IDT72V36104L15PF9 [IDT]

FIFO, 64KX36, 10ns, Synchronous, CMOS, PQFP128, TQFP-128;
IDT72V36104L15PF9
型号: IDT72V36104L15PF9
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FIFO, 64KX36, 10ns, Synchronous, CMOS, PQFP128, TQFP-128

先进先出芯片
文件: 总36页 (文件大小:418K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3 VOLT CMOS SyncBiFIFOTM WITH BUS-MATCHING  
16,384 x 36 x 2  
32,768 x 36 x 2  
65,536 x 36 x 2  
IDT72V3684  
IDT72V3694  
IDT72V36104  
Port B bus sizing of 36 bits (long word), 18 bits (word) and 9 bits  
(byte)  
Big- or Little-Endian format for word and byte bus sizes  
Master Reset clears data and configures FIFO, Partial Reset  
clears data but retains configuration settings  
FEATURES  
Memory storage capacity:  
IDT72V3684  
IDT72V3694  
IDT72V36104 – 65,536 x 36 x 2  
16,384 x 36 x 2  
32,768 x 36 x 2  
Mailbox bypass registers for each FIFO  
Clock frequencies up to 100 MHz (6.5ns access time)  
Two independent clocked FIFOs buffering data in opposite  
directions  
Select IDT Standard timing (using EFA, EFB, FFA, and FFB flags  
functions) or First Word Fall Through Timing (using ORA, ORB,  
IRA, and IRB flag functions)  
Programmable Almost-Empty and Almost-Full flags; each has five  
default offsets (8, 16, 64, 256 and 1,024 )  
Serial or parallel programming of partial flags  
Retransmit Capability  
Free-running CLKA and CLKB may be asynchronous or coincident  
(simultaneous reading and writing of data on a single clock edge  
is permitted)  
Auto power down minimizes power dissipation  
Available in space saving 128-pin Thin Quad Flatpack (TQFP)  
Pin compatible to the lower density parts, IDT72V3624/72V3634/  
72V3644/72V3654/72V3664/72V3674  
Industrial temperature range (–40°C to +85°C) is available  
FUNCTIONAL BLOCK DIAGRAM  
MBF1  
Mail 1  
Register  
CLKA  
CSA  
W/RA  
ENA  
Port-A  
Control  
Logic  
RAM ARRAY  
16,384 x 36  
32,768 x 36  
65,536 x 36  
36  
36  
MBA  
36  
FIFO1,  
Mail1  
Reset  
Logic  
MRS1  
PRS1  
Write  
Pointer  
Read  
Pointer  
36  
Status Flag  
Logic  
FFA/IRA  
EFB/ORB  
AEB  
AFA  
FIFO1  
FIFO2  
FS2  
FS0/SD  
Programmable Flag  
Offset Registers  
Timing  
Mode  
FWFT  
FS1/SEN  
B0-B35  
A0-A35  
16  
Status Flag  
EFA/ORA  
FFB/IRB  
AFB  
Logic  
AEA  
36  
Read  
Pointer  
Write  
Pointer  
36  
FIFO2,  
Mail2  
Reset  
Logic  
MRS2  
PRS2  
RT1  
RTM  
RT2  
FIFO1 and  
FIFO2  
Retransmit  
Logic  
RAM ARRAY  
36  
36  
16,384 x 36  
32,768 x 36  
65,536 x 36  
CLKB  
CSB  
W/RB  
ENB  
MBB  
BE  
Port-B  
Control  
Logic  
Mail 2  
Register  
BM  
4677 drw01  
MBF2  
SIZE  
IDTandtheIDTlogoaretrademarksofIntegratedDeviceTechnology,Inc. TheSyncBiFIFOisatrademarkofIntegratedDeviceTechnology,Inc.  
COMMERCIAL TEMPERATURE RANGE  
NOVEMBER 2003  
1
2003 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
DSC-4677/6  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
,
COMMERCIALTEMPERATURERANGE  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
These devices are a synchronous (clocked) FIFO, meaning each port  
DESCRIPTION  
employsasynchronousinterface. Alldatatransfersthroughaportaregated  
totheLOW-to-HIGHtransitionofaportclockbyenablesignals. Theclocksfor  
each port are independent of one another and can be asynchronous or  
coincident. The enables for each port are arranged to provide a simple  
bidirectionalinterfacebetweenmicroprocessorsand/orbuseswithsynchro-  
nouscontrol.  
The IDT72V3684/72V3694/72V36104 are designed to run off a 3.3V  
supplyforexceptionallylow-powerconsumption. Thesedevicesaremono-  
lithic, high-speed, low-power, CMOS bidirectional synchronous (clocked)  
FIFOmemorywhichsupportsclockfrequenciesupto100MHzandhasread  
accesstimesasfastas6.5ns. Twoindependent16,384/32,768/65,536 x 36  
dual-portSRAMFIFOsonboardeachchipbufferdatainoppositedirections.  
FIFOdataonPortBcanbeinputandoutputin36-bit,18-bit,or9-bitformats  
withachoiceofBig-orLittle-Endianconfigurations.  
CommunicationbetweeneachportmaybypasstheFIFOsviatwomailbox  
registers.Themailboxregisters’widthmatchestheselectedPortBbuswidth.  
PIN CONFIGURATION  
INDEX  
W/RA  
ENA  
CLKA  
3
GND  
A35  
5
A34  
A33  
7
A32  
Vcc  
A31  
A30  
GND  
A29  
A28  
A27  
A26  
A25  
102  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
CLKB  
PRS2/RT2  
Vcc  
1
2
B35  
B34  
B33  
B32  
RTM  
GND  
B31  
B30  
B29  
B28  
B27  
B26  
Vcc  
4
6
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
B25  
B24  
BM  
A24  
A23  
BE/FWFT  
GND  
A22  
GND  
B23  
B22  
B21  
B20  
B19  
B18  
GND  
B17  
B16  
SIZE  
Vcc  
B15  
B14  
B13  
B12  
GND  
B11  
B10  
Vcc  
A21  
A20  
A19  
A18  
GND  
A17  
A16  
A15  
A14  
A13  
Vcc  
A12  
GND  
A11  
A10  
4677 drw02  
TQFP (PK128-1, order code: PF)  
TOP VIEW  
2
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
EachMailboxregisterhas a flag(MBF1 andMBF2)tosignalwhennewmail whetherornottheFIFOmemoryisempty.FFshowswhetherthememoryis  
has beenstored. fullornot.TheIRandORfunctionsareselectedintheFirstWordFallThrough  
TwokindsofresetareavailableontheseFIFOs:MasterResetandPartial mode.IRindicateswhetherornottheFIFOhasavailablememorylocations.  
Reset. MasterResetinitializesthereadandwritepointerstothefirstlocation ORshowswhethertheFIFOhasdataavailableforreadingornot.Itmarksthe  
of the memory array, configures the FIFO for Big- or Little-Endian byte presenceofvaliddataontheoutputs.  
arrangementandselectsserialflagprogramming,parallelflagprogramming,  
oroneoffivepossibledefaultflagoffsetsettings,8,16,64,256or1,024.There programmableAlmost-Fullflag(AFAandAFB). AEAandAEB indicatewhen  
are two Master Reset pins, MRS1 and MRS2. aselectednumberofwordsremainintheFIFOmemory.AFAandAFBindicate  
PartialResetalsosetsthereadandwritepointerstothefirstlocationofthe whenthe FIFOcontains more thana selectednumberofwords.  
memory.UnlikeMasterReset,anysettingsexistingpriortoPartialReset(i.e., FFA/IRA,FFB/IRB,AFAandAFB aretwo-stagesynchronizedtotheport  
EachFIFOhasaprogrammableAlmost-Emptyflag(AEAandAEB)anda  
programmingmethodandpartialflagdefaultoffsets)areretained.PartialReset clockthatwrites dataintoits array.EFA/ORA,EFB/ORB,AEAandAEBare  
is useful since it permits flushing of the FIFO memory without changing any two-stage synchronized to the port clock that reads data from its array.  
configurationsettings.EachFIFOhasitsown,independentPartialResetpin, ProgrammableoffsetsforAEA,AEB,AFAandAFBareloaded inparallelusing  
PRS1 and PRS2.  
PortAorinserialviatheSDinput.Fivedefaultoffsetsettingsarealsoprovided.  
BothFIFO'shaveRetransmitcapability,whenaRetransmitisperformedon The AEA and AEB threshold can be set at 8, 16, 64, 256 or 1,024 locations  
arespectiveFIFOonlythereadpointerisresettothefirstmemorylocation.A fromtheemptyboundaryandtheAFAandAFBthresholdcanbesetat8,16,  
RetransmitisperformedbyusingtheRetransmitMode,RTMpininconjunction 64,256or1,024locationsfromthefullboundary.Allthesechoicesaremade  
withtheRetransmitpinsRT1orRT2,foreachrespectiveFIFO.Notethatthe using the FS0, FS1 and FS2 inputs during Master Reset.  
twoRetransmitpins RT1andRT2 are muxedwiththe PartialResetpins.  
InterspersedParitycanalsobeselectedduringaMasterResetoftheFIFO.  
Thesedeviceshavetwomodesofoperation:IntheIDTStandardmode,the IfInterspersedParityisselectedthenduringparallelprogrammingoftheflag  
firstwordwrittentoanemptyFIFOisdepositedintothememoryarray.Aread offsetvalues,thedevicewillignoredatalineA8.IfNon-InterspersedParityis  
operationisrequiredtoaccessthatword(alongwithallotherwordsresiding selectedthendatalineA8willbecomeavalidbit.  
inmemory).IntheFirstWordFallThroughmode(FWFT),thefirstlong-word  
Twoormoredevicesmaybeusedinparalleltocreatewiderdatapaths.If,  
(36-bitwide)writtentoanemptyFIFOappearsautomaticallyontheoutputs,no at any time, the FIFO is not actively performing a function, the chip will  
readoperationisrequired(Nevertheless,accessingsubsequentwordsdoes automatically power down. During the power down state, supply current  
necessitateaformalreadrequest).ThestateoftheBE/FWFTpinduringFIFO consumption(ICC)isataminimum.Initiatinganyoperation(byactivatingcontrol  
operationdeterminesthemodeinuse.  
EachFIFOhasacombinedEmpty/OutputReadyFlag(EFA/ORAandEFB/  
inputs)willimmediatelytakethedeviceoutofthepowerdownstate.  
The IDT72V3684/72V3694/72V36104 are characterized for operation  
ORB) and a combined Full/Input Ready Flag (FFA/IRA and FFB/IRB). The from0°Cto70°C.Industrialtemperaturerange(-40°Cto+85°C)isavailable.  
EF and FF functions are selected in the IDT Standard mode. EF indicates Theyare fabricatedusingIDT’s highspeed, submicronCMOStechnology.  
3
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
PINDESCRIPTIONS  
Symbol  
A0-A35  
AEA  
Name  
PortAData  
I/O  
Description  
I/O 36-bitbidirectionaldataportforsideA.  
PortAAlmost-  
EmptyFlag  
O
O
O
O
ProgrammableAlmost-EmptyflagsynchronizedtoCLKA.ItisLOWwhenthenumberofwordsin  
FIFO2islessthanorequaltothevalueintheAlmost-EmptyAOffsetregister,X2.  
AEB  
PortBAlmost-  
EmptyFlag  
ProgrammableAlmost-EmptyflagsynchronizedtoCLKB.ItisLOWwhenthenumberofwordsin  
FIFO1islessthanorequaltothevalueintheAlmost-EmptyBOffsetregister,X1.  
AFA  
PortAAlmost-  
Full Flag  
ProgrammableAlmost-FullflagsynchronizedtoCLKA.ItisLOWwhenthenumberofemptylocations  
inFIFO1is less thanorequaltothevalueintheAlmost-FullAOffsetregister,Y1.  
AFB  
PortBAlmost-  
Full Flag  
ProgrammableAlmost-FullflagsynchronizedtoCLKB.ItisLOWwhenthenumberofempty  
locations inFIFO2is less thanorequaltothevalueintheAlmost-FullBOffsetregister,Y2.  
B0-B35  
PortAData  
I/O 36-bitbidirectionaldataportforsideB.  
BE/FWFT Big-Endian/  
FirstWord  
I
This is a dual purpose pin. During Master Reset, a HIGH on BE will select Big Endian operation. In  
this case, dependingonthe bus size, the mostsignificantbyte orwordonPortAis readfromPortB  
first (A-to-Bdataflow)orwrittentoPortBfirst(B-to-Adataflow).ALOWonBEwillselectLittle-Endian  
operation. Inthis case, the leastsignificantbyte orwordonPortAis readfromPortBfirst(forA-to-Bdata  
flow) or written to Port B first (B-to-A data flow). After Master Reset, this pin selects the timing mode. A  
HIGHonFWFT selects IDTStandardmode, a LOWselects FirstWordFallThroughmode. Once the  
timingmodehasbeenselected,thelevelonFWFTmustbestaticthroughoutdeviceoperation.  
Fall Through  
Select  
(1)  
BM  
Bus-MatchSelect  
(Port B)  
I
A HIGH on this pin enables either byte or word bus width on Port B, depending on the state of SIZE.  
ALOWselects longwordoperation. BMworks withSIZEandBEtoselectthe bus size andendian  
arrangementforPortB.ThelevelofBMmustbestaticthroughoutdeviceoperation.  
CLKA  
CLKB  
PortAClock  
PortBClock  
I
CLKAis acontinuous clockthatsynchronizes alldatatransfers throughPortAandcanbe  
asynchronous orcoincidenttoCLKB. FFA/IRA, EFA/ORA, AFA, andAEA are allsynchronizedtothe  
LOW-to-HIGHtransitionofCLKA.  
I
CLKBis acontinuous clockthatsynchronizes alldatatransfers throughPortBandcanbe  
asynchronous orcoincidenttoCLKA. FFB/IRB, EFB/ORB, AFB, andAEB are synchronizedtothe  
LOW-to-HIGHtransitionofCLKB.  
CSA  
CSB  
PortAChipSelect  
PortBChipSelect  
I
CSAmustbe LOWtoenable toLOW-to-HIGHtransitionofCLKAtoreadorwrite onPortA. The A0-A35  
outputsareinthehigh-impedancestatewhenCSAisHIGH.  
I
CSB mustbe LOWtoenable a LOW-to-HIGHtransitionofCLKBtoreadorwrite data onPortB. The  
B0-B35outputs areinthehigh-impedancestatewhenCSBis HIGH.  
EFA/ORA PortAEmpty/  
OutputReadyFlag  
O
This is a dualfunctionpin. Inthe IDTStandardmode, the EFAfunctionis selected. EFA  
indicates whetherornotthe FIFO2memoryis empty. Inthe FWFTmode, the ORAfunctionis  
selected. ORAindicates thepresenceofvaliddataonA0-A35outputs,availableforreading.EFA/ORA  
issynchronizedtotheLOW-to-HIGHtransitionofCLKA.  
EFB/ORB PortBEmpty/  
OutputReadyFlag  
O
This is adualfunctionpin.IntheIDTStandardmode,theEFBfunctionis selected. EFBindicates  
whetherornotthe FIFO1memoryis empty. Inthe FWFTmode, the ORBfunctionis selected. ORB  
indicates thepresenceofvaliddataontheB0-B35outputs,availableforreading. EFB/ORBis  
synchronizedtotheLOW-to-HIGHtransitionofCLKB.  
ENA  
PortAEnable  
