IDT72V3690L15PF9 [IDT]

FIFO, 32KX36, 10ns, Synchronous, CMOS, PQFP128, PLASTIC, TQFP-128;
IDT72V3690L15PF9
型号: IDT72V3690L15PF9
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

FIFO, 32KX36, 10ns, Synchronous, CMOS, PQFP128, PLASTIC, TQFP-128

先进先出芯片
文件: 总46页 (文件大小:467K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3V HIGH-DENSITY SUPERSYNC™ II 36-BIT FIFO  
1,024 x 36, 2,048 x 36  
4,096 x 36, 8,192 x 36  
16,384 x 36, 32,768 x 36  
IDT72V3640,IDT72V3650  
IDT72V3660,IDT72V3670  
IDT72V3680, IDT72V3690  
Zero latency retransmit  
FEATURES:  
Auto power down minimizes standby power consumption  
Master Reset clears entire FIFO  
Partial Reset clears data, but retains programmable settings  
Empty, Full and Half-Full flags signal FIFO status  
Programmable Almost-Empty and Almost-Full flags, each flag can  
default to one of eight preselected offsets  
Selectable synchronous/asynchronous timing modes for Almost-  
Empty and Almost-Full flags  
Program programmable flags by either serial or parallel means  
Select IDT Standard timing (using EF and FF flags) or First Word  
Fall Through timing (using OR and IR flags)  
Output enable puts data outputs into high impedance state  
Easily expandable in depth and width  
JTAG port, provided for Boundary Scan function (PBGA Only)  
Independent Read and Write Clocks (permit reading and writing  
simultaneously)  
Availableina128-pinThinQuadFlatPack(TQFP)ora144-pinPlastic  
Ball Grid Array (PBGA) (with additional features)  
High-performance submicron CMOS technology  
Industrial temperature range (–40°C to +85°C) is available  
Choose among the following memory organizations:Commercial  
IDT72V3640  
IDT72V3650  
IDT72V3660  
IDT72V3670  
IDT72V3680  
IDT72V3690  
1,024 x 36  
2,048 x 36  
4,096 x 36  
8,192 x 36  
16,384 x 36  
32,768 x 36  
Up to 166 MHz Operation of the Clocks  
UserselectableAsynchronous readand/orwriteports (PBGAOnly)  
User selectable input and output port bus-sizing  
- x36 in to x36 out  
- x36 in to x18 out  
- x36 in to x9 out  
- x18 in to x36 out  
- x9 in to x36 out  
Pin to Pin compatible to the higher density of IDT72V36100 and  
IDT72V36110  
Big-Endian/Little-Endian user selectable byte representation  
5V input tolerant  
Fixed, low first word latency  
FUNCTIONALBLOCKDIAGRAM  
*Available on the PBGA package only.  
D0 -Dn (x36, x18 or x9)  
LD SEN  
WEN  
WCLK/WR  
*
INPUT REGISTER  
OFFSET REGISTER  
FF/IR  
PAF  
EF/OR  
PAE  
HF  
FLAG  
LOGIC  
WRITE CONTROL  
LOGIC  
ASYW  
*
FWFT/SI  
PFM  
RAM ARRAY  
FSEL0  
FSEL1  
1,024 x 36, 2,048 x 36  
4,096 x 36, 8,192 x 36  
16,384 x 36, 32,768 x 36  
WRITE POINTER  
READ POINTER  
BE  
CONTROL  
LOGIC  
IP  
RT  
READ  
CONTROL  
LOGIC  
RM  
ASYR  
BM  
IW  
OW  
OUTPUT REGISTER  
BUS  
*
CONFIGURATION  
MRS  
PRS  
RESET  
LOGIC  
RCLK/RD  
*
REN  
TCK  
*
*
TRST  
JTAG CONTROL  
(BOUNDARY SCAN)  
*
TMS  
TDI  
TDO  
4667 drw01  
*
Q0 -Qn (x36, x18 or x9)  
OE  
*
*
IDT and the IDT logo are a registered trademarks of Integrated Device Technology, Inc. The SuperSync II FIFO is a trademark of Integrated Device Technology, Inc.  
COMMERCIAL AND INDUSTRIAL TEMPERATURE RANGES  
SEPTEMBER 2003  
1
2003 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice.  
DSC-4667/12  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
Bus-MatchingSyncFIFOsareparticularlyappropriatefornetwork,video,  
telecommunications,datacommunicationsandotherapplicationsthatneedto  
bufferlargeamountsofdataandmatchbussesofunequalsizes.  
EachFIFOhas a data inputport(Dn)anda data outputport(Qn), bothof  
whichcanassumeeithera36-bit, 18-bitora9-bitwidthasdeterminedbythe  
stateofexternalcontrolpinsInputWidth(IW),OutputWidth(OW),andBus-  
Matching(BM)pinduringtheMasterResetcycle.  
TheinputportcanbeselectedaseitheraSynchronous(clocked)interface,  
or Asynchronous interface. During Synchronous operation the input port is  
controlledbyaWriteClock(WCLK)inputandaWriteEnable(WEN)input. Data  
presentontheDndatainputs is writtenintotheFIFOoneveryrisingedgeof  
DESCRIPTION:  
The IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690 are  
exceptionally deep, high speed, CMOS First-In-First-Out (FIFO) memories  
withclockedreadandwritecontrolsandaflexibleBus-Matchingx36/x18/x9  
dataflow.TheseFIFOs offerseveralkeyuserbenefits:  
• Flexible x36/x18/x9 Bus-Matching on both read and write ports  
The period required by the retransmit operation is fixed and short.  
Thefirstworddatalatencyperiod,fromthetimethefirstwordiswrittentoan  
emptyFIFOtothe time itcanbe read, is fixedandshort.  
Asynchronous/Synchronous translationonthereadorwriteports  
Highdensityofferingsupto1Mbit  
PIN CONFIGURATIONS  
INDEX  
WEN  
SEN  
DNC(1)  
OE  
1
2
3
4
102  
VCC  
101  
100  
99  
98  
97  
96  
95  
94  
93  
92  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
VCC  
Q35  
Q34  
Q33  
Q32  
GND  
GND  
Q31  
Q30  
Q29  
Q28  
Q27  
Q26  
VCC  
DNC(1)  
IW  
D35  
D34  
D33  
D32  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
VCC  
D31  
D30  
GND  
D29  
D28  
D27  
D26  
D25  
D24  
D23  
GND  
D22  
VCC  
Q25  
Q24  
GND  
GND  
Q23  
Q22  
Q21  
Q20  
Q19  
Q18  
GND  
Q17  
Q16  
VCC  
D21  
D20  
D19  
D18  
GND  
D17  
D16  
D15  
D14  
D13  
VCC  
VCC  
Q15  
Q14  
Q13  
Q12  
VCC  
GND  
Q11  
Q10  
D12  
GND  
D11  
4667 drw02a  
TQFP (PK128-1, order code: PF)  
TOP VIEW  
NOTE:  
1. DNC = Do Not Connect.  
2
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
WCLKwhenWENisasserted.DuringAsynchronousoperationonlytheWR  
ThefrequenciesofboththeRCLKandtheWCLKsignalsmayvaryfrom0  
inputisusedtowritedataintotheFIFO.DataiswrittenonarisingedgeofWR, tofMAXwithcompleteindependence. Therearenorestrictionsonthefrequency  
theWENinputshouldbetiedtoitsactivestate,(LOW).  
oftheoneclockinputwithrespecttotheother.  
TheoutputportcanbeselectedaseitheraSynchronous(clocked)interface,  
Therearetwopossibletimingmodesofoperationwiththesedevices:IDT  
orAsynchronousinterface.DuringSynchronousoperationtheoutputportis Standard mode and First Word Fall Through (FWFT) mode.  
controlledbyaReadClock(RCLK)inputandReadEnable(REN)input. Data InIDTStandardmode,thefirstwordwrittentoanemptyFIFOwillnotappear  
is read from the FIFO on every rising edge of RCLK when REN is asserted. onthedataoutputlinesunlessaspecificreadoperationisperformed.Aread  
DuringAsynchronousoperationonlytheRDinputisusedtoreaddatafromthe operation,whichconsistsofactivatingRENandenablingarisingRCLKedge,  
FIFO.Datais readonarisingedgeofRD,theRENinputshouldbetiedtoits willshiftthewordfrominternalmemorytothedataoutputlines.  
activestate,LOW.WhenAsynchronousoperationisselectedontheoutputport  
InFWFTmode,thefirstwordwrittentoanemptyFIFOisclockeddirectly  
theFIFOmustbeconfiguredforStandardIDTmode,andtheOEinputused tothedataoutputlinesafterthreetransitionsoftheRCLKsignal.ARENdoes  
toprovidethree-statecontroloftheoutputs,Qn.  
not have to be asserted for accessing the first word. However, subsequent  
PINCONFIGURATIONS(CONTINUED)  
A1 BALL PAD CORNER  
A
ASYW  
SEN  
WEN  
PAF  
LD  
HF  
BM  
EF  
ASYR  
BE  
REN  
OE  
RT  
WCLK  
FF/IR  
RCLK  
IP  
Q35  
Q34  
B
C
PRS  
MRS  
IW  
FS0  
FS1  
PFM  
PAE  
D35  
D32  
D29  
D34  
D31  
D28  
D33  
D30  
D27  
FWFT/SI  
OW  
VCC  
VCC  
RM  
Q29  
Q26  
Q32  
Q30  
Q27  
Q3  
3
D
E
VCC  
VCC  
GND  
GND  
GND  
GND  
VCC  
VCC  
Q31  
Q28  
VCC  
GND  
GND  
VCC  
F
Q23  
Q22  
Q19  
Q16  
Q13  
D26  
D21  
D18  
D15  
D12  
D25  
D22  
D19  
D16  
D13  
D11  
D24  
D23  
D20  
D17  
D14  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
Q24  
Q21  
Q18  
Q15  
Q12  
Q25  
Q20  
Q17  
Q14  
Q11  
V
CC  
VCC  
G
VCC  
VCC  
H
J
VCC  
VCC  
V
CC  
VCC  
VCC  
VCC  
K
L
D3  
D0  
VCC  
VCC  
TDO  
Q2  
D1  
TCK  
D10  
D9  
1
D6  
D7  
3
D4  
TMS  
TRST  
6
Q0  
Q1  
8
Q3  
Q4  
9
Q5  
Q6  
10  
Q10  
Q7  
Q9  
Q8  
M
D5  
D8  
D2  
TDI  
2
4
5
7
11  
12  
4667 drw02b  
PBGA: 1mm pitch, 13mm x 13mm (BB144-1, order code: BB)  
TOP VIEW  
3
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
For serial programming, SEN together with LD on each rising edge of  
WCLK,areusedtoloadtheoffsetregistersviatheSerialInput(SI). Forparallel  
programming,WENtogetherwithLDoneachrisingedgeofWCLK,areused  
toloadtheoffsetregistersviaDn. RENtogetherwithLDoneachrisingedge  
ofRCLKcanbeusedtoreadtheoffsetsinparallelfromQnregardlessofwhether  
serialorparalleloffsetloadinghasbeenselected.  
wordswrittentotheFIFOdorequireaLOWonRENforaccess. Thestateof  
theFWFT/SIinputduringMasterResetdeterminesthetimingmodeinuse.  
ForapplicationsrequiringmoredatastoragecapacitythanasingleFIFO  
canprovide,theFWFTtimingmodepermitsdepthexpansionbychainingFIFOs  
inseries(i.e.thedataoutputsofoneFIFOareconnectedtothecorresponding  
data inputs of the next). No external logic is required.  
DuringMasterReset(MRS)thefollowingeventsoccur: thereadandwrite  
pointers are set to the first location of the FIFO. The FWFT pin selects IDT  
Standardmode orFWFTmode.  
These FIFOs have five flagpins, EF/OR (EmptyFlagorOutputReady),  
FF/IR (Full Flag or Input Ready), HF (Half-full Flag), PAE (Programmable  
Almost-Emptyflag)andPAF(ProgrammableAlmost-Fullflag). TheEFandFF  
functions are selected in IDT Standard mode. The IR and OR functions are  
selected in FWFT mode. HF, PAE and PAF are always available for use,  
irrespectiveoftimingmode.  
PAEandPAFcanbeprogrammedindependentlytoswitchatanypointin  
memory. Programmableoffsetsdeterminetheflagswitchingthresholdandcan  
beloadedbytwomethods:parallelorserial. Eightdefaultoffsetsettingsarealso  
provided,sothatPAEcanbesettoswitchatapredefinednumberoflocations  
from the empty boundary and the PAF threshold can also be set at similar  
predefinedvaluesfromthefullboundary. Thedefaultoffsetvaluesaresetduring  
MasterResetbythe state ofthe FSEL0, FSEL1, and LD pins.  
The Partial Reset (PRS) also sets the read and write pointers to the first  
location of the memory. However, the timing mode, programmable flag  
programmingmethod,anddefaultorprogrammedoffsetsettingsexistingbefore  
PartialResetremainunchanged.Theflagsareupdatedaccordingtothetiming  
modeandoffsetsineffect. PRSisusefulforresettingadeviceinmid-operation,  
whenreprogrammingprogrammableflagswouldbeundesirable.  
ItisalsopossibletoselectthetimingmodeofthePAE(ProgrammableAlmost-  
Empty flag) and PAF (Programmable Almost-Full flag) outputs. The timing  
modescanbesettobeeitherasynchronousorsynchronousforthePAEand  
PAFflags.  
PARTIAL RESET (PRS) MASTER RESET (MRS)  
WRITE CLOCK (WCLK/WR*)  
READ CLOCK (RCLK/RD*)  
WRITE ENABLE (WEN)  
LOAD (LD)  
READ ENABLE (REN)  
OUTPUT ENABLE (OE)  
IDT  
72V3640  
72V3650  
72V3660  
72V3670  
72V3680  
72V3690  
(x36, x18, x9) DATA IN (D  
0
- D  
n
)
(x36, x18, x9) DATA OUT (Q0 - Qn)  
RETRANSMIT (RT)  
SERIAL CLOCK (SCLK)  
EMPTY FLAG/OUTPUT READY (EF/OR)  
SERIAL ENABLE(SEN)  
PROGRAMMABLE ALMOST-EMPTY (PAE)  
HALF-FULL FLAG (HF)  
FIRST WORD FALL THROUGH/  
SERIAL INPUT (FWFT/SI)  
BIG-ENDIAN/LITTLE-ENDIAN (BE)  
INTERSPERSED/  
NON-INTERSPERSED PARITY (IP)  
FULL FLAG/INPUT READY (FF/IR)  
PROGRAMMABLE ALMOST-FULL (PAF)  
4667 drw03  
OUTPUT WIDTH (OW)  
INPUT WIDTH (IW)  
BUS-  
MATCHING  
(BM)  
Figure 1. Single Device Configuration Signal Flow Diagram  
4
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
outoftheFIFOinsmallword(x18/x9)format.IfBig-Endianmodeisselected,  
thenthemostsignificantbyte(word)ofthelongwordwrittenintotheFIFOwill  
bereadoutoftheFIFOfirst,followedbytheleastsignificantbyte.IfLittle-Endian  
formatisselected,thentheleastsignificantbyteofthelongwordwrittenintothe  
FIFOwillbereadoutfirst,followedbythemostsignificantbyte.Themodedesired  
isconfiguredduringmasterresetbythestateoftheBig-Endian(BE)pin.See  
Figure 4 for Bus-Matching Byte Arrangement.  
