IDT72V3632L12PQF9 [IDT]

FIFO, 512X36, 8ns, Synchronous, CMOS, PQFP132, PLASTIC, QFP-132;
IDT72V3632L12PQF9
型号: IDT72V3632L12PQF9
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FIFO, 512X36, 8ns, Synchronous, CMOS, PQFP132, PLASTIC, QFP-132

先进先出芯片
文件: 总28页 (文件大小:206K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3 VOLT CMOS SyncBiFIFOTM  
256 x 36 x 2, 512 x 36 x 2,  
1,024 x 36 x 2  
PRELIMINARY  
IDT72V3622  
IDT72V3632  
IDT72V3642  
Select IDT Standard timing (using EFA, EFB, FFA and FFB flags  
functions) or First Word Fall Through timing (using ORA, ORB, IRA  
and IRB flag functions)  
Available in 132-pin Plastic Quad Flatpack (PQFP) or space-saving  
120-pin Thin Quad Flatpack (TQFP)  
Functionally compatible to the 5V operating IDT723622/723632/  
723642  
Industrial temperature range (–40οC to +85οC) is available  
FEATURES:  
Memory storage capacity:  
IDT72V3622–256 x 36 x 2  
IDT72V3632–512 x 36 x 2  
IDT72V3642–1,024 x 36 x 2  
Supports clock frequencies up to 83MHz  
Fast access times of 8ns  
Free-running CLKA and CLKB may be asynchronous or coincident  
(simultaneous reading and writing of data on a single clock edge  
is permitted)  
DESCRIPTION:  
Two independent clocked FIFOs buffering data in opposite direc-  
tions  
TheIDT72V3622/72V3632/72V3642arefunctionallycompatibleversions  
of the IDT723622/723632/723642, designed to run off a 3.3V supply for  
exceptionallylow-powerconsumption. Thesedevices aremonolithic,high-  
speed,low-power,CMOSBidirectionalSyncFIFO(clocked)memorieswhich  
supportclockfrequenciesupto83MHzandhavereadaccesstimesasfastas  
8ns.Twoindependent256/512/1,024x36dual-portSRAMFIFOs onboard  
eachchipbufferdatainoppositedirections.Communicationbetweeneachport  
Mailbox bypass register for each FIFO  
Programmable Almost-Full and Almost-Empty flags  
Microprocessor Interface Control Logic  
FFA/IRA, EFA/ORA, AEA, and AFA flags synchronized by CLKA  
FFB/IRB, EFB/ORB, AEB, and AFB flags synchronized by CLKB  
FUNCTIONAL BLOCK DIAGRAM  
MBF1  
Mail 1  
Register  
CLKA  
CSA  
W/RA  
ENA  
Port-A  
Control  
Logic  
RAM  
ARRAY  
256 x 36  
512 x 36  
1,024 x 36  
MBA  
36  
FIFO1,  
Mail1  
Reset  
Logic  
RST1  
Write  
Pointer  
Read  
Pointer  
36  
Status Flag  
Logic  
EFB/ORB  
AEB  
FFA/IRA  
AFA  
FIFO 1  
FS0  
FS1  
Programmable Flag  
Offset Registers  
Timing  
Mode  
FWFT  
A0 - A35  
9
B0 - B35  
FIFO 2  
Status Flag  
EFA/ORA  
FFB/IRB  
AFB  
Logic  
AEA  
36  
Read  
Pointer  
Write  
Pointer  
36  
FIFO2,  
Mail2  
Reset  
Logic  
RST2  
RAM  
ARRAY  
256 x 36  
512 x 36  
CLKB  
CSB  
Port-B  
Control  
Logic  
1,024 x 36  
W/RB  
ENB  
MBB  
Mail 2  
Register  
4660 drw 01  
MBF2  
March 1999  
1
1999 Integrated Device Technology, Inc.  
DSC-4660/-  
IDT72V3622/72V3632/72V3642  
Commercial Temperature Range  
residing in memory). In the First Word Fall Through mode (FWFT), the first  
long-word(36-bitwide)writtentoanemptyFIFOappearsautomaticallyonthe  
outputs, no read operation required (Nevertheless, accessing subsequent  
words does necessitate a formal read request). The state of the FWFT pin  
duringFIFOoperationdetermines themodeinuse.  
EachFIFOhas acombinedEmpty/OutputReadyFlag(EFA/ORAand  
EFB/ORB) and a combined Full/Input Ready Flag (FFA/IRA and FFB/  
IRB). The EF and FF functions are selected in the IDT Standard mode. EF  
indicates whether or not the FIFO memory is empty. FF shows whether the  
memoryisfullornot.TheIRandORfunctionsareselectedintheFirstWord  
FallThroughmode.IRindicateswhetherornottheFIFOhasavailablememory  
locations.ORshowswhethertheFIFOhasdataavailableforreadingornot.  
Itmarksthepresenceofvaliddataontheoutputs.  
DESCRIPTION (Continued)  
maybypasstheFIFOsviatwo36-bitmailboxregisters.Eachmailboxregister  
has a flag to signal when new mail has been stored.  
These devices are a synchronous (clocked) FIFO, meaning each port  
employsasynchronousinterface.Alldatatransfersthroughaportaregated  
totheLOW-to-HIGHtransitionofaportclockbyenablesignals.Theclocksfor  
each port are independent of one another and can be asynchronous or  
coincident. The enables for each port are arranged to provide a simple  
bidirectionalinterfacebetweenmicroprocessorsand/orbuseswithsynchro-  
nouscontrol.  
Thesedeviceshavetwomodesofoperation:IntheIDTStandardmode,  
thefirstwordwrittentoanemptyFIFOisdepositedintothememoryarray.A  
read operation is required to access that word (along with all other words  
PIN CONFIGURATION  
NC  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
NC  
NC  
B
B
B
B
35  
34  
33  
32  
*
A
A
A
A
V
A
A
35  
34  
33  
32  
CC  
31  
30  
GND  
B
B
B
B
B
B
31  
30  
29  
28  
27  
26  
GND  
A
A
A
A
A
A
A
29  
28  
27  
26  
25  
24  
23  
V
CC  
B
25  
B24  
GND  
B
B
B
B
B
B
23  
22  
21  
20  
19  
18  
FWFT  
98  
A
V
A
A
A
A
22  
CC  
21  
20  
19  
18  
97  
96  
95  
GND  
94  
B
B
17  
16  
CC  
93  
92  
GND  
V
91  
A
A
A
A
A
V
A
17  
16  
15  
14  
13  
CC  
12  
B
15  
14  
13  
12  
90  
B
89  
B
B
88  
87  
GND  
NC  
NC  
86  
85  
84  
NC  
7
5
4660 drw 02  
*Electrical pin 1 in center of beveled edge. Pin 1 identifier in corner.  
PQFP (PQ132-1, order code: PQF)  
TOP VIEW  
NOTES:  
1. NC – no internal connection  
2. Uses Yamaichi socket IC51-1324-828  
2
Commercial Temperature Range  
IDT72V3622/72V3632/72V3642  
boundary. Allthese choices are made usingthe FS0andFS1inputs during  
Reset.  
EachFIFOhasaprogrammableAlmost-Emptyflag(AEAandAEB)and  
a programmable Almost-Full flag (AFA and AFB). AEA and AEB indicate  
whenaselectednumberofwordsremainintheFIFOmemory. AFAandAFB  
indicatewhentheFIFOcontainsmorethanaselectednumberofwords.  
FFA/IRA, FFB/IRB, AFA and AFB are two-stage synchronized to the  
portclockthatwritesdataintoitsarray.EFA/ORA,EFB/ORB,AEAandAEB  
are two-stage synchronized to the port clock that reads data from its array.  
Programmable offsets for AEA, AEB, AFA and AFB are loaded by using  
Port A. Three default offset settings are also provided. The AEA and AEB  
thresholdcanbesetat8,16or64locationsfromtheemptyboundaryandthe  
AFA and AFB threshold can be set at 8, 16 or 64 locations from the full  
Twoormoredevicesmaybeusedinparalleltocreatewiderdatapaths.  
If, at any time, the FIFO is not actively performing a function, the chip will  
automatically power down. During the power down state, supply current  
consumption(ICC)isataminimum.Initiatinganyoperation(byactivatingcontrol  
inputs)willimmediatelytakethedeviceoutofthepowerdownstate.  
TheIDT72V3622/72V3632/72V3642arecharacterizedforoperationfrom  
0oC to 70oC. Industrial temperature range (-40οC to +85οC) is available by  
specialorder.TheyarefabricatedusingIDT’shighspeed,submicronCMOS  
technology.  
PIN CONFIGURATION (Continued)  
B35  
B34  
B33  
B32  
GND  
B31  
B30  
B29  
B28  
B27  
B26  
VCC  
B25  
B24  
GND  
B23  
B22  
B21  
B20  
B19  
B18  
GND  
B17  
B16  
VCC  
B15  
B14  
B13  
B12  
GND  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
A35  
A34  
1
2
A33  
3
A32  
4
VCC  
A31  
5
6
A30  
7
GND  
A29  
8
9
A28  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
A27  
A26  
A25  
A24  
A23  
FWFT  
A22  
VCC  
A21  
A20  
A19  
A18  
GND  
A17  
A16  
A15  
A14  
A13  
VCC  
A12  
4660 drw 03  
TQFP (PN120-1, order code: PF)  
TOP VIEW  
3
IDT72V3622/72V3632/72V3642  
Commercial Temperature Range  
PIN DESCRIPTIONS  
Symbol  
A0-A35  
AEA  
Name  
I/O  
I/0  
O
Description  
PortAData  
36-bitbidirectionaldataportforsideA.  
ProgrammableAlmost-EmptyflagsynchronizedtoCLKA.ItisLOWwhenthenumberofwordsinFIFO2is  
PortAAlmost-  
EmptyFlag  
(Port A) lessthanorequaltothevalueintheAlmost-EmptyAOffsetregister,X2.  
ProgrammableAlmost-EmptyflagsynchronizedtoCLKB.ItisLOWwhenthenumberof words in FIFO1 is  
(Port B) lessthanorequaltothevalueintheAlmost-EmptyBOffsetregister,X1.  
ProgrammableAlmost-FullflagsynchronizedtoCLKA.ItisLOWwhenthenumberofempty locationsin  
(Port A) FIFO1is less thanorequaltothevalueintheAlmost-FullAOffsetregister,Y1.  
