programmedwiththeirmaximumnumberofqueuesandthememorydivided (seeFigure10,WriteQueueSelect,WriteOperationandFullflagOperation).  
equally between them. Please refer to Figure 9, DefaultProgramming.  
WADENgoeshighsignalingachangeofqueue(clockcycleA”).Theaddress  
onWRADDatthattimedeterminesthenextqueue.Datapresentedduringthat  
cycle (A”) and the next cycle (B” and C), will be written to the active (old)  
queue,providedWENisactiveLOW.IfWENisHIGH(inactive)forthese3clock  
READING AND WRITING TO THE IDT MULTI-QUEUE  
FLOW-CONTROL DEVICE  
TheIDT72T51236/72T51246/72T51256multi-queueflow-controldevices cycles,datawillnotbewrittenintothepreviousqueue.Thewriteportdiscrete  
canbeconfiguredintwodistinctmodes,namelyStandardModeandPacket fullflagwillupdatetoshowthefullstatusofthenewlyselectedqueue(QX)atthis  
Mode.  
lastcyclesrisingedge(C).Datapresentonthedatainputbus(Din),canbe  
writtenintothenewlyselectedqueue(QX)ontherisingedgeofWCLKonthe  
thirdcycle(D”)followingachangeofqueue,providedWENis LOWandthe  
newqueueisnotfull.Ifthenewlyselectedqueueisfullatthepointofitsselection,  
any writes to that queue will be prevented. Data cannot be written into a full  
queue.  
STANDARD MODE OPERATION (PKT = LOW ON MASTER RESET)  
WRITE QUEUE SELECTION AND WRITE OPERATION  
(STANDARDMODE)  
TheIDT72T51236/72T51246/72T51256multi-queueflow-controldevices  
Refer to Figure 10, Write Queue Select, Write Operation and Full flag  
canbeconfigureduptoamaximumof8queuesintowhichdatacanbewritten Operation, Figure 11, Write Operations &FirstWordFallThroughfortiming  
viaacommonwriteportusingthedatainputs (Din),writeclock(WCLK)and diagrams and Figure 12, Full Flag Timing in Expansion Mode for timing  
writeenable(WEN).Thequeuetobewrittenisselectedbytheaddresspresent diagrams.  
onthewriteaddressbus(WRADD)duringarisingedgeonWCLKwhilewrite  
TABLE 1 — WRITE ADDRESS BUS, WRADD[4:0]  
Operation WCLK WADEN FSTR  
WRADD[4:0]  
4 3 2  
Device Select  
(Compared to  
ID0,1,2)  
1 0  
Write Queue Address  
(2 bits = 4 Queues)  
Write Queue  
1
0
Select  
4 3 2  
1
0
PAFn Flag  
Bus Device  
Select  
0
1
Device Select  
(Compared to  
ID0,1,2)  
X
X
6116 drw05  
20  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
READ QUEUE SELECTION AND READ OPERATION  
(STANDARDMODE)  
TheIDT72T51236/72T51246/72T51256multi-queueflow-controldevices (cycles F” and G” respectively) following the selection of the new queue  
aswellasthenextwordfromthenewqueue(QF).Bothofthesewordswillfall  
through to the output register (provided the OE is asserted) consecutively  
can be configured up to a maximum of 8 queues which data can be read via regardlessofthestateofREN,unlessthenewqueue(Q )isempty.Ifthenewly  
F
acommonreadportusingthedataoutputs(Qout),readclock(RCLK)andread selectedqueue is empty, anyreads fromthatqueue willbe prevented. Data  
enable(REN).Anoutputenable,OEcontrolpinisalsoprovidedtoallowHigh- cannotbereadfromanemptyqueue.Thelastwordinthedataoutputregister  
ImpedanceselectionoftheQoutdataoutputs.Themulti-queuedevicereadport (fromthepreviousqueue),willremainonthedatabus,buttheoutputvalidflag,  
operates ina mode similartoFirstWordFallThrough”ona SuperSyncIDT OVwillgoHIGH,toindicatethatthedatapresentisnolongervalid.Thispipelining  
FIFO,butwiththeaddedfeatureofdataoutputpipelining(seeFigure11,Write effectprovidestheuserwith100%busutilization,andbringsaboutthepossibility  
Operations & First Word Fall Through). The queue to be read is selected by thataNULL”queuemayberequiredwithinamulti-queuedevice.Nullqueue  
theaddresspresentedonthereadaddressbus(RDADD)duringarisingedge operationisdiscussedinthenextsection.RememberthatOEallowstheuser  
onRCLKwhilereadaddressenable(RADEN)isHIGH.ThestateofRENdoes toplacethedataoutputbus(Qout)intoHigh-Impedanceandthedatacanbe  
notimpactthequeueselection.Thequeueselectionrequires1RCLKcycles. readintotheoutputregisterregardless ofOE.  
Allsubsequentdatareadswillbefromthisqueueuntilanotherqueueisselected.  
RefertoTable2,forReadAddressBusarrangement.Also,refertoFigures  
Standardmodeoperationisdefinedasindividualwordswillbereadfromthe 13,15,and16forreadqueueselectionandreadportoperationtimingdiagrams.  
deviceasopposedtoPacketModewherecompletepacketsmayberead.The  
readportisdesignedsuchthat100%busutilizationcanbeobtained.Thismeans PACKET MODE OPERATION (PKT = HIGH on Master Reset)  
that data can be read out of the device on every RCLK rising edge including  
the cycle that a new queue is being addressed.  
The Packet mode operation provides the capability where, user defined  
packetsorframescanbewrittentothedeviceasopposedtoStandardmode  
ChangingqueuesrequiresaminimumofthreeRCLKcyclesonthereadport whereindividualwordsarewritten.Forclarification,inPacketMode,apacket  
(see Figure 13, Read Queue Select, Read Operation). RADEN goes high canbewrittentothedevicewiththestartinglocationdesignatedasTransmitStart  
signalingachangeofqueue(clockcycleD”).TheaddressonRDADDatthat ofPacket(TSOP)andtheendinglocationdesignatedasTransmitEndofPacket  
timedeterminesthenextqueue.Datapresentedduringthatcycle(D”)willbe (TEOP). Inconjunction, a packetreadfromthe device willbe designatedas  
readatD”(+tA),andthenextcycle(E),cancontinuetobereadfromtheactive Receive StartofPacket(RSOP)anda Receive EndofPacket(REOP). The  
(old)queue (QP), providedREN is active LOW. IfREN is HIGH(inactive)for minimumsizeforapacketisfourwords(SOP,twowordsofdataandEOP).The  
thesetwoclockcycles,datawillnotbereadfromthepreviousqueue.Thenext almostemptyflagbusbecomesthePacketReady”PRflagbuswhenthedevice  
cyclesrisingedge(F),thereadportdiscreteemptyflagwillupdatetoshow isconfiguredforpacketmode.ValidpacketsareindicatedwhenbothPRand  
theemptystatusofthenewlyselectedqueue(QF).Theinternalpipelineisalso OV areasserted.  
loadedatthis time(F)withthelastwordfromtheprevious (old)queue(QF)  
TABLE 2 — READ ADDRESS BUS, RDADD[4:0]  
Operation  
RCLK RADEN ESTR  
Null-Q  
0
RDADD[4:0]  
4
3 2  
1 0  
Read Queue  
Select  
1
0
1
0
1
0
Device Select  
(Compared to  
ID0,1,2)  
Read Queue Address  
(2 bits = 4 Queues)  
4
3 2  
Device Select  
(Compared to  
ID0,1,2)  
1
X
0
PAEn/PRn  
Flag Bus Device  
Select  
0
1
X
4
X
3 2  
1
X
0
Null Queue  
Select  
X
X
X
6116 drw06  
21  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WRITEQUEUESELECTIONANDWRITEOPERATION(PACKETMODE) orEOPshouldnotoccurduringthe cycles requiredfora queue change. Itis  
Itisrequiredthatafullpacketbewrittentoaqueuebeforemovingtoadifferent alsorecommendedthataqueuechangeshouldnotoccuroncethereadingof  
queue.Thedevicerequiresthreecyclestochangequeues.Packetmode,has the packethas commenced, The EOPmarkerofthe packetpriortoa queue  
2restrictions:<1>Anextraword(orfillerword)is requiredtobewrittenafter changeshouldbereadonorbeforethequeuechange.IftheEOPwordisread  
eachpacketonthecyclefollowingthequeuechangetoensuretheRSOPin beforeaqueuechange,RENcanbepulledhightodisablefurtherreads.When  
theoldqueueisnotreadoutonaqueuechangebecauseofthefirstwordfall thequeuechangeisinitiated,thefillerwordwrittenintothecurrentqueueafter  
through.<2>NoSOP/EOPis allowedtoread/writtenatcycle(DorK”)the theEOPwordwillfallthroughfollowedbyandthefirstwordfromthenewqueue.  
secondcycleafteraqueuechange.Inthismode,thewriteportmaynotobtain  
100%busutilization.  
Refer to Figure 18, Reading in Packet Mode during a Queue Change as  
wellasFigures13,15,and16fortimingdiagramsandTable2,forReadAddress  
Changingqueues requires aminimumof3WCLKcycles onthewriteport busarrangement.  
(see Figure 17, Writing in Packet Mode during a Queue Change). WADEN  
Note,thealmostemptyflagbusbecomesthePacketReady”flagbuswhen  
goes high signaling a change of queue (clock cycle B” or I”). The address the device is configuredforpacketreadymode..  
on WRADD at the rising edge of WCLK determines the next queue. Data  
presented on Din during that cycle (B” or I”) and the next cycle (C” or J) PACKETREADYFLAG  
can continue to be written to the active (old) queue (QA or QB respectively),  
The36-bitmulti-queueflow-controldeviceprovidestheuserwithaPacket  
providedWENisLOW(active).IfWENisHIGH(inactive)forthesetwoclock Readyfeature. Duringa MasterResetthe logic1”(HIGH)onthe PKTinput  
cycles (H), datawillnotbewrittenintotheprevious queue(QA).Thesecond signal (packet mode select), configures the device in packet mode. The PR  
cyclefollowingarequestforqueuechange(D”orK”)willrequireafiller”word discreteflag,providesapacketreadystatusoftheactivequeueselectedonthe  
tobewrittentothedevice.ThiscanbedonebyclockingtheTEOPtwiceorby read port. A packet ready status is individually maintained on all queues;  
writingafiller”word.Inpacketmode,themulti-queueis designedunderthe howeveronlythequeueselectedonthereadporthasitspacketreadystatus  
2restrictionslistedpreviously.Note,anerroneousPacketReadyflagmayoccur indicatedonthePRoutputflag.Apacketisavailableontheoutputforreading  
iftheEOPorSOPmarkershowsupatthesecondcycleafteraqueuechange. whenbothPRandOVareassertedLOW.Iflessthanafullpacketisavailable,  
TopreventanerroneousPacketReadyflagfromoccurringafillerwordshould thePRflagwillbeHIGH(packetnotready).Inpacketmode,nowordscanbe  
bewrittenintotheoldqueueatthelastclockcycleofwriting.Itisimportanttoknow readfroma queue untila complete packethas beenwrittenintothatqueue,  
thatnoSOPorEOPmaybewrittenintothedeviceduringthiscycle(D”orK”). regardless ofREN.  
Thewriteportdiscretefullflagwillupdatetoshowthefullstatus ofthenewly  
WhenpacketmodeisselectedtheProgrammableAlmostEmptybus,PAEn,  
selected queue (QB) at this last cycles rising edge (D” or K”). Data values becomes thePacketReadybus,PRn.WhenconfiguredinDirectBus (FM=  
presentedonthedatainputbus (Din),canbewrittenintothenewlyselected LOW during a master reset), the PRn bus provides packet ready status in 8  
queue(QX)ontherisingedgeofWCLKonthethirdcycle(E)followingarequest queue increments. The PRn bus supports either Polled or Direct modes of  
forchangeofqueue,providedWENisLOW(active)andthenewqueueisnot operation. The PRnmode ofoperationis configuredthroughthe FlagMode  
full. If a selected queue is full (FF is LOW), then writes to that queue will be (FM) bit during a Master Reset.  
prevented.Note,datacannotbewrittenintoafullqueue.  
Whenthemulti-queueisconfiguredforpacketmodeoperation,thedevice  
Refer to Figure 17, Writing in Packet Mode during a Queue Change and mustalsobeconfiguredfor36bitwritedatabusand36bitreaddatabus.The  
Figure19,DataInput(Transit)PacketModeofOperationfortimingdiagrams. twomostsignificantbitsofthe36-bitdatabusareusedaspacketmarkers.On  
thewriteportthesearebitsD34(TransmitStartofPacket,)D35(TransmitEnd  
READ QUEUE SELECTION AND READ OPERATION (PACKET MODE) ofPacket)andonthereadportQ34,Q35.Allfourbitsaremonitoredbythepacket  
InpacketMode itis requiredthata fullpacketis readfroma queue before controllogicasdataiswrittenintoandreadoutfromthequeues.Thepacket  
movingtoadifferentqueue.Thedevicerequiresthreecyclestochangequeues. readystatusforindividualqueuesisthendeterminedbythepacketreadylogic.  
InPacketMode,thereare2restrictions<1>Anextraword(orfillerword)should  
OnthewriteportD34is usedtomark”thefirstwordbeingwrittenintothe  
havebeeninsertedintothedatastreamaftereachpackettoinsuretheRSOP selectedqueueastheTransmitStartofPacket,TSOP.Tofurtherclarify,when  
inthe oldqueue is notreadoutona queue change because ofthe firstword theuserrequiresawordbeingwrittentobemarkedasthestartofapacket,the  
fallthroughandthiswordshouldbediscarded.<2>NoEOP/SOPisallowed TSOPinput(D34)mustbeHIGHforthesameWCLKrisingedgeastheword  
toberead/writtenatcycle(D”orK”)thesecondcycleafteraqueuechange). thatiswritten.TheTSOPmarkerisstoredinthequeuealongwiththedataitwas  
Inthis mode,thereadportmaynotobtain100%bus utilization.  
written in until the word is read out of the queue via the read port.  
Changingqueuesrequiresaminimumof3RCLKcyclesonthereadport(see  
OnthewriteportD35isusedtomark”thelastwordofthepacketcurrently  
Figure18,ReadinginPacketModeduringaQueueChange).RADENgoes beingwrittenintotheselectedqueueastheTransmitEndofPacket”TEOP.  
high signaling a change of queue (clock cycle B” or I”). The address on Whentheuserrequiresawordbeingwrittentobemarkedastheendofapacket,  
RDADDattherisingedgeofRCLKdeterminesthequeue.AsillustratedinFigure theTEOPinputmustbeHIGHforthesameWCLKrisingedgeasthewordthat  
18 during cycle (B” or I”), and the next cycle (C” or J) data can continue iswrittenin.TheTEOPmarkerisstoredinthequeuealongwiththedataitwas  
tobe readfromthe active (old)queue (QA orQBrespectively), providedboth written in until the word is read out of the queue via the read port.  
RENandOEareLOW(active)simultaneouslywithchangingqueues.REOP  
Thepacketreadylogicmonitorsallstartandendofpacketmarkersbothas  
for packet located in queue (QA) must be read on or before a queue change theyenterrespectivequeuesviathewriteportandastheyexitqueuesviathe  
requestismade(C”orJ).IfRENisHIGH(inactive)forthesetwoclockcycles, readport.Themulti-queueinternallogicincrementsanddecrementsapacket  
datawillnotbereadfromtheprevious queue(QA).Inapplications wherethe counter,whichisprovidedforeachqueue.Thefunctionalityofthepacketready  