TheInterspersed/Non-InterspersedParity(IP)bitfunctionallowstheuser  
to select the parity bit in the word loaded into the parallel port (D0-Dn) when  
programmingtheflagoffsets.IfInterspersedParitymodeisselected,thenthe  
FIFOwillassumethattheparitybitislocatedinbitpositionsD8,D17,D26and  
D35duringtheparallelprogrammingoftheflagoffsets. IfNon-Interspersed  
Paritymode is selected, thenD8, D17andD26are assumedtobe validbits  
andD32,D33,D34andD35areignored. IPmodeisselectedduring Master  
ResetbythestateoftheIPinputpin.InterspersedParitycontrolonlyhas an  
effectduringparallelprogrammingoftheoffsetregisters.Itdoesnoteffectthedata  
writtentoandreadfromthe FIFO.  
IfasynchronousPAE/PAFconfigurationisselected, thePAEisasserted  
LOWontheLOW-to-HIGHtransitionofRCLK.PAEisresettoHIGHontheLOW-  
to-HIGHtransitionofWCLK.Similarly,thePAFisassertedLOWontheLOW-  
to-HIGHtransitionofWCLKandPAF is resettoHIGHonthe LOW-to-HIGH  
transitionofRCLK.  
IfsynchronousPAE/PAFconfigurationisselected,thePAEisassertedand  
updated on the rising edge of RCLK only and not WCLK. Similarly, PAF is  
assertedandupdatedontherisingedgeofWCLKonlyandnotRCLK.Themode  
desiredisconfiguredduringMasterResetbythestateoftheProgrammableFlag  
Mode (PFM) pin.  
TheRetransmitfunctionallowsdatatoberereadfromtheFIFOmorethan  
once. ALOWontheRTinputduringarisingRCLKedgeinitiatesaretransmit  
operationbysettingthereadpointertothefirstlocationofthememoryarray.  
Azero-latencyretransmittimingmodecanbeselectedusingtheRetransmit  
timing Mode pin (RM). During Master Reset, a LOW on RM will select zero  
latency retransmit. A HIGH on RM during Master Reset will select normal  
latency.  
AJTAGtestportisprovided,heretheFIFOhasfullyfunctionalBoundary  
Scan feature, compliant with IEEE 1149.1 Standard Test Access Port and  
BoundaryScanArchitecture.  
If zero latency retransmit operation is selected, the first data word to be  
retransmittedwillbeplacedontheoutputregisterwithrespecttothesameRCLK  
edgethatinitiatedtheretransmitbasedonRTbeingLOW.  
If,atanytime,theFIFOisnotactivelyperforminganoperation,thechipwill  
automaticallypowerdown.Onceinthepowerdownstate,thestandbysupply  
currentconsumptionisminimized. Initiatinganyoperation(byactivatingcontrol  
inputs)willimmediatelytakethedeviceoutofthepowerdownstate.  
The IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690 are  
fabricatedusingIDT’shighspeedsubmicronCMOStechnology.  
RefertoFigure11and12forRetransmitTimingwithnormallatency. Refer  
to Figure 13 and 14 for Zero Latency Retransmit Timing.  
Thedevicecanbeconfiguredwithdifferentinputandoutputbuswidthsas  
shown in Table 1.  
ABig-Endian/Little-Endiandatawordformatis provided.This functionis  
usefulwhendataiswrittenintotheFIFOinlongwordformat(x36/x18)andread  
TABLE 1 — BUS-MATCHING CONFIGURATION MODES  
BM  
IW  
OW  
Write Port Width  
Read Port Width  
L
H
H
H
H
L
L
L
H
H
L
L
H
L
H
x36  
x36  
x36  
x18  
x9  
x36  
x18  
x9  
x36  
x36  
NOTE:  
1. Pin status during Master Reset.  
5
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
PIN DESCRIPTION (TQFP AND PBGA PACKAGES)  
Symbol  
Name  
I/O  
Description  
(1)  
BM  
Bus-Matching  
I
I
BMworkswithIWandOWtoselectthebussizesforbothwriteandreadports. SeeTable1forbussizeconfiguration.  
(1)  
BE  
Big-Endian/  
Little-Endian  
During Master Reset, a LOW on BE will select Big-Endian operation. A HIGH on BE during Master Reset will  
selectLittle-Endianformat.  
D0–D35  
DataInputs  
I
Data inputs for a 36-, 18- or 9-bit bus. When in 18- or 9-bit mode, the unused input pins are in a dont care state.  
EF/OR  
EmptyFlag/  
OutputReady  
O
IntheIDTStandardmode, the EFfunctionis selected. EF indicates whetherornotthe FIFOmemoryis empty.  
InFWFTmode,theOR functionisselected.ORindicateswhetherornotthereisvaliddataavailableattheoutputs.  
FF/IR  
Full Flag/  
Input Ready  
O
Inthe IDTStandardmode, the FF functionis selected. FF indicates whetherornotthe FIFOmemoryis full. Inthe  
FWFTmode,theIRfunctionisselected.IRindicateswhetherornotthereisspaceavailableforwritingtotheFIFO  
memory.  
FSEL0(1) FlagSelectBit0  
FSEL1(1) FlagSelectBit1  
I
I
I
DuringMasterReset,thisinputalongwithFSEL1andtheLDpin,willselectthedefaultoffsetvaluesfortheprogrammable  
flags PAE andPAF. Thereareuptoeightpossiblesettings available.  
DuringMasterReset,thisinputalongwithFSEL0andtheLDpinwillselectthedefaultoffsetvaluesfortheprogrammable  
flags PAE andPAF. Thereareuptoeightpossiblesettings available.  
DuringMasterReset,selectsFirstWordFallThroughorIDTStandardmode.AfterMasterReset,thispinfunctions  
asaserialinputforloadingoffsetregisters.  
FWFT/SI FirstWordFall  
Through/Serial In  
HF  
IP(1)  
Half-FullFlag  
O
I
HF indicates whethertheFIFOmemoryis moreorless thanhalf-full.  
DuringMasterReset,aLOWonIPwillselectNon-InterspersedParitymode.A HIGHwillselectInterspersedParity  
mode.InterspersedParitycontrolonlyhasaneffectduringparallelprogrammingoftheoffsetregisters.Itdoesnot  
effectthedatawrittentoandreadfromtheFIFO.  
InterspersedParity  
(1)  
IW  
InputWidth  
Load  
I
I
This pin, alongwithOWandMB, selects the bus widthofthe write port. See Table 1forbus size configuration.  
LD  
Thisisadualpurposepin.DuringMasterReset,thestateoftheLD inputalongwithFSEL0andFSEL1,determines  
oneofeightdefaultoffsetvaluesforthePAEandPAFflags,alongwiththemethodbywhichtheseoffsetregisterscan  
beprogrammed,parallelorserial(seeTable2).AfterMasterReset,thispinenableswritingtoandreadingfromthe  
offsetregisters.  
OE  
OW  
OutputEnable  
OutputWidth  
MasterReset  
I
I
I
OEcontrolstheoutputimpedanceofQn.  
This pin, alongwithIWandBM, selects the bus widthofthe readport. See Table 1forbus size configuration.  
(1)  
MRS  
MRSinitializesthereadandwritepointerstozeroandsetstheoutputregistertoall zeroes.DuringMasterReset,  
theFIFOisconfiguredforeitherFWFTorIDTStandardmode,Bus-Matchingconfigurations,oneofeightprogammable  
flagdefaultsettings,serialorparallelprogrammingoftheoffsetsettings,Big-Endian/Little-Endianformat,zerolatency  
timingmode,interspersedparity,andsynchronousversusasynchronousprogrammableflagtimingmodes.  
PAE  
PAF  
Programmable  
Almost-EmptyFlag  
O
O
I
PAEgoesLOWifthenumberofwordsintheFIFOmemoryislessthanoffsetn,whichisstoredintheEmptyOffset  
register. PAE goes HIGH if the number of words in the FIFO memory is greater than or equal to offset n.  
PAF goes HIGHifthenumberoffreelocations intheFIFOmemoryis morethanoffsetm,whichis storedinthe  
FullOffsetregister. PAF goes LOWifthenumberoffreelocations intheFIFOmemoryis less thanorequaltom.  
DuringMasterReset,aLOWonPFMwillselectAsynchronous Programmableflagtimingmode.AHIGHonPFM  
willselectSynchronousProgrammableflagtimingmode.  
Programmable  
Almost-FullFlag  
(1)  
PFM  
Programmable  
Flag Mode  
PRS  
PartialReset  
I
PRSinitializesthereadandwritepointerstozeroandsetstheoutputregistertoall zeroes.DuringPartialReset,  
theexistingmode(IDTorFWFT),programmingmethod(serialorparallel),andprogrammableflagsettingsareall  
retained.  
Q0–Q35  
DataOutputs  
O
I
Data outputs for an 36-, 18- or 9-bit bus. When in 18- or 9-bit mode, the unused output pins are in a dont care  
state.Outputsarenot5VtolerantregardlessofthestateofOE.  
RCLK/  
RD  
ReadClock/  
ReadStrobe  
If Synchronous operation of the read port has been selected, when enabled by REN, the rising edge of RCLK  
readsdatafromtheFIFOmemoryandoffsetsfromtheprogrammableregisters.IfLDisLOW,thevaluesloaded  
intotheoffsetregisters is outputonarisingedgeofRCLK.IfAsynchronous operationofthereadporthas been  
selected, a rising edge on RD reads data from the FIFO in an Asynchronous manner. REN should be tied LOW.  
Asynchronous operationofthe RCLK/RDinputis onlyavailable inthe PBGApackage.  
REN  
RM  
ReadEnable  
I
I
RENenables RCLKforreadingdatafromtheFIFOmemoryandoffsetregisters.  
DuringMasterReset,aLOWonRMwillselectzerolatencyRetransmittimingMode.AHIGHonRMwillselect  
normallatencymode.  
(1)  
RetransmitTiming  
Mode  
RT  
Retransmit  
I
RT assertedontherisingedgeofRCLKinitializes theREADpointertozero,sets theEFflagtoLOW(OR toHIGH  
inFWFTmode)anddoesnotdisturbthewritepointer,programmingmethod,existingtimingmodeorprogrammable  
flagsettings.RTisusefultorereaddatafromthefirstphysicallocationoftheFIFO.  
NOTE:  
1. Inputs should not change state after Master Reset.  
6
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
PIN DESCRIPTION-CONTINUED (TQFP & PBGA PACKAGES)  
Symbol  
Name  
I/O  
Description  
SENenablesserialloadingofprogrammableflagoffsets.  
If Synchronous operation of the write port has been selected, when enabled byWEN, the risingedge ofWCLK  
writesdataintotheFIFO.IfAsynchronousoperationofthewriteporthasbeenselected,WRwritesdataintotheFIFO  
ona risingedge inanAsynchronous manner, (WEN shouldbe tiedtoits active state). Asynchronous operationof  
theWCLK/WRinputisonlyavailableinthePBGApackage.  
SEN  
WCLK/  
WR  
SerialEnable  
I
I
WriteClock/  
WriteStrobe  
WEN  
VCC  
WriteEnable  
+3.3VSupply  
I
I
WENenablesWCLKforwritingdataintotheFIFOmemoryandoffsetregisters.  
These are VCC supply inputs and must be connected to the 3.3V supply rail.  
NOTE:  
1. Inputs should not change state after Master Reset.  
PIN DESCRIPTION (PBGA PACKAGE ONLY)  
Symbol  
Name  
I/O  
Description  
ASYR(1)  
Asynchronous  
ReadPort  
I
AHIGHonthis inputduringMasterResetwillselectSynchronous readoperationfortheoutputport.ALOW  
willselectAsynchronousoperation.IfAsynchronousisselectedtheFIFOmustoperateinIDTStandardmode.  
ASYW(1)  
Asynchronous  
WritePort  
I
I
AHIGHonthis inputduringMasterResetwillselectSynchronous writeoperationfortheinputport.ALOW  
willselectAsynchronousoperation.  
(2)  
TCK  
JTAGClock  
ClockinputforJTAGfunction.OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.Testoperationsofthe  
devicearesynchronoustoTCK.DatafromTMSandTDIaresampledontherisingedgeofTCKandoutputschange  
onthefallingedgeofTCK.IftheJTAGfunctionis notusedthis signalneeds tobetiedtoGND.  
(2)  
TDI  
JTAGTestData  
Input  
I
OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.DuringtheJTAGboundaryscanoperation,testdata  
seriallyloadedviatheTDIontherisingedgeofTCKtoeithertheInstructionRegister,IDRegisterandBypassRegister.  
Aninternalpull-upresistorforcesTDIHIGHifleftunconnected.  
(2)  
TDO  
JTAGTestData  
Output  
O
OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.DuringtheJTAGboundaryscanoperation,testdata  
seriallyloadedoutputviatheTDOonthefallingedgeofTCKfromeithertheInstructionRegister,IDRegisterandBypass  
Register.This outputis highimpedanceexceptwhenshifting,whileinSHIFT-DRandSHIFT-IRcontrollerstates.  
TMS(2)  
JTAGModeSelect  
JTAGReset  
I
I
TMSisaserialinputpin.OneoffourterminalsrequiredbyIEEEStandard1149.1-1990.TMSdirectsthedevicethrough  
itsTAPcontrollerstates.Aninternalpull-upresistorforcesTMSHIGHifleftunconnected.  
(2)  
TRST  
TRSTisanasynchronousresetpinfortheJTAGcontroller.TheJTAGTAPcontrollerdoesnotautomaticallyreset  
upon power-up, thus it must be reset by either this signal or by setting TMS= HIGH for five TCK cycles. If the TAP  
controllerisnotproperlyresetthentheFIFOoutputswillalwaysbeinhigh-impedance.IftheJTAGfunctionisused  
butthe userdoes notwanttouse TRST, thenTRST canbe tiedwithMRS toensure properFIFOoperation. Ifthe  
JTAGfunctionisnotusedthenthissignalneedstobetiedtoGND.  
NOTE:  
1. Inputs should not change state after Master Reset.  
2. These pins are for the JTAG port. Please refer to pages 42-45 and Figures 31-33.  
7
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
ABSOLUTE MAXIMUM RATINGS  
RECOMMENDED DC OPERATING  
CONDITIONS  
Symbol  
Rating  
Com’l & Ind’l  
Unit  
(2)  
VTERM  
TerminalVoltage  
with respect to GND  
–0.5to+4.5  
V
Symbol  
Parameter  
Min.  
Typ.  