ProgrammableAlmost-FullflagsynchronizedtoCLKB.ItisLOWwhenthenumberofempty locationsin  
(Port B) FIFO2is less thanorequaltothevalueintheAlmost-FullBOffsetregister,Y2.  
AEB  
AFA  
AFB  
PortBAlmost-  
EmptyFlag  
O
PortAAlmost-  
Full Flag  
O
PortBAlmost-  
Full Flag  
O
B0 - B35  
CLKA  
PortBData  
I/O  
I
36-bitbidirectionaldataportforsideB.  
PortAClock  
CLKAis a continuous clockthatsynchronizes alldata transfers throughportAandcanbe asynchronous or  
coincident to CLKB. FFA/IRA, EFA/ORA, AFA, and AEA are all synchronized to the LOW-to-HIGH  
transitionofCLKA.  
CLKB  
PortBClock  
I
CLKBisacontinuousclockthatsynchronizesalldatatransfersthroughportBand can be asynchronous or  
coincident to CLKA. FFB/IRB, EFB/ORB, AFB, and AEB are synchronized to the LOW-to-HIGH  
transitionofCLKB.  
CSA  
CSB  
Port A Chip  
Select  
I
I
CSA must be LOW to enable a LOW-to-HIGH transition of CLKA to read or write on port A. The A0-A35  
outputs are in the high-impedance state when CSA is HIGH.  
Port B Chip  
Select  
CSB mustbe LOWtoenable a LOW-to-HIGHtransitionofCLKBtoreadorwrite data onportB. The  
B0- B35 outputs are in the high-impedance state when CSB is HIGH.  
EFA/ORA PortAEmpty/  
OutputReady  
O
This is a dual function pin. In the IDT Standard mode, the EFA function is selected. EFA indicates  
whetherornotthe FIFO2memoryis empty. Inthe FWFTmode, the ORAfunctionis selected. ORA  
indicates the presence of valid data on A0-A35 outputs, available for reading.EFA/ORA is synchronized  
totheLOW-to-HIGHtransitionofCLKA.  
Flag  
EFB/ORB PortBEmpty/  
OutputReady  
O
This is a dual function pin. In the IDT Standard mode, the EFB function is selected. EFB indicates  
whetherornotthe FIFO1memoryis empty. Inthe FWFTmode, the ORBfunctionis selected. ORB  
indicates the presence ofvaliddata onB0-B35outputs, available forreading. EFB/ORBis synchronizedto  
theLOW-to-HIGHtransitionofCLKB.  
Flag  
ENA  
PortAEnable  
PortBEnable  
I
I
ENA mustbe HIGH toenable a LOW-to-HIGH transitionofCLKA toreadorwrite data onport A.  
ENB mustbe HIGH toenable a LOW-to-HIGH transitionofCLKB toreadorwrite data onport B.  
ENB  
FFA/IRA  
PortA Full/  
Input Ready  
Flag  
O
This is a dualfunctionpin. Inthe IDTStandardmode, the FFA functionis selected.FFA indicates whether  
ornotthe FIFO1memoryis full. Inthe FWFTmode, the IRAfunctionis selected. IRAindicates whetheror  
notthere is space available forwritingtothe FIFO1memory. FFA/IRAis synchronizedtothe LOW-to-  
HIGHtransitionofCLKA.  
FFB/IRB  
PortB Full/  
Input Ready  
Flag  
O
This is a dualfunctionpin. Inthe IDTStandardmode, the FFB functionis selected.FFB indicates whether  
ornotthe FIFO2memoryis full. Inthe FWFTmode, the IRBfunctionis selected. IRBindicates whetheror  
notthere is space available forwritingtothe FIFO2memory. FFB/IRBis synchronizedtothe LOW-to-  
HIGHtransitionofCLKB.  
FWFT  
FirstWordFall  
Through Mode  
I
I
This pinselects thetimingmode. AHIGHonFWFTselects IDTStandardmode,aLOWselects First  
Word Fall Through mode. Once the timing mode has been selected, the level on FWFT must be static  
throughoutdeviceoperation.  
FS1, FS0  
FlagOffset  
Selects  
A LOW-to-HIGH transition of the FIFO Reset input latches the values of FS0 and FS1. If either FS0 or  
FS1 is HIGH when the FIFO Reset input goes HIGH, one of three preset values is selected as the  
offset for FIFOs Almost-Full and Almost-Empty flags. If both FIFOs are reset simultaneously and both  
FS0 and FS1 are LOW when RST1 and RST2 go HIGH, the first four writes to FIFO1 load the Almost-  
Empty and Almost-Full offsets for both FIFOs.  
4
Commercial Temperature Range  
IDT72V3622/72V3632/72V3642  
PIN DESCRIPTIONS (Continued)  
Symbol  
Name  
I/O  
Description  
MBA  
Port A Mailbox  
Select  
I
A HIGH level on MBA chooses a mailbox register for a port A read or write operation. When the  
A0-A35outputs areactive,aHIGHlevelonMBAselects datafromthemail2registerforoutputanda  
LOWlevelselectsFIFO2outputregisterdataforoutput.  
MBB  
PortB Mailbox  
Select  
I
A HIGH level on MBB chooses a mailbox register for a port B read or write operation. When the  
B0-B35outputs are active, a HIGHlevelonMBBselects data fromthe mail1registeroroutputanda  
LOWlevelselectsFIFO1outputregisterdataforoutput.  
MBF1  
Mail1Register  
Flag  
O
MBF1 is set LOW by a LOW-to-HIGH transition of CLKA that writes data to the mail1 register.  
Writes to the mail1 register are inhibited while MBF1 is LOW. MBF1 is set HIGH by a LOW-to-HIGH  
transition of CLKB when a port B read is selected and MBB is HIGH. MBF1 is set HIGH when FIFO1  
isreset.  
MBF2  
Mail2Register  
Flag  
O
MBF2issetLOWbyaLOW-to-HIGHtransitionofCLKBthatwritesdata tothemail2register.Writes  
to the mail2 register are inhibited while MBF2 is LOW. MBF2 is set HIGH by a LOW-to-HIGH  
transition of CLKA when a port A read is selected and MBA is HIGH. MBF2 is also set HIGH when  
FIFO2is reset.  
RST1  
RST2  
FIFO1Reset  
FIFO2Reset  
I
I
ToresetFIFO1,fourLOW-to-HIGHtransitionsofCLKAandfourLOW-to-HIGHtransitionsofCLKBmustoccur  
while RST1 is LOW. The LOW-to-HIGH transition of RST1 latches the status of FS0 and FS1 for AFA  
and AEB offset selection. FIFO1 must be reset upon power up before data is written to its RAM.  
ToresetFIFO2,fourLOW-to-HIGHtransitionsofCLKAandfourLOW-to-HIGHtransitionsofCLKBmustoccur  
while RST2 is LOW. The LOW-to-HIGH transition of RST2 latches the status of FS0 and FS1 for AFB  
and AEA offset selection. FIFO2 must be reset upon power up before data is written to its RAM.  
W/RA  
W/RB  
PortAWrite/  
ReadSelect  
I
I
A HIGHselects a write operationanda LOWselects a readoperationonportAfora LOW-to-HIGH  
transitionofCLKA. The A0-A35outputs are inthe HIGHimpedance state whenW/RAis HIGH.  
PortBWrite/  
ReadSelect  
A LOWselects a write operationanda HIGHselects a readoperationonportBfora LOW-to-HIGH  
transitionofCLKB. The B0-B35outputs are inthe HIGHimpedance state whenW/RBis LOW.  
5
IDT72V3622/72V3632/72V3642  
Commercial Temperature Range  
ABSOLUTE MAXIMUM RATINGS OVER OPERATING FREE-AIR  
TEMPERATURE RANGE (Unless otherwise noted)(1)  
Symbol  
Rating  
Commercial  
–0.5to+4.6  
–0.5toVCC+0.5  
–0.5toVCC+0.5  
±20  
Unit  
V
VCC  
SupplyVoltageRange  
(2)  
VI  
InputVoltageRange  
V
VO(2)  
OutputVoltageRange  
V
IIK  
Input Clamp Current (VI < 0 or VI > VCC)  
Output Clamp Current (VO = < 0 or VO > VCC)  
Continuous OutputCurrent(VO =0toVCC)  
ContinuousCurrentThroughVCCorGND  
StorageTemperatureRange  
mA  
mA  
mA  
mA  
ο C  
IOK  
IOUT  
ICC  
±50  
±50  
±400  
TSTG  
–65to150  
NOTES:  
1. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these  
or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect  
device reliability.  
2. The input and output voltage ratings may be exceeded provided the input and output current ratings are observed.  
RECOMMENDED OPERATING  
CONDITIONS  
Symbol  
Parameter  
Min. Typ.  
Max.  
3.6  
Unit  
V
(1)  
VCC  
SupplyVoltage  
3.0  
2
3.3  
VIH  
VIL  
IOH  
IOL  
TA  
High-LevelInputVoltage  
Low-LevelInputVoltage  
High-LevelOutputCurrent  
Low-LevelOutputCurrent  
OperatingTemperature  
VCC+0.5  
0.8  
V
0
V
–4  
mA  
mA  
ο C  
8
70  
NOTE:  
1. For 12ns (83 MHz operation), Vcc=3.3V +/-0.15V, JEDEC JESD8-A compliant.  
ELECTRICAL CHARACTERISTICS OVER RECOMMENDED OPERATING  
FREE-AIR TEMPERATURE RANGE (Unless otherwise noted)  
IDT72V3622  
IDT72V3632  
IDT72V3642  
Commercial  
tCLK = 12, 15, 20 ns  
Symbol  
Parameter  
OutputLogic"1"Voltage  
Test Conditions  
Min.  
Typ.(1)  
Max.  
Unit  
VOH  
VCC = 3.0V,  
VCC = 3.0V,  
VCC = 3.6V,  
VCC = 3.6V,  
VCC = 3.6V,  
VI = 0,  
IOH = –4 mA  
2.4  
V
VOL  
ILI  
OutputLogic"0"Voltage  
Input Leakage Current (Any Input)  
OutputLeakageCurrent  
StandbyCurrent  
IOL = 8 mA  
4
0.5  
±10  
±10  
1
V
VI = VCC or 0  
VO = VCC or 0  
µA  
µA  
mA  
pF  
ILO  
ICC(2)  
CIN  
COUT  
VI = VCC - 0.2V or 0  
InputCapacitance  
f = 1 MHz  
f = 1 MHZ  
OutputCapacitance  
VO = 0,  
8
pF  
NOTES:  