multi-queueflow-controldeviceisconnectedtoasharedbus,anoutputenable, logicprovidesstatusastowhetheratleastonefullpacketofdataisavailable  
OEcontrolpinisalsoprovidedtoallowHigh-Impedanceselectionofthedata withintheselectedqueue.Apartialpacketinaqueueisregardedasapacket  
outputs(Qout).WithreferencetoFigure18whenchangingqueues,apacket notreadyandPR (activeLOW)willbeHIGH.InPacketmode,nowords can  
marker(SOPorEOP)shouldnotbereadoncycle(E”orL”).ReadingaSOP bereadfromaqueueuntilatleastonecompletepackethasbeenwritteninto  
22  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 5 — PACKET MODE VALID BYTE  
BYTE A  
BYTE D  
BYTE C  
BYTE B  
TMOD1 (D33)  
RMOD1 (Q33)  
TMOD2 (D32)  
RMOD2 (Q32)  
VALID BYTES  
0
0
1
1
0
1
0
1
A, B, C, D  
A
A, B  
A, B, C  
6116 drw07  
NOTE:  
Packet Mode is only available when the Input Port and Output Port are 36 bits wide.  
thequeue,regardless ofREN.Forexample,ifaTSOPhas beenwrittenand  
See Figure 18, Reading in Packet Mode during a Queue Change, Figure  
somenumberofwordslateraTEOPiswrittenafullpacketofdataisdeemed 19, Data Input (Transmit) Packet Mode of Operation and Figure 20, Data  
tobeavailable,andthePRflagandOVwillgoactiveLOW.Consequentlyifreads Output (Receive) Packet Mode of Operation.  
beginfromaqueuethathasonlyonecompletepacketandtheRSOPisdetected  
ontheoutputportasdataisbeingreadout,PRwillgoinactiveHIGH.OVwill PACKETMODEMODULOOPERATION  
remainLOWindicatingthereisstillvaliddatabeingreadoutofthatqueueuntil  
The internal packet ready control logic performs no operation on these  
theREOPisread.Theusermayproceedwiththereadingoperationuntilthe modulobits,theyareonlyinformationalbitsthatarepassedthroughwiththe  
currentpackethasbeenreadoutandnofurthercompletepacketsareavailable. respectivedatabyte(s).  
Ifduringthattimeanothercompletepackethasbeenwrittenintothequeueand  
thePRflagwillagaingoneactive,thenreadsfromthenewpacketmayfollow mayalsowanttoconsidertheimplementationofModulo”operationorvalid  
afterthecurrentpackethasbeencompletelyreadout. byte marking. Modulo operation may be useful when the packets being  
Whenutilizingthemulti-queueflow-controldeviceinpacketmode,theuser  
Thepacketcountersthereforelookforstartofpacketmarkersfollowedbyend transferredthroughaqueueareinaspecificbytearrangementeventhough  
ofpacketmarkers andregarddatainbetweentheTSOPandTEOPas afull thedatabuswidthis36bits.InModulooperationtheusercanconcatenatebytes  
packetofdata.Thepacketmonitoringhasnolimitationastohowmanypackets toformaspecificdatastringthroughthemulti-queuedevice.Apossiblescenario  
arewrittenintoaqueue,theonlyconstraintisthedepthofthequeue.Note,there is where a limited number of bytes are extracted from the packet for either  
isaminimumallowablepacketsizeoffourwords,inclusiveoftheTSOPmarker analysisorfilteredforsecurityprotection.Thiswillonlyoccurwhenthefirst36  
andTEOPmarker.  
bitwordofapacketiswritteninandthelast36bitwordofpacketiswrittenin.  
The packet logic does expect a TSOP marker to be followed by a TEOP Themodulooperationisameansbywhichtheusercanmarkandidentifyspecific  
marker.  
If a second TSOP marker is written after a first, it is ignored and the logic  
datawithintheQueue.  
Onthewriteportdatainputbits,D32(transmitmodulobit2,TMOD2)andD33  
regardsdatabetweenthefirstTSOPandthefirstsubsequentTEOPasthefull (transmitmodulobit1,TMOD1)canbeusedasdatamarkers.Anexampleof  
packet.ThesameistrueforTEOP;asecondconsecutiveTEOPmarkisignored. thiscouldbetouseD32andD33tocodewhichbytesofawordarepartofthe  
On the read side the user should regard a packet as being between the first packetthatis alsobeingmarkedas the StartofMarker”orEndofMarker.  
RSOP and the first subsequent REOP and disregard consecutive RSOP Conversely on the read port when reading out these marked words, data  
markersand/orREOPmarkers.ThisiswhyaTEOPmaybewrittentwice,using outputs Q32(receive modulobit2, RMOD2)andQ33(receive modulobit1,  
the secondTEOPas the filler”word.  
RMOD1)willpassonthebytevalidityinformationforthatword.RefertoTable  
Asanexample,theusermayalsowishtoimplementtheuseofanAlmost 5foroneexampleofhowthemodulobitsmaybesetupandused.SeeFigure  
EndofPacket”(AEOP)marker. Forexample, the AEOPcanbe assignedto 19, Data Input (Transmit) Packet Mode of Operation and Figure 20, Data  
datainputbitD33.ThepurposeofthisAEOPmarkeristoprovideanindicator Output (Receive) Packet Mode of Operation.  
thatthe endofpacketis a fixed(known)numberofreads awayfromthe end  
of packet. This is a useful feature when due to latencies within the system, NULL QUEUE OPERATION (OF THE READ PORT)  
monitoringtheREOPmarkeralonedoesnotpreventoverreading”ofthedata  
Pipeliningofdatatotheoutputportenablesthedevicetoprovide100%bus  
fromthequeueselected.Forexample,anAEOPmarkerset4writesbeforethe utilizationinstandardmode.Datacanbereadoutofthemulti-queueflow-control  
TEOPmarkerprovidesthedeviceconnectedtothereadportwithandalmost deviceoneveryRCLKcycleregardlessofqueueswitchesorotheroperations.  
endofpacket”indication4cyclesbeforetheendofpacket.  
The AEOP can be set any number of words before the end of packet wordsinaselectedqueuetobereadout,againproviding100%busutilization.  
determinedbyuserrequirementsorlatenciesinvolvedinthesystem. This type of architecture does assume that the user is constantly switching  
Thedevicearchitectureissuchthatthepipelineisconstantlyfilledwiththenext  
23  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
queuessuchthatduringaqueueswitch,thelastdatawordrequiredfromthe of8queues(1queueperdevicex8devices),eachofthemaximumsizeofthe  
previousqueuewillfallthroughthepipelinetotheoutput.  
individualmemorydevice.  
Note,thatifreadsceaseattheemptyboundaryofaqueue,thenthelastword  
willautomaticallyflowthroughthepipelinetotheoutput.  
The NullQoperationis achievedbysettingthe NullQsignalHIGHduring  
Note:TheWRADDbusisalsousedinconjunctionwithFSTR(almostfullflag  
busstrobe),toaddressthealmostfullflagbusduringdirectmodeofoperation.  
RefertoTable1,forWriteAddressbusarrangement.Also,refertoFigure  
aqueueselect.NotethatthereadaddressbusRDADD[6:0]isadon'tcare.The 12,FullFlagTimingExpansionMode,Figure14,OutputValidFlagTiming(In  
NullQueueisaseparatequeuewithinthedeviceandthusthemaximumnumber ExpansionMode),andFigure33,Multi-QueueExpansionDiagram,fortiming  
ofqueuesandmemoryisalwaysavailableregardlessofwhetherornottheNull diagrams.  
queue is used. Also note that in expansion mode a user may want to use a  
dedicatednullqueueforeachdevice.Anullqueuecanbeselectedwhenno BUS MATCHING OPERATION  
furtherreadsarerequiredfromapreviouslyselectedqueue.Changingtoanull  
BusMatchingoperationbetweentheinputportandoutputportisavailable.  
queuewillcontinuetopropagatedatainthepipelinetothepreviousqueue's Duringamasterresetofthemulti-queuethestateofthethreesetuppins,BM  
output.TheNullQcanremainselecteduntiladatabecomesavailableinanother (BusMatching),IW(InputWidth)andOW(OutputWidth)determinetheinputand  
queueforreading.TheNull-Qcanbeutilizedineitherstandardorpacketmode. outputportbuswidthsaspertheselectionsshowninTable3,BusMatching  
Note:Iftheuserswitchesthereadporttothenullqueue,thisqueueisseen Set-Up”.9bitbytes,18bitwordsand36bitlongwordscanbewrittenintoand  
asandtreatedasanemptyqueue,thereforeafterswitchingtothenullqueue read form the queues provided that at least one of the ports is setup for x36  
thelastwordfromthepreviousqueuewillremainintheoutputregisterandthe operation.Whenwritingtoorreadingfromthemulti-queueinabusmatching  
OVflagwillgoHIGH,indicatingdatais notvalid.  
mode, the device orders data in a Little Endian” format. See Figure 4, Bus  
TheNullqueueoperationonlyhassignificancetothereadportofthemulti- MatchingByteArrangementfordetails.  
queue, it is a means to force data through the pipeline to the output. Null Q  
TheFullflagandAlmostFullflagoperationis always basedonwrites and  
selectionandoperationhasnomeaningonthewriteportofthedevice.Also, readsofdatawidthsdeterminedbythewriteportwidth.Forexample,iftheinput  
refer to Figure 21, Read Operation and Null Queue Select for diagram.  
portisx36andtheoutputportisx9,thenfourdatareadsfromafullqueuewill  
berequiredtocausethefullflagtogoHIGH(queuenotfull).Conversely,the  
OutputValidflagandAlmostEmptyflagoperationsarealwaysbasedonwrites  
PAFn FLAG BUS OPERATION  
TheIDT72T51236/72T51246/72T51256multi-queueflow-controldevices andreadsofdatawidthsdeterminedbythereadport.Forexample,iftheinput  
can be configured for up to 4 queues, each queue having its own almost full portis x18andthe outputportis x36, twowrite operations willbe requiredto  
status.Anactivequeuehasitsflagstatusoutputtothediscreteflags,FFandPAF, causetheoutputvalidflagofanemptyqueuetogoLOW,outputvalid(queue  
onthewriteport.Queuesthatarenotselectedforawriteoperationcanhave isnotempty).  
theirPAFstatusmonitoredviathePAFnbus.ThePAFnflagbusis4bitswide,  
Note,thattheinputportservesallqueueswithinadevice,asdoestheoutput  
so that all 4 queues can have their status output to the bus. When a single port,thereforetheinputbuswidthtoallqueuesisequal(determinedbytheinput  
multi-queuedeviceisusedanywherefrom1to4queuesmaybeset-upwithin portsize)andtheoutputbuswidthfromallqueuesisequal(determinedbythe  
thepart,eachqueuehavingitsowndedicatedPAFflagoutputonthePAFnbus. outputportsize).  
Queues 1 through 4 have their PAF status to PAF[0] through PAF[3]  
TABLE 3 — BUS-MATCHING SET-UP  
respectively. If less than 4 queues are used then only the associated PAFn  
BM  
IW  
OW  
Write Port Read Port  
outputswillberequired,unusedPAFnoutputswillbedontcareoutputs.When  
devices are connected in expansion mode the PAFn flag bus can also be  
expandedbeyond4bits toproduce a widerPAFnbus thatencompasses all  
queues.  
Alternatively,the4bitPAFnflagbusofeachdevicecanbeconnectedtogether  
toformasingle4bitbus,i.e.PAF[0]ofdevice1willconnecttoPAF[0]ofdevice  
2etc. Whenconnectingdevices inthis mannerthe PAFncanonlybe driven  
byasingledeviceatanytime,(thePAFnoutputsofallotherdevicesmustbe  
inhighimpedancestate).Therearetwomethodsbywhichtheusercanselect  
whichdevicehas controlofthebus,theseareDirect”(Addressed)modeor  
Polled”(Looped)mode,determinedbythestateoftheFM(flagMode)input  
duringaMasterReset.  
0
1
1
1
1
X
0
0
1
1
X
0
1
0
1
x36  
x36  
x36  
x18  
x9  
x36  
x18  
x9  
x36  
x36  
FULL FLAG OPERATION  
Themulti-queueflow-controldeviceprovidesasingleFullFlagoutput,FF.  
TheFFflagoutputprovidesafullstatusofthequeuecurrentlyselectedonthe  
writeportforwriteoperations.Internallythemulti-queueflow-controldevice  
monitorsandmaintainsastatusofthefullconditionofallqueueswithinit,however  
onlythequeuethatisselectedforwriteoperationshasitsfullstatusoutputtothe  
FF flag.This dedicatedflagis oftenreferredtoas theactivequeuefullflag.  
Whenqueueswitchesarebeingmadeonthewriteport,theFFflagoutput  
willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
onthecycleafteranewqueueselectionismade.Theuserthenhasafullstatus  
forthenewqueueonecycleaheadoftheWCLKrisingedgethatdatacanbe  
writtenintothenewqueue.Thatis,anewqueuecanbeselectedonthewrite  
portviatheWRADDbus,WADENenableandarisingedgeofWCLK.Onthe  
secondrisingedgeofWCLK,theFFflagoutputwillshowthefullstatusofthe  
EXPANDING UP TO 32 QUEUES OR PROVIDING DEEPER QUEUES  
Expansioncantakeplaceusingeitherthestandardmodeorthepacketmode.  
Inthe4queuemulti-queuedevice,theWRADDaddressbusis5bitswide.The  
2LeastSignificantbits(LSbs)areusedtoaddressoneofthe4availablequeues  
withinasinglemulti-queuedevice.The3MostSignificantbits(MSbs)areused  
whenadeviceisconnectedinexpansionmodewithupto8devicesconnected  
inwidthexpansion,eachdevicehavingitsown3-bitaddress.Whenlogically  
expandedwithmultipleparts,eachdeviceisstaticallysetupwithauniquechip  
IDcodeontheIDpins,ID0,ID1,andID2.Adeviceisselectedwhenthe3Most  
Significant bits of the WRADD address bus matches a 3-bit ID code. The  
maximumlogicalexpansionis32queues(4queuesx8devices)oraminimum  
24  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
newlyselectedqueue.OnthethirdrisingedgeofWCLKfollowingthequeue  
selection,datacanbewrittenintothenewlyselectedqueueprovidedthatdata toshowstatusofthenewqueueinlinewiththedataoutputfromthenewqueue.  
andenablesetup&holdtimesaremet. Whenaqueueselectionismadethefirstdatafromthatqueuewillappearon  
Whenqueueswitchesarebeingmadeonthereadport,theOVflagwillswitch  
Note,theFFflagwillprovidestatusofanewlyselectedqueuetwoWCLKcycle theQoutdataoutputs3RCLKcycleslater,theOVwillchangestatetoindicate  
afterqueueselection,whichisonecyclebeforedatacanbewrittentothatqueue. validityofthedatafromthenewlyselectedqueueonthis3rd RCLKcyclealso.  
Thispreventstheuserfromwritingdatatoaqueuethatisfull,(assumingthat Thepreviouscycleswillcontinuetooutputdatafromthepreviousqueueand  
a queue switchhas beenmade toa queue thatis actuallyfull).  
TheFFflagissynchronoustotheWCLKandalltransitionsoftheFFflagoccur indicatesstatusforthedatacurrentlypresentontheoutputregister.  
basedonarisingedgeofWCLK.Internallythemulti-queuedevicemonitorsand TheOVflagissynchronoustotheRCLKandalltransitionsoftheOVflagoccur  
theOVflagwillindicatethestatusofthoseoutputs.Again,theOVflagalways  