Max. Unit  
(1)  
VCC  
SupplyVoltageCom’l/Ind’l  
SupplyVoltageCom’l/Ind’l  
InputHighVoltageCom’l/Ind’l  
InputLowVoltageCom’l/Ind’l  
3.15  
0
3.3  
0
3.45  
0
V
V
TSTG  
IOUT  
Storage  
Temperature  
–55to+125  
–50to+50  
°C  
GND  
(2)  
VIH  
2.0  
0
5.5  
0.8  
70  
V
DCOutputCurrent  
mA  
(3)  
VIL  
V
NOTES:  
TA  
TA  
OperatingTemperature  
Commercial  
°C  
1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause  
permanent damage to the device. This is a stress rating only and functional operation of  
the device at these or any other conditions above those indicated in the operational  
sections of this specification is not implied. Exposure to absolute maximum rating  
conditions for extended periods may affect reliability.  
OperatingTemperature  
Industrial  
-40  
85  
°C  
NOTES:  
2. VCC terminal only.  
1. VCC = 3.3V ± 0.15V, JEDEC JESD8-A compliant.  
2. Outputs are not 5V tolerant.  
3. 1.5V undershoots are allowed for 10ns once per cycle.  
DC ELECTRICAL CHARACTERISTICS  
(Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 3.3V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)  
IDT72V3640L  
IDT72V3650L  
IDT72V3660L  
IDT72V3670L  
IDT72V3680L  
IDT72V3690L  
Commercial and Industrial(1)  
tCLK = 6, 7.5, 10, 15 ns  
Symbol  
Parameter  
Min.  
Max.  
Unit  
(2)  
ILI  
InputLeakageCurrent  
OutputLeakageCurrent  
–1  
–10  
2.4  
1
µ A  
µA  
V
(3)  
ILO  
10  
0.4  
40  
15  
VOH  
Output Logic 1Voltage, IOH = –2 mA  
Output Logic 0Voltage, IOL = 8 mA  
Active Power Supply Current  
StandbyCurrent  
VOL  
V
ICC1(4,5,6)  
ICC2(4,7)  
mA  
mA  
NOTES:  
1. Industrial temperature range product for the 15ns speed grade is available as a standard device. All other speed grades are available by special order.  
2. Measurements with 0.4 VIN VCC.  
3. OE VIH, 0.4 VOUT VCC.  
4. Tested with outputs open (IOUT = 0).  
5. RCLK and WCLK toggle at 20 MHz and data inputs switch at 10 MHz.  
6. Typical ICC1 = 4.2 + 1.4*fS + 0.002*CL*fS (in mA) with VCC = 3.3V, tA = 25°C, fS = WCLK frequency = RCLK frequency (in MHz, using TTL levels), data switching at fS/2,  
CL = capacitive load (in pF).  
7. All Inputs = VCC - 0.2V or GND + 0.2V, except RCLK and WCLK, which toggle at 20 MHz.  
CAPACITANCE(TA = +25°C, f = 1.0MHz)  
Symbol  
Parameter(1)  
Conditions  
Max.  
Unit  
(2)  
CIN  
Input  
VIN = 0V  
10  
pF  
Capacitance  
(1,2)  
COUT  
Output  
VOUT = 0V  
10  
pF  
Capacitance  
NOTES:  
1. With output deselected, (OE VIH).  
2. Characterized values, not currently tested.  
8
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
ACELECTRICALCHARACTERISTICS(1)SYNCHRONOUSTIMING  
(Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 3.3V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)  
(2)  
Commercial  
Commercial  
Commercial  
TQFP Only  
Com’l & Ind’l  
TQFP Only  
PBGA & TQFP  
PBGA & TQFP  
IDT72V3640L6  
IDT72V3650L6  
IDT72V3660L6  
IDT72V3670L6  
IDT72V3680L6  
IDT72V3690L6  
IDT72V3640L7-5 IDT72V3640L10 IDT72V3640L15  
IDT72V3650L7-5 IDT72V3650L10 IDT72V3650L15  
IDT72V3660L7-5 IDT72V3660L10 IDT72V3660L15  
IDT72V3670L7-5 IDT72V3670L10 IDT72V3670L15  
IDT72V3680L7-5 IDT72V3680L10 IDT72V3680L15  
IDT72V3690L7-5 IDT72V3690L10 IDT72V3690L15  
Symbol  
Parameter  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Unit  
fS  
Clock Cycle Frequency  
DataAccessTime(5)  
Clock Cycle Time  
Clock High Time  
Clock Low Time  
166  
133.3  
1(5)  
100  
66.7  
MHz  
tA  
1
6
4
1(5)  
7.5  
3.5  
3.5  
2.5  
0.5  
2.5  
0.5  
3.5  
0.5  
10  
5
15  
6
6.5  
15  
1(5)  
15  
6
10  
15  
8
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCLK  
tCLKH  
tCLKL  
tDS  
15  
4
10  
2.7  
2.7  
2
4.5  
4.5  
3.5  
0.5  
3.5  
0.5  
3.5  
0.5  
10  
6
DataSetupTime  
4
tDH  
DataHoldTime  
0.5  
2
1
tENS  
tENH  
tLDS  
EnableSetupTime  
EnableHoldTime  
LoadSetupTime  
4
0.5  
3
1
4
tLDH  
tRS  
LoadHoldTime  
0.5  
10  
15  
10  
3
1
ResetPulseWidth(3)  
ResetSetupTime  
ResetRecoveryTime  
15  
15  
15  
4
tRSS  
tRSR  
tRSF  
tRTS  
tOLZ  
tOE  
15  
15  
10  
10  
ResettoFlagandOutputTime  
RetransmitSetupTime  
3.5  
0
3.5  
0
6
(4)  
OutputEnabletoOutputinLowZ  
OutputEnabletoOutputValid(5)  
0
0
1
1(5)  
1(5)  
5
1(5)  
1(5)  
7
1(5)  
1(5)  
9
(4,5)  
tOHZ  
tWFF  
tREF  
tPAFA  
tPAFS  
tPAEA  
tPAES  
tHF  
OutputEnabletoOutputinHigh-Z  
1
4
6
6
8
Write Clock to FF or IR  
Read Clock to EF or OR  
4
4
5
6.5  
6.5  
16  
10  
10  
20  
10  
20  
10  
20  
4
5
ClocktoAsynchronousProgrammableAlmost-FullFlag  
WriteClocktoSynchronousProgrammableAlmost-FullFlag  
ClocktoAsynchronousProgrammableAlmost-EmptyFlag  
ReadClocktoSynchronousProgrammableAlmost-EmptyFlag  
Clock to HF  
10  
4
12.5  
5
6.5  
16  
10  
4
12.5  
5
6.5  
16  
10  
12.5  
tSKEW1  
tSKEW2  
Skew time between RCLK and WCLK for EF/OR and FF/IR  
Skew time between RCLK and WCLK for PAE and PAF  
5
7
10  
14  
NOTES:  
1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode.  
2. Industrial temperature range is available by special order for speed grades faster than 15ns.  
3. Pulse widths less than minimum values are not allowed.  
4. Values guaranteed by design, not currently tested.  
5. TQFP package only: for speed grades 7.5ns, 10ns and 15ns, the minimum for tA, tOE, and tOHZ is 2ns.  
9
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
ACELECTRICALCHARACTERISTICS(1)ASYNCHRONOUSTIMING  
(Commercial: VCC = 3.3V ± 0.15V, TA = 0°C to +70°C;Industrial: VCC = 3.3V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)  
Commercial  
IDT72V3640L6  
IDT72V3650L6  
IDT72V3660L6  
IDT72V3670L6  
IDT72V3680L6  
IDT72V3690L6  
IDT72V3640L7-5  
IDT72V3650L7-5  
IDT72V3660L7-5  
IDT72V3670L7-5  
IDT72V3680L7-5  
IDT72V3690L7-5  
Symbol  
Parameter  
Cycle Frequency (Asynchronous mode)  
DataAccessTime  
Min.  
0.6  
10  
Max.  
Min.  
0.6  
12  
Max.  
83  
Unit  
MHz  
ns  
(4)  
fA  
100  
8
(4)  
tAA  
10  
(4)  
tCYC  
Cycle Time  
8
10  
ns  
(4)  
tCYH  
Cycle HIGH Time  
4.5  
4.5  
8
5
ns  
(4)  
tCYL  
Cycle LOW Time  
5
ns  
(4)  
tRPE  
Read Pulse after EF HIGH  
Clock to Asynchronous FF  
Clock to Asynchronous EF  
ClocktoAsynchronousProgrammableAlmost-FullFlag  
10  
ns  
(4)  
tFFA  
ns  
(4)  
tEFA  
8
10  
ns  
(4)  
tPAFA  
8
10  
ns  
(4)  
tPAEA  
ClocktoAsynchronousProgrammableAlmost-EmptyFlag  
8
10  
ns  
NOTES:  
1. All AC timings apply to both Standard IDT mode and First Word Fall Through mode.  
2. Pulse widths less than minimum values are not allowed.  
3. Values guaranteed by design, not currently tested.  
4. Paramaeters apply to the PBGA package only.  
10  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
ACTESTLOADS-6ns,7.5nsSpeedGrades  
ACTESTCONDITIONS  
InputPulseLevels  
GND to 3.0V  
3ns(1)  
InputRise/FallTimes  
1.5V  
InputTimingReferenceLevels  
OutputReferenceLevels  
OutputLoadfortCLK =10ns,15ns  
OutputLoadfortCLK =6ns,7.5ns  
1.5V  
1.5V  
50  
SeeFigure2a  
See Figure 2b & 2c  
Z0 = 50Ω  
I/O  
NOTE:  
4667 drw04a  
1. For 166MHz and 133MHz operation input rise/fall times are 1.5ns.  
Figure 2b. AC Test Load  
ACTESTLOADS-10ns,15nsSpeedGrades  
6
5
4
3
2
1
3.3V  
330Ω  
D.U.T.  
30pF*  
510Ω  
4667 drw04  
20 30 50 80 100  
Capacitance (pF)  
200  
4667 drw04b  
Figure 2a. Output Load  
* Includes jig and scope capacitances.  
Figure 2c. Lumped Capacitive Load, Typical Derating  
OUTPUT ENABLE & DISABLE TIMING  
Output  
Enable  
Output  
Disable  
VIH  
OE  
VIL  
tOE &  
tOLZ  
tOHZ  
V
2
CC  
Output  
Normally  
LOW  
V
2
CC  
100mV  
100mV  
100mV  
V
OL  
V
OH  
Output  
Normally  
HIGH  
VCC  
100mV  
VCC  
2
2
4667 drw04c  
NOTE:  
1. REN is HIGH.  
11  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
If the FIFO is full, the first read operation will cause FF to go HIGH.  
SubsequentreadoperationswillcausePAFandHFtogoHIGHattheconditions  
describedinTable3.Iffurtherreadoperationsoccur,withoutwriteoperations,  
PAE will go LOW when there are n words in the FIFO, where n is the empty  
offsetvalue.ContinuingreadoperationswillcausetheFIFOtobecomeempty.  
WhenthelastwordhasbeenreadfromtheFIFO,theEFwillgoLOWinhibiting  
further read operations. REN is ignored when the FIFO is empty.  
WhenconfiguredinIDTStandardmode,theEFandFFoutputsaredouble  
register-bufferedoutputs.  
FUNCTIONALDESCRIPTION  
TIMING MODES: IDT STANDARD vs FIRST WORD FALL THROUGH  
(FWFT) MODE  
TheIDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690sup-  
porttwodifferenttimingmodesofoperation:IDTStandardmodeorFirstWord  
Fall Through (FWFT) mode. The selection of which mode will operate is  
determinedduringMasterReset,bythestateoftheFWFT/SIinput.  
If,atthetimeofMasterReset,FWFT/SIisLOW,thenIDTStandardmode  
willbeselected. This modeuses theEmptyFlag(EF)toindicatewhetheror  
notthereareanywordspresentintheFIFO.ItalsousestheFullFlagfunction  
(FF)toindicatewhetherornottheFIFOhasanyfreespaceforwriting. InIDT  
Standard mode, every word read from the FIFO, including the first, must be  
requested using the Read Enable (REN) and RCLK.  
If,atthetimeofMasterReset,FWFT/SIisHIGH,thenFWFTmodewillbe  
selected. ThismodeusesOutputReady(OR)toindicatewhetherornotthere  
isvaliddataatthedataoutputs(Qn). ItalsousesInputReady(IR)toindicate  
whether or not the FIFO has any free space for writing. In the FWFT mode,  
thefirstwordwrittentoanemptyFIFOgoesdirectlytoQnafterthreeRCLKrising  
edges,REN=LOWisnotnecessary. Subsequentwordsmustbeaccessed  
using the Read Enable (REN) and RCLK.  
Relevanttimingdiagrams forIDTStandardmodecanbefoundinFigure  
7,8,11 and 13.  
FIRST WORD FALL THROUGH MODE (FWFT)  
In this mode, the status flags, IR, PAF, HF, PAE, and OR operate in the  
manneroutlinedinTable4.TowritedataintototheFIFO,WENmustbeLOW.  
DatapresentedtotheDATAINlineswillbeclockedintotheFIFOonsubsequent  
transitionsofWCLK.Afterthefirstwriteisperformed,theOutputReady(OR)  
flagwillgoLOW.SubsequentwriteswillcontinuetofilluptheFIFO.PAEwillgo  
HIGHaftern + 2wordshavebeenloadedintotheFIFO,wherenistheempty  
offsetvalue.ThedefaultsettingforthesevaluesarestatedinthefootnoteofTable  
2.Thisparameterisalsouserprogrammable.SeesectiononProgrammable  
FlagOffsetLoading.  
If one continued to write data into the FIFO, and we assumed no read  
operationsweretakingplace,theHFwouldtoggletoLOWoncethe514thword  
fortheIDT72V3640,1,026thwordfortheIDT72V3650,2,050thwordforthe  
IDT72V3660, 4,098th word for the IDT72V3670, 8,194th word for the  
IDT72V3680,16,386thwordfortheIDT72V3690,respectivelywaswritteninto  
theFIFO. ContinuingtowritedataintotheFIFOwillcausethePAFtogoLOW.  
Again,ifnoreadsareperformed, thePAFwillgoLOWafter(1,025-m)writes  
fortheIDT72V3640, (2,049-m)writesfortheIDT72V3650,(4,097-m)writes  
for the IDT72V3660 and (8,193-m) writes for the IDT72V3670, (16,385-m)  
writesfortheIDT72V3680and(32,769-m)writesfortheIDT72V3690,where  
misthefulloffsetvalue. Thedefaultsettingforthesevaluesarestatedinthe  
footnoteofTable2.  
WhentheFIFOisfull,theInputReady(IR)flagwillgoHIGH,inhibitingfurther  
writeoperations. Ifnoreadsareperformedafterareset,IRwillgoHIGHafter  
Dwrites tothe FIFO. D =1,025writes forthe IDT72V3640, 2,049writes for  
the IDT72V3650, 4,097 writes for the IDT72V3660 and 8,193 writes for the  
IDT72V3670,16,385 writes for the IDT72V3680 and 32,769 writes for the  
IDT72V3690,respectively.NotethattheadditionalwordinFWFTmodeisdue  
tothecapacityofthememoryplusoutputregister.  