I
I
ENAmustbe HIGHtoenable a LOW-to-HIGHtransitionofCLKAtoreadorwrite data onPortA.  
ENBmustbe HIGHtoenable a LOW-to-HIGHtransitionofCLKBtoreadorwrite data onPortB.  
ENB  
PortBEnable  
FFA/IRA  
PortAFull/  
Input Ready Flag  
O
This is adualfunctionpin.IntheIDTStandardmode,theFFA functionis selected.FFA indicates  
whetherornotthe FIFO1memoryis full. Inthe FWFTmode, the IRAfunctionis selected. IRA  
indicates whetherornotthere is space available forwritingtothe FIFO1memory.FFA/IRAis  
synchronizedtotheLOW-to-HIGHtransitionofCLKA.  
FFB/IRB  
PortBFull/  
Input Ready Flag  
O
This is adualfunctionpin.IntheIDTStandardmode,theFFB functionis selected.FFB indicates  
whether or not the FIFO2 memory is full. In the FWFT mode, the IRB function is selected. IRB  
indicates whether or not there is space available for writing to the FIFO2 memory. FFB/IRB is  
synchronized to the LOW-to-HIGH transition of CLKB.  
4
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
PINDESCRIPTIONS(CONTINUED)  
Symbol  
Name  
I/O  
Description  
FS0/SD FlagOffsetSelect0/  
SerialData  
I
FS1/SENandFS0/SDaredual-purposeinputs usedforflagoffsetregisterprogramming.DuringMaster  
Reset,FS1/SENandFS0/SD,togetherwithFS2,selecttheflagoffsetprogrammingmethod.Threeoffset  
registerprogrammingmethods are available:automaticallyloadone offive presetvalues (8, 16, 64, 256or  
1,024), parallel load from Port A, and serial load.  
FS1/SEN FlagOffsetSelect1/  
I
I
SerialEnable,  
Whenserialloadisselectedforflagoffsetregisterprogramming,FS1/SENisusedasanenable  
synchronous totheLOW-to-HIGHtransitionofCLKA.WhenFS1/SEN is LOW,arisingedgeonCLKAload  
the bitpresentonFS0/SDintothe XandYregisters. The numberofbitwrites requiredtoprogramthe offset  
registers is 56 for the IDT72V3684, 60 for the IDT72V3694, and 64 for the IDT72V36104. The first bit write  
stores the Y-register(Y1)MSBandthe lastbitwrite stores the X-register(X2)LSB.  
FS2(1)  
MBA  
FlagOffsetSelect2  
Port A Mailbox  
Select  
I
I
A HIGH level on MBA chooses a mailbox register for a Port A read or write operation. When the A0-A35  
outputs areactive,aHIGHlevelonMBAselects datafromthemail2registerforoutputandaLOWlevel  
selectsFIFO2outputregisterdataforoutput.  
MBB  
MBF1  
MBF2  
MRS1  
Port B Mailbox  
Select  
A HIGH level on MBB chooses a mailbox register for a Port B read or write operation. When the B0-B35  
outputs areactive,aHIGHlevelonMBBselects datafromthemail1registerforoutputandaLOWlevel  
selectsFIFO1outputregisterdataforoutput.  
Mail1Register  
Flag  
O
O
I
MBF1issetLOWbyaLOW-to-HIGHtransitionofCLKAthat writesdatatothemail1register.Writestothemail1  
registerare inhibitedwhile MBF1 is LOW. MBF1 is setHIGHbya LOW-to-HIGHtransitionofCLKBwhena  
Port B read is selected and MBB is HIGH. MBF1 is set HIGH following either a Master or Partial Reset of FIFO1.  
Mail2Register  
Flag  
MBF2issetLOWbyaLOW-to-HIGHtransitionofCLKBthatwritesdatatothemail2register.Writestothemail2  
registerareinhibitedwhileMBF2is LOW. MBF2 is set HIGH by a LOW-to-HIGH transition of CLKA when a Port  
A read is selected and MBA is HIGH. MBF2 is set HIGH following either a Master or Partial Reset of FIFO2.  
FIFO1Master  
Reset  
A LOW on this pin initializes the FIFO1 read and write pointers to the first location of memory and sets the Port  
Boutputregistertoallzeroes. ALOW-to-HIGHtransitiononMRS1selectstheprogrammingmethod(serialorparallel)  
andoneoffiveprogrammableflagdefaultoffsetsforFIFO1andFIFO2.It also configuresPortBforbussizeand  
endianarrangement. FourLOW-to-HIGHtransitionsofCLKA andfourLOW-to-HIGHtransitionsofCLKBmust  
occurwhileMRS1 is LOW.  
MRS2  
FIFO2Master  
Reset  
I
I
ALOWonthispininitializestheFIFO2readandwritepointerstothefirstlocationofmemoryandsetsthePortA  
outputregistertoallzeroes. ALOW-to-HIGHtransitionon MRS2,toggledsimultaneouslywithMRS1,selectsthe  
programmingmethod(serialorparallel)andoneoftheprogrammableflagdefaultoffsetsforFIFO2.FourLOW-to-  
HIGH transitions of CLKA and four LOW-to-HIGH transitions of CLKB must occur while MRS2 is LOW.  
PRS1/  
RT1  
PartialReset/  
RetransmitFIFO1  
This pinis muxedforbothPartialReset andRetransmitoperations,itis usedinconjunctionwiththeRTM pin.  
IfRTMis inaLOWcondition,aLOWonthis pinperforms aPartialResetonFIFO1andinitializes theFIFO1read  
andwritepointerstothefirstlocationofmemoryandsetsthePortBoutputregistertoallzeroes.DuringPartialReset,  
thecurrentlyselectedbussize,endianarrangement,programmingmethod(serialorparallel),andprogrammable  
flagsettingsareallretained.IfRTMisHIGH,aLOWonthispinperformsaRetransmitandinitializestheFIFO1read  
pointeronlytothefirstmemorylocation.  
PRS2/  
RT2  
PartialReset/  
RetransmitFIFO2  
I
This pinis muxedforbothPartialReset andRetransmitoperations, itis usedinconjunctionwiththeRTMpin.  
If RTMis inaLOWcondition,aLOWonthis pinperforms aPartialResetonFIFO2andinitializes theFIFO2read  
andwriteselectedbussize,endianarrangement,programmingmethod(serialorparallel),andprogrammableflag  
settingsareallretained.IfRTMisHIGH,aLOWonthispinperformsaRetransmitandinitializestheFIFO2readpointer  
onlytothefirstmemorylocation.  
RTM  
RetransmitMode  
BusSizeSelect  
I
I
This pinis usedinconjunctionwiththe RT1 and RT2 pins. WhenRTMis HIGHa Retransmitis performedon  
FIFO1 or FIFO2 respectively.  
(1)  
SIZE  
AHIGHonthis pinwhenBMis HIGHselects bytebus (9-bit)sizeonPortB. ALOWonthis pinwhenBMis HIGH  
selectsword(18-bit)bussize.SIZEworkswithBMandBEtoselectthebussizeandendianarrangementforPort  
B.ThelevelofSIZEmustbestaticthroughoutdeviceoperation  
W/RA  
Port-AWrite/  
ReadSelect  
I
I
A HIGHselects a write operationanda LOWselects a readoperationonPortAfora LOW-to-HIGH  
transitionofCLKA.TheA0-A35outputs areintheHIGHimpedancestatewhenW/RA is HIGH.  
W/RB  
Port-BWrite/  
ReadSelect  
A LOW selects a write operationanda HIGHselects a readoperationonPortBfora LOW-to-HIGH  
transitionofCLKB.TheB0-B35outputsareintheHIGHimpedancestatewhenW/RBisLOW.  
NOTE:  
1. FS2, BM and SIZE inputs are not TTL compatible. These inputs should be tied to GND or VCC.  
5
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR  
TEMPERATURE RANGE (Unless otherwise noted)(1)  
Symbol  
Rating  
Commercial  
–0.5to+4.6  
–0.5 to VCC+0.5  
–0.5 to VCC+0.5  
±20  
Unit  
V
VCC  
SupplyVoltageRange  
InputVoltageRange  
OutputVoltageRange  
(2)  
VI  
V
(2)  
VO  
V
IIK  
Input Clamp Current (VI < 0 or VI > VCC)  
Output Clamp Current (VO = < 0 or VO > VCC)  
Continuous Output Current (VO = 0 to VCC)  
Continuous Current Through VCC or GND  
StorageTemperatureRange  
mA  
mA  
mA  
mA  
°C  
IOK  
±50  
IOUT  
ICC  
±50  
±400  
TSTG  
–65 to 150  
NOTES:  
1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these  
or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect  
device reliability.  
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.  
RECOMMENDEDOPERATINGCONDITIONS  
Symbol  
Parameter  
SupplyVoltage  
Min.  
3.15  
2
Typ.  
3.3  
Max.  
3.45  
VCC+0.5  
0.8  
Unit  
V
(1)  
VCC  
VIH  
VIL  
IOH  
IOL  
TA  
High-LevelInputVoltage  
Low-LevelInputVoltage  
High-LevelOutputCurrent  
Low-LevelOutputCurrent  
OperatingTemperature  
V
0
V
–4  
mA  
mA  
°C  
8
70  
NOTE:  
1. Vcc = 3.3V ± 0.15V, JEDEC JESD8-A compliant  
ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING FREE-  
AIR TEMPERATURE RANGE (Unless otherwise noted)  
IDT72V3684  
IDT72V3694  
IDT72V36104  
Commercial  
tCLK = 10, 15 ns(2)  
Symbol  
Parameter  
OutputLogic"1"Voltage  
Test Conditions  
Min.  
Typ.  
Max.  
Unit  
VOH  
VCC = 3.0V,  
VCC = 3.0V,  
VCC = 3.6V,  
VCC = 3.6V,  
VCC = 3.6V,  
VCC = 3.6V,  
VI = 0,  
IOH = –4 mA  
2.4  
V
VOL  
ILI  
OutputLogic"0"Voltage  
IOL = 8 mA  
4
0.5  
±5  
±5  
5
V
InputLeakageCurrent(AnyInput)  
OutputLeakageCurrent  
VI = VCC or 0  
VO = VCC or 0  
µA  
µA  
mA  
mA  
pF  
ILO  
(3)  
ICC2  
Standby Current (with CLKA and CLKB running)  
StandbyCurrent(noclocksrunning)  
InputCapacitance  
VI = VCC - 0.2V or 0  
(3)  
ICC3  
VI = VCC - 0.2V or 0  
f = 1 MHz  
5
(4)  
CIN  
(4)  
COUT  
OutputCapacitance  
VO = 0,  
f = 1 MHZ  
8
pF  
NOTES:  
1. All typical values are at VCC = 3.3V, TA = 25°C.  
2. Vcc = 3.3V ± 0.15V, TA = 0° to +70°; JEDEC JESD8-A compliant  
3. For additional ICC information, see Figure 1, Typical Characteristics: Supply Current (ICC) vs. Clock Frequency (fS).  
4. Characterized values, not currently tested.  
6
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
DETERMINING ACTIVE CURRENT CONSUMPTION AND POWER DISSIPATION  
TheICC(f)currentforthegraphinFigure1wastakenwhilesimultaneouslyreadingandwritingaFIFOontheIDT72V3684/72V3694/72V36104withCLKA  
andCLKBsettofS. Alldatainputsanddataoutputschangestateduringeachclockcycletoconsumethehighestsupplycurrent. Dataoutputsweredisconnected  
tonormalizethegraphtoazerocapacitanceload. Oncethecapacitanceloadperdata-outputchannelandthenumberofthesedevice'sinputsdrivenbyTTL  
HIGHlevels areknown,thepowerdissipationcanbecalculatedwiththeequationbelow.  
CALCULATING POWER DISSIPATION  
WithICC(f) takenfromFigure1,themaximumpowerdissipation(PT)oftheseFIFOs maybecalculatedby:  
2
PT = VCC x ICC(f) + Σ(CL x VCC x fo)  
N
where:  
N
CL  
fo  
=
=
=
number of used outputs (36-bit (long word), 18-bit (word) or 9-bit (byte) bus size)  
output capacitance load  
switchingfrequencyofanoutput  
100  
90  
VCC = 3.6V  
80  
70  
60  
VCC = 3.0V  
VCC = 3.3V  
fdata = 1/2 fS  
TA  
= 25°C  
CL  
= 0 pF  
50  
40  
30  
20  
10  
0
100  
0
10  
20  
30  
40  
50  
Clock Frequency MHz  
60  
70  
90  
80  
4677 drw03  
fS  
Figure 1. Typical Characteristics: Supply Current (ICC) vs. Clock Frequency (fS)  
7
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
TIMING REQUIREMENTS OVER RECOMMENDED RANGES OF SUPPLY  
VOLTAGE AND OPERATING FREE-AIR TEMPERATURE  
(Vcc = 3.3V ± 0.15V; TA = 0ο C to +70ο C;JEDEC JESD8-A compliant)  
IDT72V3684L10  
IDT72V3694L10  
IDT72V36104L10  
IDT72V3684L15  
IDT72V3694L15  
IDT72V36104L15  
Symbol  
fS  
Parameter  
Min.  
10  
4.5  
4.5  
3
Max.  
Min.  
15  
6
Max.  
Unit  
MHz  
ns  
Clock Frequency, CLKA or CLKB  
100  
66.7  
tCLK  
tCLKH  
tCLKL  
tDS  
Clock Cycle Time, CLKA or CLKB  
Pulse Duration, CLKA or CLKB HIGH  
PulseDuration, CLKAandCLKBLOW  
SetupTime, A0-A35before CLKAandB0-B35before CLKB↑  
ns  
6
ns  
4
ns  
tENS1  
SetupTime,CSA andW/RA before CLKA;CSB and  
W/RBbeforeCLKB↑  
4
4.5  
ns  
tENS2  
tRSTS  
Setup Time, ENA, and MBA before CLKA; ENB, and  
MBBbeforeCLKB↑  
3
5
4.5  
5
ns  
ns  
Setup Time, MRS1, MRS2, PRS1, or PRS2 LOW before  
(1)  
CLKAorCLKB↑  
tFSS  
tBES  
tSDS  
tSENS  
tFWS  
tRTMS  
tDH  
Setup Time, FS0, FS1, FS2 before MRS1 and MRS2 HIGH  
SetupTime, BE/FWFT beforeMRS1 andMRS2 HIGH  
SetupTime,FS0/SDbeforeCLKA↑  
7.5  
7.5  
3
7.5  
7.5  
4
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SetupTime,FS1/SENbeforeCLKA↑  
3
4
SetupTime,BE/FWFTbeforeCLKA↑  
0
0
Setup Time, RTM before RT1; RTM before RT2  
HoldTime,A0-A35afterCLKAandB0-B35afterCLKB↑  
5
5
0.5  
0.5  
1
tENH  
HoldTime, CSA, W/RA, ENA, andMBAafterCLKA;CSB,  
W/RB, ENB, andMBBafterCLKB↑  
1
tRSTH  
Hold Time, MRS1, MRS2, PRS1 or PRS2 LOW after CLKA↑  
4
4
ns  
(1)  
orCLKB↑  
tFSH  
Hold Time, FS0, FS1, FS2 after MRS1 and MRS2 HIGH  
Hold Time, BE/FWFT after MRS1 and MRS2 HIGH  
HoldTime, FS0/SDafterCLKA↑  
2
2
2
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tBEH  
tSDH  
0.5  
0.5  
2
1
tSENH  
tSPH  
HoldTime,FS1/SENHIGHafterCLKA↑  
1
Hold Time, FS1/SEN HIGH after MRS1 and MRS2 HIGH  
Hold Time, RTM after RT1; RTM after RT2  
2
tRTMH  
tSKEW1(2)  
5
5
SkewTimebetweenCLKAandCLKBforEFA/ORA,  
EFB/ORB, FFA/IRA, and FFB/IRB  
5
7.5  
tSKEW2(2.3) SkewTime betweenCLKAandCLKBforAEA, AEB, AFA,  
12  
12  
ns  
and AFB  
NOTES:  
1. Requirement to count the clock edge as one of at least four needed to reset a FIFO.  
2. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB cycle.  
3. Design simulated, not tested.  
8
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY  
VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL = 30pF  
(Vcc = 3.3V ± 0.15V; TA = 0ο C to +70ο C;JEDEC JESD8-A compliant)  