keepsarecordofthefullstatusforallqueues.Itispossiblethatthestatusofa basedonarisingedgeofRCLK.Internallythemulti-queuedevicemonitorsand  
FFflagmaybechanginginternallyeventhoughthatflagisnottheactivequeue keepsarecordoftheoutputvalid(empty)statusforallqueues.Itispossiblethat  
flag (selected on the write port). A queue selected on the read port may thestatusofanOVflagmaybechanginginternallyeventhoughthatrespective  
experienceachangeofitsinternalfullflagstatusbasedonreadoperations. flagisnottheactivequeueflag(selectedonthereadport).Aqueueselected  
See Figure 10, Write Queue Select, Write Operation and Full Flag onthewriteportmayexperienceachangeofitsinternalOVflagstatusbased  
OperationinSingleDeviceModeandFigure12,FullFlagTiminginExpansion on write operations, that is, data may be written into that queue causing it to  
Modefortiminginformation.  
becomenotempty.  
SeeFigure13,ReadQueueSelect,ReadOperationinSingleDeviceMode  
andFigure 14, OutputValidFlagTimingfordetails ofthe timing.  
EXPANSION MODE - FULL FLAG OPERATION  
Whenmulti-queuedevicesareconnectedinExpansionmodetheFFflags  
of all devices should be connected together, such that a system controller EXPANSION MODE – OUTPUT VALID FLAG OPERATION  
monitoring and managing the multi-queue devices write port only looks at a  
Whenmulti-queuedevicesareconnectedinExpansionmode,theOVflags  
singleFFflag(asopposedtoadiscreteFFflagforeachdevice).ThisFFflag of all devices should be connected together, such that a system controller  
isonlypertinenttothequeuebeingselectedforwriteoperationsatthattime. monitoring and managing the multi-queue devices read port only looks at a  
Remember,thatwheninexpansionmodeonlyonemulti-queuedevicecanbe singleOVflag(asopposedtoadiscreteOVflagforeachdevice).ThisOVflag  
writtentoatanymomentintime,thustheFFflagprovidesstatusoftheactive is onlypertinenttothequeuebeingselectedforreadoperations atthattime.  
queue on the write port.  
Remember,thatwheninexpansionmodeonlyonemulti-queuedevicecanbe  
ThisconnectionofflagoutputstocreateasingleflagrequiresthattheFFflag readfromatanymomentintime,thustheOVflagprovidesstatusoftheactive  
outputhaveaHigh-Impedancecapability,suchthatwhenaqueueselectionis queue on the read port.  
madeonlyasingledevicedrivestheFFflagbusandallotherFFflagoutputs  
ThisconnectionofflagoutputstocreateasingleflagrequiresthattheOVflag  
connectedtotheFFflagbusareplacedintoHigh-Impedance.Theuserdoes outputhaveaHigh-Impedancecapability,suchthatwhenaqueueselectionis  
nothavetoselectthisHigh-Impedancestate,agivenmulti-queueflow-control madeonlyasingledevicedrivestheOVflagbusandallotherOVflagoutputs  
devicewillautomaticallyplaceitsFFflagoutputintoHigh-Impedancewhennone connectedtotheOVflagbusareplacedintoHigh-Impedance.Theuserdoes  
ofitsqueuesareselectedforwriteoperations.  
nothavetoselectthisHigh-Impedancestate,agivenmulti-queueflow-control  
Whenqueueswithinasingledeviceareselectedforwriteoperations,theFF devicewillautomaticallyplaceitsOVflagoutputintoHigh-Impedancewhennone  
flagoutputofthatdevicewillmaintaincontroloftheFFflagbus.ItsFFflagwill ofitsqueuesareselectedforreadoperations.  
simplyupdatebetweenqueueswitchestoshowtherespectivequeuefullstatus.  
Whenqueueswithinasingledeviceareselectedforreadoperations,theOV  
Themulti-queuedeviceplacesitsFFflagoutputintoHigh-Impedancebased flagoutputofthatdevicewillmaintaincontroloftheOVflagbus.ItsOVflagwill  
onthe3bitIDcodefoundinthe3mostsignificantbitsofthewritequeueaddress simplyupdatebetweenqueueswitchestoshowtherespectivequeueoutput  
bus,WRADD.Ifthe3mostsignificantbitsofWRADDmatchthe3bitIDcodesetup validstatus.  
onthestaticinputs,ID0,ID1andID2thentheFFflagoutputoftherespective  
Themulti-queuedeviceplacesitsOVflagoutputintoHigh-Impedancebased  
devicewillbeinaLow-Impedancestate.Iftheydonotmatch,thentheFFflag onthe3bitIDcodefoundinthe3mostsignificantbitsofthereadqueueaddress  
outputoftherespectivedevicewillbeinaHigh-Impedancestate.SeeFigure bus,RDADD.Ifthe3mostsignificantbitsofRDADDmatchthe3bitIDcodesetup  
12,FullFlagTiminginExpansionModefordetailsofflagoperation,including onthestaticinputs,ID0,ID1andID2thentheOVflagoutputoftherespective  
when more than one device is connected in expansion.  
devicewillbeinaLow-Impedancestate.Iftheydonotmatch,thentheOVflag  
outputoftherespectivedevicewillbeinaHigh-Impedancestate.SeeFigure  
14,OutputValidFlagTimingfordetailsofflagoperation,includingwhenmore  
OUTPUTVALIDFLAGOPERATION  
The multi-queue flow-control device provides a single Output Valid flag thanone device is connectedinexpansion.  
output,OV.TheOVprovidesanemptystatusordataoutputvalidstatusforthe  
datawordcurrentlyavailableontheoutputregisterofthereadport.Therising ALMOST FULL FLAG  
edgeofanRCLKcyclethatplacesnewdataontotheoutputregisteroftheread  
As previously mentioned the multi-queue flow-control device provides a  
port, also updates the OV flag to show whether or not that new data word is singleProgrammableAlmostFullflagoutput,PAF.ThePAFflagoutputprovides  
actually valid. Internally the multi-queue flow-control device monitors and astatusofthealmostfullconditionfortheactivequeuecurrentlyselectedonthe  
maintainsastatusoftheemptyconditionofallqueueswithinit,howeveronly writeportforwriteoperations.Internallythemulti-queueflow-controldevice  
thequeuethatisselectedforreadoperationshasitsoutputvalid(empty)status monitorsandmaintainsastatusofthealmostfullconditionofallqueueswithin  
outputtotheOVflag,givingavalidstatusforthewordbeingreadatthattime. it,howeveronlythequeuethatisselectedforwriteoperationshasitsfullstatus  
Thenatureofthefirstwordfallthroughoperationmeansthatwhenthelast outputtothePAFflag.Thisdedicatedflagisoftenreferredtoastheactivequeue  
datawordisreadfromaselectedqueue,theOVflagwillgoHIGHonthenext almostfullflag.ThepositionofthePAFflagboundarywithinaqueuecanbe  
enabled read, that is, on the next rising edge of RCLK while REN is LOW.  
atanypointwithinthatqueuesdepth.Thislocationcanbeuserprogrammed  
25  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
viatheserialportoroneofthedefaultvalues(8or128)canbeselectedifthe thatdataactuallyfallsthroughtotheoutputregisterfromthenewqueue.That  
userhasperformeddefaultprogramming. is,anewqueuecanbeselectedonthereadportviatheRDADDbus,RADEN  
Asmentioned,everyqueuewithinamulti-queuedevicehasitsownalmost enableandarisingedgeofRCLK.OnthethirdrisingedgeofRCLKfollowing  
fullstatus,whenaqueueisselectedonthewriteport,thisstatusisoutputviathe a queue selection, the data wordfromthe newqueue willbe available atthe  
PAFflag.ThePAFflagvalueforeachqueueisprogrammedduringmulti-queue outputregisterandthePAEflagoutputwillshowtheemptystatusofthenewly  
device programming (along with the number of queues, queue depths and selectedqueue.ThePAEisflagoutputistripleregisterbuffered,sowhenaread  
almostemptyvalues).ThePAFoffsetvalue,m,forarespectivequeuecanbe operationoccurs atthealmostemptyboundarycausingtheselectedqueue  
programmedtobeanywherebetween0’andD’,whereDisthetotalmemory statustogoalmostemptythePAEwillgoLOW3RCLKcyclesaftertheread.  
depthforthatqueue.ThePAFvalueofdifferentqueueswithinthesamedevice Thesameistruewhenawriteoccurs,therewillbea3RCLKcycledelayafter  
canbedifferentvalues.  
thewriteoperation.  
Whenqueueswitchesarebeingmadeonthewriteport,thePAFflagoutput  
willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus,  
onthethirdcycleafteranewqueueselectionismade,onthesameWCLKcycle  
thatdata canactuallybe writtentothe newqueue. Thatis, a newqueue can  
beselectedonthewriteportviatheWRADDbus,WADENenableandarising  
So the PAE flag delays are:  
from a read operation toPAE flag LOW is 2 RCLK + tRAE  
ThedelayfromawriteoperationtoPAEflagHIGHistSKEW2+RCLK+tRAE  
Note, if tSKEW is violated there will be one added RCLK cycle delay.  
ThePAEflagissynchronoustotheRCLKandalltransitionsofthePAEflag  
edgeofWCLK.OnthethirdrisingedgeofWCLKfollowingaqueueselection, occur based on a rising edge of RCLK. Internally the multi-queue device  
thePAFflagoutputwillshowthefullstatusofthenewlyselectedqueue.ThePAF monitorsandkeepsarecordofthealmostemptystatusforallqueues.Itispossible  
isflagoutputistripleregisterbuffered,sowhenawriteoperationoccursatthe thatthestatusofaPAEflagmaybechanginginternallyeventhoughthatflagis  
almostfullboundarycausingtheselectedqueuestatustogoalmostfullthePAF nottheactivequeueflag(selectedonthereadport).Aqueueselectedonthe  
willgoLOW3WCLKcyclesafterthewrite.Thesameistruewhenareadoccurs, writeportmayexperienceachangeofitsinternalalmostemptyflagstatusbased  
there will be a 3 WCLK cycle delay after the read operation.  
So the PAF flag delays are:  
froma write operationtoPAF flagLOWis 2WCLK+tWAF  
ThedelayfromareadoperationtoPAFflagHIGHistSKEW2+WCLK+tWAF  
Note, if tSKEW is violated there will be one added WCLK cycle delay.  
on write operations. The multi-queue flow-control device also provides a  
duplicateofthePAEflagonthePAE[3:0]flagbus,thiswillbediscussedindetail  
inalatersectionofthedatasheet.  
SeeFigures25and26forAlmostEmptyflagtimingandqueueswitching.  
ThePAFflagissynchronoustotheWCLKandalltransitionsofthePAFflag POWER DOWN (PD)  
occur based on a rising edge of WCLK. Internally the multi-queue device  
This device has a power down feature intended for reducing power  
monitorsandkeepsarecordofthealmostfullstatusforallqueues.Itispossible consumptionforHSTL/eHSTLconfiguredinputswhenthedeviceisidlefora  
thatthestatusofaPAFflagmaybechanginginternallyeventhoughthatflagis long period of time. By entering the power down state certain inputs can be  
nottheactivequeueflag(selectedonthewriteport).Aqueueselectedonthe disabled,therebysignificantlyreducingthepowerconsumptionofthepart.All  
readportmayexperienceachangeofitsinternalalmostfullflagstatusbased WENandRENsignalsmustbedisabledforaminimumoffourWCLKandRCLK  
on read operations. The multi-queue flow-control device also provides a cycles before activating the power down signal. The power down signal is  
duplicateofthePAFflagonthePAF[3:0]flagbus,thiswillbediscussedindetail asynchronousandneedstobeheldLOWthroughoutthedesiredpowerdowntime.  
inalatersectionofthedatasheet.  
SeeFigures 23and24forAlmostFullflagtimingandqueueswitching.  
Duringpowerdown,thefollowingconditionsfortheinputs/outputssignalsare:  
Alldata inQueue(s)memoryare retained.  
Alldatainputsbecomeinactive.  
ALMOSTEMPTYFLAG  
Allwrite andreadpointers maintaintheirlastvalue before powerdown.  
Allenables,chipselects,andclockinputpinsbecomeinactive.  
Alldataoutputsbecomeinactiveandenterhigh-impedancestate.  
Allflagoutputswillmaintaintheircurrentstatesbeforepowerdown.  
Allprogrammableflagoffsetsmaintaintheirvalues.  
Allechoclocks andenables willbecomeinactiveandenterhigh-  
impedancestate.  
TheserialprogrammingandJTAGportwillbecomeinactiveandenter  
high-impedancestate.  
As previously mentioned the multi-queue flow-control device provides a  
single Programmable Almost Empty flag output, PAE. The PAE flag output  
providesastatusofthealmostemptyconditionfortheactivequeuecurrently  
selectedonthereadportforreadoperations.Internallythemulti-queueflow-  
controldevicemonitorsandmaintainsastatusofthealmostemptyconditionof  
allqueueswithinit,howeveronlythequeuethatisselectedforreadoperations  
hasitsemptystatusoutputtothePAEflag.Thisdedicatedflagisoftenreferred  
toastheactivequeuealmostemptyflag.ThepositionofthePAEflagboundary  
withinaqueuecanbeatanypointwithinthatqueuesdepth.Thislocationcan  
beuserprogrammedviatheserialportoroneofthedefaultvalues(8or128)  
canbeselectediftheuserhasperformeddefaultprogramming.  
AllsetupandconfigurationCMOSstaticinputsarenotaffected,asthese  
pins are tied to a known value and do not toggle during operation.  
Allinternalcounters,registers,andflagswillremainunchangedandmaintain  
Asmentioned,everyqueuewithinamulti-queuedevicehasitsownalmost theircurrentstatepriortopowerdown.Clockinputscanbecontinuousandfree-  
emptystatus,whenaqueueisselectedonthereadport,thisstatusisoutputvia runningduringpowerdown,butwillhavenoaffectonthepart.However,itis  
thePAEflag.ThePAEflagvalueforeachqueueisprogrammedduringmulti- recommendedthattheclockinputsbelowwhenthepowerdownisactive.To  
queuedeviceprogramming(alongwiththenumberofqueues,queuedepths exitpowerdownstateandresumenormaloperations,disablethepowerdown  
andalmostfullvalues).ThePAEoffsetvalue,n,forarespectivequeuecanbe signalbybringingitHIGH.Theremustbeaminimumof1µswaitingperiodbefore  
programmedtobeanywherebetween0’andD’,whereDisthetotalmemory readandwriteoperationscanresume.Thedevicewillcontinuefromwhereit  
depthforthatqueue.ThePAEvalueofdifferentqueueswithinthesamedevice hadstoppedandnoformofresetisrequiredafterexitingpowerdownstate.The  
canbedifferentvalues.  
powerdownfeaturedoesnotprovideanypowersavingswhentheinputsare  
Whenqueueswitchesarebeingmadeonthereadport,thePAEflagoutput configuredforLVTTLoperation.However,itwillreducethecurrentforI/Osthat  
willswitchtothenewqueueandprovidetheuserwiththenewqueuestatus, are not tied directly to VCC or GND. See Figure 32, Power Down Operation,  
onthethirdcycleafteranewqueueselectionismade,onthesameRCLKcycle fortheassociatedtimingdiagram.  