IftheFIFOisfull,thefirstreadoperationwillcausetheIRflagtogoLOW.  
Subsequent read operations will cause the PAF and HF to go HIGH at the  
conditionsdescribedinTable4.Iffurtherreadoperationsoccur,withoutwrite  
operations,thePAEwillgoLOWwhentherearen+1wordsintheFIFO,where  
nistheemptyoffsetvalue.ContinuingreadoperationswillcausetheFIFOto  
becomeempty.WhenthelastwordhasbeenreadfromtheFIFO,ORwillgo  
HIGHinhibitingfurtherreadoperations.RENisignoredwhentheFIFOisempty.  
When configured in FWFT mode, the OR flag output is triple register-  
buffered,andtheIRflagoutputisdoubleregister-buffered.  
Varioussignals,bothinputandoutputsignalsoperatedifferentlydepending  
onwhichtimingmodeisineffect.  
IDT STANDARD MODE  
In this mode, the status flags, FF, PAF, HF, PAE, and EF operate in the  
manneroutlinedinTable3.TowritedataintototheFIFO,WriteEnable(WEN)  
mustbeLOW.DatapresentedtotheDATAINlineswillbeclockedintotheFIFO  
on subsequent transitions of the Write Clock (WCLK). After the first write is  
performed,theEmptyFlag(EF)willgoHIGH.Subsequentwriteswillcontinue  
tofilluptheFIFO.TheProgrammableAlmost-Emptyflag(PAE)willgoHIGH  
aftern + 1wordshavebeenloadedintotheFIFO,wherenistheemptyoffset  
value.ThedefaultsettingforthesevaluesarestatedinthefootnoteofTable2.  
Thisparameterisalsouserprogrammable.SeesectiononProgrammableFlag  
OffsetLoading.  
If one continued to write data into the FIFO, and we assumed no read  
operationsweretakingplace,theHalf-Fullflag(HF)wouldtoggletoLOWonce  
the 513rdwordforIDT72V3640,1,025thwordforIDT72V3650,2,049thword  
for IDT72V3660, 4,097th word for IDT72V3670, 8,193th word for the  
IDT72V3680and16,385thwordfortheIDT72V3690,respectivelywaswritten  
intotheFIFO. ContinuingtowritedataintotheFIFOwillcausetheProgrammable  
Almost-Fullflag(PAF)togoLOW.Again,ifnoreadsareperformed, thePAF  
willgoLOWafter(1,024-m)writesfortheIDT72V3640,(2,048-m)writesforthe  
IDT72V3650,(4,096-m)writesfortheIDT72V3660,(8,192-m)writesforthe  
IDT72V3670, (16,384-m)writes forthe IDT72V3680and(32,768-m)writes  
fortheIDT72V3690. Theoffsetm”isthefulloffsetvalue.Thedefaultsetting  
forthesevaluesarestatedinthefootnoteofTable2.Thisparameterisalsouser  
programmable.SeesectiononProgrammableFlagOffsetLoading.  
WhentheFIFOisfull,theFullFlag(FF)willgoLOW,inhibitingfurtherwrite  
operations. Ifnoreadsareperformedafterareset,FFwillgoLOWafterDwrites  
to the FIFO. D = 1,024 writes for the IDT72V3640, 2,048 writes for the  
IDT72V3650,4,096writesfortheIDT72V3660,8,192writesfortheIDT72V3670,  
16,384 writes for the IDT72V3680 and 32,768 writes for the IDT72V3690,  
respectively.  
RelevanttimingdiagramsforFWFTmodecanbefoundinFigure9,10,12,  
and 14.  
12  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
PROGRAMMING FLAG OFFSETS  
TABLE 2 — DEFAULT PROGRAMMABLE  
FullandEmptyFlagoffsetvaluesareuserprogrammable.TheIDT72V3640/  
72V3650/72V3660/72V3670/72V3680/72V3690haveinternalregisters for  
theseoffsets.Thereareeightdefaultoffsetvalues selectableduringMaster  
Reset. These offset values are shown in Table 2. Offset values can also be  
programmedintotheFIFOinoneoftwoways;serialorparallelloadingmethod.  
The selectionofthe loadingmethodis done usingtheLD (Load)pin. During  
MasterReset,thestateoftheLDinputdetermineswhetherserialorparallelflag  
offsetprogrammingisenabled. AHIGHonLDduringMasterResetselectsserial  
loading of offset values. A LOW on LD during Master Reset selects parallel  
loadingofoffsetvalues.  
InadditiontoloadingoffsetvaluesintotheFIFO,itisalsopossibletoread  
thecurrentoffsetvalues.Offsetvaluescanbereadviatheparalleloutputport  
Q0-Qn,regardlessoftheprogrammingmodeselected(serialorparallel).Itis  
notpossibletoreadtheoffsetvaluesinserialfashion.  
Figure3,ProgrammableFlagOffsetProgrammingSequence,summaries  
thecontrolpinsandsequenceforbothserialandparallelprogrammingmodes.  
Foramoredetaileddescription,seediscussionthatfollows.  
FLAG OFFSETS  
IDT72V3640, 72V3650  
LD  
L
L
L
L
H
H
H
H
FSEL1  
FSEL0  
Offsets n,m  
H
L
L
H
L
H
L
H
L
H
L
H
L
L
H
H
511  
255  
127  
63  
31  
15  
7
3
LD  
FSEL1  
FSEL0  
Program Mode  
(3)  
H
X
X
Serial  
(4)  
L
X
X
Parallel  
Theoffsetregistersmaybeprogrammed(andreprogrammed)anytimeafter  
MasterReset,regardlessofwhetherserialorparallelprogramminghasbeen  
selected. Validprogrammingranges are from0toD-1.  
IDT72V3660, 72V3670, 72V3680, 72V3690  
LD  
H
L
L
L
FSEL1  
FSEL0  
Offsets n,m  
L
H
L
L
L
H
L
H
L
H
H
1,023  
511  
255  
127  
63  
SYNCHRONOUS vs ASYNCHRONOUS PROGRAMMABLE FLAG  
TIMING SELECTION  
L
The IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690 can  
be configured during the Master Reset cycle with either synchronous or  
asynchronous timing for PAF and PAE flags by use of the PFM pin.  
If synchronous PAF/PAE configuration is selected (PFM, HIGH during  
MRS),thePAFisassertedandupdatedontherisingedgeofWCLKonlyand  
notRCLK. Similarly,PAEisassertedandupdatedontherisingedgeofRCLK  
onlyandnotWCLK.Fordetailtimingdiagrams,seeFigure17forsynchronous  
PAF timingandFigure18forsynchronous PAEtiming.  
If asynchronous PAF/PAE configuration is selected (PFM, LOW during  
MRS),thePAFisassertedLOWontheLOW-to-HIGHtransitionofWCLKand  
PAFisresettoHIGHontheLOW-to-HIGHtransitionofRCLK. Similarly,PAE  
isassertedLOWontheLOW-to-HIGHtransitionofRCLK.PAEisresettoHIGH  
ontheLOW-to-HIGHtransitionofWCLK.Fordetailtimingdiagrams,seeFigure  
19forasynchronousPAFtimingandFigure20forasynchronousPAEtiming.  
L
H
H
L
H
H
H
31  
15  
7
H
LD  
H
L
FSEL1  
FSEL0  
Program Mode  
(3)  
X
X
X
X
Serial  
Parallel  
(4)  
NOTES:  
1. n = empty offset for PAE.  
2. m = full offset for PAF.  
3. As well as selecting serial programming mode, one of the default values will also  
be loaded depending on the state of FSEL0 & FSEL1.  
4. As well as selecting parallel programming mode, one of the default values will  
also be loaded depending on the state of FSEL0 & FSEL1.  
13  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
TABLE 3 STATUS FLAGS FOR IDT STANDARD MODE  
HF  
IDT72V3640  
IDT72V3660  
FF PAF  
PAE EF  
IDT72V3650  
L
L
0
H
H
H
H
H
L
0
0
1 to n(1)  
1 to n(1)  
1 to n(1)  
Number of  
Words in  
FIFO  
L
H
H
H
H
H
H
(n+1) to 512  
H
(n+1) to 1,024  
(n+1) to 2,048  
H
H
L
H
L
H
H
H
H
H
H
513 to (1,024-(m+1))  
(1,024-m) to 1,023  
1,024  
1,025 to (2,048-(m+1))  
(2,048-m) to 2,047  
2,048  
2,049 to (4,096-(m+1))  
(4,096m) to 4,095  
4,096  
L
L
L
HF  
IDT72V3670  
IDT72V3690  
FF PAF  
PAE EF  
IDT72V3680  
L
L
0
H
H
H
H
H
L
0
0
1 to n(1)  
1 to n(1)  
1 to n(1)  
Number of  
Words in  
FIFO  
L
H
H
H
H
H
H
(n+1) to 4,096  
H
(n+1) to 8,192  
(n+1) to 16,384  
H
H
L
H
L
H
H
H
H
H
H
4,097 to (8,192-(m+1))  
(8,192-m) to 8,191  
8,192  
8,193 to (16,384-(m+1))  
16,385 to (32,768-(m+1))  
L
to 16,383  
to 32,767  
(16,384-m)  
(32,768-m)  
L
L
16,384  
32,768  
NOTE:  
1. See table 2 for values for n, m.  
TABLE 4 STATUS FLAGS FOR FWFT MODE  
IDT72V3640  
IDT72V3650  
IDT72V3660  
HF  
IR PAF  
PAE OR  
0
0
0
L
L
L
L
L
H
H
H
H
H
H
H
H
L
L
L
H
L
L
L
Number of  
Words in  
FIFO  
1 to n+1  
1 to n+1  
1 to n+1  
(n+2) to 513  
(n+2) to 1,025  
(n+2) to 2,049  
H
H
514 to (1,025-(m+1))  
(1,025-m) to 1,024  
1,025  
1,026 to (2,049-(m+1))  
(2,049-m) to 2,048  
2,049  
2,050 to (4,097-(m+1))  
(4,097m) to 4,096  
4,097  
L
L
H
H
L
L
L
L
HF  
PAE OR  
IDT72V3670  
IDT72V3690  
IR PAF  
IDT72V3680  
0
L
L
L
L
L
H
H
H
H
H
H
H
H
L
L
L
H
L
L
L
0
0
Number of  
Words in  
FIFO  
1 to n+1  
1 to n+1  
1 to n+1  
(n+2) to 4,097  
H
H
(n+2) to 8,193  
(n+2) to 16,385  
4,098 to (8,193(m+1))  
(8,194-m) to 8,192  
8,193  
8,194 to (16,385-(m+1))  
(16,385-m) to 16,384  
16,385  
16,386 to (32,769-(m+1))  
(32,769-m) to 32,768  
32,769  
L
L
H
H
L
L
L
L
4667 drw05  
NOTE:  
1. See table 2 for values for n, m.  
14  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IDT72V3640  
IDT72V3650  
IDT72V3660  
IDT72V3670  
IDT72V3680  
IDT72V3690  
WCLK RCLK  
LD  
WEN  
REN  
SEN  
Parallel write to registers:  
Empty Offset (LSB)  
Empty Offset (MSB)  
Full Offset (LSB)  
X
0
0
1
1
Full Offset (MSB)  
Parallel read from registers:  
Empty Offset (LSB)  
Empty Offset (MSB)  
Full Offset (LSB)  
X
0
0
1
1
0
1
1
0
Full Offset (MSB)  
Serial shift into registers:  
X
20 bits for the 72V3640  
22 bits for the 72V3650  
24 bits for the 72V3660  
26 bits for the 72V3670  
28 bits for the 72V3680  
30 bits for the 72V3690  
1 bit for each rising WCLK edge  
Starting with Empty Offset (LSB)  
Ending with Full Offset (MSB)  
X
X
X
X
1
1
1
No Operation  
Write Memory  
1
1
1
0
X
1
X
0
1
X
X
X
X
X
Read Memory  
No Operation  
X
4667 drw06  
NOTES:  
1. The programming method can only be selected at Master Reset.  
2. Parallel reading of the offset registers is always permitted regardless of which programming method has been selected.  
3. The programming sequence applies to both IDT Standard and FWFT modes.  
Figure 3. Programmable Flag Offset Programming Sequence  
15  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
1st Parallel Offset Write/Read Cycle  
D/Q35  
D/Q19  
D/Q17  
D/Q0  
D/Q8  
EMPTY OFFSET REGISTER (PAE)  
Non-Interspersed  
Parity  
# of Bits Used:  
1
1
17 16 15 14 13 12 11 10 9  
16 15 14 13 1211 10 9  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
10 bits for the IDT72V3640  
11 bits for the IDT72V3650  
12 bits for the IDT72V3660  
13 bits for the IDT72V3670  
14 bits for the IDT72V3680  
15 bits for the IDT72V3690  
Interspersed  
Parity  
17  
# of Bits Used  
2nd Parallel Offset Write/Read Cycle  
D/Q35  
D/Q19  
D/Q17  
D/Q0  
D/Q8  
FULL OFFSET REGISTER (PAF)  
Non-Interspersed  
Parity  
Note: All unused bits of the  
LSB & MSB are don't care  
17 16 15 14 13 12 11 10 9  
15 14 13 12 11 10  
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
Interspersed  
Parity  
17  
9
16  
# of Bits Used  
IDT72V3640/50/60/70/80/90 x36 Bus Width  
1st Parallel Offset Write/Read Cycle  
D/Q8  
D/Q0  
EMPTY OFFSET REGISTER (PAE)  
1st Parallel Offset Write/Read Cycle  
D/Q17  
8
7
6
5
4
3
2
10  
2
1
Data Inputs/Outputs  
D/Q0  
D/Q16  
EMPTY OFFSET (LSB) REGISTER (PAE)  
Non-Interspersed  
Parity  
16 15 14 13 1211 10  
13 12 10  
9
8
8
7
7
6
6
5
5
4
4
3
3
2
2
1
1
2nd Parallel Offset Write/Read Cycle  
D/Q8  
16  
Interspersed  
Parity  
15 14  
11  
9
D/Q0  
9
D/Q8  
# of Bits Used  
EMPTY OFFSET REGISTER (PAE)  
15 13  
16  
14  
12  
11  
2nd Parallel Offset Write/Read Cycle  
D/Q17  
3rd Parallel Offset Write/Read Cycle  
D/Q8  
Data Inputs/Outputs  
D/Q16  
D/Q0  
D/Q0  
1
FULL OFFSET REGISTER (PAF)  
FULL OFFSET (LSB) REGISTER (PAF)  
16 15 14  
12 11  
13  
10  
9
9
8
7
7
6
6
5
5
4
4
3
2
2
1
1
8
7
6
5
4
3
16 15  
14 13 12 11 10  
8
3
D/Q8  
4th Parallel Offset Write/Read Cycle  
D/Q8  
D/Q0  
9
FULL OFFSET REGISTER (PAF)  
15 14 13 12 11  
10  
IDT72V3640/50/60/70/80/90 x9 Bus Width  
IDT72V3640/50/60/70/80/90 x18 Bus Width  
4667 drw07  
Figure 3. Programmable Flag Offset Programming Sequence (Continued)  
16  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
SERIAL PROGRAMMING MODE  
Write operations to the FIFO are allowed before and during the parallel  
IfSerialProgrammingmodehasbeenselected,asdescribedabove,then programmingsequence.Inthiscase,theprogrammingofalloffsetregistersdoes  
programmingofPAEandPAFvaluescanbeachievedbyusingacombination nothavetooccuratonetime. One,twoormoreoffsetregisterscanbewritten  
oftheLD,SEN,WCLKandSIinputpins.ProgrammingPAEandPAFproceeds andthenbybringingLDHIGH,writeoperationscanberedirectedtotheFIFO  
as follows: whenLD andSEN aresetLOW,dataontheSIinputarewritten, memory.WhenLDissetLOWagain,andWENisLOW,thenextoffsetregister  
onebitforeachWCLKrisingedge,startingwiththeEmptyOffsetLSBandending insequenceiswrittento.AsanalternativetoholdingWENLOWandtoggling  
withtheFullOffsetMSB. Atotalof20bitsfortheIDT72V3640,22bitsforthe LD, parallel programming can also be interrupted by setting LD LOW and  
IDT72V3650,24bitsfortheIDT72V3660,26bitsfortheIDT72V3670,28bits togglingWEN.  