IDT72V3684L10  
IDT72V3694L10  
IDT72V36104L10  
IDT72V3684L15  
IDT72V3694L15  
IDT72V36104L15  
Symbol  
tA  
Parameter  
Min.  
2
Max.  
6.5  
Min.  
2
Max.  
Unit  
ns  
Access Time,CLKAtoA0-A35andCLKBtoB0-B35  
10  
8
tWFF  
PropagationDelayTime, CLKAtoFFA/IRAandCLKB↑  
toFFB/IRB  
2
6.5  
2
ns  
tREF  
tPAE  
tPAF  
tPMF  
tPMR  
tMDV  
tRSF  
PropagationDelayTime,CLKAtoEFA/ORAandCLKB↑  
toEFB/ORB  
1
1
1
0
3
3
1
6.5  
6.5  
6.5  
6.5  
8
1
1
1
0
2
2
1
8
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PropagationDelayTime,CLKAtoAEAandCLKBto  
AEB  
PropagationDelayTime,CLKAtoAFAandCLKBto  
AFB  
8
Propagation Delay Time, CLKAtoMBF1 LOW orMBF2  
HIGH and CLKBto MBF2 LOW or MBF1 HIGH  
8
PropagationDelayTime, CLKAtoB0-B35(1)andCLKB↑  
10  
10  
15  
toA0-A35(2)  
Propagation Delay Time, MBA to A0-A35 valid and MBB to  
B0-B35 valid  
6.5  
10  
Propagation Delay Time, MRS1 or PRS1 LOW to AEB  
LOW, AFA HIGH, and MBF1 HIGH and MRS2 or PRS2  
LOW to AEA LOW, AFB HIGH, and MBF2 HIGH  
tEN  
tDIS  
Enable Time, CSA orW/RA LOWtoA0-A35Active and  
CSB LOW and W/RB HIGH to B0-B35 Active  
2
1
6
6
2
1
10  
8
ns  
ns  
Disable Time, CSA or W/RA HIGH to A0-A35 at high-  
impedance and CSB HIGH or W/RB LOW to B0-B35 at  
high-impedance  
NOTES:  
1. Writing data to the mail1 register when the B0-B35 outputs are active and MBB is HIGH.  
2. Writing data to the mail2 register when the A0-A35 outputs are active and MBA is HIGH.  
9
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
and four Port B Clock (CLKB) LOW-to-HIGH transitions. The Retransmit  
initializesthereadpointerofFIFO1tothefirstmemorylocation.  
The FIFO2 memory undergoes a Retransmit by taking its associated  
Retransmit(RT2)inputLOWforatleastfourPortAClock(CLKA)andfourPort  
CClock(CLKC)LOW-to-HIGHtransitions.TheRetransmitinitializestheread  
pointerofFIFO2tothefirstmemorylocation.  
The RTMpinmustbe HIGHduringthe time ofRetransmit. Note thatthe  
RT1inputismuxedwiththePRS1input,thestateoftheRTMpindetermining  
whetherthispinperformsaRetransmitorPartialReset.Also,theRT2inputis  
muxedwiththePRS2input,thestateoftheRTMpindeterminingwhetherthis  
pinperformsaRetransmitorPartialReset.  
SIGNALDESCRIPTION  
MASTER RESET (MRS1, MRS2)  
Afterpowerup,aMasterReset operationmustbeperformedbyproviding  
aLOWpulsetoMRS1andMRS2simultaneously. Afterwards,eachofthetwo  
FIFOmemoriesoftheIDT72V3684/72V3694/72V36104undergoesacom-  
pleteresetbytakingitsassociatedMasterReset(MRS1,MRS2)inputLOWfor  
atleastfourPortAClock(CLKA)andfourPortBClock(CLKB)LOW-to-HIGH  
transitions. TheMasterResetinputscanswitchasynchronouslytotheclocks.  
AMasterReset initializes the associatedwrite andreadpointers tothe first  
locationofthememoryandforces theFull/InputReadyflag(FFA/IRA,FFB/  
IRB) LOW, the Empty/Output Ready flag (EFA/ORA, EFB/ORB) LOW, the  
Almost-Emptyflag(AEA,AEB)LOWandforcestheAlmost-Fullflag(AFA,AFB)  
HIGH. AMasterResetalsoforcestheassociatedMailboxFlag(MBF1,MFB2)  
oftheparallelmailboxregisterHIGH. AfteraMasterReset,theFIFO's Full/  
InputReadyflagissetHIGHaftertwowriteclockcycles. ThentheFIFOisready  
tobewrittento.  
BIG-ENDIAN/FIRST WORD FALL THROUGH (BE/FWFT)  
— ENDIAN SELECTION  
Thisisadualpurposepin.AtthetimeofMasterReset,theBEselectfunction  
isactive,permittingachoiceofBigorLittle-Endianbytearrangementfordata  
writtentoorreadfromPortB.This selectiondetermines theorderbywhich  
bytes (orwords)ofdata are transferredthroughthis port. Forthe following  
illustrations,assumethatabyte(orword)bussizehasbeenselectedforPort  
B.(NotethatwhenPortBis configuredforalongwordsize,theBig-Endian  
A LOW-to-HIGH transition on the FIFO1 Master Reset (MRS1) input  
latches the values ofthe Big-Endian(BE)inputfordeterminingthe orderby  
whichbytes are transferredthroughPortB. Italso latches the values ofthe  
FlagSelect(FS0,FS1andFS2)inputsforchoosingtheAlmost-FullandAlmost-  
Emptyoffsetprogrammingmethod.  
1
functionhas noapplicationandthe BEinputis a “don’tcare” .)  
A HIGH on the BE/FWFT input when the Master Reset (MRS1, MRS2)  
inputsgofromLOWtoHIGHwillselectaBig-Endianarrangement.Whendata  
ismovinginthedirectionfromPortAtoPortB,themostsignificantbyte(word)  
ofthelongwordwrittentoPortAwillbereadfromPortBfirst;theleastsignificant  
byte(word)ofthelongwordwrittentoPortAwillbereadfromPortBlast.When  
data is movinginthe directionfromPortBtoPortA, the byte (word)written  
toPortBfirstwillbereadfromPortAasthemostsignificantbyte(word)ofthe  
long word; the byte (word) written to Port B last will be read from Port A as  
theleastsignificantbyte(word)ofthelongword.  
ALOW-to-HIGHtransitionontheFIFO2MasterReset(MRS2)clearsthe  
Flag Offset Registers of FIFO2 (X2, Y2). A LOW-to-HIGH transition on the  
FIFO2MasterReset(MRS2)togetherwiththeFIFO1MasterReset(MRS1)  
inputlatchesthevalueoftheBig-Endian(BE)inputforPortBandalsolatches  
thevaluesoftheFlagSelect(FS0,FS1andFS2)inputsforchoosingtheAlmost-  
FullandAlmost-Emptyoffsetprogrammingmethod. (FordetailsseeTable1,  
FlagProgramming,andtheProgrammingtheAlmost-EmptyandAlmost-Full  
Flagssection). TherelevantFIFOMasterResettimingdiagramcanbefound  
in Figure 3.  
A LOW on the BE/FWFT input when the Master Reset (MRS1, MRS2)  
inputsgofromLOWtoHIGHwillselectaLittle-Endianarrangement.Whendata  
ismovinginthedirectionfromPortAtoPortB,theleastsignificantbyte(word)  
ofthelongwordwrittentoPortAwillbereadfromPortBfirst;themostsignificant  
byte(word)ofthelongwordwrittentoPortAwillbereadfromPortBlast.When  
data is movinginthe directionfromPortBtoPortA, the byte (word)written  
toPortBfirstwillbereadfromPortAastheleastsignificantbyte(word)ofthe  
long word; the byte (word) written to Port B last will be read from Port A as  
the most significant byte (word) of the long word. Refer to Figure 2 for an  
illustrationoftheBEfunction.SeeFigure3(MasterReset)fortheEndianselect  
timingdiagram.  
PARTIAL RESET (PRS1, PRS2)  
EachofthetwoFIFOmemoriesofthesedevicesundergoesalimitedreset  
bytakingits associatedPartialReset(PRS1,PRS2)inputLOWforatleast  
four Port A Clock (CLKA) and four Port B Clock (CLKB) LOW-to-HIGH  
transitions.ThePartialResetinputscanswitchasynchronouslytotheclocks.  
APartialResetinitializestheinternalreadandwritepointersandforcesthe  
Full/Input Ready flag (FFA/IRA, FFB/IRB) LOW, the Empty/Output Ready  
flag (EFA/ORA, EFB/ORB) LOW, the Almost-Empty flag (AEA, AEB)  
LOW,andtheAlmost-Fullflag(AFA,AFB)HIGH.APartialResetalsoforces  
theMailboxFlag(MBF1,MBF2)oftheparallelmailboxregisterHIGH.After  
a PartialReset,the FIFO’s Full/InputReadyflagis setHIGHaftertwowrite  
clock cycles. Then the FIFO is ready to be written to.  
TIMING MODE SELECTION  
AfterMasterReset,theFWFTselectfunctionisactive,permittingachoice  
betweentwopossibletimingmodes:IDTStandardmodeorFirstWordFall  
Through (FWFT) mode. Once the Master Reset (MRS1, MRS2) input is  
HIGH,aHIGHontheBE/FWFTinputduringthenextLOW-to-HIGHtransition  
ofCLKA(forFIFO1)andCLKB(forFIFO2)willselectIDTStandardmode.  
This modeuses theEmptyFlagfunction(EFA,EFB)toindicatewhetheror  
not there are any words present in the FIFO memory. It uses the Full Flag  
function(FFA,FFB)toindicatewhetherornottheFIFOmemoryhasanyfree  
Whateverflagoffsets,programmingmethod(parallelorserial),andtiming  
mode(FWFTorIDTStandardmode)arecurrentlyselectedatthetimeaPartial  
Resetisinitiated,thosesettingswillberemainunchangeduponcompletionof  
the reset operation. A Partial Reset may be useful in the case where  
reprogrammingaFIFOfollowingaMasterResetwouldbeinconvenient.See  
Figure4forthePartialResettimingdiagram.  
RETRANSMIT (RT1, RT2)  
TheFIFO1memoryofthesedevicesundergoesaRetransmitbytakingits space for writing. In IDT Standard mode, every word read from the FIFO,  
associatedRetransmit (RT1)inputLOWforatleastfourPortAClock(CLKA) includingthefirst,mustberequestedusingaformalreadoperation.  
NOTE:  
1. Either a HIGH or LOW can be applied to a "don't care" input with no change to the logical operation of the FIFO. Nevertheless, inputs that are temporarily "don't care" (along with  
unused inputs) must not be left open, rather they must be either HIGH or LOW.  
10  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
OncetheMasterReset(MRS1,MRS2)inputis HIGH,aLOWontheBE/  
FWFTinputduringthenextLOW-to-HIGHtransitionofCLKA(forFIFO1)and  
CLKB(forFIFO2)willselectFWFTmode.ThismodeusestheOutputReady  
function(ORA,ORB)toindicatewhetherornotthereisvaliddataatthedata  
outputs(A0-A35orB0-B35).ItalsousestheInputReadyfunction(IRA,IRB)  
toindicate whetherornotthe FIFOmemoryhas anyfree space forwriting.  
IntheFWFTmode,thefirstwordwrittentoanemptyFIFOgoesdirectlytodata  
outputs,noreadrequestnecessary. Subsequentwordsmustbeaccessed  
byperforminga formalreadoperation.  
orLOWduringamasterreset.Forexample,toloadthepresetvalueof64into  
X1andY1,FS0,FS1andFS2mustbeHIGHwhenFlFO1reset(MRS1)returns  
HIGH.Flag-offsetregisters associatedwithFIFO2areloadedwithoneofthe  
preset values in the same way with FIFO2 Master Reset (MRS2), toggled  
simultaneously with FIFO1 Master Reset (MRS1). For relevant preset value  
loading timing diagram, see Figure 3.  
— PARALLEL LOAD FROM PORT A  
ToprogramtheX1,X2,Y1,andY2registersfromPortA,performaMaster  
ResetonbothFlFOs simultaneouslywithFS2HIGHorLOW, FS0andFS1  
LOWduringtheLOW-to-HIGHtransitionofMRS1andMRS2.ThestateofFS2  
atthispointofresetwilldeterminewhethertheparallelprogrammingmethod  
hasInterspersedParityorNon-InterspersedParity.RefertoTable1forFlag  
Programming Flag Offset setup . It is important to note that once parallel  
programminghasbeenselectedduringaMasterResetbyholdingbothFS0  
& FS1 LOW, these inputs must remain LOW during all subsequent FIFO  
operation. They can only be toggled HIGH when future Master Resets are  
performedandotherprogrammingmethodsaredesired.  
Afterthisresetiscomplete,thefirstfourwritestoFIFO1donotstoredatain  
RAM but load the Offset registers in the order Y1, X1, Y2, X2. For Non-  
InterspersedParitymodethePortAdatainputsusedbytheOffsetregistersare  
(A13-A0), (A14-A0), or (A15-A0) for the IDT72V3684, IDT72V3694, or  
IDT72V36104, respectively. For Interspersed Parity mode the Port A data  
inputsusedbytheOffsetregistersare(A14-A9,A7-A0),(A15-A9,A7-A0),or  
(A16-A9, A7-A0) for the IDT72V3684, IDT72V3694, or IDT72V36104,  
respectively. Thehighestnumberedinputisusedasthemostsignificantbitof  
thebinarynumberineachcase.Validprogrammingvaluesfortheregisters  
rangefrom1to16,380fortheIDT72V3684;1to32,764fortheIDT72V3694;  
and 1 to 65,532 for the IDT72V36104. After all the offset registers are  
FollowingMasterReset,thelevelappliedtotheBE/FWFTinputtochoose  
thedesiredtimingmodemustremainstaticthroughoutFIFOoperation.Refer  
toFigure3(MasterReset)foraFirstWordFallThroughselecttimingdiagram.  
PROGRAMMINGTHEALMOST-EMPTYANDALMOST-FULLFLAGS  
FourregistersintheIDT72V3684/72V3694/72V36104areusedtoholdthe  
offsetvaluesfortheAlmost-EmptyandAlmost-Fullflags.ThePortBAlmost-  
Emptyflag(AEB)OffsetregisterislabeledX1andthePortAAlmost-Emptyflag  
(AEA)OffsetregisterislabeledX2.ThePortAAlmost-Fullflag(AFA)Offset  
registerislabeledY1andthePortBAlmost-Fullflag(AFB)Offsetregisteris  
labeledY2.TheindexofeachregisternamecorrespondstoitsFIFOnumber.  
TheoffsetregisterscanbeloadedwithpresetvaluesduringtheresetofaFIFO,  
programmedinparallelusingtheFIFO’sPortAdatainputs,orprogrammed  
in serial using the Serial Data (SD) input (see Table 1).  
FS0/SD,FS1/SENandFS2functionthesamewayinbothIDTStandard  
andFWFTmodes.  
— PRESET VALUES  
ToloadaFIFO’sAlmost-EmptyflagandAlmost-FullflagOffsetregisterswith  
oneofthefivepresetvalueslistedinTable1,theflagselectinputsmustbeHIGH  
TABLE 1 — FLAG PROGRAMMING  
FS2  
FS1/SEN  
FS0/SD  
MRS1  
MRS2  
X1 AND Y1 REGlSTERS(1)  
X2 AND Y2 REGlSTERS(2)  
H
H
H
H
H
L
L
H
H
L
L
H
L
L
H
H
L
X
X
X
X
X
X
X
X
X
X
64  
X
H
X
64  
H
16  
X
H
L
X
16  
H
H
H
H
H
H
H
L
8
X
H
X
8
L
256  
X
L
X
256  
L
1,024  
X
1,024  
L
X
L
H
SerialprogrammingviaSD  
SerialprogrammingviaSD  
(3,5)  
(3,5)  
L
ParallelprogrammingviaPortA  
ParallelprogrammingviaPortA  
IP Mode(4, 5)  
L
L
IP Mode(4, 5)  
NOTES:  