26  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 4 — FLAG OPERATION BOUNDARIES & TIMING  
Output Valid, OV Flag Boundary  
Full Flag, FF Boundary  
FF Boundary Condition  
I/O Set-Up  
OV Boundary Condition  
I/O Set-Up  
In36 to out36  
In36 to out36 (Almost Empty Mode)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
FF Goes LOW after D+1 Writes  
(Bothportsselectedforsamequeue  
(seenotebelowfortiming)  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenote2belowfortiming)  
In36 to out36  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In36toout36(PacketMode)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
In36 to out18  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In36 to out18  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
In36 to out18  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In36 to out9  
(Writeportonlyselectedforqueue  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
when the 1st Word is written in)  
In36 to out9  
FF Goes LOW after D Writes  
(seenotebelowfortiming)  
In18 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
In36 to out9  
FF Goes LOW after D Writes  
In9 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
OV Goes LOW after 1st Write  
(seenote1belowfortiming)  
(Writeportonlyselectedforqueue  
(seenotebelowfortiming)  
when the 1st Word is written in)  
In18 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after ([D+1] x 2) Writes  
(seenotebelowfortiming)  
NOTE:  
1. OV Timing  
Assertion:  
Write to OV LOW: tSKEW1 + RCLK + tROV  
If tSKEW1 is violated there may be 1 added clock: tSKEW1 + 2 RCLK + tROV  
De-assertion:  
In18 to out36  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after (D x 2) Writes  
(seenotebelowfortiming)  
Read Operation to OV HIGH: tROV  
In9 to out36  
(Bothportsselectedforsamequeue  
when the 1st Word is written in)  
FF Goes LOW after ([D+1] x 4) Writes  
(seenotebelowfortiming)  
2. OV Timing when in Packet Mode (36 in to 36 out only)  
Assertion:  
Write to OV LOW: tSKEW4 + RCLK + tROV  
If tSKEW4 is violated there may be 1 added clock: tSKEW4 + 2 RCLK + tROV  
De-assertion:  
In9 to out36  
(Writeportonlyselectedforqueue  
when the 1st Word is written in)  
FF Goes LOW after (D x 4) Writes  
(seenotebelowfortiming)  
Read Operation to OV HIGH: tROV  
NOTE:  
D = Queue Depth  
FF Timing  
Assertion:  
Write Operation to FF LOW: tWFF  
De-assertion:  
Read to FF HIGH: tSKEW1 + tWFF  
If tSKEW1 is violated there may be 1 added clock: tSKEW1+WCLK +tWFF  
Programmable Almost Full Flag, PAF & PAFn Bus Boundary  
I/O Set-Up  
PAF & PAFn Boundary  
in36 to out36  
PAF/PAFn Goes LOW after  
(Bothportsselectedforsamequeuewhenthe1st D+1-mWrites  
Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
in36 to out36  
PAF/PAFn Goes LOW after  
NOTE:  
D = Queue Depth  
m = Almost Full Offset value.  
(Writeportonlyselectedforsamequeuewhenthe D-mWrites  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
Default values: if DF is LOW at Master Reset then m = 8  
if DF is HIGH at Master Reset then m= 128  
PAF Timing  
in36 to out18  
in36 to out9  
in18 to out36  
PAF/PAFn Goes LOW after  
D-mWrites(seebelowfortiming)  
PAF/PAFn Goes LOW after  
D-mWrites(seebelowfortiming)  
Assertion:  
Write Operation to PAF LOW: 2 WCLK + tWAF  
De-assertion: Read to PAF HIGH: tSKEW2 + WCLK + tWAF  
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 WCLK + tWAF  
PAFn Timing  
PAF/PAFn Goes LOW after  
([D+1-m] x 2) Writes  
(seenotebelowfortiming)  
Assertion:  
Write Operation to PAFn LOW: 2 WCLK* + tPAF  
De-assertion: Read to PAFn HIGH: tSKEW3 + WCLK* + tPAF  
If tSKEW3 is violated there may be 1 added clock: tSKEW3 + 2 WCLK* + tPAF  
* If a queue switch is occurring on the write port at the point of flag assertion or de-assertion  
there may be one additional WCLK clock cycle delay.  
in9 to out36  
PAF/PAFn Goes LOW after  
([D+1-m] x 4) Writes  
(seenotebelowfortiming)  
27  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TABLE 4 — FLAG OPERATION BOUNDARIES & TIMING (CONTINUED)  
Programmable Almost Empty Flag, PAE Boundary  
I/O Set-Up PAE Assertion  
PAE Goes HIGH after n+2  
(Bothportsselectedforsamequeuewhenthe1st Writes  
Programmable Almost Empty Flag Bus, PAEn Boundary  
I/O Set-Up PAEn Boundary Condition  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st n+2Writes  
in36 to out36  
in36 to out36  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in36 to out36  
PAEn Goes HIGH after  
in36 to out18  
PAE Goes HIGH after n+1  
(Bothportsselectedforsamequeuewhenthe1st Writes  
(Writeportonlyselectedforsamequeuewhenthe n+1Writes  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in36 to out18  
in36 to out9  
in18 to out36  
PAEn Goes HIGH after n+1  
in36 to out9  
PAE Goes HIGH after n+1  
Writes (seebelowfortiming)  
(Bothportsselectedforsamequeuewhenthe1st Writes  
PAEn Goes HIGH after n+1  
Writes(seebelowfortiming)  
Wordiswritteninuntiltheboundaryisreached) (seenotebelowfortiming)  
in18 to out36  
PAE Goes HIGH after  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 2) Writes  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 2) Writes  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
PAE Goes HIGH after  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
in9 to out36  
in18 to out36  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 4) Writes  
(Writeportonlyselectedforsamequeuewhenthe ([n+1] x 2) Writes  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
NOTE:  
in9 to out36  
PAEn Goes HIGH after  
(Bothportsselectedforsamequeuewhenthe1st ([n+2] x 4) Writes  
n = Almost Empty Offset value.  
Default values: if DF is LOW at Master Reset then n = 8  
if DF is HIGH at Master Reset then n = 128  
Wordiswritteninuntiltheboundaryisreached)  
(seenotebelowfortiming)  
PAEn Goes HIGH after  
in9 to out36  
PAE Timing  
(Writeportonlyselectedforsamequeuewhenthe ([n+1] x 4) Writes  
1st Wordis writteninuntiltheboundaryis reached) (seenotebelowfortiming)  
NOTE:  
Assertion:  
Read Operation to PAE LOW: 2 RCLK + tRAE  
De-assertion: Write to PAE HIGH: tSKEW2 + RCLK + tRAE  
If tSKEW2 is violated there may be 1 added clock: tSKEW2 + 2 RCLK + tRAE  
n = Almost Empty Offset value.  
Default values: if DF is LOW at Master Reset then n = 8  
if DF is HIGH at Master Reset then n = 128  
PAEn Timing  
Assertion:  
De-assertion: Write to PAEn HIGH: tSKEW3 + RCLK* + tPAE  
If tSKEW3 is violated there may be 1 added clock: tSKEW3 + 2 RCLK* + tPAE  
Read Operation to PAEn LOW: 2 RCLK* + tPAE  
* If a queue switch is occurring on the read port at the point of flag assertion or de-assertion  
there may be one additional RCLK clock cycle delay.  
PACKET READY FLAG BUS, PRn BOUNDARY  
Assertion:  
PACKETREADYFLAG,PRBOUNDARY  
Assertion:  
Both the rising and falling edges of PRn are synchronous to RCLK.  
PRn Falling Edge occurs upon writing the first TEOP marker, on input D35,  
(assumingaTSOPmarker,oninputD34has previouslybeenwritten).i.e.a  
completepacketisavailablewithinaqueue.  
Both the rising and falling edges of PR are synchronous to RCLK.  
PR Falling Edge occurs upon writing the first TEOP marker, on input D35,  
(assumingaTSOPmarker,oninputD34has previouslybeenwritten).i.e.a  
completepacketisavailablewithinaqueue.  
Timing:  
Timing:  
FromWCLKrisingedgewritingtheTEOPwordPRgoes LOWafter:tSKEW4  
+ 2 RCLK* + tPAE  
FromWCLKrisingedgewritingtheTEOPwordPRgoes LOWafter:tSKEW4  
+ 2 RCLK + tPR  
If tSKEW4 is violated PRn goes LOW after tSKEW4 + 3 RCLK* + tPAE  
*Ifaqueueswitchisoccurringonthereadportatthepointofflagassertionthere  
may be one additional RCLK clock cycle delay.  
De-assertion:  
IftSKEW4isviolated:  
PR goes LOW after tSKEW4 + 3 RCLK + tPR  
(PleaserefertoFigure19,DataInput(Transmit)PacketModeofOperation,  
fortimingdiagram).  
PRRisingEdgeoccursuponreadingthelastRSOPmarker,fromoutputQ34.  
i.e.therearenomorecompletepacketsavailablewithinthequeue.  
Timing:  
From RCLK rising edge Reading the RSOP word the PR goes HIGH after:  
3 RCLK* + tPAE  
De-assertion:  
PRRisingEdgeoccursuponreadingthelastRSOPmarker,fromoutputQ34.  
i.e.therearenomorecompletepacketsavailablewithinthequeue.  
Timing:  
From RCLK rising edge Reading the RSOP word the PR goes HIGH after:  
3 RCLK + tPR  
*Ifaqueueswitchisoccurringonthereadportatthepointofflagassertionor  
de-assertionthere maybe one additionalRCLKclockcycle delay.  
(PleaserefertoFigure20,DataOutput(Receive)PacketModeofOperation  
fortimingdiagram).  
28  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
PAFn BUS EXPANSION - DIRECT MODE  
outputonthePAEn/PRnbus.Queues1through4havetheirPAE/PRstatus  
If FM is LOW at Master Reset then the PAFn bus operates in Direct toPAE[0]throughPAE[3]respectively.Iflessthan4queuesareusedthenonly  
(addressed)mode.Indirectmodetheusercanaddressthedevicetheyrequire theassociatedPAEn/PRnoutputswillberequired,unusedPAEn/PRn outputs  
tocontrolthePAFnbus.Theaddresspresentonthe3mostsignificantbitsof willbedontcareoutputs.Whendevicesareconnectedinexpansionmodethe  
the WRADD[4:0] address bus with FSTR (PAF flag strobe), HIGH will be PAEn/PRn flagbus canalsobe expandedbeyond4bits toproduce a wider  
selectedasthedeviceonarisingedgeofWCLK.Sotoaddressthefirstdevice PAEn/PRnbusthatencompassesallqueues.  
inabankofdevicestheWRADD[4:0]addressshouldbe000xx”thesecond  
Alternatively,the4bitPAEn/PRn flagbusofeachdevicecanbeconnected  
device001xx”andsoon.The3mostsignificantbitsoftheWRADD[4:0]address togethertoformasingle4bitbus,i.e.PAE[0]ofdevice1willconnecttoPAE[0]  
buscorrespondtothedeviceIDinputsID[2:0].ThePAFnbuswillchangestatus ofdevice2etc.WhenconnectingdevicesinthismannerthePAEn/PRnbuscan  
toshowthenewdeviceselected1WCLKcycleafterdeviceselection.Note,that onlybedrivenbyasingledeviceatanytime,(thePAEn/PRn outputsofallother  
if a read or write operation is occurring to a specific queue, say queue x’ on devicesmustbeinhighimpedancestate).Therearetwomethodsbywhichthe  
thesamecycleasaPAFnbusswitchtothedevicecontainingqueuex’,then user can select which device has control of the bus, these are Direct”  
theremaybeanextraWCLKcycledelaybeforethatqueuesstatusiscorrectly (Addressed)modeorPolled”(Looped)mode,determinedbythestateofthe  
shownontherespectiveoutputofthe PAFnbus.However,theactive”PAF FM (flag Mode) input during a Master Reset.  
flagwillshowcorrectstatusatalltimes.  
Devices can be selected on consecutive WCLK cycles, that is the device PAEn/PRn - DIRECT BUS  
controllingthe PAFnbus canchangeeveryWCLKcycle. Also, datapresent  
If FM is LOW at Master Reset then the PAEn/PRn bus operates in Direct  
ontheinputbus,Din,canbewrittenintoaqueueonthesameWLCKrisingedge (addressed)mode.Indirectmodetheusercanaddressthedevicetheyrequire  
thatadeviceisbeingselectedonthePAFnbus,theonlyrestrictionbeingthat tocontrolthePAEn/PRnbus.Theaddresspresentonthe3mostsignificantbits  
awritequeueselectionandPAFnbusselectioncannotbemadeonthesamecycle. ofthe RDADD[4:0]address bus withESTR(PAE/PRflagstrobe), HIGHwill  
beselectedasthedeviceonarisingedgeofRCLK.Sotoaddressthefirstdevice  
PAFn – POLLED BUS  
inabankofdevices theRDADD[4:0]address shouldbe000xx”thesecond  
IfFMisHIGHatMasterResetthenthePAFnbusoperatesinPolled(Looped) device001xx”andsoon.The3mostsignificantbitsoftheRDADD[5:0]address  
mode.InpolledmodethePAFnbusautomaticallycyclesthroughthedevices buscorrespondtothedeviceIDinputsID[2:0].ThePAEn/PRnbuswillchange  
connected in expansion. In expansion mode one device will be set as the status toshowthenewdeviceselected1RCLKcycleafterdeviceselection.  
Master,MASTinputtiedHIGH,allotherdeviceswillhaveMASTtiedLOW.The Note,thatifareadorwriteoperationisoccurringtoaspecificqueue,sayqueue  
masterdeviceisthefirstdevicetotakecontrolofthePAFnbusandplacethe x’onthesamecycleasaPAEn/PRnbusswitchtothedevicecontainingqueue  
PAFstatusofitsqueuesontothebusonthefirstrisingedgeofWCLKafterthe x’,thentheremaybeanextraRCLKcycledelaybeforethatqueuesstatusis  
MRSinputgoesHIGHonceaMasterResetiscomplete.TheFSYNC(PAFsync correctlyshownontherespectiveoutputofthePAEn/PRnbus.However,the  
pulse)outputofthefirstdevice(masterdevice),willbeHIGHforonecycleof active”PAEand/orPRflagwillshowcorrectstatusatalltimes.  
WCLKindicatingthatitishascontrolofthePAFnbusforthatcycle.  
Devices can be selected on consecutive RCLK cycles, that is the device  
Thedevicealsopassesatoken”ontothenextdeviceinthechain,thenext controllingthePAEn/PRnbuscanchangeeveryRCLKcycle.Also,datacan  
deviceassumingcontrolofthePAFnbusonthenextWCLKcycle.Thistoken be read out of a queue on the same RCLK rising edge that a device is being  
passing is done via the FXO outputs and FXI inputs of the devices (PAFn selected on the PAEn/PRn bus, the only restriction being that a read queue  
ExpansionOut”andPAFnExpansionIn).TheFXOoutputofthefirstdevice selectionandPAEn/PRnbusselectioncannotbemadeonthesamecycle.  
connectingtothe FXIinputofthe seconddevice inthe chain, the FXOofthe  
seconddeviceconnects totheFXIofthethirddeviceandsoon.TheFXOof PAEn/PRn- POLLED BUS  
thefinaldeviceinachainconnectstotheFXIofthefirstdevice,sothatoncethe  