for the IDT72V3680 and 30 bits for the IDT72V3690. See Figure 15, Serial  
Notethatthestatusofaprogrammableflag(PAEorPAF)outputisinvalid  
LoadingofProgrammableFlagRegisters,forthetimingdiagramforthismode. during the programming process. From the time parallel programming has  
Using the serial method, individual registers cannot be programmed begun,aprogrammableflagoutputwillnotbevaliduntiltheappropriateoffset  
selectively. PAEandPAFcanshowavalidstatusonlyafterthecompleteset wordhasbeenwrittentotheregister(s)pertainingtothatflag.Measuringfrom  
of bits (for all offset registers) has been entered. The registers can be therisingWCLKedgethatachievestheabovecriteria;PAFwillbevalidafter  
reprogrammedaslongasthecompletesetofnewoffsetbitsisentered. When twomorerisingWCLKedgesplustPAF,PAEwillbevalidafterthenexttworising  
LD is LOW and SEN is HIGH, no serial write to the registers can occur.  
RCLK edges plus tPAE plus tSKEW2.  
Write operations to the FIFO are allowed before and during the serial  
The act of reading the offset registers employs a dedicated read offset  
programmingsequence. Inthiscase,theprogrammingofalloffsetbitsdoes registerpointer. ThecontentsoftheoffsetregisterscanbereadontheQ0-Qn  
nothavetooccuratonce. AselectnumberofbitscanbewrittentotheSIinput pinswhenLDissetLOWandRENissetLOW.Forx36outputbuswidth,data  
andthen,bybringingLDandSENHIGH,datacanbewrittentoFIFOmemory are read via Qn from the Empty Offset Register on the first LOW-to-HIGH  
via Dn by toggling WEN. When WEN is brought HIGH with LD and SEN transitionofRCLK.UponthesecondLOW-to-HIGHtransitionofRCLK,dataare  
restoredtoaLOW,thenextoffsetbitinsequenceiswrittentotheregistersvia readfromtheFullOffsetRegister.ThethirdtransitionofRCLKreads,onceagain,  
SI. Ifaninterruptionofserialprogrammingisdesired,itissufficienteithertoset fromtheEmptyOffsetRegister.Forx18outputbuswidth,atotaloffourread  
LDLOWanddeactivateSENortosetSENLOWanddeactivateLD. OnceLD cyclesarerequiredtoobtainthevaluesoftheoffsetregisters.Startingwiththe  
andSENarebothrestoredtoaLOWlevel,serialoffsetprogrammingcontinues. EmptyOffsetRegisterLSBandfinishingwiththeFullOffsetRegisterMSB.For  
Fromthetimeserialprogramminghasbegun,neitherprogrammableflag x9outputbuswidth,atotalofsixreadcyclesmustbeperformedontheoffset  
willbevaliduntilthefullsetofbitsrequiredtofillalltheoffsetregistershasbeen registers.SeeFigure3,ProgrammableFlagOffsetProgrammingSequence.  
written. MeasuringfromtherisingWCLKedgethatachievestheabovecriteria; SeeFigure17, ParallelReadofProgrammableFlagRegisters,forthetiming  
PAFwillbevalidaftertwomorerisingWCLKedgesplustPAF,PAEwillbevalid diagramforthismode.  
afterthe nexttworisingRCLKedges plus tPAE plus tSKEW2.  
Itispermissibletointerrupttheoffsetregisterreadsequencewithreadsor  
ItisonlypossibletoreadtheflagoffsetvaluesviatheparalleloutputportQn. writestotheFIFO. TheinterruptionisaccomplishedbydeassertingREN,LD,  
orbothtogether.WhenRENandLDarerestoredtoaLOW level,readingof  
PARALLELMODE  
theoffsetregisterscontinueswhereitleftoff.Itshouldbenoted,andcareshould  
IfParallelProgrammingmodehasbeenselected,asdescribedabove,then betakenfromthefactthatwhenaparallelreadoftheflagoffsetsisperformed,  
programmingofPAEandPAFvaluescanbeachievedbyusingacombination the data wordthatwas presentonthe outputlines Qnwillbe overwritten.  
of the LD, WCLK , WEN and Dn input pins. Programming PAE and PAF  
Parallelreadingofthe offsetregisters is always permittedregardless of  
proceedsasfollows: LDandWENmustbesetLOW.Forx36bitinputbuswidth, whichtimingmode (IDTStandardorFWFTmodes)has beenselected.  
dataontheinputsDnarewrittenintotheEmptyOffsetRegisteronthefirstLOW-  
to-HIGH transition of WCLK. Upon the second LOW-to-HIGH transition of RETRANSMITOPERATION  
WCLK,dataarewrittenintotheFullOffsetRegister.ThethirdtransitionofWCLK  
The Retransmit operation allows data that has already been read to be  
writes,onceagain,totheEmptyOffsetRegister. Forx18bitinputbuswidth, accessedagain. Thereare2modesofRetransmitoperation,normallatency  
dataontheinputsDnarewrittenintotheEmptyOffsetRegisterLSBonthefirst andzerolatency. TherearetwostagestoRetransmit:first,asetupprocedure  
LOW-to-HIGHtransitionofWCLK.Uponthe2ndLOW-to-HIGHtransitionof that resets the read pointer to the first location of memory, then the actual  
WCLKdataarewrittenintotheEmptyOffsetRegisterMSB.Thethirdtransition retransmit,whichconsistsofreadingoutthememorycontents,startingatthe  
ofWCLKwritestotheFullOffsetRegisterLSB,thefourthtransitionofWCLKthen beginningofmemory.  
writestotheFullOffsetRegisterMSB.ThefifthtransitionofWCLKwritesonce  
RetransmitsetupisinitiatedbyholdingRTLOWduringarisingRCLKedge.  
againtotheEmptyOffsetRegisterLSB. Atotaloffourwritestotheoffsetregisters REN andWEN mustbe HIGHbefore bringingRT LOW. Whenzerolatency  
isrequiredtoloadvaluesusingax18inputbuswidth.Foraninputbuswidth is utilized,RENdoes notneedtobeHIGHbeforebringingRTLOW. Atleast  
ofx9bits,atotalofsixwritecyclestotheoffsetregistersisrequiredtoloadvalues. twowords,butnomorethanD-2wordsshouldhavebeenwrittenintotheFIFO,  
See Figure 3, Programmable Flag Offset Programming Sequence. See and read from the FIFO, between Reset (Master or Partial) and the time of  
Figure 16, Parallel Loading of Programmable Flag Registers, for the timing Retransmitsetup. D =1,024fortheIDT72V3640,2,048fortheIDT72V3650,  
diagramforthismode.  
4,096 for the IDT72V3660, 8,192 for the IDT72V3670, 16,384 for the  
Theactofwritingoffsetsinparallelemploysadedicatedwriteoffsetregister IDT72V3680and32,768forthe IDT72V3690. InFWFTmode, D=1,025for  
pointer. The act of reading offsets employs a dedicated read offset register theIDT72V2640,2,049fortheIDT72V3650,4,097fortheIDT72V3660,8,193  
pointer.Thetwopointersoperateindependently;however,areadandawrite fortheIDT72V3670,16,385fortheIDT72V3680and32,769fortheIDT72V3690.  
shouldnotbeperformedsimultaneouslytotheoffsetregisters. AMasterReset  
IfIDTStandardmodeisselected,theFIFOwillmarkthebeginningofthe  
initializesbothpointerstotheEmptyOffset(LSB)register.APartialResethas RetransmitsetupbysettingEFLOW. Thechangeinlevelwillonlybenoticeable  
noeffectonthepositionofthesepointers.  
17  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
if EF was HIGH before setup. During this period, the internal read pointer is  
initializedtothefirstlocationoftheRAMarray.  
For either IDT Standard mode or FWFT mode, updating of the PAE, HF  
and PAF flags begin with the rising edge of RCLK that RT is setup. PAE is  
WhenEFgoesHIGH,Retransmitsetupiscompleteandreadoperations synchronizedtoRCLK,thusonthesecondrisingedgeofRCLKafterRTissetup,  
maybeginstartingwiththefirstlocationinmemory. SinceIDTStandardmode thePAEflagwillbeupdated. HFisasynchronous,thustherisingedgeofRCLK  
isselected,everywordreadincludingthefirstwordfollowingRetransmitsetup thatRTissetupwillupdateHF. PAFissynchronizedtoWCLK,thusthesecond  
requires a LOW on REN to enable the rising edge of RCLK. See Figure 11, risingedgeofWCLKthatoccurstSKEW aftertherisingedgeofRCLKthatRT  
Retransmit Timing (IDT Standard Mode), forthe relevanttimingdiagram.  
is setup will update PAF. RT is synchronized to RCLK.  
IfFWFTmodeisselected,theFIFOwillmarkthebeginningoftheRetransmit  
TheRetransmitfunctionhastheoptionoftwomodesofoperation,either  
setupbysettingOR HIGH.Duringthis period,theinternalreadpointeris set normal latency” or zero latency. Figure 11 and Figure 12 mentioned  
tothefirstlocationoftheRAMarray. previously, relate to normal latency. Figure 13 and Figure 14 show zero  
WhenORgoesLOW,Retransmitsetupiscomplete;atthesametime,the latency”retransmitoperation.Zerolatencybasicallymeansthatthefirstdata  
contentsofthefirstlocationappearontheoutputs. SinceFWFTmodeisselected, wordtoberetransmitted,isplacedontotheoutputregisterwithrespecttothe  
thefirstwordappearsontheoutputs,noLOWonRENisnecessary.Reading RCLKpulsethatinitiatedtheretransmit.  
all subsequent words requires a LOW on REN to enable the rising edge of  
RCLK.SeeFigure12,RetransmitTiming(FWFTMode),fortherelevanttiming  
diagram.  
18  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
ASYNCHRONOUS READ (ASYR)  
SIGNALDESCRIPTION  
INPUTS:  
ThereadportcanbeconfiguredforeitherSynchronousorAsynchronous  
mode of operation. If during a Master Reset the ASYR input is LOW, then  
Asynchronousoperationofthereadportwillbeselected.DuringAsynchronous  
operation of the read port the RCLK input becomes RD input, this is the  
Asynchronous readstrobeinput.ArisingedgeonRDwillreaddatafromthe  
FIFO via the output register and Qn port. (REN must be tied LOW during  
Asynchronous operationofthe readport).  
DATA IN (D0 - Dn)  
Datainputsfor36-bitwidedata(D0-D35),datainputsfor18-bitwidedata  
(D0 - D17) or data inputs for 9-bit wide data (D0 - D8).  
CONTROLS:  
The OE input provides three-state control of the Qn output bus, in an  
asynchronousmanner.  
MASTER RESET ( MRS )  
AMasterResetisaccomplishedwhenevertheMRSinputistakentoaLOW  
state.Thisoperationsetstheinternalreadandwritepointerstothefirstlocation  
oftheRAMarray.PAEwill goLOW, PAFwillgoHIGH,and HFwillgoHIGH.  
If FWFT/SI is LOW during Master Reset then the IDT Standard mode,  
along with EF and FF are selected. EF will go LOW and FF will go HIGH. If  
FWFT/SIisHIGH,thentheFirstWordFallThroughmode(FWFT),alongwith  
IR and OR, are selected. OR will go HIGH and IR will go LOW.  
AllcontrolsettingssuchasOW,IW,BM,BE,RM,PFMandIParedefined  
duringtheMasterResetcycle.  
WhenthereadportisconfiguredforAsynchronousoperationthedevice  
mustbeoperatingonIDTstandardmode,FWFTmodeisnotpermissibleifthe  
readportisAsynchronous.TheEmptyFlag(EF)operatesinanAsynchronous  
manner,thatis,theemptyflagwillbeupdatedbasedonbothareadoperation  
andawriteoperation.Refertofigures25,26,27and28forrelevanttimingand  
operationalwaveforms.  
RETRANSMIT ( RT )  
The Retransmit operation allows data that has already been read to be  
accessedagain. Thereare2modesofRetransmitoperation,normallatency  
andzerolatency. TherearetwostagestoRetransmit:first,asetupprocedure  
that resets the read pointer to the first location of memory, then the actual  
retransmit,whichconsistsofreadingoutthememorycontents,startingatthe  
beginningofthememory.  
RetransmitsetupisinitiatedbyholdingRTLOWduringarising RCLKedge.  
REN andWEN mustbe HIGHbefore bringingRT LOW. Whenzerolatency  
is utilized, REN does not need to be HIGH before bringing RT LOW.  
IfIDTStandardmodeisselected,theFIFOwillmarkthebeginningofthe  
RetransmitsetupbysettingEFLOW. Thechangeinlevelwillonlybenoticeable  
ifEF was HIGHbefore setup. Duringthis period, the internalreadpointeris  
initializedtothefirstlocationoftheRAMarray.  
WhenEFgoesHIGH,Retransmitsetupiscompleteandreadoperations  
maybeginstartingwiththefirstlocationinmemory. SinceIDTStandardmode  
isselected,everywordreadincludingthefirstwordfollowingRetransmitsetup  
requires a LOW on REN to enable the rising edge of RCLK. See Figure 11,  
Retransmit Timing (IDT Standard Mode), forthe relevanttimingdiagram.  
IfFWFTmodeisselected,theFIFOwillmarkthebeginningoftheRetransmit  
setupbysettingOR HIGH.Duringthis period,theinternalreadpointeris set  
tothefirstlocationoftheRAMarray.  