1. X1 register holds the offset for AEB; Y1 register holds the offset for AFA.  
2. X2 register holds the offset for AEA; Y2 register holds the offset for AFB.  
3. When this method of parallel programming is selected, Port A will assume Non-Interspersed Parity.  
4. When IP Mode is selected, only parallel programming of the offset values via Port A, can be performed and Port A will assume Interspersed Parity.  
5. IF parallel programming is selected during a Master Reset, then FS0 & FS1 must remain LOW during FIFO operation.  
11  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
programmed from Port A, the Port B Full/Input Ready flag (FFB/IRB) is set orIDT72V36104,respectively.ThefourregistersarewrittenintheorderY1,  
HIGH,andbothFIFOsbeginnormaloperation.RefertoFigure5foratiming X1,Y2,andfinally,X2. Thefirst-bitwritestoresthemostsignificantbitoftheY1  
diagramillustrationofparallelprogrammingoftheflagoffsetvalues.  
registerandthelast-bitwritestorestheleastsignificantbitoftheX2register.Each  
registervaluecanbeprogrammedfrom1to16,380(IDT72V3684),1to32,764  
(IDT72V3694), or 1 to 65,532 (IDT72V36104).  
INTERSPERSED PARITY  
InterspersedParityisselectedduringaMasterResetoftheFIFO.Referto  
Whentheoptiontoprogramtheoffsetregistersseriallyischosen,thePortA  
Table 1 for the setup configuration of Interspersed Parity. The Interspersed Full/InputReady(FFA/IRA)flagremainsLOWuntilallregisterbitsarewritten.  
Parityfunctionallowstheusertoselectthelocationoftheparitybitsintheword FFA/IRAissetHIGHbytheLOW-to-HIGHtransitionofCLKAafterthelastbit  
loadedintotheparallelport(A0-An)duringprogrammingoftheflagoffsetvalues. isloadedtoallownormalFIFO1operation.ThePortBFull/InputReady(FFB/  
TABLE 2 — PORT A ENABLE FUNCTION TABLE  
CSA  
W/RA  
ENA  
MBA  
CLKA  
Data A (A0-A35) I/O  
Port Function  
H
L
L
L
L
L
L
L
X
H
H
H
L
X
L
X
X
L
X
X
High-Impedance  
Input  
None  
None  
H
H
L
Input  
FIFO1 write  
Mail1write  
H
L
Input  
X
Output  
Output  
Output  
Output  
None  
L
H
L
L
FIFO2read  
None  
L
H
H
X
L
H
Mail2 read (set MBF2 HIGH)  
TABLE 3 — PORT B ENABLE FUNCTION TABLE  
CSB  
W/RB  
ENB  
MBB  
CLKB  
Data B (B0-B35) I/O  
Port Function  
H
L
L
L
L
L
L
L
X
L
X
L
X
X
L
X
X
High-Impedance  
Input  
None  
None  
L
H
H
L
Input  
FIFO2 write  
Mail2write  
L
H
L
Input  
H
H
H
H
X
Output  
Output  
Output  
Output  
None  
H
L
L
FIFO1read  
None  
H
H
X
H
Mail1 read (set MBF1 HIGH)  
IRB)flagalsoremainsLOWthroughouttheserialprogrammingprocess,until  
allregisterbitsarewritten.FFB/IRBissetHIGHbytheLOW-to-HIGHtransition  
ofCLKBafterthelastbitisloadedtoallownormalFIFO2operation. SeeFigure 6  
forSerialProgrammingoftheAlmost-FullFlagandAlmost-EmptyFlagOffset  
Values (IDT Standard and FWFT Modes) timing diagram.  
IfInterspersedParityisselectedthenduringparallelprogrammingoftheflag  
offsetvalues,thedevicewillignoredatalineA8.IfNon-InterspersedParityis  
selectedthendatalineA8willbecomeavalidbit.IfInterspersedParityisselected  
serialprogrammingoftheoffsetvaluesisnotpermitted,onlyparallelprogram-  
ming can be done.  
FIFO WRITE/READ OPERATION  
— SERIAL LOAD  
ThestateofthePortAdata(A0-A35)linesiscontrolledbyPortAChipSelect  
(CSA)andPortAWrite/Readselect(W/RA).TheA0-A35linesareintheHigh-  
impedance state wheneitherCSA orW/RA is HIGH. The A0-A35lines are  
active outputs whenbothCSA andW/RAare LOW.  
Data is loaded into FIFO1 from the A0-A35 inputs on a LOW-to-HIGH  
transitionofCLKAwhenCSAisLOW,W/RAisHIGH,ENAisHIGH,MBAis  
ToprogramtheX1,X2,Y1,andY2registersserially,initiateaMasterReset  
withFS2LOW,FS0/SDLOWandFS1/SENHIGHduringtheLOW-to-HIGH  
transitionofMRS1andMRS2.Afterthisresetiscomplete,theXandYregister  
valuesareloadedbit-wisethroughtheFS0/SDinputoneachLOW-to-HIGH  
transitionofCLKAthattheFS1/SENinputisLOW.Thereare56-,60-,or64-  
bitwritesneededtocompletetheprogrammingfortheIDT72V3684,IDT72V3694,  
12  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
TABLE 4 — FIFO1 FLAG OPERATION (IDT Standard and FWFT modes)  
Synchronized  
to CLKB  
Synchronized  
to CLKA  
Number of Words in FIFO Memory(1,2)  
(3)  
(3)  
(3)  
IDT72V3684  
IDT72V3694  
IDT72V36104  
EFB/ORB  
AEB  
AFA  
FFA/IRA  
0
0
0
L
H
H
H
H
L
L
H
H
H
L
H
H
H
H
L
1toX1  
1toX1  
1toX1  
(X1+1)to[16,384-(Y1+1)]  
(16,384-Y1)to16,383  
16,384  
(X1+1)to[32,768-(Y1+1)]  
(32,768-Y1)to32,767  
32,768  
(X1+1)to[65,536-(Y1+1)]  
(65,536-Y1)to65,535  
65,536  
H
H
H
L
NOTES:  
1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.  
2. Data in the output register does not count as a "word in FIFO memory". Since in FWFT mode, the first word written to an empty FIFO goes unrequested to the output register (no read  
operation necessary), it is not included in the FIFO memory count.  
3. X1 is the Almost-Empty offset for FIFO1 used by AEB. Y1 is the Almost-Full offset for FIFO1 used by AFA. Both X1 and Y1 are selected during a FIFO1 reset or port A programming.  
4. The ORB and IRA functions are active during FWFT mode; the EFB and FFA functions are active in IDT Standard mode.  
TABLE 5 — FIFO2 FLAG OPERATION (IDT Standard and FWFT modes)  
Synchronized  
to CLKA  
Synchronized  
to CLKB  
Number of Words in FIFO Memory(1,2)  
(3)  
(3)  
(3)  
IDT72V3684  
IDT72V3694  
IDT72V36104  
EFA/ORA  
AEA  
AFB  
H
FFB/IRB  
0
0
0
L
H
H
H
H
L
L
H
H
H
H
L
1toX2  
1toX2  
1toX2  
H
(X2+1)to[16,384-(Y2+1)]  
(16,384-Y2)to16,383  
16,384  
(X2+1)to[32,768-(Y2+1)]  
(32,768-Y2)to32,767  
32,768  
(X2+1)to[65,536-(Y2+1)]  
(65,536-Y2)to65,535  
65,536  
H
H
H
H
L
L
NOTES:  
1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.  
2. Data in the output register does not count as a "word in FIFO memory". Since in FWFT mode, the first word written to an empty FIFO goes unrequested to the output register (no read  
operation necessary), it is not included in the FIFO memory count.  
3. X2 is the Almost-Empty offset for FIFO2 used by AEA. Y2 is the Almost-Full offset for FIFO2 used by AFB. Both X2 and Y2 are selected during a FIFO2 reset or port A programming.  
4. The ORA and IRB functions are active during FWFT mode; the EFA and FFB functions are active in IDT Standard mode.  
LOW,andFFA/IRAisHIGH.DataisreadfromFIFO2totheA0-A35outputs  
by a LOW-to-HIGH transition of CLKA when CSA is LOW, W/RA is LOW,  
ENA is HIGH, MBA is LOW, and EFA/ORA is HIGH (see Table 2). FIFO  
reads and writes on Port A are independent of any concurrent Port B  
operation.  
The Port B control signals are identical to those of Port A with the  
exceptionthatthePortBWrite/Readselect(W/RB)istheinverseofthePort  
A Write/Read select (W/RA). The state of the Port B data (B0-B35) lines is  
controlledbythePortBChipSelect(CSB)andPortBWrite/Readselect(W/  
RB).TheB0-B35lines areinthehigh-impedancestatewheneitherCSBis  
HIGH or W/RB is LOW. The B0-B35 lines are active outputs when CSB is  
LOW and W/RB is HIGH.  
Data is loaded into FIFO2 from the B0-B35 inputs on a LOW-to-HIGH  
transitionofCLKBwhenCSBisLOW,W/RBisLOW,ENBisHIGH,MBBis  
LOW,andFFB/IRBisHIGH.DataisreadfromFIFO1totheB0-B35outputs  
byaLOW-to-HIGHtransitionofCLKBwhenCSBisLOW,W/RBisHIGH,ENB  
isHIGH,MBBisLOW,andEFB/ORBisHIGH(seeTable3).FIFOreadsand  
writes on Port B are independent of any concurrent Port A operation.  
ThesetupandholdtimeconstraintstotheportclocksfortheportChipSelects  
andWrite/Readselects areonlyforenablingwriteandreadoperations and  
arenotrelatedtohigh-impedancecontrolofthedataoutputs.Ifaportenable  
isLOWduringaclockcycle,theportsChipSelectandWrite/Readselectmay  
changestates duringthesetupandholdtimewindowofthecycle.  
WhenoperatingtheFIFOinFWFTmodeandtheOutputReadyflagisLOW,  
thenextwordwrittenisautomaticallysenttotheFIFO’soutputregisterbythe  
LOW-to-HIGHtransitionoftheportclockthatsetstheOutputReadyflagHIGH.  
WhentheOutputReadyflagisHIGH,subsequentdataisclockedtotheoutput  
registersonlywhenareadisselectedusingtheportsChipSelect,Write/Read  
select,Enable,andMailboxselect.  
WhenoperatingtheFIFOinIDTStandardmode,thefirstwordwillcause  
theEmptyFlagtochangestateonthesecondLOW-to-HIGHtransitionofthe  
ReadClock. Thedatawordwillnotbeautomaticallysenttotheoutputregister.  
Instead, data residing in the FIFO's memory array is clocked to the output  
registeronlywhenareadisselectedusingtheportsChipSelect,Write/Read  
select,Enable,andMailboxselect.WriteandreadtimingdiagramsforPortA  
canbefoundinFigure7and14. RelevantPortBwriteandreadcycle timing  
13  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
TheFull/InputReadyflagofaFlFOis synchronizedtotheportclockthat  
diagramstogetherwithBus-MatchingandEndianselectoperationscanbe  
writesdatatoitsarray.ForbothFWFTandIDTStandardmodes,eachtime  
awordiswrittentoaFIFO,itswritepointerisincremented.Thestatemachine  
thatcontrolsaFull/InputReadyflagmonitorsawritepointerandreadpointer  
comparatorthatindicateswhentheFlFOmemorystatusisfull,full-1,orfull-  
2.FromthetimeawordisreadfromaFIFO,itspreviousmemorylocationis  
readytobewrittentoinaminimumoftwocyclesoftheFull/InputReadyflag  
synchronizingclock.Therefore,anFull/InputReadyflagisLOWiflessthan  
twocyclesoftheFull/InputReadyflagsynchronizingclockhaveelapsedsince  
the nextmemorywrite locationhas beenread. The secondLOW-to-HIGH  
transitionontheFull/InputReadyflagsynchronizingclockafterthereadsets  
the Full/InputReadyflagHIGH.  
found in Figures 8 through 13.  
SYNCHRONIZED FIFO FLAGS  
Each FIFO is synchronized to its port clock through at least two flip-flop  
stages.Thisisdonetoimproveflag-signalreliabilitybyreducingtheprobability  
ofmetastableeventswhenCLKAandCLKBoperateasynchronouslytoone  
another. EFA/ORA, AEA, FFA/IRA, and AFA are synchronized to CLKA.  
EFB/ORB,AEB,FFB/IRB,andAFBaresynchronizedtoCLKB.Tables4and  
5 show the relationship of each port flag to FIFO1 and FIFO2.  
EMPTY/OUTPUTREADYFLAGS(EFA/ORA,EFB/ORB)  
Thesearedualpurposeflags. IntheFWFTmode,theOutputReady(ORA,  
ORB)functionisselected.WhentheOutput-ReadyflagisHIGH,newdatais  
presentintheFIFOoutputregister.WhentheOutputReadyflagisLOW,the  
previousdatawordispresentintheFIFOoutputregisterandattemptedFIFO  
reads are ignored.  
ALOW-to-HIGHtransitiononaFull/InputReadyflagsynchronizingclock  
beginsthefirstsynchronizationcycleofareadiftheclocktransitionoccursat  
timetSKEW1orgreateraftertheread.Otherwise,thesubsequentclockcycle  
can be the first synchronization cycle (see Figures 19, 20, 21, and 22).  
IntheIDTStandardmode,theEmptyFlag(EFA,EFB)functionisselected.  
WhentheEmptyFlagisHIGH,dataisavailableintheFIFO’sRAMmemory  
forreadingtotheoutputregister.WhentheEmptyFlagisLOW,theprevious  
datawordispresentintheFIFOoutputregisterandattemptedFIFOreadsare  
ignored.  
TheEmpty/OutputReadyflagofaFIFOis synchronizedtotheportclock  
thatreadsdatafromitsarray.ForboththeFWFTandIDTStandardmodes,  
theFIFOreadpointeris incrementedeachtimeanewwordis clockedtoits  
outputregister.ThestatemachinethatcontrolsanOutputReadyflagmonitors  
a write pointer and read pointer comparator that indicates when the FIFO  
memorystatusisempty,empty+1,orempty+2.  
InFWFTmode,fromthetimeawordis writtentoaFIFO,itcanbeshifted  
totheFIFOoutputregisterinaminimumofthreecyclesoftheOutputReady  
flagsynchronizingclock. Therefore, anOutputReadyflagis LOWifa word  
inmemoryisthenextdatatobesenttotheFlFOoutputregisterandthreecycles  
oftheportClockthatreadsdatafromtheFIFOhavenotelapsedsincethetime  
thewordwaswritten.TheOutputReadyflagoftheFIFOremainsLOWuntil  
thethirdLOW-to-HIGHtransitionofthesynchronizingclockoccurs,simulta-  
neouslyforcingtheOutputReadyflagHIGHandshiftingthewordtotheFIFO  
outputregister.  
InIDTStandardmode,fromthetimeawordiswrittentoaFIFO,theEmpty  
Flagwillindicatethepresenceofdataavailableforreadinginaminimumof  
twocyclesoftheEmptyFlagsynchronizingclock.Therefore,anEmptyFlag  
isLOWifawordinmemoryisthenextdatatobesenttotheFlFOoutputregister  
andtwocyclesoftheportClockthatreadsdatafromtheFIFOhavenotelapsed  
sincethetimethewordwaswritten.TheEmptyFlagoftheFIFOremainsLOW  
untilthesecondLOW-to-HIGHtransitionofthesynchronizingclockoccurs,  
forcing the Empty Flag HIGH; only then can data be read.  
ALMOST-EMPTYFLAGS(AEA,AEB)  