PAFn bus has cycled through all devices control is again passed to the first (Looped)mode.InpolledmodethePAEn/PRnbusautomaticallycyclesthrough  
device.TheFXOoutputofadevicewillbeHIGHfortheWCLKcycleithascontrol thedevicesconnectedinexpansion.Inexpansionmodeonedevicewillbeset  
IfFMis HIGHatMasterResetthenthe PAEn/PRnbus operates inPolled  
ofthebus.  
astheMaster,MASTinputtiedHIGH,allotherdeviceswillhaveMASTtiedLOW.  
PleaserefertoFigure30,PAFnBusPolledModefortiminginformation. ThemasterdeviceisthefirstdevicetotakecontrolofthePAEn/PRnbusand  
placethePAE/PRstatusofitsqueuesontothebusonthefirstrisingedgeofRCLK  
PAEn/PRn FLAG BUS OPERATION  
aftertheMRSinputgoesHIGHonceaMasterResetiscomplete.TheESYNC  
TheIDT72T51236/72T51246/72T51256multi-queueflow-controldevices (PAE/PRsyncpulse)outputofthefirstdevice(masterdevice),willbeHIGHfor  
canbeconfiguredforupto4queues,eachqueuehavingitsownalmostempty/ onecycleofRCLKindicatingthatitishascontrolofthePAEn/PRnbusforthat  
packetreadystatus.Anactivequeuehasitsflagstatusoutputtothediscreteflags, cycle.  
OV, PAE and PR, on the read port. Queues that are not selected for a read  
Thedevicealsopassesatoken”ontothenextdeviceinthechain,thenext  
operationcanhavetheirPAE/PRstatusmonitoredviathePAEn/PRnbus.The deviceassumingcontrolofthePAEn/PRnbus onthenextRCLKcycle.This  
PAEn/PRnflagbusis4bitswide,sothatall4queuescanhavetheirstatusoutput tokenpassingisdoneviatheEXOoutputsandEXIinputsofthedevices(PAEn/  
tothebus.Themulti-queuedevicecanprovideeitherAlmostEmpty”statusor PRnExpansionOut”andPAEn/PRnExpansionIn).TheEXOoutputofthe  
PacketReady”statusviathePAEn/PRnbusofitsqueues,dependingonwhich firstdeviceconnectingtotheEXIinputoftheseconddeviceinthechain,theEXO  
hasbeenselectedviathePKT(Packet)inputduringamasterreset.IfPKTis oftheseconddeviceconnectstotheEXIofthethirddeviceandsoon.TheEXO  
HIGHthenpacketmodeisselectedandthePAEn/PRnbuswillprovidePacket ofthefinaldeviceinachainconnectstotheEXIofthefirstdevice,sothatonce  
Ready”status.IfitisLOWthenthePAEn/PRnbuswillprovideAlmostEmpty” thePAEn/PRnbus has cycledthroughalldevices controlis againpassedto  
status.Ineithercasetheoperationofthebusisthesamethedifferencebeing the firstdevice. The EXOoutputofa device willbe HIGHforthe RCLKcycle  
thatthebusisprovidingPacketReady”statusversusAlmostEmpty”status. ithascontrolofthebus.  
Whenasinglemulti-queuedeviceisusedanywherefrom1to4queuesmay  
beset-upwithinthepart,eachqueuehavingitsowndedicatedPAEn/PRnflag information.  
Please refer to Figure 31, PAEn/PRn Bus – Polled Mode for timing  
29  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ECHO READ CLOCK (ERCLK)  
the slowest Qn, data output. Refer to Figure 3, Echo Read Clock and Data  
TheEchoReadClockoutputisprovidedinbothHSTLandLVTTLmode, Output Relationship and Figure 27, Echo RCLK & Echo REN Operation for  
selectableviaIOSEL.TheERCLKisafree-runningclockoutput,itwillalways timinginformation.  
follow the RCLK input regardless of REN and RADEN.  
TheERCLKoutputfollowstheRCLKinputwithanassociateddelay. This ECHO READ ENABLE (EREN)  
delayprovidestheuserwithamoreeffectivereadclocksourcewhenreading  
TheEchoReadEnableoutputisprovidedinbothHSTLandLVTTLmode,  
datafromtheQnoutputs.Thisisespeciallyhelpfulathighspeedswhenvariables selectableviaIOSEL.  
withinthedevicemaycausechangesinthedataaccesstimes. Thesevariations  
The EREN output is provided to be used in conjunction with the ERCLK  
inaccesstimemaybecausedbyambienttemperature,supplyvoltage,device outputandprovidesthereadingdevicewithamoreeffectiveschemeforreading  
characteristics. The ERCLK output also compensates for any trace length datafromtheQnoutputportathighspeeds.TheERENoutputiscontrolledby  
delaysbetweentheQndataoutputsandreceivingdevicesinputs.  
internallogicthatbehavesasfollows:TheERENoutputisactiveLOWforthe  
Anyvariationseffectingthedataaccesstimewillalsohaveacorresponding RCLKcyclethatanewwordisreadoutofthequeue.Thatis,arisingedgeof  
effectontheERCLKoutputproducedbythequeuedevice,thereforetheERCLK RCLKwillcause EREN togoactive (LOW)ifRENis active andthe queue is  
outputleveltransitionsshouldalwaysbeatthesamepositionintimerelativeto NOTempty.  
thedataoutputs.Note,thatERCLKisguaranteedbydesigntobeslowerthan  
RCLK  
tERCLK  
tERCLK  
ERCLK  
tD  
tA  
Q
SLOWEST(3)  
6116 drw08  
NOTES:  
1. REN is LOW. OE is LOW.  
2. tERCLK > tA, guaranteed by design.  
3. Qslowest is the data output with the slowest access time, tA.  
4. Time, tD is greater than zero, guaranteed by design.  
Figure 3. Echo Read Clock and Data Output Relationship  
30  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
D35-D27  
D26-D18  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
Write to Queue  
A
B
C
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BM  
L
IW OW  
A
B
C
D
Read from Queue  
L
L
(a) x36 INPUT to x36 OUTPUT  
Q35-Q27  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BM  
H
IW OW  
1st: Read from Queue  
2nd: Read from Queue  
C
D
L
L
Q26-Q18  
Q17-Q9  
Q8-Q0  
A
B
(b) x36 INPUT to x18 OUTPUT  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BM  
H
IW OW  
D
1st: Read from Queue  
2nd: Read from Queue  
L
H
Q35-Q27  
Q35-Q27  
Q26-Q18  
Q26-Q18  
Q17-Q9  
Q17-Q9  
Q8-Q0  
C
Q8-Q0  
B
3rd: Read from Queue  
4th: Read from Queue  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
A
(c) x36 INPUT to x9 OUTPUT  
D35-D27  
D35-D27  
D26-D18  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
A
1st: Write to Queue  
2nd: Write to Queue  
B
D26-D18  
D17-D9  
D8-D0  
C
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BM  
H
IW OW  
D
B
C
A
Read from Queue  
H
L
(d) x18 INPUT to x36 OUTPUT  
BYTE ORDER ON INPUT PORT:  
D35-D27  
D35-D27  
D35-D27  
D35-D27  
D26-D18  
D26-D18  
D26-D18  
D26-D18  
D17-D9  
D17-D9  
D17-D9  
D17-D9  
D8-D0  
A
1st: Write to Queue  
2nd: Write to Queue  
D8-D0  
B
D8-D0  
C
3rd: Write to Queue  
4th: Write to Queue  
D8-D0  
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BM  
H
IW OW  
D
C
B
A
Read from Queue  
6116 drw09  
H
H
(e) x9 INPUT to x36 OUTPUT  
Figure 4. Bus-Matching Byte Arrangement  
31  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
tRS  
MRS  
t
RSS  
RSS  
WEN  
REN  
t
tRSR  
SENI  
tRSS  
FSTR,  
ESTR  
tRSS  
WADEN,  
RADEN  
t
RSS  
RSS  
RSS  
ID0, ID1,  
ID2  
t
OW, IW,  
BM  
t
HIGH = Looped  
LOW = Strobed (Direct)  
FM  
MAST  
PKT  
t
RSS  
HIGH = Master Device  
LOW = Slave Device  
tRSS  
HIGH = Packet Ready Mode  
LOW = Almost Empty  
t
RSS  
RSS  
HIGH = Default Programming  
LOW = Serial Programming  
DFM  
t
HIGH = Offset Value is 128  
LOW = Offset value is 8  
DF  
t
t
t
t
RSF  
HIGH-Z if Slave Device  
FF  
LOGIC "0" if Master Device  
RSF  
RSF  
RSF  
LOGIC "1" if Master Device  
OV  
PAF  
PAE  
HIGH-Z if Slave Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
tRSF  
tRSF  
tRSF  
tRSF  
tRSF  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
PAFn  
PAEn  
PR  
HIGH-Z if Slave Device  
LOGIC "0" if Master Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
LOGIC "1" if Master Device  
HIGH-Z if Slave Device  
PRn  
LOGIC "1" if OE is LOW and device is Master  
Qn  
HIGH-Z if OE is HIGH or Device is Slave  
6116 drw10  
NOTES:  
1. OE can toggle during this period.  
2. PRS should be HIGH during a MRS.  
Figure 5. Master Reset  
32  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
w-3  
w-2  
w-1  
w
w+1  
w+2  
w+3  
WCLK  
tQH  
tQS  
WADEN  
WEN  
tENS  
tENS  
tAS  
tAH  
WRADD  
Qx  
tWFF  
FF  
tWAF  
PAF  
tPAF  
Active Bus  
PAF-Qx(5)  
tPRSS  
tPRSH  
PRS  
tPRSH  
tPRSS  
RCLK  
tENS  
tENS  
REN  
tQS  
tQH  
RADEN  
tAS  
tAH  
RDADD  
Qx  
tROV  
OV  
tRAE  
PAE  
tPAE  
Active Bus  
PAE-Qx(6)  
r-2  
r-1  
r
r+1  
r+2  
r+3  
r+4  
6116 drw11  
NOTES:  
1. For a Partial Reset to be performed on a Queue, that Queue must be selected on both the write and read ports.  
2. The queue must be selected a minimum of 3 clock cycles before the Partial Reset takes place, on both the write and read ports.  
3. The Partial Reset must be LOW for a minimum of 1 WCLK and 1 RCLK cycle.  
4. Writing or Reading to the queue (or a queue change) cannot occur until a minimum of 3 clock cycles after the Partial Reset has gone HIGH, on both the write and read ports.  
5. The PAF flag output for Qx on the PAFn flag bus may update one cycle later than the active PAF flag.  
6. The PAE flag output for Qx on the PAEn flag bus may update one cycle later than the active PAE flag.  
Figure 6. Partial Reset  
Master Reset  
Default Mode  
DFM = 0  
MRS  
MRS  
MRS  
DFM  
DFM  
DFM  
MQ2  
MQn  
MQ1  
Serial Loading  
Complete  
SENI  
SENO  
SO  
SENI  
SENI  
SENO  
SO  
SENO  
SO  
Serial Enable  
Serial Input  
SI  
SI  
SI  
SCLK  
SCLK  
SCLK  
6116 drw12  
Serial Clock  
Figure 7. Serial Port Connection for Serial Programming  
33  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
34  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
35  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
36  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WCLK  
tENH  
tENS  
WEN  
tDS  
tDH  
tDS  
tDH  
tDS  
tDH  
W3  
W1  
W2  
Dn  
tSKEW1  
1
2
RCLK  
REN  
Qout  
tENS  
t
A
t
tA  
tA  
Last Word Read Out of Queue  
W1 Q3  
FWFT  
W2 Q3  
FWFT  
W3 Q3  
ROV  
tROV  
OV  
6116 drw16  
NOTES:  
1. Q3 has previously been selected on both the write and read ports.  
2. OE is LOW.  
3. The First Word Latency = tSKEW1 + RCLK + tA. If tSKEW1 is violated an additional RCLK cycle must be added.  
Figure 11. Write Operations & First Word Fall Through  
37  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
38  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
39  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
*J*  
RCLK  
REN  
tENS  
tAS  
tAH  
tAS  
tAH  
RDADD  
RADEN  
D1  
Q3  
D1 Q2  
Addr=00111  
QH  
Addr=00110  
QH  
tQS  
t
t
tQS  
t
A
t
A
t
A
t
A
t
tOLZ  
Qout  
(Device 1)  
D
1
Q
3
WD  
Last Word  
D1 Q2  
PFT We-1  
D1  
Q
2 We Last Word  
W
0
D
Q
1
2
t
ROV  
tROV  
tROV  
ROV  
t
OVLZ  
HIGH-Z  
OV  
(Device 1)  
tOVHZ  
OV  
(Device 2)  
tSKEW1  
WCLK  
WEN  
tENH  
tENS  
tAS  
tAH  
WRADD  
D1 Q2  
Addr=00110  
tQH  
tQS  
WADEN  
Din  
tDS  
tDH  
D
1
W
Q
2
0
6116 drw19  
Cycle:  
*A* Queue 3 of Device 1 is selected for read operations. The OV is currently being driven by Device 2, a queue within device 2 is selected for reads. Device 2 also has control  
of Qout bus, its Qout outputs are in Low-Impedance. This diagram only shows the Qout outputs of device 1. (Reads are disabled).  
*B* Reads are now enabled. A word from the previously selected queue of Device 2 will be read out.  
*C* After a queue switch, there is a 3 RCLK latency for output data.  
*D* The Qout of Device 1 goes to Low-Impedance and word Wd is read from Q3 of D1. This happens to be the last word of Q3. Device 2 places its Qout outputs into  
High-Impedance, device 1 has control of the Qout bus. The OV flag of Device 2 goes to High-Impedance and Device 1 takes control of OV. The OV flag of Device 1 goes LOW  
to show that Wd of Q3 is valid.  
*E* Queue 2 of device 1 is selected for read operations. The last word of Q3 was read on the previous cycle, therefore OV goes HIGH to indicate that the data on the Qout is  
not valid (Q3 was read to empty). Word, Wd remains on the output bus.  
*F* The last word of Q3 remains on the Qout bus, OV is HIGH, indicating that this word has been previously read.  
*G* The next word (We-1), available from the newly selected queue, Q2 of device 1 is now read out. This will occur regardless of REN, 2 RCLK cycles after queue selection  
due to the FWFT operation. The OV flag updates 3 RCLK cycles after a queue selection.  
*H* The last word, We is read from Q2, this queue is now empty.  
*I* The OV flag goes HIGH to indicate that Q2 was read to empty on the previous cycle.  
*J* Due to a write operation the OV flag goes LOW and data word W0 is read from Q2. The latency is: tSKEW1 + 1*RCLK + tROV.  
Figure 14. Output Valid Flag Timing (In Expansion Mode)  
40  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
41  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
EO  
42  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
43  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
44  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
45  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
46  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
SELECT  
NEW QUEUE  
*D*  
NULL QUEUE  
SELECT  
*A*  
*B*  
*C*  
*E*  
*F*  
*G*  
RCLK  
tAS  
tAH  
tAS  
tAH  
Don’t care  
00100  
RDADD  
RADEN  
tQS  
tQH  
tQS  
tQH  
tAS  
tAH  
Null-Q  
tENS  
tENH  
REN  
t
A
tA  
tA  
tA  
tA  
Q3 W0  
FWFT  
Qout  
OV  
Q1 Wn-4  
Q1 Wn-3  
Q1 Wn-2  
Q1 Wn-1  
Q1 Wn  
tROV  
tROV  
6116 drw26  
NOTES:  
1. The purpose of the Null queue operation is so that the user can stop reading a block (packet) of data from a queue without filling the 2 stage output pipeline with the next words  
from that queue.  
2. Please see Figure 22, Null Queue Flow Diagram.  
Cycle:  
*A* Null Q of device 0 is selected, when word Wn-1 from previously selected Q1 is read.  