WhenORgoesLOW,Retransmitsetupiscomplete;atthesametime,the  
contentsofthefirstlocationappearontheoutputs. SinceFWFTmodeisselected,  
thefirstwordappearsontheoutputs,noLOWonRENisnecessary.Reading  
all subsequent words requires a LOW on REN to enable the rising edge of  
RCLK.SeeFigure12,RetransmitTiming(FWFTMode),fortherelevanttiming  
diagram.  
DuringaMasterReset,theoutputregisterisinitializedtoallzeroes.AMaster  
Resetisrequiredafterpowerup,beforeawriteoperationcantakeplace.MRS  
isasynchronous.  
See Figure 5, Master Reset Timing, forthe relevanttimingdiagram.  
PARTIAL RESET ( PRS )  
APartialResetisaccomplishedwheneverthePRS inputistakentoaLOW  
state.AsinthecaseoftheMasterReset,theinternalreadandwritepointers  
aresettothefirstlocationoftheRAMarray,PAEgoesLOW, PAFgoesHIGH,  
and HF goes HIGH.  
WhichevermodeisactiveatthetimeofPartialReset,IDTStandardmode  
orFirstWordFallThrough,thatmodewillremainselected. IftheIDTStandard  
modeisactive,thenFFwillgoHIGHandEFwillgoLOW. IftheFirstWordFall  
Through mode is active, then OR will go HIGH, and IR will go LOW.  
Following Partial Reset, all values held in the offset registers remain  
unchanged. Theprogrammingmethod(parallelorserial)currentlyactiveat  
thetimeofPartialResetisalsoretained. Theoutputregisterisinitializedtoall  
zeroes. PRS is asynchronous.  
A Partial Reset is useful for resetting the device during the course of  
operation,whenreprogrammingprogrammableflagoffsetsettingsmaynotbe  
convenient.  
See Figure 6, PartialResetTiming, forthe relevanttimingdiagram.  
ASYNCHRONOUS WRITE (ASYW)  
ThewriteportcanbeconfiguredforeitherSynchronousorAsynchronous  
mode of operation. If during Master Reset the ASYW input is LOW, then  
Asynchronousoperationofthewriteportwillbeselected.DuringAsynchronous  
operation of the write port the WCLK input becomes WR input, this is the  
Asynchronouswritestrobeinput.ArisingedgeonWRwillwritedatapresent  
ontheDninputsintotheFIFO.(WENmustbetiedLOWwhenusingthewrite  
portinAsynchronous mode).  
WhenthewriteportisconfiguredforAsynchronousoperationthefullflag  
(FF)operatesinanasynchronousmanner,thatis,thefullflagwillbeupdated  
basedinbothawriteoperationandreadoperation.Note,ifAsynchronousmode  
is selected, FWFTis notpermissable. RefertoFigures 23, 24, 27and28for  
relevanttimingandoperationalwaveforms.  
In Retransmit operation, zero latency mode can be selected using the  
RetransmitMode(RM)pinduringaMasterReset. Thiscanbeappliedtoboth  
IDT Standard mode and FWFT mode.  
FIRST WORD FALL THROUGH/SERIAL IN (FWFT/SI)  
Thisisadualpurposepin.DuringMasterReset,thestateoftheFWFT/SI  
inputdetermineswhetherthedevicewilloperateinIDTStandardmodeorFirst  
Word Fall Through (FWFT) mode.  
If,atthetimeofMasterReset,FWFT/SIisLOW,thenIDTStandardmode  
willbeselected. This modeuses theEmptyFlag(EF)toindicatewhetheror  
19  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
notthereareanywordspresentintheFIFOmemory. ItalsousestheFullFlag whenever there is a rising edge on RD. In this mode the REN input must be  
function(FF)toindicatewhetherornottheFIFOmemoryhasanyfreespace tiedLOW.TheOEinputisusedtoprovideAsynchronouscontrolofthethree-  
forwriting. InIDTStandardmode,everywordreadfromtheFIFO,including stateQnoutputs.  
the first, mustbe requestedusingthe ReadEnable (REN)andRCLK.  
If,atthetimeofMasterReset,FWFT/SIisHIGH,thenFWFTmodewillbe READ ENABLE ( REN )  
selected. ThismodeusesOutputReady(OR)toindicatewhetherornotthere  
isvaliddataatthedataoutputs(Qn). ItalsousesInputReady(IR)toindicate register on the rising edge of every RCLK cycle if the device is not empty.  
whetherornottheFIFOmemoryhasanyfreespaceforwriting. IntheFWFT  
WhenReadEnableisLOW,dataisloadedfromtheRAMarrayintotheoutput  
WhentheRENinputisHIGH,theoutputregisterholdsthepreviousdata  
mode,thefirstwordwrittentoanemptyFIFOgoesdirectlytoQnafterthreeRCLK andnonewdata is loadedintothe outputregister. The data outputs Q0-Qn  
rising edges, REN = LOW is not necessary. Subsequent words must be maintainthepreviousdatavalue.  
accessed using the Read Enable (REN) and RCLK.  
IntheIDTStandardmode,everywordaccessedatQn,includingthefirst  
AfterMasterReset,FWFT/SIactsasaserialinputforloadingPAEandPAF wordwrittentoanemptyFIFO,mustberequestedusingREN. Whenthelast  
offsetsintotheprogrammableregisters. Theserialinputfunctioncanonlybe wordhasbeenreadfromtheFIFO,theEmptyFlag(EF)willgoLOW,inhibiting  
usedwhentheserialloadingmethodhasbeenselectedduringMasterReset. furtherreadoperations. RENisignoredwhentheFIFOisempty.Onceawrite  
SerialprogrammingusingtheFWFT/SIpinfunctionsthesamewayinbothIDT isperformed,EFwillgoHIGHallowingareadtooccur. TheEFflagisupdated  
StandardandFWFTmodes.  
by two RCLK cycles + tSKEW after the valid WCLK cycle.  
IntheFWFTmode,thefirstwordwrittentoanemptyFIFOautomaticallygoes  
totheoutputsQn,onthethirdvalidLOW-to-HIGHtransitionofRCLK+tSKEW  
WRITE STROBE & WRITE CLOCK (WR/WCLK)  
IfSynchronousoperationofthewriteporthasbeenselectedviaASYW,this afterthefirstwrite. RENdoesnotneedtobeassertedLOW. Inordertoaccess  
inputbehavesasWCLK. allotherwords,areadmustbeexecutedusingREN. TheRCLKLOW-to-HIGH  
AwritecycleisinitiatedontherisingedgeoftheWCLKinput.Datasetup transitionafterthelastword hasbeenreadfromtheFIFO,OutputReady(OR)  
andholdtimesmustbemetwithrespecttotheLOW-to-HIGHtransitionofthe willgoHIGHwithatrueread(RCLKwithREN=LOW),inhibitingfurtherread  
WCLK.ItispermissibletostoptheWCLK. NotethatwhileWCLKisidle,theFF/ operations. REN is ignored when the FIFO is empty.  
IR,PAFandHFflagswillnotbeupdated. (NotethatWCLKisonlycapableof  
IfAsynchronousoperationoftheReadporthasbeenselected,thenREN  
updating HF flag to LOW). The Write and Read Clocks can either be mustbeheldactive,(tiedLOW).  
independentorcoincident.  
IfAsynchronousoperationhasbeenselectedthisinputisWR(writestrobe). SERIAL ENABLE ( SEN )  
DataisAsynchronouslywrittenintotheFIFOviatheDninputswheneverthere  
is arisingedgeonWR.Inthis modetheWENinputmustbetiedLOW.  
TheSENinput isanenableusedonlyforserialprogrammingoftheoffset  
registers. The serial programming method must be selected during Master  
Reset. SENisalwaysusedinconjunctionwithLD. Whentheselinesareboth  
LOW,dataattheSIinputcanbeloadedintotheprogramregisteronebitforeach  
LOW-to-HIGHtransitionofWCLK.  
WRITE ENABLE ( WEN )  
WhentheWENinput isLOW,datamaybeloadedintotheFIFORAMarray  
ontherisingedgeofeveryWCLKcycleifthedeviceisnotfull. Dataisstored  
in the RAM array sequentially and independently of any ongoing read  
operation.  
WhenWENisHIGH,nonewdataiswrittenintheRAMarrayoneachWCLK  
cycle.  
To prevent data overflow in the IDT Standard mode, FF will go LOW,  
inhibitingfurtherwriteoperations. Uponthecompletionofavalidreadcycle,  
FF will go HIGH allowing a write to occur. The FF is updated by two WCLK  
cycles +tSKEW afterthe RCLKcycle.  
When SEN is HIGH, the programmable registers retains the previous  
settings andnooffsets areloaded. SEN functions thesamewayinbothIDT  
StandardandFWFTmodes.  
OUTPUT ENABLE ( OE )  
WhenOutputEnableisenabled(LOW),theparalleloutputbuffersreceive  
datafromtheoutputregister. WhenOEisHIGH,theoutputdatabus(Qn)goes  
intoahighimpedancestate.  
Topreventdataoverflow intheFWFTmode, IR willgoHIGH,inhibiting  
furtherwriteoperations. Uponthecompletionofavalidreadcycle,IRwillgo  
LOWallowingawritetooccur. TheIRflagis updatedbytwoWCLKcycles +  
tSKEW afterthe validRCLKcycle.  
WENisignoredwhentheFIFOisfullineitherFWFTorIDTStandardmode.  
IfAsynchronousoperationofthewriteporthasbeenselected,thenWEN  
mustbeheldactive,(tiedLOW).  
LOAD ( LD )  
Thisisadualpurposepin. DuringMasterReset,thestateoftheLDinput,  
alongwithFSEL0andFSEL1,determinesoneofeightdefaultoffsetvaluesfor  
thePAEandPAFflags,alongwiththemethodbywhichtheseoffsetregisters  
canbeprogrammed,parallelorserial(seeTable2). AfterMasterReset,LD  
enableswriteoperationstoandreadoperationsfromtheoffsetregisters.Only  
theoffsetloadingmethodcurrentlyselectedcanbeusedtowritetotheregisters.  
Offsetregisters canbereadonlyinparallel.  
AfterMasterReset,theLDpinisusedtoactivatetheprogrammingprocess  
oftheflagoffsetvaluesPAEandPAF.PullingLDLOWwillbeginaserialloading  
orparallelloadorreadofthese offsetvalues.  
READ STROBE & READ CLOCK (RD/RCLK)  
IfSynchronousoperationofthereadporthasbeenselectedviaASYR,this  
inputbehavesasRCLK.A readcycleisinitiatedontherisingedgeoftheRCLK  
input. Datacanbereadontheoutputs,ontherisingedgeoftheRCLKinput.  
ItispermissibletostoptheRCLK. NotethatwhileRCLKisidle,theEF/OR,PAE  
andHFflagswillnotbeupdated.(NotethatRCLKisonlycapableofupdating  
the HF flag to HIGH). The Write and Read Clocks can be independent or  
coincident.  
BUS-MATCHING (BM, IW, OW)  
ThepinsBM,IWandOWareusedtodefinetheinputandoutputbuswidths.  
DuringMasterReset,thestateofthesepinsisusedtoconfigurethedevicebus  
sizes. SeeTable1forcontrolsettings. Allflagswilloperateontheword/byte  
sizeboundaryasdefinedbytheselectionofbuswidth.SeeFigure4forBus-  
MatchingByteArrangement.  
If Asynchronous operation has been selected this input is RD (Read  
Strobe) . Data is Asynchronously read from the FIFO via the output register  
20  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
BIG-ENDIAN/LITTLE-ENDIAN ( BE )  
TheIRstatusnotonlymeasuresthecontentsoftheFIFOmemory,butalso  
During Master Reset, a LOW on BE will select Big-Endian operation. A countsthepresenceofawordintheoutputregister. Thus,inFWFTmode,the  
HIGHonBEduringMasterResetwillselectLittle-Endianformat.Thisfunction totalnumberofwritesnecessarytodeassertIRisonegreaterthanneededto  
isusefulwhenthefollowinginputtooutputbuswidthsareimplemented:x36to assert FF in IDT Standard mode.  
x18,x36tox9,x18tox36andx9tox36.IfBig-Endianmodeisselected,then  
FF/IRissynchronousandupdatedontherisingedgeofWCLK.FF/IRare  
themostsignificantbyte(word)ofthelongwordwrittenintotheFIFOwillberead doubleregister-bufferedoutputs.  
outoftheFIFOfirst,followedbytheleastsignificantbyte.IfLittle-Endianformat  
isselected,thentheleastsignificantbyteofthelongwordwrittenintotheFIFO EMPTY FLAG ( EF/OR )  
willbereadoutfirst,followedbythemostsignificantbyte.Themodedesiredis  
configured during master reset by the state of the Big-Endian (BE) pin. See functionisselected. WhentheFIFOisempty,EFwillgoLOW,inhibitingfurther  
Figure 4 for Bus-Matching Byte Arrangement.  
Thisisadualpurposepin. IntheIDTStandardmode,theEmptyFlag(EF)  
readoperations. WhenEFisHIGH,theFIFOisnotempty.SeeFigure8,Read  
Cycle, EmptyFlagandFirstWordLatencyTiming(IDTStandardMode),for  
therelevanttiminginformation.  
PROGRAMMABLEFLAGMODE(PFM)  
DuringMasterReset,aLOWonPFMwillselectAsynchronousProgram-  
InFWFTmode,theOutputReady(OR)functionisselected.ORgoesLOW  
mableflagtimingmode.AHIGHonPFMwillselectSynchronousProgrammable atthesametimethatthefirstwordwrittentoanemptyFIFOappearsvalidon  
flagtimingmode.IfasynchronousPAF/PAEconfigurationisselected(PFM, theoutputs. ORstaysLOWaftertheRCLKLOWtoHIGHtransitionthatshifts  
LOWduringMRS),thePAEisassertedLOWontheLOW-to-HIGHtransition thelastwordfromtheFIFOmemorytotheoutputs. OR goesHIGHonlywith  
of RCLK. PAE is reset to HIGH on the LOW-to-HIGH transition of WCLK. atrueread(RCLKwithREN=LOW). Thepreviousdatastaysattheoutputs,  
Similarly,thePAFisassertedLOWontheLOW-to-HIGHtransitionofWCLKand indicatingthelastwordwasread. FurtherdatareadsareinhibiteduntilORgoes  
PAFis resettoHIGHontheLOW-to-HIGHtransitionofRCLK.  
LOWagain.SeeFigure10,ReadTiming(FWFTMode),fortherelevanttiming  
If synchronous PAE/PAF configuration is selected (PFM, HIGH during information.  
MRS),thePAEisassertedandupdatedontherisingedgeofRCLKonlyand  
notWCLK.Similarly,PAFisassertedandupdatedontherisingedgeofWCLK  
EF/OR is synchronous and updated on the rising edge of RCLK.  
InIDTStandardmode, EFis a double register-bufferedoutput. InFWFT  
onlyandnotRCLK.Themodedesiredisconfiguredduringmasterresetbythe mode,ORisatripleregister-bufferedoutput.  
stateoftheProgrammableFlagMode(PFM)pin.  