1. All typical values are at VCC = 3.3V, TA = 25oC.  
2. For additional ICC information, see Figure 1, Typical Characteristics: Supply Current (ICC) vs. Clock Frequency (fS).  
6
Commercial Temperature Range  
IDT72V3622/72V3632/72V3642  
DETERMINING ACTIVE CURRENT CONSUMPTION AND POWER DISSIPATION  
The ICC(f) current for the graph in Figure 1 was taken while simultaneously reading and writing a FIFO on the IDT72V3622/72V3632/72V3642with  
CLKAandCLKBsettofS. Alldatainputs anddataoutputs changestateduringeachclockcycletoconsumethehighestsupplycurrent. Dataoutputs were  
disconnectedtonormalizethegraphtoazerocapacitanceload. Oncethecapacitanceloadperdata-outputchannelandthenumberofthesedevice's  
inputs driven by TTL HIGH levels are known, the power dissipation can be calculated with the equation below.  
CALCULATING POWER DISSIPATION  
With ICC(f) taken from Figure 1, the maximum power dissipation (PT) of these FIFOs may be calculated by:  
2
PT = VCC x ICC(f) + Σ(CL x VCC X fo)  
N
where:  
N
=
=
=
number of outputs = 36  
CL  
fo  
output capacitance load  
switching frequency of an output  
When no read or writes are occurring on the IDT72V3622/72V3632/72V3642, the power dissipated by a single clock (CLKA or CLKB) input  
runningatfrequencyfS is calculatedby:  
PT = VCC x fS x 0.025 mA/MHz  
200  
175  
f
data = 1/2 fS  
150  
T
A
= 25οC  
L = 0 pF  
VCC = 3.6V  
C
VCC = 3.3V  
125  
100  
VCC = 3.0V  
75  
50  
25  
0
80  
0
10  
20  
30  
40  
50  
60  
70  
90  
4660 drw 03a  
fS  
Clock Frequency MHz  
Figure 1. Typical Characteristics: Supply Current (ICC) vs. Clock Frequency (fS)  
7
IDT72V3622/72V3632/72V3642  
Commercial Temperature Range  
TIMING REQUIREMENTS OVER RECOMMENDED RANGES OF SUPPLY  
VOLTAGEANDOPERATINGFREE-AIRTEMPERATURE  
Commercial: VCC=3.3V± 0.30V; for 12ns (83MHz) operation, VCC=3.3V ±0.15V; TA = 0ο C to +70ο C; JEDEC JESD8-A compliant  
72V3622L12  
72V3632L12  
72V3642L12  
72V3622L15  
72V3632L15  
72V3642L15  
72V3622L20  
72V3632L20  
72V3642L20  
Symbol  
Parameter  
Clock Frequency, CLKA or CLKB  
Clock Cycle Time, CLKA or CLKB  
Pulse Duration, CLKA or CLKB HIGH  
Pulse Duration, CLKAandCLKBLOW  
Min.  
Max.  
Min.  
15  
6
Max.  
Min.  
20  
8
Max.  
Unit  
MHz  
ns  
fS  
83  
66.7  
50  
tCLK  
tCLKH  
tCLKL  
tDS  
12  
5
ns  
5
6
8
ns  
SetupTime, A0-A35before CLKAandB0-B35  
beforeCLKB↑  
3.5  
4
5
ns  
tENS1  
tENS2  
tRSTS  
SetupTime CSAbeforeCLKA;CSB  
beforeCLKB↑  
4.5  
3.5  
5
4.5  
4.5  
5
5
5
6
ns  
ns  
ns  
SetupTime ENA, W/RA andMBAbefore CLKA;ENB,  
W/RBandMBBbeforeCLKB↑  
Setup Time, RST1 orRST2 LOWbefore CLKA↑  
orCLKB(1)  
tFSS  
tFWS  
tDH  
Setup Time, FS0 and FS1 before RST1 and RST2 HIGH  
SetupTime, FWFTbeforeCLKA↑  
7.5  
0
8.5  
0
9.5  
0
ns  
ns  
ns  
ns  
Hold Time, A0-A35 after CLKA  
and B0-B35 after CLKB  
0.5  
0.5  
1
1
tENH  
HoldTime, CSA, W/RA, ENA, andMBAafterCLKA;  
CSB, W/RB, ENB, and MBB after CLKB↑  
1
1
(1)  
tRSTH  
tFSH  
Hold Time, RST1 or RST2 LOW after CLKA  
Hold Time, FS0 and FS1 after RST1 and RST2 HIGH  
Skew Time, between CLKA and CLKB for EFA/ORA,  
EFB/ORB, FFA/IRA, and FFB/IRB  
or CLKB  
4
2
4
2
4
3
9
ns  
ns  
ns  
tSKEW1(2)  
7.5  
7.5  
tSKEW2(2,3) Skew Time, between CLKAand CLKBfor AEA,  
AEB, AFA, and AFB  
12  
12  
16  
ns  
NOTES:  
1. Requirement to count the clock edge as one of at least four needed to reset a FIFO.  
2. Skew time is not a timing constraint for proper device operation and is only included to illustrate the timing relationship between CLKA cycle and CLKB cycle.  
3. Design simulated, not tested.  
8
Commercial Temperature Range  
IDT72V3622/72V3632/72V3642  
SWITCHING CHARACTERISTICS OVER RECOMMENDED RANGES OF SUPPLY  
VOLTAGE AND OPERATING FREE-AIR TEMPERATURE, CL = 30 pF  
Commercial: VCC=3.3V± 0.30V; for 12ns (83MHz) operation, VCC=3.3V ±0.15V; TA = 0ο C to +70ο C; JEDEC JESD8-A compliant  
72V3622L12  
72V3632L12  
72V3642L12  
72V3622L15  
72V3632L15  
72V3642L15  
72V3622L20  
72V3632L20  
72V3642L20  
Symbol  
tA  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
ns  
Access Time,CLKAtoA0-A35andCLKBtoB0-B35  
2
8
8
2
10  
8
2
12  
tWEF  
Propagation Delay Time, CLKAto FFA/IRA and CLKBto  
FFB/IRB  
2
2
2
10  
ns  
tREF  
Propagation Delay Time, CLKAto EFA/ORA and CLKBto  
EFB/ORB  
1
8
1
8
1
10  
ns  
tPAE  
tPAF  
tPMF  
Propagation Delay Time, CLKAto AEA and CLKBto AEB  
Propagation Delay Time, CLKAto AFA and CLKBto AFB  
1
1
0
8
8
8
1
1
0
8
8
8
1
1
0
10  
10  
10  
ns  
ns  
ns  
Propagation Delay Time, CLKAto MBF1 LOW or  
MBF2 HIGH and CLKBto MBF2 LOW or MBF1 HIGH  
(1)  
tPMR  
tMDV  
tRSF  
PropagationDelayTime, CLKAtoB0-B35 and  
2
2
1
8
8
2
2
1
10  
10  
15  
2
2
1
12  
12  
20  
ns  
ns  
ns  
CLKBtoA0-A35(2)  
Propagation Delay Time, MBA to A0-A35 valid and  
MBBtoB0-B35Valid  
Propagation Delay Time, RST1 LOW to AEB LOW, AFA  
HIGH, and MBF1 HIGH, and RST2 LOW to AEA LOW,  
AFB HIGH, and MBF2 HIGH  
10  
tEN  
tDIS  
Enable Time, CSA and W/RA LOW to A0-A35 Active  
and CSB LOW and W/RB HIGH to B0-B35 Active  
2
1
6
6
2
1
10  
8
2
1
12  
10  
ns  
ns  
Disable Time, CSA or W/RA HIGH to A0-A35 at high-impedance  
and CSB HIGH or W/RB LOW to B0-B35 at high-impedance  
NOTES:  
1. Writing data to the mail1 register when the B0-B35 outputs are active and MBB is HIGH.  
2. Writing data to the mail2 register when the A0-A35 outputs are active and MBA is HIGH.  
9
IDT72V3622/72V3632/72V3642  
Commercial Temperature Range  
FollowingReset,thelevelappliedtotheFWFTinputtochoosethedesired  
timingmodemustremainstaticthroughoutFIFOoperation.RefertoFigure2  
(Reset)foraFirstWordFallThroughselecttimingdiagram.  
SIGNAL DESCRIPTION  
RESET  
Afterpowerup,aMasterResetoperationmustbeperformedbyproviding  
a LOW pulse to RST1 and RST2 simultaneously. Afterwards, the FIFO  
memories ofthe IDT723622/723632/723642are resetseparatelybytaking  
their Reset (RST1, RST2) inputs LOW for at least four port-A Clock (CLKA)  
ALMOST-EMPTYFLAGANDALMOST-FULLFLAGOFFSETPROGRAM-  
MING  
Fourregistersinthesedevicesareusedtoholdtheoffsetvaluesforthe  
andfourport-BClock(CLKB)LOW-to-HIGHtransitions. TheResetinputscan Almost-EmptyandAlmost-Fullflags.TheportBAlmost-Emptyflag(AEB)Offset  
switchasynchronouslytotheclocks. AFIFOresetinitializestheinternalread registerislabeledX1andtheportAAlmost-Emptyflag(AEA)Offsetregister  
andwritepointersandforcestheInputReadyflag(IRA,IRB)LOW,theOutput is labeledX2. The portAAlmost-Fullflag(AFA)Offsetregisteris labeledY1  
Readyflag(ORA,ORB)LOW,theAlmost-Emptyflag(AEA,AEB)LOW,and andtheportBAlmost-Fullflag(AFB)OffsetregisterislabeledY2.Theindex  
the Almost-Full flag (AFA, AFB) HIGH. Resetting a FIFO also forces the ofeachregisternamecorrespondstoitsFIFOnumber.Theoffsetregisterscan  
Mailbox Flag (MBF1, MBF2) of the parallel mailbox register HIGH. After a be loaded with preset values during the reset of a FIFO or they can be  
FIFOis reset,its InputReadyflagis setHIGHaftertwoclockcycles tobegin programmed from port A (see Table 1).  
normaloperation.  
ALOW-to-HIGHtransitiononaFIFOReset(RST1,RST2)inputlatches modes.  
thevalueoftheFlagSelect(FS0,FS1)inputsforchoosingtheAlmost-Fulland  
Almost-Empty offset programming method. (For details see Table 1, Flag — PRESET VALUES  
FS0 and FS1 function the same way in both IDT Standard and FWFT  
Programming,andtheProgrammingtheAlmost-EmptyandAlmost-FullFlags  
ToloadtheFIFO'sAlmost-EmptyflagandAlmost-FullflagOffsetregisters  
section). The relevantFIFOResettimingdiagramcanbe foundinFigure 2. withoneofthethreepresetvalueslistedinTable1,atleastoneoftheflagselect  
inputsmustbeHIGHduringtheLOW-to-HIGHtransitionofitsresetinput.For  
FIRST WORD FALL THROUGH (FWFT)  
example,toloadthepresetvalueof64intoX1andY1,FS0andFS1mustbe  
AfterMasterReset,theFWFTselectfunctionisactive,permittingachoice HIGH when FlFO1 Reset (RST1) returns HIGH. Flag offset registers  
betweentwopossible timingmodes:IDTStandardmode orFirstWordFall associatedwithFIFO2areloadedwithoneofthepresetvaluesinthesameway  