TheAlmost-EmptyflagofaFIFOissynchronizedtotheportclockthatreads  
data from its array. The state machine that controls an Almost-Empty flag  
monitorsawritepointerandreadpointercomparatorthatindicateswhenthe  
FIFOmemorystatusisalmost-empty,almost-empty+1,oralmost-empty+2.  
Thealmost-emptystateisdefinedbythecontentsofregisterX1forAEBand  
registerX2forAEA.Theseregistersareloadedwithpresetvaluesduringa  
FIFOreset,programmedfromPortA,orprogrammedserially(seeAlmost-  
Empty flag and Almost-Full flag offset programming section). An Almost-  
EmptyflagisLOWwhenitsFIFOcontainsXorlesswordsandisHIGHwhen  
itsFIFOcontains(X+1)ormorewords.AdatawordpresentintheFIFOoutput  
registerhas beenreadfrommemory.  
TwoLOW-to-HIGHtransitionsoftheAlmost-Emptyflagsynchronizingclock  
arerequiredafteraFIFOwriteforitsAlmost-Emptyflagtoreflectthenewlevel  
offill.Therefore,theAlmost-FullflagofaFIFOcontaining(X+1)ormorewords  
remainsLOWiftwocyclesofitssynchronizingclockhavenotelapsedsince  
thewritethatfilledthememorytothe(X+1)level.AnAlmost-Emptyflagisset  
HIGHbythesecondLOW-to-HIGHtransitionofitssynchronizingclockafter  
theFIFOwritethatfillsmemorytothe(X+1)level.ALOW-to-HIGHtransition  
ofanAlmost-Emptyflagsynchronizingclockbeginsthefirstsynchronization  
cycleifitoccurs attimetSKEW2 orgreaterafterthewritethatfills theFIFOto  
(X+1)words.Otherwise,thesubsequentsynchronizingclockcyclemaybe  
the first synchronization cycle. (See Figure 23 and 24).  
ALMOST-FULLFLAGS(AFA, AFB)  
TheAlmost-FullflagofaFIFOissynchronizedtotheportclockthatwrites  
datatoitsarray.ThestatemachinethatcontrolsanAlmost-Fullflagmonitors  
a write pointer and read pointer comparator that indicates when the FIFO  
memorystatusisalmost-full,almost-full-1,oralmost-full-2.Thealmost-fullstate  
isdefinedbythecontentsofregisterY1forAFAandregisterY2forAFB.These  
registersareloadedwithpresetvaluesduringaFlFOreset,programmedfrom  
PortA,orprogrammedserially(seeAlmost-EmptyflagandAlmost-Fullflag  
offsetprogrammingsection).AnAlmost-FullflagisLOWwhenthenumberof  
words in its FIFO is greater than or equal to (16,384-Y), (32,768-Y), or  
(65,536-Y) for the IDT72V3684, IDT72V3694, or IDT72V36104 respec-  
tively. AnAlmost-Fullflagis HIGHwhenthe numberofwords inits FIFOis  
less than or equal to [16,384-(Y+1)], [32,768-(Y+1)], or [65,536-(Y+1)] for  
the IDT72V3684, IDT72V3694, or IDT72V36104 respectively. Note that a  
datawordpresentintheFIFOoutputregisterhas beenreadfrommemory.  
ALOW-to-HIGHtransitiononanEmpty/OutputReadyflagsynchronizing  
clockbeginsthefirstsynchronizationcycleofawriteiftheclocktransitionoccurs  
attimetSKEW1orgreaterafterthewrite.Otherwise,thesubsequentclockcycle  
can be the first synchronization cycle (see Figures 15, 16, 17, and 18).  
FULL/INPUT READY FLAGS (FFA/IRA, FFB/IRB)  
Thisisadualpurposeflag.InFWFTmode,theInputReady(IRAandIRB)  
function is selected. In IDT Standard mode, the Full Flag (FFA and FFB)  
functionisselected.Forbothtimingmodes,whentheFull/InputReadyflagis  
HIGH,amemorylocationisfreeintheFIFOtoreceivenewdata.Nomemory  
locationsarefreewhentheFull/InputReadyflagisLOWandattemptedwrites  
to the FIFO are ignored.  
14  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
TwoLOW-to-HIGHtransitionsoftheAlmost-Fullflagsynchronizingclock  
Thedatainamailregisterremainsintactafteritisreadandchangesonly  
arerequiredafteraFIFOreadforits Almost-Fullflagtoreflectthenewlevel whennewdataiswrittentotheregister.TheEndianselectfeaturehasnoeffect  
of fill. Therefore, the Almost-Full flag of a FIFO containing [16,384/32,768/ onmailboxdata.FormailregisterandMailRegisterFlagtimingdiagrams,see  
65,536-(Y+1)]orlesswordsremainsLOWiftwocyclesofitssynchronizing Figure 27 and 28.  
clockhave notelapsedsince the readthatreducedthe numberofwords in  
memoryto[16,384/32,768/65,536-(Y+1)].AnAlmost-FullflagissetHIGHby BUS SIZING  
thesecondLOW-to-HIGHtransitionofitssynchronizingclockaftertheFIFO  
The PortBbus canbe configuredina 36-bitlongword, 18-bitword, or9-  
read that reduces the number of words in memory to bit byte format for data read from FIFO1 or written to FIFO2. The levels  
[16,384/32,768/65,536-(Y+1)].ALOW-to-HIGHtransitionofanAlmost-Full appliedtothePortBBusSizeselect(SIZE)andtheBus-Matchselect(BM)  
determinethePortBbussize.TheselevelsshouldbestaticthroughoutFIFO  
operation. Both bus size selections are implemented at the completion of  
MasterReset,bythetimetheFull/InputReadyflagissetHIGH,asshownin  
Figure 2.  
flagsynchronizingclockbeginsthefirstsynchronizationcycleifitoccursattime  
tSKEW2 orgreaterafterthereadthatreducesthenumberofwordsinmemory  
to[16,384/32,768/65,536-(Y+1)].Otherwise,thesubsequentsynchronizing  
clock cycle may be the first synchronization cycle (see Figure 25 and 26).  
TwodifferentmethodsforsequencingdatatransferareavailableforPort  
Bwhenthebussizeselectioniseitherbyte-orword-size.Theyarereferred  
toasBig-Endian(mostsignificantbytefirst)andLittle-Endian(leastsignificant  
bytefirst).ThelevelappliedtotheBig-Endianselect(BE)inputduringtheLOW-  
to-HIGHtransitionofMRS1andMRS2selectstheendianmethodthatwillbe  
active during FIFO operation. BE is a dont care input when the bus size  
selected for Port B is long word. The endian method is implemented at the  
completionofMasterReset,bythetimetheFull/InputReadyflagissetHIGH,  
as shown in Figure 2.  
Only36-bitlongworddataiswrittentoorreadfromthetwoFIFOmemories  
ontheIDT72V3684/72V3694/72V36104.Bus-matchingoperationsaredone  
afterdataisreadfromtheFIFO1RAMandbeforedataiswrittentotheFIFO2  
RAM. These bus-matching operations are not available when transferring  
data via mailbox registers. Furthermore, both the word- and byte-size bus  
selections limit the width of the data bus that can be used for mail register  
operations.Inthiscase,onlythosebytelanesbelongingtotheselectedword-  
orbyte-sizebus cancarrymailboxdata.Theremainingdataoutputs willbe  
indeterminate. The remaining data inputs will be dont care inputs. For  
example, when a word-size bus is selected, then mailbox data can be  
transmitted only between A0-A17 and B0-B17. When a byte-size bus is  
selected,thenmailboxdatacanbetransmittedonlybetweenA0-A8andB0-  
B8. (See Figures 27 and 28).  
MAILBOX REGISTERS  
Each FIFO has a 36-bit bypass register to pass command and control  
informationbetweenPortAandPortBwithoutputtingitinqueue.TheMailbox  
select(MBA, MBB)inputs choose betweena mailregisteranda FIFOfora  
port data transfer operation. The usable width of both the Mail1 and Mail2  
registersmatchestheselectedbussizeforPortB.  
ALOW-to-HIGHtransitiononCLKAwritesdatatotheMail1Registerwhen  
a Port A write is selected by CSA, W/RA, and ENA with MBA HIGH. If the  
selectedPortBbussizeisalso36bits,thentheusablewidthoftheMail1register  
employsdatalinesA0-A35.IftheselectedPortBbussizeis18bits,thenthe  
usablewidthoftheMail1RegisteremploysdatalinesA0-A17.(Inthiscase,  
A18-A35aredontcareinputs.)IftheselectedPortBbus sizeis 9bits,then  
theusablewidthoftheMail1RegisteremploysdatalinesA0-A8.(Inthiscase,  
A9-A35 are dont care inputs.)  
ALOW-to-HIGHtransitiononCLKBwritesB0-B35datatotheMail2Register  
whena PortBwrite is selectedbyCSB,W/RB,andENBwithMBBHIGH.If  
theselectedPortBbussizeisalso36bits,thentheusablewidthoftheMail2  
employsdatalinesB0-B35.IftheselectedPortBbussizeis18bits,thenthe  
usablewidthoftheMail2RegisteremploysdatalinesB0-B17.(Inthiscase,  
B18-B35aredontcareinputs.)IftheselectedPortBbus sizeis 9bits,then  
theusablewidthoftheMail2RegisteremploysdatalinesB0-B8.(Inthiscase,  
B9-B35 are dont care inputs.)  
Writingdatatoamailregistersetsitscorrespondingflag(MBF1orMBF2)  
LOW.AttemptedwritestoamailregisterareignoredwhilethemailflagisLOW.  
Whendataoutputsofaportareactive,thedataonthebuscomesfromthe  
FIFOoutputregisterwhentheportMailboxselectinputisLOWandfromthe  
mailregisterwhenthe portMailboxselectinputis HIGH.  
TheMail1RegisterFlag(MBF1)issetHIGHbyaLOW-to-HIGHtransition  
onCLKBwhenaPortBreadisselectedbyCSB,W/RB,andENBwithMBB  
HIGH. For a 36-bit bus size, 36 bits of mailbox data are placed on B0-B35.  
Foran18-bitbussize,18bitsofmailboxdataareplacedonB0-B17.(Inthis  
case,B18-B35areindeterminate.)Fora9-bitbussize,9bitsofmailboxdata  
are placed on B0-B8. (In this case, B9-B35 are indeterminate.)  
TheMail2RegisterFlag(MBF2)issetHIGHbyaLOW-to-HIGHtransition  
onCLKAwhenaPortAreadisselectedbyCSA,W/RA,andENAwithMBA  
HIGH.  
For a 36-bit bus size, 36 bits of mailbox data are placed on A0-A35. For  
an18-bitbussize,18bitsofmailboxdataareplacedonA0-A17.(Inthiscase,  
A18-A35are indeterminate.)Fora 9-bitbus size, 9bits ofmailboxdata are  
placedonA0-A8. (Inthis case, A9-A35are indeterminate.)  
BUS-MATCHING FIFO1 READS  
DataisreadfromtheFIFO1RAMin36-bitlongwordincrements.Ifalong  
wordbus sizeis implemented,theentirelongwordimmediatelyshifts tothe  
FIFO1outputregister.IfbyteorwordsizeisimplementedonPortB,onlythe  
firstoneortwobytesappearontheselectedportionoftheFIFO1outputregister,  
with the rest of the long word stored in auxiliary registers. In this case,  
subsequentFIFO1readsoutputtherestofthelongwordtotheFIFO1output  
register in the order shown by Figure 2.  
WhenreadingdatafromFIFO1inbyteorwordformat,theunusedB0-B35  
outputsareindeterminate.  
BUS-MATCHING FIFO2 WRITES  
DataiswrittentotheFIFO2RAMin36-bitlongwordincrements.Datawritten  
toFIFO2withabyteorwordbussizestorestheinitialbytesorwordsinauxiliary  
registers.TheCLKBrisingedgethatwritesthefourthbyteorthesecondword  
oflongwordtoFIFO2alsostorestheentirelongwordintheFIFO2memory.  
The bytes are arranged in the manner shown in Figure 2.  
WhenwritingdatatoFIFO2inbyteorwordformat,theunusedB0-B35inputs  
aredon'tcareinputs.  
15  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
A35 A27  
A26 A18  
A17 A9  
A8 A0  
BYTE ORDER ON PORT A:  
Write to FIFO1/  
Read from FIFO2  
D
A
B
C
B35 B27  
B26 B18  
B17 9  
B8 B0  
BYTE ORDER ON PORT B:  
BE BM SIZE  
Read from FIFO1/  
Write to FIFO2  
A
B
D
C
X
L
X
(a) LONG WORD SIZE  
B35 B27  
B35 B27  
B26 B18  
B26 B18  
B17 B9  
B8 B0  
1st: Read from FIFO1/  
Write to FIFO2  
BE BM SIZE  
A
B
H
H
L
B17 B9  
B8 B0  
2nd: Read from FIFO1/  
Write to FIFO2  
C
D
(b) WORD SIZE  
BIG ENDIAN  
B17 B9  
C
B35 B27  
B35 B27  
B26 B18  
B8 B0  
1st: Read from FIFO1/  
Write to FIFO2  
BE BM SIZE  
D
L
H
L
B26 B18  
B17 B9  
B8 B0  
2nd: Read from FIFO1/  
Write to FIFO2  
A
B
(c) WORD SIZE  
LITTLE-ENDIAN  
B35 B27  
B35 B27  
B35 B27  
B35 B27  
B26 B18  
B17 B9  
B8 B0  
BE BM SIZE  
1st: Read from FIFO1/  
Write to FIFO2  
A
H
H
H
B26 B18  
B26 B18  
B26 B18  
B17 B9  
B17 B9  
B17 B9  
B8 B0  
2nd: Read from FIFO1/  
Write to FIFO2  
B
B8 B0  
3rd: Read from FIFO1/  
Write to FIFO2  
C
B8 B0  
4th: Read from FIFO1/  
Write to FIFO2  
D
(d) BYTE SIZE  
BIG-ENDIAN  
B35 B27  
B35 B27  
B35 B27  
B35 B27  
B26 B18  
B17 B9  
B8 B0  
BE BM SIZE  
1st: Read from FIFO1/  
Write to FIFO2  
D
L
H
H
B26 B18  
B26 B18  
B26 B18  
B17 B9  
B17 B9  
B8 B0  
2nd: Read from FIFO1/  
Write to FIFO2  
C
B8 B0  
3rd: Read from FIFO1/  
Write to FIFO2  
B
B17 B9  
B8 B0  
4th: Read from FIFO1/  
Write to FIFO2  
A
4677 drw04  
(e) BYTE SIZE  
LITTLE-ENDIAN  
Figure 2. Bus Sizing  
16  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKA  
CLKB  
t
RSTS  
tRSTH  
MRS1  
tBEH  
t
BES  
tFWS  
BE  
0,1  
BE/FWFT  
FWFT  
t
FSS  
tFSH  
FS2,  
FS1,FS0  
t
WFF  
t
WFF  
FFA/IRA  
EFB/ORB  
AEB  
(3)  
REF  
t
t
RSF  
t
RSF  
AFA  
t
RSF  
MBF1  
RTM LOW  
NOTES:  
4677 drw05  
1. FIFO2 Master Reset (MRS2) is performed in the same manner to load X2 and Y2 with a preset value. For FIFO2 Master Reset, MRS1 must toggle simultaneously with MRS2.  
2. PRS1 must be HIGH during Master Reset.  
3. If BE/FWFT is HIGH, then EFB/ORB will go LOW one CLKB cycle earlier than in this case where BE/FWFT is LOW.  
Figure 3. FIFO1 Master Reset and Loading X1 and Y1 with a Preset Value of Eight(1) (IDT Standard and FWFT Modes)  
CLKA  
CLKB  
t
RSTS  
tRSTH  
PRS1  
t
WFF  
t
WFF  
FFA/IRA  
(3)  
REF  
t
EFB/ORB  
t
RSF  
AEB  
AFA  
t
RSF  
t
RSF  
MBF1  
RTM  
LOW  
4677 drw06  
NOTES:  
1. Partial Reset is performed in the same manner for FIFO2.  