PROGRAMMABLE ALMOST-FULL FLAG (PAF)  
INTERSPERSED PARITY (IP)  
The Programmable Almost-Full flag (PAF) will go LOW when the FIFO  
DuringMasterReset,aLOWonIPwillselectNon-InterspersedParitymode. reaches the almost-full condition. In IDT Standard mode, if no reads are  
A HIGHwillselectInterspersedParitymode.TheIPbitfunctionallowstheuser performedafterreset(MRS),PAFwillgoLOWafter(D - m)wordsarewritten  
to select the parity bit in the word loaded into the parallel port (D0-Dn) when totheFIFO.ThePAFwillgoLOWafter(1,024-m)writesfortheIDT72V3640,  
programmingtheflagoffsets.IfInterspersedParitymodeisselected,thenthe (2,048-m)writesfortheIDT72V3650,(4,096-m)writesfortheIDT72V3660,  
FIFOwillassumethattheparitybitsarelocatedinbitpositionD8,D17,D26and (8,192-m)writesfortheIDT72V3670,(16,384-m)writesfortheIDT72V3680  
D35 duringthe parallelprogrammingofthe flagoffsets. IfNon-Interspersed and(32,768-m)writesfortheIDT72V3690.Theoffsetm”isthefulloffsetvalue.  
Paritymodeisselected,thenD8,D17 andD28 areisassumedtobevalidbits ThedefaultsettingforthisvalueisstatedinthefootnoteofTable1.  
and D32, D33, D34 and D35 are ignored. IP mode is selected during Master  
In FWFT mode, the PAF will go LOW after (1,025-m) writes for the  
ResetbythestateoftheIPinputpin.InterspersedParitycontrolonlyhas an IDT72V3640,(2,049-m)writesfortheIDT72V3650,(4,097-m)writesforthe  
effectduringparallelprogrammingoftheoffsetregisters.Itdoesnoteffectthedata IDT72V3660and(8,193-m)writesfortheIDT72V3670,(16,385-m)writesfor  
writtentoandreadfromthe FIFO.  
the IDT72V3680and(32,769-m)writes forthe IDT72V3690, where mis the  
fulloffsetvalue.Thedefaultsettingforthisvalueisstatedin Table2.  
SeeFigure18,SynchronousProgrammableAlmost-FullFlagTiming(IDT  
StandardandFWFTMode),fortherelevanttiminginformation.  
IfasynchronousPAFconfigurationisselected,thePAFisassertedLOW  
ontheLOW-to-HIGHtransitionoftheWriteClock(WCLK). PAFisresettoHIGH  
ontheLOW-to-HIGHtransitionoftheReadClock(RCLK). IfsynchronousPAF  
configurationisselected,thePAFisupdatedontherisingedgeofWCLK. See  
Figure20,AsynchronousAlmost-FullFlagTiming(IDTStandardandFWFT  
Mode).  
OUTPUTS:  
FULL FLAG ( FF/IR )  
Thisisadualpurposepin. InIDTStandardmode,theFullFlag (FF) function  
is selected. When the FIFO is full, FF will go LOW, inhibiting further write  
operations. WhenFF isHIGH,theFIFOisnotfull. Ifnoreadsareperformed  
after a reset (either MRS orPRS), FF willgoLOWafterDwrites tothe FIFO  
(D = 1,024 for the IDT72V3640, 2,048 for the IDT72V3650, 4,096 for the  
IDT72V3660, 8,192 for the IDT72V3670, 16,384 for the IDT72V3680 and  
32,768 for the IDT72V3690. See Figure 7, Write Cycle andFullFlagTiming  
(IDTStandardMode),fortherelevanttiminginformation.  
PROGRAMMABLEALMOST-EMPTYFLAG(PAE)  
TheProgrammableAlmost-Emptyflag(PAE)willgoLOWwhentheFIFO  
reachesthealmost-emptycondition.InIDTStandardmode,PAEwillgoLOW  
whenthere are nwords orless inthe FIFO. The offsetn”is the emptyoffset  
value.ThedefaultsettingforthisvalueisstatedinthefootnoteofTable 1.  
In FWFT mode, the PAE will go LOW when there are n+1 words or less  
intheFIFO.Thedefaultsettingforthis valueis statedinTable2.  
See Figure 19, Synchronous ProgrammableAlmost-EmptyFlagTiming  
(IDTStandardandFWFTMode), forthe relevanttiminginformation.  
InFWFTmode, the InputReady(IR)functionis selected. IRgoes LOW  
whenmemoryspaceis availableforwritingindata. Whenthereis nolonger  
anyfreespaceleft,IRgoesHIGH,inhibitingfurtherwriteoperations. Ifnoreads  
areperformedafterareset(eitherMRSorPRS),IRwillgoHIGHafterD writes  
totheFIFO(D = 1,025fortheIDT72V3640,2,049fortheIDT72V3650,4,097  
fortheIDT72V3660,8,193fortheIDT72V3670,16,385fortheIDT72V3680  
and32,769forthe IDT72V3690. See Figure 9, Write Timing(FWFTMode),  
fortherelevanttiminginformation.  
21  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
IfasynchronousPAEconfigurationisselected,thePAEisassertedLOW IDT72V3640, 2,048 for the IDT72V3650, 4,096 for the IDT72V3660, 8,192  
ontheLOW-to-HIGHtransitionoftheReadClock(RCLK). PAEisresettoHIGH fortheIDT72V3670,16,384fortheIDT72V3680and32,768fortheIDT72V3690.  
ontheLOW-to-HIGHtransitionoftheWriteClock(WCLK). IfsynchronousPAE  
In FWFT mode, if no reads are performed after reset (MRS or PRS), HF  
configurationisselected,thePAEisupdatedontherisingedgeofRCLK. See will go LOW after (D-1/2 + 2) writes to the FIFO, where D = 1,025 for the  
Figure 21, Asynchronous Programmable Almost-Empty Flag Timing (IDT IDT72V3640,2,049fortheIDT72V3650,4,097fortheIDT72V3660,8,193for  
Standard and FWFT Mode).  
theIDT72V3670,16,385fortheIDT72V3680and32,769fortheIDT72V3690.  
See Figure 22, Half-Full Flag Timing (IDT Standard and FWFT Modes),  
fortherelevanttiminginformation.BecauseHFisupdatedbybothRCLKand  
HALF-FULL FLAG ( HF )  
Thisoutputindicatesahalf-fullFIFO.TherisingWCLKedgethatfillstheFIFO WCLK,itisconsideredasynchronous.  
beyondhalf-fullsetsHFLOW.TheflagremainsLOWuntilthedifferencebetween  
thewriteandreadpointersbecomeslessthanorequaltohalfofthetotaldepth DATAOUTPUTS(Q0-Qn)  
ofthedevice;therisingRCLKedgethataccomplishesthisconditionsetsHF  
HIGH.  
(Q0-Q35)aredataoutputsfor36-bitwidedata,(Q0-Q17)aredataoutputs  
for 18-bit wide data or (Q0-Q8) are data outputs for 9-bit wide data.  
InIDTStandardmode,ifnoreadsareperformedafterreset(MRSorPRS),  
HF will go LOW after (D/2 + 1) writes to the FIFO, where D = 1,024 for the  
22  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
D35-D27  
D26-D18  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
Write to FIFO  
A
B
C
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BE BM IW  
OW  
L
A
B
C
D
Read from FIFO  
X
L
L
(a) x36 INPUT to x36 OUTPUT  
Q35-Q27  
Q35-Q27  
Q26-Q18  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BE BM IW  
OW  
L
1st: Read from FIFO  
2nd: Read from FIFO  
A
B
L
H
L
Q17-Q9  
Q8-Q0  
C
D
(b) x36 INPUT to x18 OUTPUT - BIG-ENDIAN  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BE BM IW  
OW  
L
1st: Read from FIFO  
2nd: Read from FIFO  
C
D
H
H
L
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
A
B
(c) x36 INPUT to x18 OUTPUT - LITTLE-ENDIAN  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BE BM IW  
OW  
H
A
1st: Read from FIFO  
2nd: Read from FIFO  
L
H
L
Q35-Q27  
Q35-Q27  
Q26-Q18  
Q26-Q18  
Q17-Q9  
Q17-Q9  
Q8-Q0  
B
Q8-Q0  
C
3rd: Read from FIFO  
4th: Read from FIFO  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
D
(d) x36 INPUT to x9 OUTPUT - BIG-ENDIAN  
Q35-Q27  
Q35-Q27  
Q35-Q27  
Q35-Q27  
Q26-Q18  
Q26-Q18  
Q26-Q18  
Q26-Q18  
Q17-Q9  
Q17-Q9  
Q17-Q9  
Q17-Q9  
Q8-Q0  
BE BM IW  
OW  
H
D
1st: Read from FIFO  
H
H
L
Q8-Q0  
2nd: Read from FIFO  
3rd: Read from FIFO  
C
Q8-Q0  
B
Q8-Q0  
A
4th: Read from FIFO  
4667 drw08  
(e) x36 INPUT to x9 OUTPUT - LITTLE-ENDIAN  
Figure 4. Bus-Matching Byte Arrangement  
23  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
D35-D27  
D26-D18  
D17-D9  
D8-D0  
BYTE ORDER ON INPUT PORT:  
1st: Write to FIFO  
2nd: Write to FIFO  
A
B
D35-D27  
D26-D18  
D17-D9  
D8-D0  
C
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BE BM IW  
OW  
L
B
D
Read from FIFO  
Read from FIFO  
A
C
L
H
H
(a) x18 INPUT to x36 OUTPUT - BIG-ENDIAN  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BE BM IW  
OW  
L
D
B
C
A
H
H
H
(b) x18 INPUT to x36 OUTPUT - LITTLE-ENDIAN  
BYTE ORDER ON INPUT PORT:  
D35-D27  
D35-D27  
D35-D27  
D35-D27  
D26-D18  
D26-D18  
D26-D18  
D26-D18  
D17-D9  
D17-D9  
D17-D9  
D17-D9  
D8-D0  
A
1st: Write to FIFO  
2nd: Write to FIFO  
D8-D0  
B
D8-D0  
3rd: Write to FIFO  
4th: Write to FIFO  
C
D8-D0  
D
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BYTE ORDER ON OUTPUT PORT:  
BE BM IW  
OW  
H
A
B
C
D
Read from FIFO  
L
H
H
(a) x9 INPUT to x36 OUTPUT - BIG-ENDIAN  
Q35-Q27  
Q26-Q18  
Q17-Q9  
Q8-Q0  
BE BM IW  
OW  
H
C
A
Read from FIFO  
4667 drw09  
D
B
H
H
H
(b) x9 INPUT to x36 OUTPUT - LITTLE-ENDIAN  
Figure 4. Bus-Matching Byte Arrangement (Continued)  
24  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
tRS  
MRS  
REN  
t
RSS  
RSS  
t
RSR  
RSR  
t
t
WEN  
tRSR  
tRSS  
FWFT/SI  
t
RSS  
RSS  
tRSR  
LD  
t
ASYW,  
ASYR  
tRSS  
FSEL0,  
FSEL1  
tRSS  
tRSS  
tRSS  
tRSS  
BM,  
OW, IW  
BE  
RM  
PFM  
tRSS  
IP  
RT  
t
RSS  
RSS  
t
SEN  
t
RSF  
If FWFT = HIGH, OR = HIGH  
If FWFT = LOW, EF = LOW  
EF/OR  
t
RSF  
If FWFT = LOW, FF = HIGH  
If FWFT = HIGH, IR = LOW  
FF/IR  
PAE  
t
RSF  
t
RSF  
PAF, HF  
t
RSF  
OE = HIGH  
OE = LOW  
Q0 - Qn  
4667 drw10  
Figure 5. Master Reset Timing  
25  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
tRS  
PRS  
REN  
tRSS  
tRSR  
tRSS  
tRSR  
WEN  
RT  
tRSS  
tRSS  
SEN  
If FWFT = HIGH, OR = HIGH  
If FWFT = LOW, EF = LOW  
If FWFT = LOW, FF = HIGH  
If FWFT = HIGH, IR = LOW  
t
RSF  
EF/OR  
t
RSF  
FF/IR  
PAE  
t
RSF  
t
RSF  
PAF, HF  
t
RSF  
OE = HIGH  
OE = LOW  
Q0 - Qn  
4667 drw11  
Figure 6. Partial Reset Timing  
26  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
t
CLK  
t
CLKH  
NO WRITE  
NO WRITE  
tCLKL  
2
1
WCLK  
1
2
(1)  
SKEW1  
t
SKEW1(1)  
t
t
DS  
tDH  
t
DS  
tDH  
D
X
DX+1  
D0 - Dn  
t
WFF  
t
WFF  
t
WFF  
t
WFF  
FF  
WEN  
RCLK  
t
ENS  
tENH  
t
ENS  
tENH  
REN  
t
A
tA  
Q0 - Qn  
DATA READ  
DATA IN OUTPUT REGISTER  
NEXT DATA READ  
4667 drw12  
NOTES:  
1. tSKEW1 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that FF will go HIGH (after one WCLK cycle pus tWFF). If the time between  
the rising edge of the RCLK and the rising edge of the WCLK is less than tSKEW1, then the FF deassertion may be delayed one extra WCLK cycle.  
2. LD = HIGH, OE = LOW, EF = HIGH  
Figure 7. Write Cycle and Full Flag Timing (IDT Standard Mode)  
tCLK  
tCLKH  
tCLKL  
1
2
RCLK  
REN  
tENH  
tENS  
tENS  
tENH  
tENH  
tENS  
NO OPERATION  
NO OPERATION  
tREF  
tREF  
tREF  
EF  
tA  
tA  
tA  
D0  
LAST WORD  
D1  
LAST WORD  
Q0 - Qn  
tOLZ  
t
OLZ  
tOHZ  
tOE  
OE  
WCLK  
WEN  
t
SKEW1(1)  
tENH  
tENH  
tENS  
tENS  
tDS  
tDH  
tDH  
tDS  
D0  
D1  
D0 - Dn  
4667 drw13  
NOTES:  
1. tSKEW1 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that EF will go HIGH (after one RCLK cycle plus tREF). If the time between the rising edge  
of WCLK and the rising edge of RCLK is less than tSKEW1, then EF deassertion may be delayed one extra RCLK cycle.  
2. LD = HIGH.  
3. First data word latency = tSKEW1 + 1*TRCLK + tREF.  
Figure 8. Read Cycle, Empty Flag and First Data Word Latency Timing (IDT Standard Mode)  
27  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
28  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
29  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
1
2
RCLK  
t
ENS  
t
ENH  
t
ENS  
tENH  
tRTS  
REN  
t
A
t
A
t
A
(3)  
(3)  
Q0 - Qn  
Wx  
Wx+1  
W
1
W
2
t
SKEW2  
1
2
WCLK  
WEN  
RT  
tRTS  
t
ENS  
tENH  
tREF  
tREF  
EF  
PAE  
HF  
t
PAES  
tHF  
t
PAFS  
PAF  
4667 drw16  
NOTES:  
1. Retransmit setup is complete after EF returns HIGH, only then can a read operation begin.  
2. OE = LOW.  
3. W1 = first word written to the FIFO after Master Reset, W2 = second word written to the FIFO after Master Reset.  
4. No more than D - 2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, FF will be HIGH throughout the Retransmit setup procedure.  