Through (FWFT) mode. Once the Reset (RST1, RST2) input is HIGH, a withFIFO2Reset(RST2)toggledsimultaneouslywithFIFO1Reset(RST1).  
HIGH on the FWFT input during the next LOW-to-HIGH transition of CLKA For preset value loading timing diagram, see Figure 2.  
(forFIFO1)andCLKB(forFIFO2)willselectIDTStandardmode.Thismode  
uses the Empty Flag function (EFA, EFB) to indicate whether or not there — PARALLEL LOAD FROM PORT A  
areanywordspresentintheFIFOmemory.ItusestheFullFlagfunction(FFA,  
FFB) to indicate whether or not the FIFO memory has any free space for  
writing.InIDTStandardmode,everywordreadfromtheFIFO,includingthe  
first,mustberequestedusingaformalreadoperation.  
OncetheReset(RST1,RST2)inputis HIGH,aLOWontheFWFTinput  
duringthenextLOW-to-HIGHtransitionofCLKA(forFIFO1)andCLKB(for  
FIFO2)willselectFWFTmode.This mode uses the OutputReadyfunction  
(ORA,ORB)toindicatewhetherornotthereisvaliddataatthedataoutputs  
(A0-A35orB0-B35).ItalsousestheInputReadyfunction(IRA,IRB)toindicate  
whetherornottheFIFOmemoryhasanyfreespaceforwriting.IntheFWFT  
mode,thefirstwordwrittentoanemptyFIFOgoesdirectlytodataoutputs,no  
readrequestnecessary. Subsequentwordsmustbeaccessedbyperforming  
aformalreadoperation.  
ToprogramtheX1,X2,Y1,andY2registersfromportA,bothFlFOsshould  
be reset simultaneously with FS0 and FS1 LOW during the LOW-to-HIGH  
transitionoftheResetinputs.Afterthisresetiscomplete,thefirstfourwritesto  
FIFO1donotstoredataintheFIFOmemorybutloadtheoffsetregistersinthe  
order Y1, X1, Y2, X2. The port A data inputs used by the offset registers are  
(A7-A0), (A8-A0), or (A9-A0) for the IDT72V3622, IDT72V3632, or  
IDT72V3642,respectively. Thehighestnumberedinputisusedasthemost  
significantbitofthebinarynumberineachcase. Validprogrammingvaluesfor  
the registers ranges from 1 to 252 for the IDT72V3622; 1 to 508 for the  
IDT72V3632;and1to1,020fortheIDT72V3642. Afteralltheoffsetregisters  
areprogrammedfromportA,theportBFull/InputReadyflag(FFB/IRB)isset  
HIGH,andbothFIFOsbeginnormaloperation.SeeFigure3forrelevantoffset  
registerparallelprogrammingtimingdiagram.  
TABLE 1. FLAG PROGRAMMING  
FS1  
FS0  
RST1  
RST2  
X1 AND Y1 REGlSTERS(1)  
X2 AND Y2 REGlSTERS(2)  
H
H
H
H
L
H
H
L
X
64  
X
X
X
64  
X
16  
X
L
X
X
16  
H
H
L
X
8
X
L
X
X
8
L
Parallel programming via Port A  
Parallel programming via Port A  
NOTES:  
1. X1 register holds the offset for AEB; Y1 register holds the offset for AFA.  
2. X2 register holds the offset for AEA; Y2 register holds the offset for AFB.  
10  
Commercial Temperature Range  
IDT72V3622/72V3632/72V3642  
FIFO WRITE/READ OPERATION  
andarenotrelatedtohigh-impedancecontrolofthedataoutputs.Ifaportenable  
ThestateoftheportAdata(A0-A35)outputsiscontrolledbyportAChip isLOWduringaclockcycle,theportsChipSelectandWrite/Readselectmay  
Select(CSA)andportAWrite/Readselect(W/RA).TheA0-A35outputsare changestatesduringthesetupandholdtimewindowofthecycle.  
inthehigh-impedancestatewheneitherCSAorW/RAisHIGH.TheA0-A35  
outputs are active when both CSA and W/RA are LOW.  
WhenoperatingtheFIFOinFWFTmodeandtheOutputReadyflagisLOW,  
thenextwordwrittenisautomaticallysenttotheFIFO’soutputregisterbythe  
Data is loaded into FIFO1 from the A0-A35 inputs on a LOW-to-HIGH LOW-to-HIGHtransitionoftheportclockthatsetstheOutputReadyflagHIGH.  
transitionofCLKAwhenCSAis LOW,W/RAis HIGH,ENAis HIGH,MBAis WhentheOutputReadyflagisHIGH,subsequentdataisclockedtotheoutput  
LOW,andFFA/IRAisHIGH. DataisreadfromFIFO2totheA0-A35outputs registersonlywhenareadisselectedusingtheportsChipSelect,Write/Read  
byaLOW-to-HIGHtransitionofCLKAwhenCSAisLOW,W/RAisLOW,ENA select,Enable,andMailboxselect.  
isHIGH,MBAisLOW,andEFA/ORAisHIGH(seeTable2).FIFOreadsand  
writesonportAareindependentofanyconcurrentportBoperation.Writeand theEmptyFlagtochangestateonthesecondLOW-to-HIGHtransitionofthe  
Read cycle timing diagrams for Port A can be found in Figure 4 and 7. ReadClock. Thedatawordwillnotbeautomaticallysenttotheoutputregister.  
WhenoperatingtheFIFOinIDTStandardmode,thefirstwordwillcause  
TheportBcontrolsignalsareidenticaltothoseofportAwiththeexception Instead, data residing in the FIFO's memory array is clocked to the output  
thattheportBWrite/Readselect(W/RB)istheinverseoftheportAWrite/Read registeronlywhenareadisselected usingtheportsChipSelect,Write/Read  
select(W/RA).ThestateoftheportBdata(B0-B35)outputsiscontrolledbythe select,Enable,andMailboxselect.  
portBChipSelect(CSB)andportBWrite/Readselect(W/RB).TheB0-B35  
outputs are in the high-impedance state when either CSB is HIGH or W/RB SYNCHRONIZED FIFO FLAGS  
isLOW.TheB0-B35outputsareactivewhenCSBisLOWandW/RBisHIGH.  
EachFIFOissynchronizedtoitsportclockthroughatleasttwoflip-flop  
Data is loaded into FIFO2 from the B0-B35 inputs on a LOW-to-HIGH stages.Thisisdonetoimproveflagsignalreliabilitybyreducingtheprobability  
transition of CLKB whenCSB is LOW, W/RB is LOW, ENB is HIGH, MBB is ofmetastableeventswhenCLKAandCLKBoperateasynchronouslytoone  
LOW,andFFB/IRBis HIGH.Datais readfromFIFO1totheB0-B35outputs another. EFA/ORA, AEA, FFA/IRA, and AFA are synchronized to CLKA.  
byaLOW-to-HIGHtransitionofCLKBwhenCSBisLOW,W/RBisHIGH,ENB EFB/ORB, AEB, FFB/IRB, and AFB are synchronized to CLKB. Tables  
isHIGH,MBBisLOW,andEFB/ORBisHIGH(seeTable3).FIFOreadsand 4 and 5 show the relationship of each port flag to FIFO1 and FIFO2.  
writesonportBareindependentofanyconcurrentportAoperation.Writeand  
Read cycle timing diagrams for Port B can be found in Figure 5 and 6.  
The setupandholdtime constraints tothe portClocks forthe portChip  
EMPTY/OUTPUT READY FLAGS (EFA/ORA, EFB/ORB)  
These are dual purpose flags. In the FWFT mode, the Output Ready  
SelectsandWrite/Readselectsareonlyforenablingwriteandreadoperations (ORA, ORB) function is selected. When the Output Ready flag is HIGH,  
TABLE 2. PORT A ENABLE FUNCTION TABLE  
CSA  
H
L
W/RA  
X
ENA  
MBA  
CLKA  
Data A (A0-A35) I/O  
Port Function  
X
X
X
X
Input  
None  
None  
H
L
X
Input  
L
H
H
L
Input  
FIFO1 write  
Mail1 write  
L
H
H
H
Input  
L
L
L
L
X
Output  
None  
L
L
H
L
Output  
FIFO2 read  
None  
L
L
L
H
X
Output  
L
L
H
H
Output  
Mail2 read (set MBF2 HIGH)  
TABLE 3. PORT B ENABLE FUNCTION TABLE  
CSB  
H
L
W/RB  
X
ENB  
MBB  
CLKB  
Data B (B0-B35) I/O  
Port Function  
X
X
X
X
Input  
None  
None  
L
L
X
Input  
L
L
H
L
Input  
FIFO2 write  
Mail2 write  
L
L
H
H
Input  
L
H
L
L
X
Output  
None  
L
H
H
L
Output  
FIFO1 read  
None  
L
H
L
H
X
Output  
L
H
H
H
Output  
Mail1 read (set MBF1 HIGH)  
11  
IDT72V3622/72V3632/72V3642  
Commercial Temperature Range  
newdataispresentintheFIFOoutputregister.WhentheOutputReadyflag  
InIDTStandardmode,fromthetimeawordiswrittentoaFIFO,theEmpty  
is LOW, the previous data word is present in the FIFO output register and Flagwillindicatethepresenceofdataavailableforreadinginaminimumoftwo  
attemptedFIFOreads areignored. cyclesoftheEmptyFlagsynchronizingclock.Therefore,anEmptyFlagisLOW  
In the IDT Standard mode, the Empty Flag (EFA, EFB) function is ifawordinmemoryisthenextdatatobesenttotheFlFOoutputregisterand  
selected.WhentheEmptyFlagisHIGH,dataisavailableintheFIFO’sRAM twocycles oftheportClockthatreads datafromtheFIFOhavenotelapsed  
forreadingtotheoutputregister.WhentheEmptyFlagisLOW,theprevious sincethetimethewordwaswritten.TheEmptyFlagoftheFIFOremainsLOW  
datawordispresentintheFIFOoutputregisterandattemptedFIFOreadsare untilthesecondLOW-to-HIGHtransitionofthesynchronizingclockoccurs,  
ignored.  
TheEmpty/OutputReadyflagofaFIFOissynchronizedtotheportclock  
forcing the Empty Flag HIGH; only then can data be read.  
ALOW-to-HIGHtransitiononanEmpty/OutputReadyflagsynchronizing  
thatreadsdatafromitsarray.ForboththeFWFTandIDTStandardmodes, clockbeginsthefirstsynchronizationcycleofawriteiftheclocktransitionoccurs  
the FIFOreadpointeris incrementedeachtime a newwordis clockedtoits attimetSKEW1orgreaterafterthewrite.Otherwise,thesubsequentclockcycle  
outputregister.ThestatemachinethatcontrolsanOutputReadyflagmonitors canbethefirstsynchronizationcycle(seeFigures8through11forEFA/ORA  