2. MRS1 must be HIGH during Partial Reset.  
3. If BE/FWFT is HIGH, then EFB/ORB will go LOW one CLKB cycle earlier than in this case where BE/FWFT is LOW.  
Figure 4. FIFO1 Partial Reset(1) (IDT Standard and FWFT Modes)  
17  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKA  
2
1
4
MRS1,  
MRS2  
t
FSS  
t
FSH  
FS2  
FS1,FS0  
FFA/IRA  
t
FSS  
t
FSH  
0,0  
t
WFF  
(1)  
tSKEW1  
tENS2  
tENH  
ENA  
tDH  
tDS  
A0-A35  
AEB Offset  
AFA Offset  
AFB Offset  
(Y 2)  
AEA Offset  
(X 2)  
First Word to FIFO1  
(X1)  
(Y1)  
CLKB  
1
2
t
WFF  
FFB/IRB  
4677 drw07  
NOTES:  
1. tSKEW1 is the minimum time between the rising CLKA edge and a rising CLKB edge for FFB/IRB to transition HIGH in the next cycle. If the time between the rising edge of CLKA and rising  
edge of CLKB is less than tSKEW1, then FFB/IRB may transition HIGH one CLKB cycle later than shown.  
2. CSA=LOW, W/RA=HIGH,MBA=LOW. It is not necessary to program offset register on consecutive clock cycles.  
Figure 5. Parallel Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset  
(IDT Standard and FWFT Modes)  
CLKA  
4
MRS1,  
MRS2  
t
FSS  
tFSH  
FS2  
t
WFF  
(1)  
tSKEW  
FFA/IRA  
t
SENS  
t
FSS  
t
SENH  
SDH  
t
SENS  
t
SENH  
tSPH  
FS1/SEN  
tSDS  
t
tSDH  
tSDS  
FS0/SD(3)  
AFA Offset (Y1) MSB  
AEA Offset (X2) LSB  
CLKB  
4
t
WFF  
4677 drw08  
FFB/IRB  
NOTES:  
1. tSKEW1 is the minimum time between the rising CLKA edge and a rising CLKB edge for FFB/IRB to transition HIGH in the next cycle. If the time between the rising edge of CLKA and rising  
edge of CLKB is less than tSKEW1, then FFB/IRB may transition HIGH one CLKB cycle later than shown.  
2. It is not necessary to program offset register bits on consecutive clock cycles. FIFO write attempts are ignored until FFA/IRA and FFB/IRB is set HIGH.  
3. Programmable offsets are written serially to the SD input in the order AFA offset (Y1), AEB offset (X1), AFB offset (Y2), and AEA offset (X2).  
Figure 6. Serial Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values (IDT Standard and FWFT Modes)  
18  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKA  
FFA/IRA HIGH  
t
ENH  
ENH  
t
ENS1  
CSA  
t
ENS1  
t
W/RA  
t
ENS2  
t
ENH  
ENH  
MBA  
ENA  
tENS2  
tENH  
tENS2  
tENS2  
tENH  
t
tDS  
tDH  
W1(1)  
W2(1)  
A0 - A35  
No Operation  
4677 drw09  
NOTE:  
1. Written to FIFO1.  
Figure 7. Port A Write Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)  
tCLK  
tCLKH  
tCLKL  
CLKB  
FFB/IRB HIGH  
tENH  
tENS1  
CSB  
tENH  
tENS1  
W/RB  
tENH  
tENS2  
MBB  
tENH  
tENH  
tENH  
tENS2  
tENS2  
tENS2  
ENB  
tDH  
t
DS  
W1(1)  
W2(1)  
No Operation  
B0-B35  
4677 drw10  
NOTE:  
1. Written to FIFO2.  
DATA SIZE TABLE FOR LONG-WORD WRITES TO FIFO2  
SIZE MODE(1)  
SIZE  
DATA WRITTEN TO FIFO2  
DATA READ FROM FIFO2  
BM  
BE  
B35-B27  
B26-B18  
B17-B9  
B8-B0  
A35-A27  
A26-A18  
A17-A9  
A8-A0  
L
X
X
A
B
C
D
A
B
C
D
NOTE:  
1. BE is selected at Master Reset: BM and SIZE must be static throughout device operation.  
Figure 8. Port B Long-Word Write Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)  
19  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKB  
FFB/IRB HIGH  
tENH  
t
ENS1  
ENS1  
CSB  
t
W/RB  
t
ENH  
t
ENH  
t
ENS2  
t
ENS2  
ENS2  
MBB  
t
ENS2  
t
ENH  
t
ENH  
t
ENB  
tDH  
tDS  
B0-B17  
4677 drw11  
DATA SIZE TABLE FOR WORD WRITES TO FIFO2  
SIZE MODE(1)  
WRITE  
NO.  
DATA WRITTEN  
TO FIFO2  
DATA READ FROM FIFO2  
BM  
SIZE  
BE  
B17-B9  
B8-B0  
A35-A27  
A26-A18  
A17-A9  
A8-A0  
1
2
1
2
A
C
C
A
B
D
D
B
H
L
H
A
A
B
C
D
H
L
L
B
C
D
NOTE:  
1. BE is selected at Master Reset; BM and SIZE must be static throughout device operation.  
Figure 9. Port B Word Write Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)  
CLKB  
FFB/IRB HIGH  
tENH  
t
ENS1  
ENS1  
CSB  
t
W/RB  
MBB  
t
ENH  
tENH  
t
ENS2  
ENS2  
t
tENH  
tENS2  
tENH  
ENB  
tDS  
tDH  
B0-B8  
4677 drw12  
DATA SIZE TABLE FOR BYTE WRITES TO FIFO2  
SIZE MODE(1)  
WRITE  
NO.  
DATA WRITTEN  
TO FIFO2  
DATA READ FROM FIFO2  
BM  
SIZE  
BE  
B8-B0  
A35-A27  
A26-A18  
A17-A9  
A8-A0  
1
2
3
4
1
2
3
4
A
B
C
D
D
C
B
A
H
H
H
H
A
B
C
D
H
L
A
B
C
D
NOTE:  
1. BE is selected at Master Reset; BM and SIZE must be static throughout device operation.  
Figure 10. Port B Byte Write Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)  
20  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKB  
EFB/ORB  
HIGH  
CSB  
W/RB  
MBB  
tENH  
tENH  
tENH  
tENS2  
tENS2  
tENS2  
ENB  
t
MDV  
No Operation  
W2(1)  
tDIS  
t
A
t
A
t
EN  
W1(1)  
W2(1)  
Previous Data  
B0-B35  
(Standard Mode)  
t
MDV  
tDIS  
tA  
t
A
OR  
tEN  
W3(1)  
W1(1)  
B0-B35  
(FWFT Mode)  
4677 drw13  
NOTE:  
1. Read From FIFO1.  
DATA SIZE TABLE FOR FIFO LONG-WORD READS FROM FIFO1  
SIZE MODE(1)  
SIZE  
DATA WRITTEN TO FIFO1  
DATA READ FROM FIFO1  
BM  
BE  
A35-A27  
A26-A18  
A17-A9  
A8-A0  
B35-B27  
B26-B18  
B17-B9  
B8-B0  
L
X
X
A
B
C
D
A
B
C
D
NOTE:  
1. BE is selected at Master Reset; BM and SIZE must be static throughout device operation .  
Figure 11. Port B Long-Word Read Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)  
CLKB  
HIGH  
EFB/ORB  
CSB  
W/RB  
MBB  
ENB  
t
ENS2  
tENH  
No Operation  
t
MDV  
tDIS  
t
A
tA  
t
EN  
B0-B17  
Read 1  
Read 2  
Previous Data  
Read 2  
(Standard Mode)  
tDIS  
t
MDV  
OR  
t
A
tA  
t
EN  
B0-B17  
(FWFT Mode)  
Read 3  
Read 1  
4677 drw14  
NOTE:  
1. Unused word B18-B35 are indeterminate for word-size reads.  
DATA SIZE TABLE FOR WORD READS FROM FIFO1  
SIZE MODE(1)  
DATA WRITTEN TO FIFO1  
READ  
NO.  
DATA READ FROM FIFO1  
BM  
SIZE  
BE  
A35-A27  
A26-A18  
A17-A9  
A8-A0  
B17-B9  
B8-B0  
H
L
H
A
B
C
D
1
2
1
2
A
C
C
A
B
D
D
B
H
L
L
A
B
C
D
NOTE:  
1. BE is selected at Master Reset; BM and SIZE must be static throughout device operation .  
Figure 12. Port-B Word Read Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)  
21  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKB  
EFB/ORB HIGH  
CSB  
W/RB  
MBB  
tENS2  
tENH  
ENB  
No Operation  
t
DIS  
DIS  
t
MDV  
t
A
t
A
t
A
t
A
t
EN  
B0-B8  
Read 1  
Read 2  
Previous Data  
Read 3  
Read 4  
Read 5  
(Standard Mode)  
t
MDV  
t
OR  
t
A
tA  
tA  
t
A
t
EN  
B0-B8  
Read 1  
Read 2  
Read 3  
Read 4  
(FWFT Mode)  
4677 drw15  
NOTE:  
1. Unused bytes B9-B17, B18-B26, and B27-B35 are indeterminate for byte-size reads.  
DATA SIZE TABLE FOR BYTE READS FROM FIFO1  
SIZE MODE(1)  
DATA WRITTEN TO FIFO1  
READ  
NO.  
DATA READ FROM FIFO1  
B8-B0  
BM  
SIZE  
BE  
A35-A27  
A26-A18  
A17-A9  
A8-A0  
1
2
3
4
1
2
3
4
A
B
C
D
D
C
B
A
H
H
H
H
A
B
C
D
H
L
A
B
C
D
NOTE:  
1. BE is selected at Master Reset; BM and SIZE must be static throughout device operation.  
Figure 13. Port-B Byte Read Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)  
tCLK  
tCLKL  
tCLKH  
CLKA  
EFA/ORA HIGH  
CSA  
W/RA  
MBA  
tENH  
tENH  
tENH  
tENS2  
tENS2  
tENS2  
ENA  
No Operation  
W2(1)  
t
MDV  
t
DIS  
DIS  
t
A
t
A
t
EN  
A0-A35  
Previous Data  
W1(1)  
W2(1)  
(Standard Mode)  
t
MDV  
t
tA  
t
A
OR  
t
EN  
A0-A35  
W3(1)  
(1)  
W1  
(FWFT Mode)  
4677 drw16  
NOTE:  
1. Read From FIFO2.  
Figure 14. Port-A Read Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)  
22  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKA  
CSA  
LOW  
WRA HIGH  
t
ENS2  
ENS2  
t
ENH  
MBA  
t
t
ENH  
ENA  
IRA HIGH  
tDS  
tDH  
A0-A35  
W1  
t
CLKtCLKL  
(1)  
tCLKH  
tSKEW1  
CLKB  
ORB  
1
2
3
t
REF  
tREF  
FIFO1 Empty  
CSB LOW  
W/RB HIGH  
LOW  
MBB  
tENS2  
tENH  
ENB  
tA  
Old Data in FIFO1 Output Register  
W1  
B0-B35  
4677 drw17  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for ORB to transition HIGH and to clock the next word to the FIFO1 output register in three CLKB cycles.  
If the time between the rising CLKA edge and rising CLKB edge is less than tSKEW1, then the transition of ORB HIGH and load of the first word to the output register may occur one CLKB  
cycle later than shown.  
2. If Port B size is word or byte, ORB is set LOW by the last word or byte read from FIFO1, respectively.  
Figure 15. ORB Flag Timing and First Data Word Fall Through when FIFO1 is Empty (FWFT Mode)  
23  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
t
CLK  
t
CLKL  
t
CLKH  
CLKA  
CSA  
LOW  
HIGH  
WRA  
t
ENS2  
t
ENH  
ENH  
MBA  
t
tENS2  
ENA  
FFA  
HIGH  
tDS  
tDH  
A0-A35  
W1  
t
CLK  
(1)  
SKEW1  
t
CLKH  
t
tCLKL  
CLKB  
1
2
t
REF  
t
REF  
FIFO1 Empty  
LOW  
EFB  
CSB  
W/RB HIGH  
LOW  
MBB  
tENH  
tENS2  
ENB  
tA  
W1  
B0-B35  
4677 drw18  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for EFB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising  
CLKB edge is less than tSKEW1, then the transition of EFB HIGH may occur one CLKB cycle later than shown.  
2. If Port B size is word or byte, EFB is set LOW by the last word or byte read from FIFO1, respectively.  
Figure 16. EFB Flag Timing and First Data Read Fall Through when FIFO1 is Empty (IDT Standard Mode)  
24  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKB  
CSB  
LOW  
LOW  
W/RB  
tENS2  
tENH  
MBB  
ENB  
tENH  
tENS2  
IRB  
HIGH  
tDH  
tDS  
B0-B35  
W1  
t
CLK  
(1)  
SKEW1  
tCLKH  
t
CLKL  
t
1
2
CLKA  
ORA  
3
t
REF  
tREF  
FIFO2 Empty  
CSA  
LOW  
LOW  
W/RA  
LOW  
MBA  
ENA  
tENS2  
tENH  
tA  
Old Data in FIFO2 Output Register  
W1  
A0-A35  
4677 drw19  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for ORA to transition HIGH and to clock the next word to the FIFO2 output register in three CLKA cycles.  
If the time between the CLKB edge and the rising CLKA edge is less than tSKEW1, then the transition of ORA HIGH and load of the first word to the output register may occur one CLKA  
cycle later than shown.  
2. If Port B size is word or byte, tSKEW1 is referenced to the rising CLKB edge that writes the last word or byte of the long word, respectively.  
Figure 17. ORA Flag Timing and First Data Word Fall through when FIFO2 is Empty (FWFT Mode)  
25  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
t
CLK  
t
CLKL  
t
CLKH  
CLKB  
CSB LOW  
LOW  
W/RB  
tENS2  
tENH  
MBB  
ENB  
tENS2  
tENH  
FFB HIGH  
B0-B35  
tDH  
tDS  
W1  
(1)  
t
CLK  
tSKEW1  
t
CLKH  
t
CLKL  
1
2
CLKA  
t
REF  
t
REF  
EFA  
FIFO2 Empty  
LOW  
LOW  
LOW  
CSA  
W/RA  
MBA  
tENS2  
tENH  
ENA  
tA  
W1  
A0-A35  
4677 drw20  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for EFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising  
CLKA edge is less than tSKEW1, then the transition of EFA HIGH may occur one CLKA cycle later than shown.  
2. If Port B size is word or byte, tSKEW1 is referenced to the rising CLKB edge that writes the last word or byte of the long word, respectively.  
Figure 18. EFA Flag Timing and First Data Read when FIFO2 is Empty (IDT Standard Mode)  
26  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKB  
CSB  
LOW  
W/RB  
HIGH  
LOW  
MBB  
tENS2  
tENH  
tA  
ENB  
ORB  
HIGH  
Previous Word in FIFO1 Output Register  
Next Word From FIFO1  
B0-B35  
(1)  
tCLK  
tSKEW1  
tCLKH  
tCLKL  
1
2
CLKA  
tWFF  
tWFF  
FIFO1 Full  
IRA  
LOW  
CSA  
HIGH  
W/RA  
tENH  
tENH  
tDH  
tENS2  
tENS2  
tDS  
MBA  
ENA  
Write  
A0-A35  
4677 drw21  
To FIFO1  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for IRA to transition HIGH in the next CLKA cycle. If the time between the rising  
CLKB edge and rising CLKA edge is less than tSKEW1, then IRA may transition HIGH one CLKA cycle later than shown.  
2. If Port B size is word or byte, tSKEW1 is referenced to the rising CLKB edge that reads the last word or byte write of the long word, respectively.  
Figure 19. IRA Flag Timing and First Available Write when FIFO1 is Full (FWFT Mode)  
tCLK  
tCLKH  
tCLKL  
CLKB  
LOW  
CSB  
W/RB  
MBB  
HIGH  
LOW  
tENS2  
tENH  
ENB  
HIGH  
EFB  
tA  
Previous Word in FIFO1 Output Register  
Next Word From FIFO1  
B0-B35  
(1)  
t
CLK tCLKL  
tSKEW1  
tCLKH  
CLKA  
1
2
t
WFF  
t
WFF  
FFA  
FIFO1 Full  
CSA LOW  
W/RA HIGH  
t
ENH  
t
ENS2  
ENS2  
MBA  
t
tENH  
ENA  
tDH  
tDS  
Write  