*C* REN is HIGH and Wn (Last Word of the Packet) of Q1 is pipelined onto the O/P register.  
Note: *B* and *C* are a minimum 3 RCLK cycles between queue selects.  
*D* The Null Q is seen as an empty queue on the read side, therefore Wn of Q1 remains in the O/P register and OV goes HIGH. A new queue, Q3 is selected.  
*G* 1st word, W0 of Q3 falls through present on the O/P register after 3 RCLK cycles after the queue select.  
Figure 21. Read Operation and Null Queue Select  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
Null  
Queue  
Null  
Queue  
Queue 3  
Memory  
Queue 3  
Memory  
Queue 1  
Memory  
Queue 1  
Memory  
Null  
Queue  
Q1  
Q1  
Q1  
Q1  
Q1  
Q4  
Q4  
Wn  
Wn  
Wn  
Wn  
Wn  
W0  
W1  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
O/P Reg.  
Qn  
Q1  
Q1  
Q1  
Q1  
Q1  
Q3  
Wn-2  
Wn-1  
Wn  
Wn  
Wn  
Wn  
W0  
6116 drw27  
Figure 22. Null Queue Flow Diagram  
47  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
WCLK  
WEN  
2
1
tENH  
tENS  
tAS  
tAH  
tAS  
tQS  
tAH  
WRADD  
D1 Q2  
D1 Q0  
Addr=00110  
tQH  
Addr=00100  
tQH  
tQS  
WADEN  
Din  
tDS  
tDH  
WD-m  
D1 Q2  
tWAF  
tWAF  
tAFLZ  
HIGH-Z  
PAF  
(Device 1)  
tFFHZ  
PAF  
(Device 2)  
6116 drw28  
Cycle:  
*A* Queue 2 of Device 1 is selected on the write port. A queue within Device 2 had previously been selected. The PAF output of device 1 is High-Impedance.  
*B* No write occurs.  
*C* No write occurs.  
*D* Word, Wd-m is written into Q2 causing the PAF flag to go from LOW to HIGH. The flag latency is 3 WCLK cycles + tWAF.  
*E* Queue 0 in device 1 is now selected for write operations. This queue is not almost full, therefore the PAF flag will update after a 3 WCLK + tWAF latency.  
*F* The PAF flag goes LOW based on the write 2 cycles earlier.  
*G* No write occurs.  
*H* The PAF flag goes HIGH due to the queue switch to Q0.  
Figure 23. Almost Full Flag Timing and Queue Switch  
tCLKL  
tCLKL  
WCLK  
WEN  
PAF  
1
2
1
tENS  
tENH  
tWAF  
tWAF  
D-(m+1) words  
in Queue  
D - (m+1) words in Queue  
D - m words in Queue  
tSKEW2  
RCLK  
tENS  
tENH  
6116 drw29  
REN  
NOTE:  
1. The waveform here shows the PAF flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read  
from at the almost full boundary.  
Flag Latencies:  
Assertion: 2*WCLK + tWAF  
De-assertion: tSKEW2 + WCLK + tWAF  
If tSKEW2 is violated there will be one extra WCLK cycle.  
Figure 24. Almost Full Flag Timing  
48  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
RCLK  
REN  
HIGH  
AS  
t
tAH  
tAS  
tAH  
RDADD  
D1  
Q3  
D1  
Q1  
Addr=00101  
QH  
Addr=00111  
QH  
tQS  
t
t
tQS  
RADEN  
Qout  
tA  
t
A
tA  
tA  
tOLZ  
HIGH-Z  
HIGH-Z  
D1  
Q3  
Wn  
D
1
Q3  
Wn+1  
D1  
Q1  
W0  
D1 Q1 W1  
tRAE  
t
RAE  
tAELZ  
PAE  
(Device 1)  
tAEHZ  
PAE  
(Device 2)  
HIGH-Z  
6116 drw30  
Cycle:  
*A* Queue 3 of Device 1 is selected on the read port. A queue within Device 2 had previously been selected. The PAE flag output and the data outputs of device 1 are High-Impedance.  
*B* No read occurs.  
*C* No read occurs.  
*D* The PAE flag output now switches to device 1. Word, Wn is read from Q3 due to the FWFT operation. This read operation from Q3 is at the almost empty boundary, therefore  
PAE will go LOW 2 RCLK cycles later.  
*E* Q1 of device 1 is selected.  
*F* The PAE flag goes LOW due to the read from Q3 2 RCLK cycles earlier. Word Wn+1 is read out due to the FWFT operation.  
*G* Word, W0 is read from Q1 due to the FWFT operation.  
*H* The PAE flag goes HIGH to show that Q1 is not almost empty.  
Figure 25. Almost Empty Flag Timing and Queue Switch  
tCLKL  
tCLKH  
WCLK  
tENH  
tENS  
WEN  
PAE  
n+1 words in Queue  
SKEW2  
n+2 words in Queue  
n+1 words in Queue  
tRAE  
t
tRAE  
RCLK  
1
2
tENS  
tENH  
6116 drw31  
REN  
NOTE:  
1. The waveform here shows the PAE flag operation when no queue switches are occurring and a queue selected on both the write and read ports is being written to then read  
from at the almost empty boundary.  
Flag Latencies:  
Assertion: 2*RCLK + tRAE  
De-assertion: tSKEW2 + RCLK + tRAE  
If tSKEW2 is violated there will be one extra RCLK cycle.  
Figure 26. Almost Empty Flag Timing  
49  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
ERN  
50  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
1
*C*  
2
*D*  
3
*E*  
*F*  
*G*  
*H*  
WCLK  
WADEN  
FSTR  
tQS  
tQH  
tQS  
tQH  
t
QS  
tQH  
t
STS  
tSTH  
tENS  
tENS  
tENH  
tENH  
WEN  
tAS  
tAH  
tAH  
tAS  
tAS  
tAH  
Device 4  
D3Q2  
011 10  
WRADD  
Dn  
D5Q3  
100 11  
tDS  
tDH  
tDS  
t
DS  
100 xx  
t
DH  
tDH  
Wp  
Wp+1  
Wp+2  
Wn+1  
D5Q3  
Wn  
D5 Q3  
Wx  
D3 Q2  
Writes to Previous Q  
t
SKEW3  
RCLK  
RADEN  
ESTR  
1
2
3
1
2
3
tQS  
tQH  
tSTS  
t
STH  
t
ENS  
tENH  
REN  
tAH  
tAS  
tAS  
tAH  
RDADD  
Device 5  
D5Q3  
100 11  
101 xx  
tA  
t
A
tA  
t
A
tA  
Wy+1  
D5 Q3  
Wy  
D5 Q3  
Wy+2  
D5 Q3  
Wy+3  
D5 Q3  
Device 5 -Qn  
Wa  
D5 QP  
Wa+1  
D5 QP  
Previous value loaded on to PAE bus  
Prev PAEn  
tPAEHZ  
tPAE  
tPAEZL  
xxxx1xxx  
Device 5  
xxxx1xxx  
Device 5  
Device 5 PAEn  
xxxx1xxx  
Device 5  
xxxx1xxx  
Device 5  
Previous value loaded on to PAE bus  
D5 QP Status  
Bus PAEn  
t
RAE  
tRAE  
tRAE  
D5 Q3  
status  
Device 5 PAE  
6116 drw33  
*FF*  
*AA*  
*BB*  
*CC*  
*DD*  
*GG*  
*EE*  
Cycle:  
*A* Q3 of Device 5 is selected for write operations.  
Word, Wp is written into the previously selected queue.  
*AA* Q3 of Device 5 is selected for read operations.  
A quadrant from another device has control of the PAEn bus.  
The discrete PAE output of device 5 is currently in High-Impedance and the PAE active flag is controlled by the previously selected device.  
*B* Word Wp+1 is written into the previously selected queue.  
*BB* Current Word is kept on the output bus since REN is HIGH.  
*C* Word Wp+2 is written into the previously selected queue.  
*CC* Word Wa+1 of Device 5 Qp is read due to FWFT.  
*D* Word, Wn is written into the newly selected queue, Q3 of Device 5. This write will cause the PAE flag on the read port to go from LOW to HIGH (not almost empty) after time,  
tSKEW3 + RCLK + tRAE (if tSKEW3 is violated one extra RCLK cycle will be added).  
*DD* Word, Wy from the newly selected queue, Q3 will be read out due to FWFT operation.  
Device 5 is selected on the PAEn bus. Q3 of Device 5 will therefore have is PAE status output on PAE[0]. There is a single RCLK cycle latency before the PAEn bus changes  
to the new selection.  
*E* Q2 of Device 3 is selected for write operations.  
Word Wn+1 is written into Q3 of Device 5.  
*EE* Word, Wy+1 is read from Q3 of Device 5.  
*F* No writes occur.  
*FF* Word, Wy+2 is read from Q3 of Device 5.  
The PAEn bus changes control to Device 5, the PAEn outputs of Device 5 go to Low-Impedance and quadrant 4 is placed onto the outputs. The device of the previously  
selected quadrant now places its PAEn outputs into High-Impedance to prevent bus contention.  
The discrete PAE flag will go HIGH to show that Q3 of Device 5 is not almost empty. Q3 of Device 5 will have its PAE status output on PAE[0].  
*G* Device 4 is selected on the write port for the PAFn bus.  
*GG* The PAEn bus updates to show that Q3 of Device 5 is almost empty based on the reading out of word, Wy+1.  
The discrete PAE flag goes LOW to show that Q3 of Device 5 is almost empty based on the reading of Wy+1.  
*H* Word, Wx is written into Q2 of Device 3.  
Figure 28. PAEn - Direct Mode, Flag Operation  
51  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
*A*  
*B*  
*C*  
*D*  
*E*  
*F*  
*G*  
*H*  
*I*  
RCLK  
tQH  
tQS  
tQS  
tQH  
RADEN  
tSTH  
tSTS  
ESTR  
REN  
tAS  
tAH  
tAH  
tAH  
tAS  
tAS  
Device 7  
111 xx  
RDADD  
D6Q2  
110 10  
D0Q1  
000 01  
OE  
tA  
tA  
tA  
tA  
tOLZ  
Qout  
W
X
W
X +1  
Prev. Q  
W
D0 Q1  
D - M + 2  
W0  
D6 Q2  
W
D0 Q1  
D-M+1  
Prev. Q  
t
SKEW3  
WCLK  
FSTR  
1
2
3
tSTS  
tSTH  
tAS  
tAH  
tAS  
tAH  
WRADD  
Device 0  
000 xx  
D0 Q1  
tENS  
tENH  
WEN  
tQS  
tQH  
WADEN  
Din  
t
DS  
t
DH  
tDS  
t
DH  
tDS  
tDH  
W
y+1  
Wy+2  
Word W  
y
D0 Q1  
Device 0  
Device 0  
HIGH-Z  
D0 Q1  
D0 Q1  
t
PAFLZ  
t
PAF  
t
PAF  
Device 0 PAFn  
xxxxxx0x  
xxxxxx0x  
Device 0  
Device 0  
Device 0  
HIGH-Z  
D
X
Quad y  
Device 0  
Bus PAFn  
t
PAFHZ  
DX  
Quad y  
Prev.  
PAFn  
t
PAFLZ  
tWAF  
Device 0  
HIGH - Z  
6116 drw34  
PAF  
*AA*  
*BB*  
*CC*  
*DD*  
*EE*  
*FF*  
*GG*  
Cycle:  
*A* Q1 of device 0 is selected for read operations.  
The last word in the output register is available on Qout. OE was previously taken LOW so the output bus is in Low-Impedance.  
*AA* Device 0 is selected for the PAFn bus. The bus is currently providing status of a previously selected quadrant, Quad Y of device X.  
*B* No read operation.  
*BB* Queue 1 of device 0 is selected on the write port.  
*C* Word, Wx+1 is read out from the previous queue due to the FWFT effect.  
*CC* The PAFn bus is updated with the quadrant selected on the previous cycle, Device 0 PAF[1] is LOW showing the status of queue 1.  
The PAFn outputs of the device previously selected on the PAFn bus go to High-Impedance.  
*D* Device 7 is selected for the PAFn bus.  
Word, Wd-m+1 is read from Q1 D0 due to the FWFT operation. This read is at the PAFn boundary of queue D0 Q1. This read will cause the PAF[1] output to go from  
LOW to HIGH (almost full to not almost full), after a delay tSKEW3 + WCLK + tPAF. If tSKEW3 is violated add an extra WCLK cycle.  
*DD* No write operation.  
*E* No read operations occur, REN is HIGH.  
*EE* PAF[1] goes HIGH to show that D0 Q1 is not almost empty due to the read on cycle *C*.  
The active queue PAF flag of device 0 goes from High-Impedance to Low-Impedance.  
Word, Wy is written into D0 Q1.  
*F* Queue 2 of Device 6 is selected for read operations.  
*FF* Word, Wy+1 is written into D0 Q1.  
*G* Word, Wd-m+2 is read out due to FWFT operation.  
*GG* PAF[1] and the discrete PAF flag go LOW to show the write on cycle *DD* causes Q1 of D0 to again go almost full.  
Word, Wy+2 is written into D0 Q1.  
*H* No read operation.  
*I* Word, W0 is read from Q6 of D2, selected on cycle *F*, due to FWFT.  
Figure 29. PAFn - Direct Mode, Flag Operation  
52  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WCLK  
tFSYNC  
tFSYNC  
tFSYNC  
tFSYNC  
FSYNC  
0
(MASTER)  
tFXO  
tFXO  
tFXO  
tFXO  
FXO /  
0
FXI  
1
tFSYNC  
tFSYNC  
FSYNC  
1
(SLAVE)  
tFXO  
tFXO  
FXO /  
1
FXI  
2
tFSYNC  
tFSYNC  
FSYNC  
2
(SLAVE)  
tFXO  
tFXO  
FXO /  
2
FXI  
0
tPAF  
tPAF  
tPAF  
tPAF  
tPAF  
Device 0  
Device 1  
Device 2  
Device 0  
PAF[7:0]  
6116 drw35  
NOTE:  
1. This diagram is based on 3 devices connected to expansion mode.  
Figure 30. PAFn Bus - Polled Mode  
53  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
RCLK  
tESYNC  
tESYNC  
tESYNC  
tESYNC  
ESYNC  
0
tEXO  
tEXO  
tEXO  
tEXO  
EXO /  
0
EXI  
1
tESYNC  
tESYNC  
ESYNC  
1
tEXO  
tEXO  
EXO /  
1
FXI  
2
tESYNC  
tESYNC  
ESYNC  
2
tEXO  
tEXO  
EXO /  
2
EXI  
0
tPAE  
tPAE  
tPAE  
tPAE  
tPAE  
Device 0  
Device 1  
Device 2  
Device 0  
PAE  
n
6116 drw36  
Figure 31. PAEn/PRn Bus - Polled Mode  
54  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
WCLK  
WEN  
tDH  
tDS  
tDH  
tDS  
tDS  
tDH  
tDS  
WD10  
WD11  
WD12  
WD13  
D[39:0]  
1ns  
(1)  
3
1
2
4
RCLK  
REN  
(7)  
PDHZ  
(2)  
t
tPDLZ  
tA  
t
A
t
A
tA  
Hi-Z  
WD1  
WD2  
WD3  
WD4  
WDH  
WDS  
Q[39:0]  
(2)  
PDH  
t
(2)  
PDH  
t
tPDL  
PD  
tERCLK  
Hi-Z  
Hi-Z  
ERCLK  
tEREN  
tEREN  
EREN  
6116 drw37  
NOTES:  
1. All read and write operations must have ceased a minimum of 4 WCLK and 4 RCLK cycles before power down is asserted.  
2. When the PD input becomes deasserted, there will be a 1µs waiting period before read and write operations can resume.  
All input and output signals will also resume after this time period.  
3. Set-up and configuration static inputs are not affected during power down.  
4. Serial programming and JTAG programming port are inactive during power down.  
5. RCS = 0, WCS = 0 and OE = 0. These signals can toggle during and after power down.  
6. All flags remain active and maintain their current states.  
7. During power down, all outputs will be in high-impedance.  
Figure 32. Power Down Operation  
55  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
Serial Programming Data Input  
Serial Enable  
SENI  
SI FXI EXI  
Output Data Bus  
Data Bus  
Q
-Q  
35  
D
-D  
35  
0
0
Read Clock  
Write Clock  
RCLK  
WCLK  
Write Enable  
Read Enable  
WEN  
REN  
Read Queue Select  
Read Address  
Write Queue Select  
Write Address  
RDADD  
RADEN  
WRADD  
WADEN  
DEVICE  
1
Empty Strobe  
Full Strobe  
ESTR  
FSTR  
PAFn  
Programmable Almost Full  
Programmable Almost Empty  
PAEn  
Empty Sync 1  
Output Valid Flag  
Almost Empty Flag  
Full Sync1  
ESYNC  
FSYNC  
Full Flag  
OV  
FF  
Almost Full Flag  
Serial Clock  
PAF  
PAE  
PR  
Packet  
Reads  
SCLK  
SENO SO FXO EXO  
SENI SI FXI EXI  
Q
-Q  
35  
D
-D  
35  
0
0
WCLK  
RCLK  
WEN  
REN  
WRADD  
WADEN  
RDADD  