a write pointer and read pointer comparator that indicates when the FIFO and EFB/ORB timing diagrams).  
memorystatusisempty,empty+1,orempty+2.  
InFWFTmode,fromthetimeawordiswrittentoaFIFO,itcanbeshifted FULL/INPUT READY FLAGS (FFA/IRA, FFB/IRB)  
totheFIFOoutputregisterinaminimumofthreecyclesoftheOutputReady  
Thisisadualpurposeflag.InFWFTmode,theInputReady(IRAandIRB)  
flagsynchronizingclock.Therefore,anOutputReadyflagisLOWifawordin function is selected. In IDT Standard mode, the Full Flag (FFA and FFB)  
memoryisthenextdatatobesenttotheFlFOoutputregisterandthreecycles functionisselected.Forbothtimingmodes,whentheFull/InputReadyflagis  
oftheportClockthatreadsdatafromtheFIFOhavenotelapsedsincethetime HIGH,amemorylocationisfreeintheFIFOtoreceivenewdata.Nomemory  
thewordwaswritten.TheOutputReadyflagoftheFIFOremainsLOWuntil locationsarefreewhentheFull/InputReadyflagisLOWandattemptedwrites  
thethirdLOW-to-HIGHtransitionofthesynchronizingclockoccurs,simulta- to the FIFO are ignored.  
neouslyforcingtheOutputReadyflagHIGHandshiftingthewordtotheFIFO  
outputregister.  
TABLE 4. FIFO1 FLAG OPERATION (IDT STANDARD AND FWFT MODES)  
Synchronized  
to CLKB  
Synchronized  
to CLKA  
(1,2)  
Number of Words in FIFO  
IDT72V3622(3)  
IDT72V3632(3)  
IDT72V3642(3)  
EFB/ORB  
AEB  
L
AFA  
FFA/IRA  
0
1 to X1  
0
1 to X1  
0
1 to X1  
L
H
H
H
H
H
H
H
L
H
H
H
H
L
L
(X1+1) to [256-(Y1+1)]  
(256-Y1) to 255  
256  
(X1+1) to [512-(Y1+1)]  
(512-Y1) to 511  
512  
(X1+1) to [1,024-(Y1+1)]  
(1,024-Y1) to 1,023  
1,024  
H
H
H
L
NOTES:  
1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.  
2. Data in the output register does not count as a "word in FIFO memory". Since in FWFT mode, the first word written to an empty FIFO goes unrequested to the output register (no  
read operation necessary), it is not included in the FIFO memory count.  
3. X1 is the Almost-Empty offset for FIFO1 used by AEB. Y1 is the Almost-Full offset for FIFO1 used by AFA. Both X1 and Y1 are selected during a reset of FIFO1 or programmed from  
port A.  
4. The ORB and IRA functions are active during FWFT mode; the EFB and FFA functions are active in IDT Standard mode.  
TABLE 5. FIFO2 FLAG OPERATION (IDT STANDARD AND FWFT MODES)  
Synchronized  
Synchronized  
(1,2)  
Number of Words in FIFO  
to CLKA  
to CLKB  
IDT72V3622(3)  
IDT72V3632(3)  
IDT72V3642(3)  
EFA/ORA  
AEA  
L
AFB  
FFB/IRB  
0
1 to X2  
0
1 to X2  
0
1 to X2  
L
H
H
H
H
H
H
H
L
H
H
H
H
L
L
(X2+1) to [256-(Y2+1)]  
(256-Y2) to 255  
256  
(X2+1) to [512-(Y2+1)]  
(512-Y2) to 511  
512  
(X2+1) to [1,024-(Y2+1)]  
(1,024-Y2) to 1,023  
1,024  
H
H
H
L
NOTES:  
1. When a word loaded to an empty FIFO is shifted to the output register, its previous FIFO memory location is free.  
2. Data in the output register does not count as a "word in FIFO memory". Since in FWFT mode, the first word written to an empty FIFO goes unrequested to the output register (no  
read operation necessary), it is not included in the FIFO memory count.  
3. X2 is the Almost-Empty offset for FIFO2 used by AEA. Y2 is the Almost-Full offset for FIFO2 used by AFB. Both X2 and Y2 are selected during a reset of FIFO2 or programmed from  
port A.  
4. The ORA and IRB functions are active during FWFT mode; the EFA and FFB functions are active in IDT Standard mode.  
12  
Commercial Temperature Range  
IDT72V3622/72V3632/72V3642  
TheFull/InputReadyflagofaFlFOissynchronizedtotheportclockthat bythecontentsofregisterY1forAFAandregisterY2forAFB.Theseregisters  
writesdatatoitsarray.ForbothFWFTandIDTStandardmodes,eachtime are loaded with preset values during a FlFO reset or programmed from port  
awordiswrittentoaFIFO,itswritepointerisincremented.Thestatemachine A(seeAlmost-EmptyflagandAlmost-Fullflagoffsetprogrammingsection).  
thatcontrolsaFull/InputReadyflagmonitorsawritepointerandreadpointer AnAlmost-FullflagisLOWwhenthenumberofwordsinitsFIFOisgreaterthan  
comparatorthatindicateswhentheFlFOmemorystatusisfull,full-1,orfull-2. orequalto(256-Y),(512-Y),or(1,024-Y)fortheIDT72V3622,IDT72V3632,  
FromthetimeawordisreadfromaFIFO,itspreviousmemorylocationisready orIDT72V3642respectively. AnAlmost-Fullflagis HIGHwhenthe number  
to be written to in a minimum of two cycles of the Full/Input Ready flag of words in its FIFO is less than or equal to [256-(Y+1)], [512-(Y+1)], or  
synchronizingclock.Therefore,aFull/InputReadyflagisLOWiflessthantwo [1,024-(Y+1)] for the IDT72V3622, IDT72V3632, or IDT72V3642 respec-  
cyclesoftheFull/InputReadyflagsynchronizingclockhaveelapsedsincethe tively. NotethatadatawordpresentintheFIFOoutputregisterhasbeenread  
next memory write location has been read. The second LOW-to-HIGH frommemory.  
transitionontheFull/InputReadyflagsynchronizingclockafterthereadsets  
the Full/InputReadyflagHIGH.  
TwoLOW-to-HIGHtransitionsoftheAlmost-Fullflagsynchronizingclock  
arerequiredafteraFIFOreadforitsAlmost-Fullflagtoreflectthenewlevelof  
ALOW-to-HIGHtransitiononaFull/InputReadyflagsynchronizingclock fill.Therefore,theAlmost-FullflagofaFIFOcontaining[256/512/1,024-(Y+1)]  
beginsthefirstsynchronizationcycleofareadiftheclocktransitionoccursat or less words remains LOW if two cycles of its synchronizing clock have not  
timetSKEW1orgreateraftertheread.Otherwise,thesubsequentclockcyclecan elapsedsincethereadthatreducedthenumberofwordsinmemoryto[256/  
bethefirstsynchronizationcycle(seeFigures12through15forFFA/IRAand 512/1,024-(Y+1)]. AnAlmost-FullflagissetHIGHbythesecondLOW-to-HIGH  
FFB/IRB timing diagrams).  
transitionofitssynchronizingclockaftertheFIFOreadthatreducesthenumber  
ofwordsinmemoryto[256/512/1,024-(Y+1)]. ALOW-to-HIGHtransitionofan  
Almost-Fullflagsynchronizingclockbeginsthefirstsynchronizationcycleifit  
ALMOST-EMPTY FLAGS (AEA, AEB)  
TheAlmost-EmptyflagofaFIFOissynchronizedtotheportclockthatreads occursattimetSKEW2orgreaterafterthereadthatreducesthenumberofwords  
datafromitsarray.ThestatemachinethatcontrolsanAlmost-Emptyflagmonitors inmemoryto[256/512/1,024-(Y+1)]. Otherwise,thesubsequentsynchroniz-  
a write pointer and read pointer comparator that indicates when the FIFO ingclockcyclemaybethefirstsynchronizationcycle (seeFigures18and19).  
memory status is almost-empty, almost-empty+1, or almost-empty+2. The  
almost-emptystateisdefinedbythecontentsofregisterX1forAEBandregister  
X2forAEA.TheseregistersareloadedwithpresetvaluesduringaFIFOreset  
orprogrammedfromportA(seeAlmost-EmptyflagandAlmost-Fullflagoffset  
programmingsection).AnAlmost-EmptyflagisLOWwhenitsFIFOcontains  
Xorless words andis HIGHwhenits FIFOcontains (X+1)ormore words. A  
data wordpresentinthe FIFOoutputregisterhas beenreadfrommemory.  
TwoLOW-to-HIGHtransitionsoftheAlmost-Emptyflagsynchronizing  
clockarerequiredafteraFIFOwriteforitsAlmost-Emptyflagtoreflectthenew  
leveloffill.Therefore,theAlmost-FullflagofaFIFOcontaining(X+1)ormore  
wordsremainsLOWiftwocyclesofitssynchronizingclockhavenotelapsed  
sincethewritethatfilledthememorytothe(X+1)level. AnAlmost-Emptyflag  
issetHIGHbythesecondLOW-to-HIGHtransitionofitssynchronizingclockafter  
theFIFOwritethatfillsmemorytothe(X+1)level.ALOW-to-HIGHtransitionof  
anAlmost-Emptyflagsynchronizingclockbeginsthefirstsynchronizationcycle  
ifitoccursattimetSKEW2orgreaterafterthewritethatfillstheFIFOto(X+1)words.  
Otherwise,thesubsequentsynchronizingclockcyclemaybethefirstsynchro-  
nization cycle. (See Figures 16 and 17).  
MAILBOX REGISTERS  
Each FIFO has a 36-bit bypass register to pass command and control  
informationbetweenportAandportBwithoutputtingitinqueue.TheMailbox  
select(MBA,MBB)inputschoosebetweenamailregisterandaFIFOforaport  
datatransferoperation.ALOW-to-HIGHtransitiononCLKAwritesA0-A35data  
tothemail1registerwhenaportAWriteisselectedbyCSA,W/RA,andENA  
andwithMBAHIGH.ALOW-to-HIGHtransitiononCLKBwritesB0-B35data  
tothemail2registerwhenaportBWriteisselectedbyCSB,W/RB,andENB  
andwithMBBHIGH.Writingdatatoamailregistersetsitscorrespondingflag  