A0-A35  
4677 drw22  
To FIFO1  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for FFA to transition HIGH in the next CLKA cycle. If the time between the  
rising CLKB edge and rising CLKA edge is less than tSKEW1, then FFA may transition HIGH one CLKA cycle later than shown.  
2. If Port B size is word or byte, tSKEW1 is referenced from the rising CLKB edge that reads the last word or byte of the long word, respectively.  
Figure 20. FFA Flag Timing and First Available Write when FIFO1 is Full (IDT Standard Mode)  
27  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKA  
CSA  
LOW  
LOW  
W/RA  
LOW  
MBA  
tENS2  
tENH  
ENA  
ORA  
HIGH  
tA  
Previous Word in FIFO2 Output Register  
SKEW1  
Next Word From FIFO2  
A0-A35  
(1)  
tCLK  
t
tCLKH  
tCLKL  
1
2
CLKB  
t
WFF  
t
WFF  
IRB  
CSB  
FIFO2 FULL  
LOW  
W/RB  
LOW  
tENS2  
tENH  
MBB  
ENB  
tENS2  
tENH  
tDS  
tDH  
Write  
B0-B35  
4677 drw23  
To FIFO2  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for IRB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising  
CLKB edge is less than tSKEW1, then IRB may transition HIGH one CLKB cycle later than shown.  
2. If Port B size is word or byte, IRB is set LOW by the last word or byte write of the long word, respectively.  
Figure 21. IRB Flag Timing and First Available Write when FIFO2 is Full (FWFT Mode)  
28  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
tCLK  
tCLKH  
tCLKL  
CLKA  
LOW  
LOW  
LOW  
CSA  
W/RA  
MBA  
tENS2  
tENH  
ENA  
EFA  
HIGH  
tA  
Previous Word in FIFO2 Output Register  
Next Word From FIFO2  
A0-A35  
(1)  
tCLK  
tSKEW1  
tCLKH  
tCLKL  
CLKB  
1
2
t
WFF  
t
WFF  
FIFO2 Full  
LOW  
FFB  
CSB  
LOW  
W/RB  
t
ENS2  
ENS2  
t
ENH  
MBB  
ENB  
t
t
ENH  
tDS  
tDH  
Write  
B0-B35  
4677 drw24  
To FIFO2  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for FFB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising  
CLKB edge is less than tSKEW1, then FFB may transition HIGH one CLKB cycle later than shown.  
2. If Port B size is word or byte, FFB is set LOW by the last word or byte write of the long word, respectively.  
Figure 22. FFB Flag Timing and First Available Write when FIFO2 is Full (IDT Standard Mode)  
29  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKA  
tENS2  
tENH  
ENA  
(1)  
tSKEW2  
1
2
CLKB  
t
PAE  
t
PAE  
X1 Words in FIFO1  
AEB  
(X1+1) Words in FIFO1  
ENS2  
t
t
ENH  
ENB  
4677 drw25  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AEB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising  
CLKB edge is less than tSKEW2, then AEB may transition HIGH one CLKB cycle later than shown.  
2. FIFO1 Write (CSA = LOW, W/RA = LOW, MBA = LOW), FIFO1 read (CSB = LOW, W/RB = HIGH, MBB = LOW). Data in the FIFO1 output register has been read from the FIFO.  
3. If Port B size is word or byte, AEB is set LOW by the last word or byte read from FIFO1, respectively.  
Figure 23. Timing for AEB when FIFO1 is Almost-Empty (IDT Standard and FWFT Modes)  
CLKB  
tENS2  
tENH  
ENB  
(1)  
tSKEW2  
1
2
CLKA  
t
PAE  
t
PAE  
AEA  
X2 Words in FIFO2  
(X2+1) Words in FIFO2  
ENS2  
t
tENH  
ENA  
4677 drw26  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for AEA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising  
CLKA edge is less than tSKEW2, then AEA may transition HIGH one CLKA cycle later than shown.  
2. FIFO2 Write (CSB = LOW, W/RB = LOW, MBB = LOW), FIFO2 read (CSA = LOW, W/RA = LOW, MBA = LOW). Data in the FIFO2 output register has been read from the FIFO.  
3. If Port B size is word or byte, tSKEW2 is referenced to the rising CLKB edge that writes the last word or byte of the long word, respectively.  
Figure 24. Timing for AEA when FIFO2 is Almost-Empty (IDT Standard and FWFT Modes)  
(1)  
tSKEW2  
1
2
CLKA  
ENA  
tENH  
tENS2  
t
PAF  
t
PAF  
(D-Y1) Words in FIFO1  
[D-(Y1+1)] Words in FIFO1  
AFA  
CLKB  
tENS2  
tENH  
ENB  
4677 drw27  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKA edge and rising  
CLKB edge is less than tSKEW2, then AFA may transition HIGH one CLKA cycle later than shown.  
2. FIFO1 Write (CSA = LOW, W/RA = HIGH, MBA = LOW), FIFO1 read (CSB = LOW, W/RB = HIGH, MBB = LOW). Data in the FIFO1 output register has been read from the FIFO.  
3. D = Maximum FIFO Depth = 16,384 for the IDT72V3684, 32,768 for the IDT72V3694, 65,536 for the IDT72V36104.  
4. If Port B size is word or byte, tSKEW2 is referenced to the rising CLKB edge that reads the last word or byte of the long word, respectively.  
Figure 25. Timing for AFA when FIFO1 is Almost-Full (IDT Standard and FWFT Modes)  
30  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
(1)  
tSKEW2  
1
2
CLKB  
ENB  
tENH  
tENS2  
t
PAF  
t
PAF  
(D-Y2) Words in FIFO2  
AFB  
[D-(Y2+1)] Words in FIFO2  
CLKA  
tENH  
tENS2  
ENA  
4677 drw28  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for AFB to transition HIGH in the next CLKB cycle. If the time between the rising CLKB edge and rising  
CLKA edge is less than tSKEW2, then AFB may transition HIGH one CLKB cycle later than shown.  
2. FIFO2 write (CSB = LOW, W/RB = LOW, MBB = LOW), FIFO2 read (CSA = LOW, W/RA = LOW, MBA = LOW). Data in the FIFO2 output register has been read from the FIFO.  
3. D = Maximum FIFO Depth = 16,384 for the IDT72V3684, 32,768 for the IDT72V3694, 65,536 for the IDT72V36104.  
4. If Port B size is word or byte, AFB is set LOW by the last word or byte write of the long word, respectively.  
Figure 26. Timing for AFB when FIFO2 is Almost-Full (IDT Standard and FWFT Modes)  
CLKA  
t
ENH  
ENH  
t
ENS1  
CSA  
t
t
ENS1  
W/RA  
tENH  
tENS2  
MBA  
tENH  
tENS2  
ENA  
tDH  
tDS  
W1  
A0-A35  
CLKB  
t
PMF  
t
PMF  
MBF1  
CSB  
W/RB  
MBB  
ENB  
tENH  
tENS2  
t
PMR  
tEN  
t
MDV  
tDIS  
FIFO1 Output Register  
W1 (Remains valid in Mail1 Register after read)  
B0-B35  
4677 drw29  
NOTE:  
1. If Port B is configured for word size, data can be written to the Mail1 register using A0-A17 (A18-A35 are don't care inputs). In this first case B0-B17 will have valid data (B18-B35  
will be indeterminate). If Port B is configured for byte size, data can be written to the Mail1 Register using A0-A8 (A9-A35 are don't care inputs). In this second case, B0-B8 will  
have valid data (B9-B35 will be indeterminate).  
Figure 27. Timing for Mail1 Register and MBF1 Flag (IDT Standard and FWFT Modes)  
31  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKB  
tENH  
tENS1  
CSB  
W/RB  
MBB  
ENB  
t
ENH  
t
ENS1  
t
ENH  
t
ENS2  
ENS2  
t
t
ENH  
t
DH  
tDS  
W1  
B0-B35  
CLKA  
t
PMF  
tPMF  
MBF2  
CSA  
W/RA  
MBA  
ENA  
tENH  
tENS2  
t
PMR  
tEN  
tDIS  
t
MDV  
A0-A35  
W1 (Remains valid in Mail 2 Register after read)  
FIFO2 Output Register  
4677 drw30  
NOTE:  
1. If Port B is configured for word size, data can be written to the Mail2 Register using B0-B17 (B18-B35 are dont care inputs). In this first case A0-A17 will have valid data  
(A18-A35 will be indeterminate). If Port B is configured for byte size, data can be written to the Mail2 Register using B0-B8 (B9-B35 are dont care inputs). In this second  
case, A0-A8 will have valid data (A9-A35 will be indeterminate).  
Figure 28. Timing for Mail2 Register and MBF2 Flag (IDT Standard and FWFT Modes)  
32  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKA  
CLKB  
4
1
2
3
2
3
4
1
tENS2  
tENH  
ENB  
RT1  
RTM  
EFB  
t
RSTH  
t
RSTS  
t
RTMS  
t
RTMH  
(2)  
REF  
(2)  
REF  
t
t
tA  
B0-Bn  
Wx  
W1  
4677 drw31  
NOTES:  
1. CSB = LOW  
2. Retransmit setup is complete after EFB returns HIGH, only then can a read operation begin.  
3. W1 = first word written to the FIFO1 after Master Reset on FIFO1.  
4. No more than D-2 may be written to the FIFO1 between Reset of FIFO1 (Master or Partial) and Retransmit setup. Therefore, FFA will be LOW throughout the Retransmit  
setup procedure. D = 16,384, 32,768 and 65,536 for the IDT72V3684, IDT72V3694 and IDT72V36104 respectively.  
Figure 29. Retransmit Timing for FIFO1 (IDT Standard Mode)  
CLKB  
CLKA  
4
1
2
3
2
3
4
1
tENS2  
tENH  
ENA  
RT2  
t
RSTH  
t
RSTS  
t
RTMS  
t
RTMH  
RTM  
(2)  
REF  
(2)  
REF  
t
t
EFA  
tA  
A0-An  
Wx  
W1  
4677 drw32  
NOTES:  
1. CSA = LOW  
2. Retransmit setup is complete after EFA returns HIGH, only then can a read operation begin.  
3. W1 = first word written to the FIFO1 after Master Reset on FIFO2.  
4. No more than D-2 may be written to the FIFO1 between Reset of FIFO2 (Master or Partial) and Retransmit setup. Therefore, FFB will be LOW throughout the Retransmit setup  
procedure. D = 16,384, 32,768 and 65,536 for the IDT72V3684. IDT72V3694 and IDT72V36104 respectively.  
Figure 30. Retransmit Timing for FIFO2 (IDT Standard Mode)  
33  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2 and 65, 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
CLKA  
CLKB  
4
1
2
3
2
3
4
1
ENB LOW  
tRSTH  
t
RSTS  
RT1  
RTM  
ORB  
t
RTMS  
t
RTMH  
(2)  
REF  
(2)  
REF  
t
t
tA  
B0-Bn  
Wx  
W1  
4664 drw 33  
NOTES:  
1. CSB = LOW  
2. Retransmit setup is complete after ORB returns HIGH, only then can a read operation begin.  
3. W1 = first word written to the FIFO1 after Master Reset on FIFO1.  
4. No more than D-2 may be written to the FIFO1 between Reset of FIFO1 (Master or Partial) and Retransmit setup. Therefore, IRA will be LOW throughout the Retransmit  
setup procedure. D = 16,385, 32,769 and 65,537 for the IDT72V3684, IDT72V3694 and IDT72V36104 respectively.  
Figure 31. Retransmit Timing for FIFO1 (FWFT Mode)  
CLKB  
CLKA  
4
1
2
3
2
3
4
1
ENA LOW  
tRSTH  
t
RSTS  
RT2  
RTM  
ORA  
t
RTMS  
t
RTMH  
(2)  
REF  
(2)  
REF  
t
t
tA  
A0-An  
Wx  
W1  
4677 drw34  
NOTES:  
1. CSA = LOW  
2. Retransmit setup is complete after ORA returns HIGH, only then can a read operation begin.  
3. W1 = first word written to the FIFO2 after Master Reset on FIFO2.  
4. No more than D-2 may be written to the FIFO2 between Reset of FIFO2 (Master or Partial) and Retransmit setup. Therefore, IRB will be LOW throughout the Retransmit  
setup procedure. D = 16,385, 32,769 and 65,537 for the IDT72V3684, IDT72V3694 and IDT72V36104 respectively.  
Figure 32. Retransmit Timing for FIFO2 (FWFT Mode)  
34  
IDT72V3684/72V3694/72V36104 3.3V CMOS SyncBiFIFOTM WITH  
BUS-MATCHING 16,384 x 36 x 2, 32,768 x 36 x 2, 65 and 536 x 36 x 2  
COMMERCIALTEMPERATURERANGE  
PARAMETER MEASUREMENT INFORMATION  
3.3V  
330  
From Output  
Under Test  
30 pF (1)  
510 Ω  
PROPAGATION DELAY  
LOAD CIRCUIT  
3 V  
3 V  
Timing  
Input  
1.5 V  
High-Level  
1.5 V  
Input  
GND  
1.5 V  
GND  
3 V  
t
S
th  
tW  
3 V  
Data,  
Enable  
Input  
1.5 V  
1.5 V  
Low-Level  
1.5 V  
1.5 V  
GND  
Input  
GND  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VOLTAGE WAVEFORMS  
PULSE DURATIONS  
3 V  
Output  
Enable  
1.5 V  
1.5 V  
t
PZL  
GND  
tPLZ  
3 V  
3 V  
Input  
1.5 V  
1.5 V  
1.5 V  
Low-Level  
Output  
GND  
V
OL  
tPD  
t
PZH  
tPD  
V
OH  
V
OH  
O V  
In-Phase  
Output  
1.5 V  
1.5 V  
High-Level  
Output  
1.5 V  
V
t
PHZ  
OL  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
4677 drw35  
NOTE:  
1. Includes probe and jig capacitance.  
Figure 33. Output Load and AC Test Conditions  
35  
ORDERING INFORMATION  
IDT  
X
XX  
X
X
XXXXXX  
Device Type Power  
Speed  
Package  
Process/  
Temperature  
Range  
Commercial (0oC to +70oC)  
BLANK  
PF  
Thin Quad Flat Pack (TQFP, PK128-1)  
Clock Cycle Time (tCLK  
)
10  
15  
Commercial Only  
Low Power  
Speed in Nanoseconds  
L
16,384 x 36 x 2 3.3V SyncBiFIFO with Bus-Matching  
32,768 x 36 x 2 3.3V SyncBiFIFO with Bus-Matching  
65,536 x 36 x 2 3.3V SyncBiFIFO with Bus-Matching  
4677 drw36  
72V3684  
72V3694  
72V36104  
NOTE:  
1. Industrial temperature range is available by special order.  
DATASHEETDOCUMENTHISTORY  
10/31/2000  
12/14/2000  
02/08/2001  
03/27/2001  
11/04/2003  
pgs. 1, 6, 8, 9, 12 and 36  
pgs. 4 and 5.  
pgs. 5 and 11.  
pgs. 6 and 7.  
pg. 1.  
CORPORATE HEADQUARTERS  
for SALES:  
for Tech Support:  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
408-360-1753  
email:FIFOhelp@idt.com  
www.idt.com  
36  