RADEN  
DEVICE  
2
FSTR  
PAFn  
ESTR  
PAEn  
Empty Sync 2  
Full Sync2  
FSYNC  
ESYNC  
FF  
OV  
PAF  
PAE  
SCLK  
PR  
SO FXO EXO  
SENO  
SENI SI FXI EXI  
Q
-Q  
35  
D
-D  
35  
0
0
WCLK  
RCLK  
REN  
WEN  
WRADD  
WADEN  
RDADD  
RADEN  
DEVICE  
n
FSTR  
PAFn  
FSYNC  
ESTR  
PAEn  
Full Sync n  
Empty Sync n  
ESYNC  
FF  
OV  
PAF  
PAE  
PR  
SCLK  
SENO  
FXO EXO  
DONE  
6116 drw38  
NOTES:  
1. If devices are configured for Direct operation of the PAFn/PAEn flag busses the FXI/EXI of the MASTER device should be tied LOW. All other devices tied HIGH. The FXO/EXO  
outputs are DNC (Do Not Connect).  
2. Q outputs must not be mixed between devices, i.e. Q0 of device 1 must connect to Q0 of device 2, etc.  
Figure 33. Multi-Queue Expansion Diagram  
56  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
TheStandardJTAGinterfaceconsistsoffourbasicelements:  
JTAGINTERFACE  
Test Access Port (TAP)  
TAPcontroller  
Instruction Register (IR)  
Data Register Port (DR)  
Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to  
support the JTAG boundary scan interface. The IDT72T51236/72T51246/  
72T51256incorporates thenecessarytapcontrollerandmodifiedpadcellsto  
implementtheJTAG facility.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
NotethatIDTprovidesappropriateBoundaryScanDescriptionLanguage  
programfilesforthesedevices.  
The Figure belowshows the standardBoundary-ScanArchitecture  
Mux  
DeviceID Reg.  
Boundary Scan Reg.  
Bypass Reg.  
TDO  
TDI  
T
A
clkDR, ShiftDR  
UpdateDR  
P
TMS  
TAP  
TCLK  
Cont-  
roller  
TRST  
Instruction Decode  
clklR, ShiftlR  
UpdatelR  
Instruction Register  
Control Signals  
6116 drw39  
Figure 34. Boundary Scan Architecture  
THETAPCONTROLLER  
TEST ACCESS PORT (TAP)  
TheTapcontrollerisasynchronousfinitestatemachinethatrespondsto  
TMSandTCLKsignalstogenerateclockandcontrolsignalstotheInstruction  
andDataRegisters forcaptureandupdateofdata.  
The Tap interface is a general-purpose port that provides access to the  
internaloftheprocessor. Itconsistsoffourinputports(TCLK,TMS,TDI,TRST)  
and one output port (TDO).  
57  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
1
Test-Logic  
Reset  
0
1
0
1
1
Run-Test/  
Idle  
Select-  
DR-Scan  
Select-  
IR-Scan  
0
0
1
1
Capture-DR  
Capture-IR  
0
0
0
0
Shift-IR  
Shift-DR  
1
1
1
1
Input = TMS  
Exit1-IR  
Exit1-DR  
0
0
0
0
Pause-IR  
Pause-DR  
1
1
Exit2-IR  
Exit2-DR  
0
0
1
1
Update-IR  
Update-DR  
1
0
1
0
6116 drw40  
NOTES:  
1. Five consecutive TCK cycles with TMS = 1 will reset the TAP.  
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).  
3. TAP controller must be reset before normal Queue operations can begin.  
Figure 35. TAP Controller State Diagram  
Capture-IRInthiscontrollerstate,theshiftregisterbankintheInstruction  
RegisterparallelloadsapatternoffixedvaluesontherisingedgeofTCK.The  
lasttwosignificantbits arealways requiredtobe01.  
Shift-IR In this controller state, the instruction register gets connected  
betweenTDIandTDO,andthecapturedpatterngetsshiftedoneachrisingedge  
ofTCK.TheinstructionavailableontheTDIpinisalsoshiftedintotheinstruction  
register.  
Refer to the IEEE Standard Test Access Port Specification (IEEE Std.  
1149.1)forthefullstatediagram.  
AllstatetransitionswithintheTAPcontrolleroccurattherisingedgeofthe  
TCLKpulse. TheTMSsignallevel(0or1)determinesthestateprogression  
thatoccursoneachTCLKrisingedge. TheTAPcontrollertakesprecedence  
overthe Queue andmustbe resetafterpowerupofthe device. See TRST  
descriptionformoredetailsonTAPcontrollerreset.  
Exit1-IRThisisacontrollerstatewhereadecisiontoentereitherthePause-  
IRstateorUpdate-IRstateismade.  
Pause-IRThis state is providedinordertoallowthe shiftingofinstruction  
registertobetemporarilyhalted.  
Exit2-DRThisisacontrollerstatewhereadecisiontoentereithertheShift-  
IRstateorUpdate-IRstateismade.  
Update-IRInthiscontrollerstate,theinstructionintheinstructionregisteris  
latchedintothelatchbankoftheInstructionRegisteroneveryfallingedgeof  
TCK.Thisinstructionalsobecomesthecurrentinstructiononceitislatched.  
Capture-DRInthiscontrollerstate,thedataisparallelloadedintothedata  
registersselectedbythecurrentinstructionontherisingedgeofTCK.  
Shift-DR, Exit1-DR, Pause-DR, Exit2-DR and Update-DR These  
controllerstates are similartothe Shift-IR, Exit1-IR, Pause-IR, Exit2-IRand  
Update-IRstatesintheInstructionpath.  
Test-Logic-ResetAlltestlogicisdisabledinthiscontrollerstateenabling  
thenormaloperationoftheIC.TheTAPcontrollerstatemachineisdesigned  
insuchawaythat,nomatterwhattheinitialstateofthecontrolleris,theTest-  
Logic-ResetstatecanbeenteredbyholdingTMSathighandpulsingTCKfive  
times. This is the reasonwhythe TestReset(TRST)pinis optional.  
Run-Test-IdleInthiscontrollerstate,thetestlogicintheICisactiveonlyif  
certaininstructionsarepresent.Forexample,ifaninstructionactivatestheself  
test,thenitwillbeexecutedwhenthecontrollerentersthisstate.Thetestlogic  
intheICis idles otherwise.  
Select-DR-ScanThis is a controllerstate where the decisiontoenterthe  
DataPathortheSelect-IR-Scanstateismade.  
Select-IR-Scan This is a controller state where the decision to enter the  
InstructionPathismade.TheControllercanreturntotheTest-Logic-Resetstate  
otherwise.  
58  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
JTAG INSTRUCTION REGISTER  
THE INSTRUCTION REGISTER  
TheInstructionregisterallowsinstructiontobeseriallyinputintothedevice  
whentheTAPcontrollerisintheShift-IRstate. Theinstructionisdecodedto  
performthefollowing:  
TheInstructionregisterallowsaninstructiontobeshiftedinseriallyintothe  
processor at the rising edge of TCLK.  
TheInstructionis usedtoselectthetesttobeperformed,orthetestdata  
registertobeaccessed,orboth. Theinstructionshiftedintotheregisterislatched  
atthecompletionoftheshiftingprocesswhentheTAPcontrollerisatUpdate-  
IRstate.  
Selecttestdataregistersthatmayoperatewhiletheinstructionis  
current. Theothertestdataregistersshouldnotinterferewithchip  
operationandtheselecteddataregister.  
Definetheserialtestdataregisterpaththatisusedtoshiftdatabetween  
Theinstructionregistermustcontain4bitinstructionregister-basedcells  
whichcanholdinstructiondata. Thesemandatorycellsarelocatednearestthe  
serialoutputstheyaretheleastsignificantbits.  
TDI and TDO during data register scanning.  
The Instruction Register is a 4 bit field (i.e. IR3, IR2, IR1, IR0) to decode  
16differentpossibleinstructions. Instructionsaredecodedasfollows.  
TESTDATAREGISTER  
Hex  
Value  
00  
01  
02  
04  
0F  
Instruction  
Function  
TheTestDataregistercontainsthreetestdataregisters:theBypass,the  
Boundary Scan register and Device ID register.  
Theseregistersareconnectedinparallelbetweenacommonserialinput  
andacommonserialdataoutput.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescription,refertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
EXTEST  
SAMPLE/PRELOAD  
IDCODE  
HIGH-IMPEDANCE  
BYPASS  
SelectBoundaryScanRegister  
SelectBoundaryScanRegister  
SelectChipIdentificationdataregister  
JTAG  
SelectBypassRegister  
JTAG INSTRUCTION REGISTER DECODING  
TEST BYPASS REGISTER  
Thefollowingsectionsprovideabriefdescriptionofeachinstruction. For  
acompletedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
TheregisterisusedtoallowtestdatatoflowthroughthedevicefromTDI  
toTDO. Itcontainsasinglestageshiftregisterforaminimumlengthinserialpath.  
Whenthebypassregisterisselectedbyaninstruction,theshiftregisterstage  
is settoa logiczeroonthe risingedge ofTCLKwhenthe TAPcontrolleris in  
theCapture-DRstate.  
EXTEST  
TherequiredEXTESTinstructionplacestheICintoanexternalboundary-  
testmodeandselectstheboundary-scanregistertobeconnectedbetweenTDI  
andTDO.Duringthisinstruction,theboundary-scanregisterisaccessedto  
drivetestdataoff-chipviatheboundaryoutputsandreceivetestdataoff-chip  
viatheboundaryinputs.Assuch,theEXTESTinstructionistheworkhorseof  
IEEE.Std1149.1,providingforprobe-lesstestingofsolder-jointopens/shorts  
andoflogicclusterfunction.  
The operation of the bypass register should not have any effect on the  
operationofthedeviceinresponsetotheBYPASSinstruction.  
THE BOUNDARY-SCAN REGISTER  
TheBoundaryScanRegisterallowsserialdataTDIbeloadedintoorread  
outoftheprocessorinput/outputports. TheBoundaryScanRegisterisapart  
oftheIEEE1149.1-1990StandardJTAGImplementation.  
IDCODE  
THE DEVICE IDENTIFICATION REGISTER  
TheoptionalIDCODEinstructionallowstheICtoremaininitsfunctionalmode  
andselectstheoptionaldeviceidentificationregistertobeconnectedbetween  
TDI and TDO. The device identification register is a 32-bit shift register  
containinginformationregardingtheICmanufacturer,devicetype,andversion  
code.Accessingthedeviceidentificationregisterdoesnotinterferewiththe  
operationoftheIC.Also,accesstothedeviceidentificationregistershouldbe  
immediatelyavailable,viaaTAPdata-scanoperation,afterpower-upofthe  
ICoraftertheTAPhasbeenresetusingtheoptionalTRSTpinorbyotherwise  
movingtotheTest-Logic-Resetstate.  
The Device IdentificationRegisteris a ReadOnly32-bitregisterusedto  
specify the manufacturer, part number and version of the processor to be  
determinedthroughtheTAPinresponsetotheIDCODEinstruction.  
IDT JEDEC ID number is 0xB3. This translates to 0x33 when the parity  
is droppedinthe11-bitManufacturerIDfield.  
FortheIDT72T51236/72T51246/72T51256,thePartNumberfieldcon-  
tainsthefollowingvalues:  
Device  
Part# Field (HEX)  
0x45B  
IDT72T51236  
IDT72T51246  
IDT72T51256  
SAMPLE/PRELOAD  
0x45C  
0x45D  
TherequiredSAMPLE/PRELOADinstructionallowstheICtoremainina  
normalfunctionalmodeandselectstheboundary-scanregistertobeconnected  
betweenTDIandTDO.Duringthisinstruction,theboundary-scanregistercan  
beaccessedviaadatescanoperation,totakeasampleofthefunctionaldata  
enteringandleavingtheIC.This instructionis alsousedtopreloadtestdata  
intotheboundary-scanregisterbeforeloadinganEXTESTinstruction.  
31(MSB)  
28 27  
12 11  
1 0(LSB)  
Version (4 bits) Part Number (16-bit) Manufacturer ID (11-bit)  
0X0  
0X33  
1
JTAG DEVICE IDENTIFICATION REGISTER  
59  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648 and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
HIGH-IMPEDANCE  
TheoptionalHigh-Impedanceinstructionsetsalloutputs(includingtwo-state  
BYPASS  
The required BYPASS instruction allows the IC to remain in a normal  
aswellasthree-statetypes)ofanICtoadisabled(high-impedance)stateand functional mode and selects the one-bit bypass register to be connected  
selects the one-bit bypass register to be connected between TDI and TDO. between TDI and TDO. The BYPASS instruction allows serial data to be  
Duringthisinstruction,datacanbeshiftedthroughthebypassregisterfromTDI transferredthroughtheICfromTDItoTDOwithoutaffectingtheoperationof  
toTDOwithoutaffectingtheconditionoftheICoutputs.  
theIC.  
60  
IDT72T51236/72T51246/72T512562.5V,MULTI-QUEUEFLOW-CONTROLDEVICES  
(4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824, 1,179,648and 2,359,296 bits  
COMMERCIALANDINDUSTRIAL  
TEMPERATURERANGES  
tTCK  
t4  
t1  
t2  
TCK  
t3  
TDI/  
TMS  
tDS  
tDH  
TDO  
TDO  
tDO  
t6  
TRST  
6116 drw41  
Notes to diagram:  
t1 = tTCKLOW  
t2 = tTCKHIGH  
t5  
t3 = tTCKFALL  
t4 = tTCKRISE  
t5 = tRST (reset pulse width)  
t6 = tRSR (reset recovery)  
Figure 36. Standard JTAG Timing  
JTAG  
ACELECTRICALCHARACTERISTICS  
(vcc = 2.5V ± 5%; Tcase = 0°C to +85°C)  
Parameter  
Symbol  
Test  
Conditions  
Min. Max. Units  
SYSTEMINTERFACEPARAMETERS  
JTAGClockInputPeriod tTCK  
-
-
-
-
-
-
-
100  
40  
40  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
IDT72T51236  
IDT72T51246  
IDT72T51256  
JTAGClockHIGH  
JTAGClockLow  
tTCKHIGH  
tTCKLOW  
tTCKRISE  
tTCKFALL  
tRST  
-
Parameter  
Symbol Test Conditions Min. Max. Units  
JTAGClockRiseTime  
JTAGClockFallTime  
JTAGReset  
5(1)  
5(1)  
-
(1)  
DataOutput  
tDO  
-
20  
-
ns  
ns  
ns  
-
(1)  
DataOutputHold tDOH  
0
50  
50  
DataInput  
tDS  
tDH  
trise=3ns  
tfall=3ns  
10  
10  
-
-
JTAG Reset Recovery  
tRSR  
-
NOTE:  
1. Guaranteed by design.  
NOTE:  
1. 50pf loading on external output signals.  
61  
ORDERINGINFORMATION  
IDT  
XXXXX  
X
XX  
X
X
Process /  
Temperature  
Range  
Device Type  
Power  
Speed  
Package  
BLANK  
I(1)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
Plastic Ball Grid Array (PBGA, BB256-1)  
BB  
Clock Cycle Time (tCLK  
Speed in Nanoseconds  
)
5
6
Commercial Only  
Commercial and Industrial  
Low Power  
L
72T51236 589,824 bits 2.5V Multi-Queue Flow-Control Device  
72T51246 1,179,648 bits 2.5V Multi-Queue Flow-Control Device  
72T51256 2,359,296 bits 2.5V Multi-Queue Flow-Control Device  
6116 drw42  
NOTE:  
1. Industrial temperature range product for the 6ns is available as a standard device. All other speed grades available by special order.  
DATASHEETDOCUMENTHISTORY  
08/19/2003  
11/06/2003  
pgs. 1 through 62.  
pgs. 1, 4, 17 and 18.  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
for Tech Support:  
408-330-1533  
email:Flow-Controlhelp@idt.com  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
62  