(MBF1orMBF2)LOW.Attemptedwrites toamailregisterareignoredwhile  
themailflagisLOW.  
Whendataoutputsofaportareactive,thedataonthebuscomesfromthe  
FIFOoutputregisterwhentheportMailboxselectinputisLOWandfromthemail  
registerwhentheportmailboxselectinputisHIGH.TheMail1RegisterFlag  
(MBF1)issetHIGHbyaLOW-to-HIGHtransitiononCLKBwhenaportBRead  
isselectedbyCSB,W/RB,andENBandwithMBBHIGH.TheMail2Register  
Flag(MBF2)issetHIGHbyaLOW-to-HIGHtransitiononCLKAwhenaport  
A read is selected by CSA, W/RA, and ENA and with MBA HIGH. The data  
inamailregisterremainsintactafteritisreadandchangesonlywhennewdata  
iswrittentotheregister.FormailregisterandMailRegisterFlagtimingdiagrams,  
see Figure 20 and 21.  
ALMOST-FULL FLAGS (AFA, AFB)  
TheAlmost-FullflagofaFIFOissynchronizedtotheportclockthatwrites  
datatoitsarray.ThestatemachinethatcontrolsanAlmost-Fullflagmonitorsa  
writepointerandreadpointercomparatorthatindicateswhentheFIFOmemory  
statusisalmost-full,almost-full-1,oralmost-full-2.Thealmost-fullstateisdefined  
13  
IDT72V3622/72V3632/72V3642  
Commercial Temperature Range  
CLKA  
CLKB  
t
RSTH  
t
RSTS  
t
FSS  
t
FSH  
RST1  
FWFT  
tFWS  
0,1  
FS1,FS0  
FFA/IRA  
t
WFF  
t
WFF  
t
REF  
EFB/ORB  
AEB  
t
t
RSF  
RSF  
AFA  
t
RSF  
MBF1  
4660 drw 04  
NOTES:  
1. FIFO2 is reset in the same manner to load X2 and Y2 with a preset value.  
2. If FWFT is HIGH, then EFB/ORB will go LOW one CLKB cycle earlier than in this case where FWFT is LOW.  
Figure 2. FIFO1 Reset and Loading X1 and Y1 with a Preset Value of Eight(1) (IDT Standard and FWFT Modes)  
CLKA  
4
1
2
t
FSS  
RST1,  
RST2  
t
FSH  
0,0  
FS1,FS0  
t
WFF  
FFA/IRA  
ENA  
(1)  
tENS2  
tSKEW1  
tENH  
tDH  
tDS  
A0 - A35  
First Word to FIFO1  
AFA Offset  
AEB Offset  
AFB Offset  
AEA Offset  
(Y1)  
(X1)  
(Y2)  
(X2)  
CLKB  
1
2
t
WFF  
FFB/IRB  
4660 drw 05  
NOTES:  
1. tSKEW1 is the minimum time between the rising CLKA edge and a rising CLKB edge for FFB/IRB to transition HIGH in the next cycle. If the time between the rising edge of CLKA and rising  
edge of CLKB is less than tSKEW1, then FFB/IRB may transition HIGH one CLKB cycle later than shown.  
2. CSA = LOW, W/RA = HIGH, MBA = LOW. It is not necessary to program offset register on consecutive clock cycles.  
Figure 3. Parallel Programming of the Almost-Full Flag and Almost-Empty Flag Offset Values after Reset (IDT Standard and FWFT Modes)  
14  
Commercial Temperature Range  
IDT72V3622/72V3632/72V3642  
tCLK  
tCLKL  
tCLKH  
CLKA  
FFA/IRA  
HIGH  
tENS1  
tENH  
CSA  
t
ENS2  
ENS2  
t
ENH  
ENH  
ENH  
W/RA  
MBA  
ENA  
t
t
tENS2  
t
ENS2  
tENS2  
t
tENH  
tENH  
tDH  
tDS  
W1(1)  
W2(1)  
No Operation  
A0 - A35  
4660 drw 06  
NOTE:  
1. Written to FIFO1.  
Figure 4. Port A Write Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)  
tCLK  
tCLKH  
tCLKL  
CLKB  
FFB/IRB HIGH  
tENH  
tENS1  
CSB  
t
ENH  
t
ENS2  
ENS2  
W/RB  
tENH  
t
MBB  
tENH  
tENH  
tENH  
tENS2  
tENS2  
tENS2  
ENB  
tDH  
t
DS  
(1)  
W2(1)  
No Operation  
B0 - B35  
W1  
4660 drw 07  
NOTE:  
1. Written to FIFO2.  
Figure 5. Port B Write Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)  
15  
IDT72V3622/72V3632/72V3642  
Commercial Temperature Range  
tCLK  
tCLKH  
tCLKL  
CLKB  
EFB/ORB HIGH  
CSB  
W/RB  
tENS2  
MBB  
tENH  
tENH  
tENH  
tENS2  
tENS2  
ENB  
No Operation  
W2(1)  
t
DIS  
DIS  
t
t
MDV  
MDV  
t
A
t
A
A
t
EN  
EN  
B0-B35  
Previous Data  
W1(1)  
W2(1)  
(IDT Standard Mode)  
t
OR  
tA  
t
t
B0-B35  
W1(1)  
W3 (1)  
(FWFT Mode)  
4660 drw 08  
NOTE:  
1. Read From FIFO1.  
Figure 6. Port B Read Cycle Timing for FIFO1 (IDT Standard and FWFT Modes)  
tCLK  
tCLKH  
tCLKL  
CLKA  
EFA/ORA HIGH  
CSA  
W/RA  
MBA  
ENA  
t
ENS2  
t
ENH  
tENH  
t
ENH  
t
ENS2  
t
ENS2  
t
DMV  
No Operation  
W2(1)  
t
DIS  
DIS  
t
A
t
A
t
EN  
A0-A35  
Previous Data  
W1(1)  
W2(1)  
(Standard Mode)  
t
t
MDV  
t
A
OR  
tA  
t
EN  
A0-A35  
W3(1)  
W1(1)  
(FWFT Mode)  
4660 drw 09  
NOTE:  
1. Read From FIFO2.  
Figure 7. Port A Read Cycle Timing for FIFO2 (IDT Standard and FWFT Modes)  
16  
Commercial Temperature Range  
IDT72V3622/72V3632/72V3642  
t
CLK  
t
CLKL  
tCLKH  
CLKA  
CSA  
LOW  
HIGH  
WRA  
tENS2  
tENH  
MBA  
tENS2  
tENH  
ENA  
HIGH  
IRA  
tDH  
tDS  
A0 - A35  
W1  
t
CLK  
(1)  
tSKEW1  
tCLKH  
tCLKL  
1
2
3
CLKB  
t
REF  
t
REF  
ORB FIFO1Empty  
CSB LOW  
W/RB  
HIGH  
LOW  
MBB  
tENS2  
tENH  
ENB  
tA  
B0- B35  
Old Data in FIFO1 Output Register  
W1  
4660 drw 10  
NOTE:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for ORB to transition HIGH and to clock the next word tothe FIFO1 output register in three CLKB cycles.  
If the time between the rising CLKA edge and rising CLKB edge is less than tSKEW1, then the transition of ORB HIGH and load of the first word to the output register may occur one CLKB  
cycle later than shown.  
Figure 8. ORB Flag Timing and First Data Word Fall Through when FIFO1 is Empty (FWFT Mode)  
17  
IDT72V3622/72V3632/72V3642  
Commercial Temperature Range  
t
CLK  
t
CLKL  
tCLKH  
CLKA  
CSA  
LOW  
HIGH  
WRA  
t
ENS2  
t
ENH  
ENH  
MBA  
tENS2  
t
ENA  
FFA  
HIGH  
tDS  
tDH  
A0-A35  
W1  
t
CLKtCLKL  
(1)  
SKEW1  
t
CLKH  
t
CLKB  
1
2
t
REF  
tREF  
FIFO1 Empty  
LOW  
EFB  
CSB  
W/RB  
HIGH  
LOW  
MBB  
tENH  
tENS2  
ENB  
tA  
W1  
B0-B35  
4660 drw 11  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for EFB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising  
CLKB edge is less than tSKEW1, then the transition of EFB HIGH may occur one CLKB cycle later than shown.  
Figure 9. EFB Flag Timing and First Data Read Fall Through when FIFO1 is Empty (IDT Standard Mode)  
18  
Commercial Temperature Range  
IDT72V3622/72V3632/72V3642  
tCLK  
tCLKL  
tCLKH  
CLKB  
LOW  
LOW  
CSB  
W/RB  
tENS2  
tENH  
MBB  
ENB  
tENS2  
tENH  
IRB  
HIGH  
tDS  
tDH  
B0 - B35  
W1  
t
CLK  
(1)  
SKEW1  
t
tCLKH  
t
CLKL  
1
2
3
CLKA  
ORA  
t
REF  
t
REF  
FIFO2 Empty  
LOW  
LOW  
LOW  
CSA  
W/RA  
MBA  
tENS2  
tENH  
ENA  
tA  
Old Data in FIFO2 Output Register  
W1  
A0- A35  
4660 drw 12  
NOTE:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for ORA to transition HIGH and to clock the next word tothe FIFO2 output register in three CLKA cycles.  
If the time between the rising CLKB edge and rising CLKA edge is less than tSKEW1, then the transition of ORA HIGH and load of the first word to the output register may occur one CLKA  
cycle later than shown.  
Figure 10. ORA Flag Timing and First Data Word Fall Through when FIFO2 is Empty (FWFT Mode)  
19  
IDT72V3622/72V3632/72V3642  
Commercial Temperature Range  
tCLK  
tCLKH tCLKL  
CLKB  
LOW  
LOW  
CSB  
W/RB  
tENS2  
tENS2  
tENH  
tENH  
MBB  
ENB  
HIGH  
FFB  
tDH  
tDS  
W1  
B0-B35  
tCLK  
tCLKH  
(1)  
tSKEW1  
tCLKL  
1
2
CLKA  
tREF  
tREF  
EFA  
FIFO2 Empty  
LOW  
LOW  
CSA  
W/RA  
MBA  
LOW  
tENS2  
tENH  
ENA  
tA  
A0-A35  
W1  
4660 drw 13  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for EFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising  
CLKA edge is less than tSKEW1, then the transition of EFA HIGH may occur one CLKA cycle later than shown.  
Figure 11. EFA Flag Timing and First Data Read when FIFO2 is Empty (IDT Standard Mode)  
20  
Commercial Temperature Range  
IDT72V3622/72V3632/72V3642  
tCLK  
tCLKH  
tCLKL  
CLKB  
LOW  
CSB  
W/RB  
HIGH  
LOW  
MBB  
tENH  
tENS2  
ENB  
HIGH  
ORB  
tA  
Previous Word in FIFO1 Output Register  
SKEW1  
Next Word From FIFO1  
B0- B35  
(1)  
t
tCLK  
tCLKH  
tCLKL  
1
2
CLKA  
tWEF  
tWEF  
FIFO1 Full  
LOW  
IRA  
CSA  
W/RA  
HIGH  
tENS2  
tENH  
MBA  
tENS2  
tENH  
ENA  
A0 - A35  
NOTE:  
tDS  
tDH  
Write  
4660 drw 14  
To FIFO1  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for IRA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising  
CLKA edge is less than tSKEW1, then IRA may transition HIGH one CLKA cycle later than shown.  
Figure 12. IRA Flag Timing and First Available Write when FIFO1 is Full (FWFT Mode)  