相关型号:

IDT72V36104L15PFG

FIFO, 64KX36, 10ns, Synchronous, CMOS, PQFP128, TQFP-128
IDT

IDT72V36104L15PFG8

FIFO, 64KX36, 10ns, Synchronous, CMOS, PQFP128, TQFP-128
IDT

IDT72V36106

3.3 VOLT CMOS TRIPLE BUS SyncFIFOTM WITH BUS-MATCHING
IDT

IDT72V36106L10PF

3.3 VOLT CMOS TRIPLE BUS SyncFIFOTM WITH BUS-MATCHING
IDT

IDT72V36106L10PFG8

FIFO, 64KX36, 6.5ns, Synchronous, CMOS, PQFP128, TQFP-128
IDT

IDT72V36106L15PF

3.3 VOLT CMOS TRIPLE BUS SyncFIFOTM WITH BUS-MATCHING
IDT

IDT72V36106L15PFG

暂无描述
IDT

IDT72V36106L15PFG8

FIFO, 64KX36, 10ns, Synchronous, CMOS, PQFP128, TQFP-128
IDT

IDT72V36106L20PF

FIFO, 64KX36, Synchronous, CMOS, PQFP128, TQFP-128
IDT

IDT72V3611

3.3 VOLT CMOS SyncFIFO 64 x 36
IDT

IDT72V36110

3.3 VOLT HIGH-DENSITY SUPERSYNC⑩ II 36-BIT FIFO
IDT

IDT72V36110L10BB

3.3 VOLT HIGH-DENSITY SUPERSYNC II? 36-BIT FIFO
IDT