相关型号:

IDT72T51246L5BBI

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824 bits, 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51246L6BB

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824 bits, 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51246L6BB8

FIFO, 32KX36, 3.7ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT

IDT72T51246L6BBI

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (4 QUEUES) 36 BIT WIDE CONFIGURATION 589,824 bits, 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51246L7-5BBI

FIFO, 32KX36, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT

IDT72T51248L6-7BB

FIFO, 32KX40, 3.8ns, Synchronous, CMOS, PBGA324, 19 X 19 MM, 1 MM PITCH, PLASTIC, BGA-324
IDT

IDT72T51248L6-7BBGI

FIFO, 32KX40, 3.8ns, Synchronous, CMOS, PBGA324, 19 X 19 MM, 1 MM PITCH, PLASTIC, BGA-324
IDT

IDT72T51248L6-7BBI

FIFO, 32KX40, 3.8ns, Synchronous, CMOS, PBGA324, 19 X 19 MM, 1 MM PITCH, PLASTIC, BGA-324
IDT

IDT72T51253

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51253L5BB

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits
IDT

IDT72T51253L5BB8

FIFO, 128KX18, 3.6ns, Synchronous, CMOS, PBGA256, 17 X 17 MM, 1 MM PITCH, PLASTIC, BGA-256
IDT

IDT72T51253L5BBI

2.5V MULTI-QUEUE FLOW-CONTROL DEVICES (32 QUEUES) 36 BIT WIDE CONFIGURATION 1,179,648 bits and 2,359,296 bits
IDT