21  
IDT72V3622/72V3632/72V3642  
Commercial Temperature Range  
tCLK  
tCLKH  
tCLKL  
CLKB  
LOW  
CSB  
W/RB  
MBB  
HIGH  
LOW  
tENS2  
tENH  
tA  
ENB  
EFB  
HIGH  
Previous Word in FIFO1 Output Register  
tSKEW1  
Next Word From FIFO1  
B0-B35  
(1)  
tCLK  
tCLKH  
tCLKL  
CLKA  
1
2
tWFF  
tWFF  
FIFO1 Full  
LOW  
FFA  
CSA  
HIGH  
W/RA  
tENS2  
tENS2  
tENH  
tENH  
MBA  
ENA  
tDH  
tDS  
A0-A35  
Write  
4660 drw 15  
To FIFO1  
NOTE:  
1. tSKEW1 is the minimum time between a rising CLKB edge and a rising CLKA edge for FFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising  
CLKA edge is less than tSKEW1, then FFA may transition HIGH one CLKA cycle later than shown.  
Figure 13. FFA Flag Timing and First Available Write when FIFO1 is Full (IDT Standard Mode)  
22  
Commercial Temperature Range  
IDT72V3622/72V3632/72V3642  
tCLK  
tCLKH  
tCLKL  
CLKA  
LOW  
CSA  
W/RA LOW  
LOW  
MBA  
ENA  
tENS2  
tENH  
HIGH  
ORA  
tA  
Previous Word in FIFO2 Output Register  
SKEW1  
Next Word From FIFO2  
A0- A35  
(1)  
t
tCLK  
tCLKH  
tCLKL  
1
2
CLKB  
IRB  
tWEF  
tWEF  
FIFO2 FULL  
LOW  
CSB  
LOW  
W/RB  
tENS2  
tENH  
MBB  
ENB  
tENS2  
tENH  
tDS  
tDH  
Write  
B0 - B35  
4660 drw 16  
To FIFO2  
NOTE:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for IRB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising  
CLKB edge is less than tSKEW1, then IRB may transition HIGH one CLKB cycle later than shown.  
Figure 14. IRB Flag Timing and First Available Write when FIFO2 is Full (FWFT Mode)  
23  
IDT72V3622/72V3632/72V3642  
Commercial Temperature Range  
tCLK  
tCLKH  
tCLKL  
CLKA  
LOW  
LOW  
LOW  
CSA  
W/RA  
MBA  
tENS2  
tENH  
ENA  
EFA  
HIGH  
tA  
Previous Word in FIFO2 Output Register  
Next Word From FIFO2  
A0-A35  
(1)  
tCLK  
tSKEW1  
tCLKH  
tCLKL  
CLKB  
1
2
t
WFF  
t
WFF  
FIFO2 Full  
LOW  
FFB  
CSB  
W/RB LOW  
tENH  
tENS2  
MBB  
ENB  
t
ENS2  
t
ENH  
tDS  
tDH  
Write  
B0-B35  
4660 drw 17  
To FIFO2  
NOTES:  
1. tSKEW1 is the minimum time between a rising CLKA edge and a rising CLKB edge for FFB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising  
CLKB edge is less than tSKEW1, then FFB may transition HIGH one CLKB cycle later than shown.  
Figure 15. FFB Flag Timing and First Available Write when FIFO2 is Full (IDT Standard Mode)  
CLKA  
tENS2  
tENH  
ENA  
(1)  
SKEW2  
t
1
2
CLKB  
t
PAE  
t
PAE  
AEB  
X1 Words in FIFO1  
(X1+1) Words in FIFO1  
ENS2  
t
tENH  
ENB  
4660 drw 18  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AEB to transition HIGH in the next CLKB cycle. If the time between the rising CLKA edge and rising  
CLKB edge is less than tSKEW2, then AEB may transition HIGH one CLKB cycle later than shown.  
2. FIFO1 Write (CSA = LOW, W/RA = LOW, MBA = LOW), FIFO1 read (CSB = LOW, W/RB = HIGH, MBB = LOW). Data in the FIFO1 output register has been read from the FIFO.  
Figure 16. Timing for AEB when FIFO1 is Almost-Empty (IDT Standard and FWFT Modes)  
24  
Commercial Temperature Range  
IDT72V3622/72V3632/72V3642  
CLKB  
tENS2  
tENH  
ENB  
(1)  
tSKEW2  
1
CLKA  
2
t
PAE  
t
PAE  
AEA  
X2 Words in FIFO2  
(X2+1) Words in FIFO2  
ENS2  
t
tENH  
ENA  
4660 drw 19  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for AEA to transition HIGH in the next CLKA cycle. If the time between the rising CLKB edge and rising  
CLKA edge is less than tSKEW2, then AEA may transition HIGH one CLKA cycle later than shown.  
2. FIFO2 Write (CSB = LOW, W/RB = LOW, MBB = LOW), FIFO2 read (CSA = LOW, W/RA = LOW, MBA = LOW). Data in the FIFO2 output register has been read from the FIFO.  
Figure 17. Timing for AEA when FIFO2 is Almost-Empty (IDT Standard and FWFT Modes)  
(1)  
SKEW2  
t
1
2
t
CLKA  
ENA  
tENS2  
tENH  
PAF  
t
PAF  
(D-Y1) Words in FIFO1  
[D-(Y1+1)] Words in FIFO1  
AFA  
CLKB  
tENS2  
tENH  
ENB  
4660 drw 20  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKA edge and a rising CLKB edge for AFA to transition HIGH in the next CLKA cycle. If the time between the rising CLKA edge and rising  
CLKB edge is less than tSKEW2, then AFA may transition HIGH one CLKA cycle later than shown.  
2. FIFO1 Write (CSA = LOW, W/RA = HIGH, MBA = LOW), FIFO1 read (CSB = LOW, W/RB = HIGH, MBB = LOW). Data in the FIFO1 output register has been read from the FIFO.  
3. D = Maximum FIFO Depth = 256 for the IDT72V3622, 512 for the IDT72V3632, 1,024 for the IDT72V3642.  
Figure 18. Timing for AFA when FIFO1 is Almost-Full (IDT Standard and FWFT Modes)  
25  
IDT72V3622/72V3632/72V3642  
Commercial Temperature Range  
(1)  
tSKEW2  
1
2
CLKB  
tENS2  
tENH  
ENB  
AFB  
tPAF  
tPAF  
(D-Y2) Words in FIFO2  
[D-(Y2+1)] Words in FIFO2  
CLKA  
tENH  
tENS2  
ENA  
4660 drw 21  
NOTES:  
1. tSKEW2 is the minimum time between a rising CLKB edge and a rising CLKA edge for AFB to transition HIGH in the next CLKB cycle. If the time between the rising CLKB edge and rising  
CLKA edge is less than tSKEW2, then AFB may transition HIGH one CLKB cycle later than shown.  
2. FIFO2 write (CSB = LOW, W/RB = LOW, MBB = LOW), FIFO2 read (CSA = LOW, W/RA = LOW, MBA = LOW). Data in the FIFO2 output register has been read from the FIFO.  
3. D = Maximum FIFO Depth = 256 for the IDT72V3622, 512 for the IDT72V3632, 1,024 for the IDT72V3642.  
Figure 19. Timing for AFB when FIFO2 is Almost-Full (IDT Standard and FWFT Modes)  
CLKA  
tENH  
tENS1  
CSA  
W/RA  
MBA  
t
ENH  
t
ENS1  
t
ENH  
t
ENS2  
tENH  
tENS2  
ENA  
A0 - A35  
CLKB  
tDH  
t
DS  
W1  
t
PMF  
tPMF  
MBF1  
CSB  
W/RB  
MBB  
ENB  
tENH  
tENS2  
t
MDV  
tEN  
t
PMR  
tDIS  
FIFO1 Output Register  
W1 (Remains valid in Mail1 Register after read)  
B0 - B35  
4660 drw 22  
Figure 20. Timing for Mail1 Register and MBF1 Flag (IDT Standard and FWFT Modes)  
26  
Commercial Temperature Range  
IDT72V3622/72V3632/72V3642  
CLKB  
CSB  
tENH  
tENH  
tENH  
tENS1  
tENS2  
tENS2  
W/RB  
MBB  
ENB  
tENH  
tDH  
tENS2  
tDS  
W1  
B0 - B35  
CLKA  
tPMF  
tPMF  
MBF2  
CSA  
W/RA  
MBA  
tENH  
tENS2  
ENA  
tMDV  
tEN  
tPMR  
tDIS  
W1 (Remains valid in Mail 2 Register after read)  
FIFO2 Output Register  
A0 - A35  
4660 drw 23  
Figure 21. Timing for Mail2 Register and MBF2 Flag (IDT Standard and FWFT Modes)  
27  
PARAMETER MEASUREMENT INFORMATION  
3.3V  
330  
From Output  
Under Test  
30 pF (1)  
510  
PROPAGATION DELAY  
LOAD CIRCUIT  
3V  
GND  
3V  
Timing  
Input  
1.5V  
High-Level  
1.5V  
1.5V  
Input  
1.5V  
1.5V  
GND  
tS  
th  
tW  
3V  
Data,  
Enable  
Input  
GND  
3V  
1.5V  
1.5V  
Low-Level  
GND  
Input  
VOLTAGE WAVEFORMS  
SETUP AND HOLD TIMES  
VOLTAGE WAVEFORMS  
PULSE DURATIONS  
3V  
Output  
Enable  
1.5V  
1.5V  
tPZL  
GND  
tPLZ  
3V  
3V  
Input  
1.5V  
1.5V  
tPD  
1.5V  
Low-Level  
Output  
GND  
V
OL  
tPZH  
tPD  
V
OH  
V
OH  
In-Phase  
Output  
1.5V  
1.5V  
High-Level  
Output  
1.5V  
tPHZ  
V
OL  
OV  
VOLTAGE WAVEFORMS  
ENABLE AND DISABLE TIMES  
VOLTAGE WAVEFORMS  
PROPAGATION DELAY TIMES  
4660 drw 24  
NOTE:  
1. Includes probe and jig capacitance.  
Figure 22. Load Circuit and Voltage Waveforms  
ORDERING INFORMATION  
IDT  
XXXXXX  
X
XX  
X
X
Device Type Power  
Speed  
Package  
Process/  
Temperature  
Range  
Commercial (0οC to +70οC)  
BLANK  
PF  
PQF  
Thin Quad Flat Pack (TQFP, PN120-1)  
Plastic Quad Flat Pack (PQFP, PQ132-1)  
12  
15  
20  
Clock Cycle Time (tCLK  
)
Commercial Only  
Speed in Nanoseconds  
L
Low Power  
72V3622  
72V3632  
72V3642  
256 x 36 x 2 3.3V SyncBiFIFO  
512 x 36 x 2 3.3V SyncBiFIFO  
1,024 x 36 x 2 3.3V SyncBiFIFO  
NOTE:  
4660 drw 25  
1. Industrial temperature range is available by special order.  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
for TECH SUPPORT:  
408-330-1753  
FIFOhelp@idt.com  
PFPkg:www.idt.com/docs/PSC4036.pdf  
PQFPkg:www.idt.com/docs/PSC4021.pdf  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
www.idt.com  
The SyncFIFO and the IDT logo is a registered trademark of Integrated Device Technology, Inc.  
28  
28  

相关型号:

IDT72V3632L15PF

3.3 VOLT CMOS SyncBiFIFO 256 x 36 x 2 512 x 36 x 2 1,024 x 36 x 2
IDT

IDT72V3632L15PF8

Bi-Directional FIFO, 512X36, 10ns, Synchronous, CMOS, PQFP120, TQFP-120
IDT

IDT72V3632L15PF9

FIFO, 512X36, 10ns, Synchronous, CMOS, PQFP120, TQFP-120
IDT

IDT72V3632L15PFG

FIFO, 512X36, 10ns, Synchronous, CMOS, PQFP120, TQFP-120
IDT

IDT72V3632L15PFG8

FIFO, 512X36, 10ns, Synchronous, CMOS, PQFP120, TQFP-120
IDT

IDT72V3632L15PQF

3.3 VOLT CMOS SyncBiFIFO 256 x 36 x 2 512 x 36 x 2 1,024 x 36 x 2
IDT

IDT72V3632L15PQF9

FIFO, 512X36, 10ns, Synchronous, CMOS, PQFP132, PLASTIC, QFP-132
IDT

IDT72V3632L15PQFG

FIFO, 512X36, 10ns, Synchronous, CMOS, PQFP132, PLASTIC, QFP-132
IDT

IDT72V3632L20PF

Bi-Directional FIFO, 512X36, 12ns, Synchronous, CMOS, PQFP120, TQFP-120
IDT

IDT72V3633

3.3 VOLT CMOS SyncFIFO WITH BUS-MATCHING 256 x 36, 512 x 36, 1,024 x 36
IDT

IDT72V363310PF

3.3 VOLT CMOS SyncFIFO WITH BUS-MATCHING 256 x 36, 512 x 36, 1,024 x 36
IDT

IDT72V363315PF

3.3 VOLT CMOS SyncFIFO WITH BUS-MATCHING 256 x 36, 512 x 36, 1,024 x 36
IDT