D = 1,024 for IDT72V3640, 2,048 for IDT72V3650, 4,096 for IDT72V3660, 8,192 for IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690.  
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.  
6. RM is set HIGH during MRS.  
Figure 11. Retransmit Timing (IDT Standard Mode)  
30  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
3
1
2
t
4
RCLK  
t
ENH  
t
ENH  
t
ENS  
t
ENS  
tRTS  
REN  
- Q  
t
A
t
A
tA  
A
(4)  
(4)  
(4)  
Q0  
n
Wx  
Wx+1  
W
2
W4  
W
1
W3  
t
SKEW2  
1
2
WCLK  
tRTS  
WEN  
t
ENS  
tENH  
RT  
OR  
tREF  
tREF  
t
PAES  
PAE  
tHF  
HF  
t
PAFS  
PAF  
4667 drw17  
NOTES:  
1. Retransmit setup is complete after OR returns LOW.  
2. No more than D - 2 words may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, IR will be LOW throughout the Retransmit setup procedure.  
D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690.  
3. OE = LOW.  
4. W1, W2, W3 = first, second and third words written to the FIFO after Master Reset.  
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.  
6. RM is set HIGH during MRS.  
Figure 12. Retransmit Timing (FWFT Mode)  
31  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
1
2
3
RCLK  
t
ENS  
tENH  
REN  
t
A
tA  
t
A
t
A
t
A
(3)  
(3)  
W3  
(3)  
2
Q0 - Qn  
W
4
W1  
Wx  
W
Wx+1  
t
SKEW2  
1
2
WCLK  
tRTS  
WEN  
t
ENS  
tENH  
RT  
EF  
t
PAES  
PAE  
tHF  
HF  
t
PAFS  
PAF  
4667 drw18  
NOTES:  
1. If the part is empty at the point of Retransmit, the empty flag (EF) will be updated based on RCLK (Retransmit clock cycle), valid data will also appear on the output.  
2. OE = LOW.  
3. W1 = first word written to the FIFO after Master Reset, W2 = second word written to the FIFO after Master Reset.  
4. No more than D - 2 may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, FF will be HIGH throughout the Retransmit setup procedure.  
D = 1,024 for IDT72V3640, 2,048 for IDT72V3650, 4,096 for IDT72V3660, 8,192 for IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the IDT72V3690.  
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.  
6. RM is set LOW during MRS.  
Figure 13. Zero Latency Retransmit Timing (IDT Standard Mode)  
32  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
4
1
2
5
3
RCLK  
t
ENH  
t
ENS  
REN  
t
A
t
A
t
A
tA  
t
A
(4)  
(4)  
(4)  
Q0 - Qn  
Wx  
Wx+1  
W3  
W1  
W
2
W
4
W5  
t
SKEW2  
1
2
WCLK  
tRTS  
WEN  
t
ENS  
tENH  
RT  
OR  
t
PAES  
PAE  
HF  
tHF  
t
PAFS  
PAF  
4667 drw19  
NOTES:  
1. If the part is empty at the point of Retransmit, the output ready flag (OR) will be updated based on RCLK (Retransmit clock cycle), valid data will also appear on the output.  
2. No more than D - 2 words may be written to the FIFO between Reset (Master or Partial) and Retransmit setup. Therefore, IR will be LOW throughout the Retransmit setup procedure.  
D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the IDT72V3690.  
3. OE = LOW.  
4. W1, W2, W3 = first, second and third words written to the FIFO after Master Reset.  
5. There must be at least two words written to the FIFO before a Retransmit operation can be invoked.  
6. RM is set LOW during MRS.  
Figure 14. Zero Latency Retransmit Timing (FWFT Mode)  
WCLK  
t
ENH  
LDH  
t
t
ENS  
LDS  
tENH  
SEN  
LD  
t
tLDH  
tDH  
t
DS  
(1)  
(1)  
BIT 0  
BIT 0  
BIT X  
BIT X  
SI  
4667 drw20  
EMPTY OFFSET  
FULL OFFSET  
NOTE:  
1. X = 9 for the IDT72V3640, X = 10 for the IDT72V3650, X = 11 for the IDT72V3660, X = 12 for the IDT72V3670, X = 13 for the IDT72V3680 and X = 14 for the IDT72V3690.  
Figure 15. Serial Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)  
33  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
t
CLK  
t
CLKH  
t
CLKL  
WCLK  
LD  
t
LDH  
t
LDS  
t
t
LDH  
ENH  
t
ENH  
t
ENS  
WEN  
t
DS  
tDH  
t
DH  
PAF  
OFFSET  
PAE  
OFFSET  
D0  
- Dn  
4667 drw21  
NOTE:  
1. This timing diagram illustrates programming with an input bus width of 36 bits.  
Figure 16. Parallel Loading of Programmable Flag Registers (IDT Standard and FWFT Modes)  
t
CLK  
t
CLKH  
tCLKL  
RCLK  
t
LDS  
t
LDH  
t
t
LDH  
ENH  
LD  
t
ENS  
tENH  
REN  
t
A
t
A
DATA IN OUTPUT REGISTER  
PAE OFFSET  
PAF OFFSET  
Q0 - Qn  
4667 drw22  
NOTES:  
1. OE = LOW.  
2. The timing diagram illustrates reading of offset registers with an output bus width of 36 bits.  
Figure 17. Parallel Read of Programmable Flag Registers (IDT Standard and FWFT Modes)  
tCLKL  
tCLKL  
1
2
WCLK  
WEN  
PAF  
2
1
tENS  
tENH  
t
PAFS  
t
PAFS  
D - (m+1) words in FIFO(2)  
D - m words in FIFO(2)  
D-(m+1) words  
in FIFO(2)  
t
SKEW2(3)  
RCLK  
tENS  
tENH  
4667 drw23  
REN  
NOTES:  
1. m = PAF offset.  
2. D = maximum FIFO depth.  
In IDT Standard mode: D = 1,024 for the IDT72V3640, 2,048 for the IDT72V3650, 4,096 for the IDT72V3660 and 8,192 for the IDT72V3670, 16,384 for the IDT72V3680 and 32,768  
for the IDT72V3690.  
In FWFT mode: D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the  
IDT72V3690.  
3. tSKEW2 is the minimum time between a rising RCLK edge and a rising WCLK edge to guarantee that PAF will go HIGH (after one WCLK cycle plus tPAFS). If the time between the  
rising edge of RCLK and the rising edge of WCLK is less than tSKEW2, then the PAF deassertion time may be delayed one extra WCLK cycle.  
4. PAF is asserted and updated on the rising edge of WCLK only.  
5. Select this mode by setting PFM HIGH during Master Reset.  
Figure 18. Synchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)  
34  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
tCLKH  
tCLKL  
WCLK  
tENS  
tENH  
WEN  
PAE  
n words in FIFO (2)  
n+1 words in FIFO (3)  
,
n words in FIFO (2)  
n+1 words in FIFO (3)  
,
n+1 words in FIFO (2)  
n+2 words in FIFO (3)  
,
SKEW2(4)  
t
t
PAES  
PAES  
t
1
2
1
2
RCLK  
tENS  
tENH  
4667 drw24  
REN  
NOTES:  
1. n = PAE offset.  
2. For IDT Standard mode  
3. For FWFT mode.  
4. tSKEW2 is the minimum time between a rising WCLK edge and a rising RCLK edge to guarantee that PAE will go HIGH (after one RCLK cycle plus tPAES). If the time between the rising edge of  
WCLK and the rising edge of RCLK is less than tSKEW2, then the PAE deassertion may be delayed one extra RCLK cycle.  
5. PAE is asserted and updated on the rising edge of WCLK only.  
6. Select this mode by setting PFM HIGH during Master Reset.  
Figure 19. Synchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)  
tCLKH  
tCLKL  
WCLK  
tENS  
tENH  
WEN  
PAF  
tPAFA  
D - m words  
in FIFO  
D - (m + 1) words  
in FIFO  
D - (m + 1) words in FIFO  
tPAFA  
RCLK  
tENS  
REN  
4667 drw25  
NOTES:  
1. m = PAF offset.  
2. D = maximum FIFO Depth.  
In IDT Standard Mode: D = 1,024 for the IDT72V3640, 2,048 for the IDT72V3650, 4,096 for the IDT72V3660, 8,192 for the IDT72V3670, 16,384 for the IDT72V3680 and 32,768  
for the IDT72V3690.  
In FWFT Mode: D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680 and 32,769 for the  
IDT72V3690.  
3. PAF is asserted to LOW on WCLK transition and reset to HIGH on RCLK transition.  
4. Select this mode by setting PFM LOW during Master Reset.  
Figure 20. Asynchronous Programmable Almost-Full Flag Timing (IDT Standard and FWFT Modes)  
35  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
tCLKH  
tCLKL  
WCLK  
tENS  
tENH  
WEN  
(2)  
(2)  
tPAEA  
n words in FIFO  
,
n words in FIFO  
,
(2)  
n+1wordsinFIFO  
,
(3)  
(3)  
PAE  
RCLK  
REN  
n + 1 words in FIFO  
n + 1 words in FIFO  
(3)  
n+2wordsinFIFO  
tPAEA  
tENS  
4667 drw26  
NOTES:  
1. n = PAE offset.  
2. For IDT Standard Mode.  
3. For FWFT Mode.  
4. PAE is asserted LOW on RCLK transition and reset to HIGH on WCLK transition.  
5. Select this mode by setting PFM LOW during Master Reset.  
Figure 21. Asynchronous Programmable Almost-Empty Flag Timing (IDT Standard and FWFT Modes)  
tCLKH  
tCLKL  
WCLK  
tENH  
tENS  
WEN  
HF  
tHF  
D/2 + 1 words in FIFO(1),  
D/2 words in FIFO(1)  
,
D/2 words in FIFO(1)  
,
D-1  
[
+ 2]  
words in FIFO(2)  
D-1  
2
2
D-1  
[
+ 1  
]
words in FIFO(2)  
[
+ 1  
]
words in FIFO(2)  
2
tHF  
RCLK  
tENS  
REN  
4667 drw27  
NOTES:  
1. In IDT Standard mode: D = maximum FIFO depth. D = 1,024 for the IDT72V3640, 2,048 for the IDT72V3650, 4,096 for the IDT72V3660, 8,192 for the IDT72V3670, 16,384 for the  
IDT72V3680 and 32,768 for the IDT72V3690.  
2. In FWFT mode: D = maximum FIFO depth. D = 1,025 for the IDT72V3640, 2,049 for the IDT72V3650, 4,097 for the IDT72V3660, 8,193 for the IDT72V3670, 16,385 for the IDT72V3680  
and 32,769 for the IDT72V3690.  
Figure 22. Half-Full Flag Timing (IDT Standard and FWFT Modes)  
36  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
RCLK  
tENS  
tENH  
tA  
REN  
Qn  
W0  
W1  
tFFA  
FF  
tFFA  
tFFA  
tCYC  
WR  
tCYH  
tDS  
tDH  
WD  
Dn  
WD+1  
4667 drw28  
NOTE:  
1. OE = LOW and WEN = LOW.  
Figure 23. Asynchronous Write, Synchronous Read, Full Flag Operation (IDT Standard Mode)  
1
2
RCLK  
tENS  
tENH  
REN  
tA  
tA  
Last Word  
W1  
W0  
Qn  
tREF  
tREF  
EF  
tCYL  
tSKEW  
WR  
tCYH  
tCYC  
tDH  
tDH  
tDS  
tDS  
W0  
W1  
Dn  
4667 drw29  
NOTE:  
1. OE = LOW and WEN = LOW.  
Figure 24. Asynchronous Write, Synchronous Read, Empty Flag Operation (IDT Standard Mode)  
37  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
No Write  
1
WCLK  
WEN  
Dn  
2
DF+1  
DF  
tWFF  
tWFF  
FF  
tCYC  
tSKEW  
tCYL  
tCYH  
RD  
Qn  
tAA  
t
AA  
Last Word  
WX  
WX+1  
4667 drw30  
NOTE:  
1. OE = LOW and REN = LOW.  
2. Asynchronous Read is available in IDT Standard Mode only.  
Figure 25. Synchronous Write, Asynchronous Read, Full Flag Operation (IDT Standard Mode)  
WCLK  
WEN  
Dn  
t
ENS  
t
ENH  
t
DS  
t
DH  
W0  
tEFA  
EF  
tEFA  
tRPE  
RD  
Qn  
tCYH  
tAA  
Last Word in Output Register  
W0  
4667 drw31  
NOTE:  
1. OE = LOW and REN = LOW.  
2. Asynchronous Read is available in IDT Standard Mode only.  
Figure 26. Synchronous Write, Asynchronous Read, Empty Flag Operation (IDT Standard Mode)  
38  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
tCYC  
tCYH  
tCYL  
WR  
Dn  
tDH  
tDH  
tDS  
W0  
W1  
RD  
Qn  
tAA  
tAA  
W1  
W0  
Last Word in O/P Register  
tRPE  
tEFA  
tEFA  
EF  
4667 drw32  
NOTES:  
1. OE = LOW, WEN = LOW, and REN = LOW.  
2. Asynchronous Read is available in IDT Standard Mode only.  
Figure 27. Asynchronous Write, Asynchronous Read, Empty Flag Operation (IDT Standard Mode)  
tCYC  
tCYH  
tCYL  
WR  
Dn  
tDH  
tDH  
tDS  
tDS  
W
y+1  
Wy  
tCYC  
tCYH  
tCYL  
RD  
Qn  
tAA  
tAA  
Wx  
Wx+1  
Wx+2  
tFFA  
tFFA  
FF  
4667 drw33  
NOTES:  
1. OE = LOW, WEN = LOW, and REN = LOW.  
2. Asynchronous Read is available in IDT Standard Mode only.  
Figure 28. Asynchronous Write, Asynchronous Read, Full Flag Operation (IDT Standard Mode)  
39  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
avoided by creating composite flags, that is, ANDing EF of every FIFO, and  
separatelyANDingFFofeveryFIFO. InFWFTmode,compositeflagscanbe  
createdbyORingORofeveryFIFO,andseparatelyORingIRofeveryFIFO.  
Figure 29 demonstrates a width expansion using two IDT72V3640/  
72V3650/72V3660/72V3670/72V3680/72V3690devices. D0-D35fromeach  
device forma 72-bitwide inputbus andQ0-Q35 fromeachdevice forma 72-  
bit wide output bus. Any word width can be attained by adding additional  
IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690devices.  
OPTIONALCONFIGURATIONS  
WIDTH EXPANSION CONFIGURATION  
Wordwidthmaybe increasedsimplybyconnectingtogetherthe control  
signalsofmultipledevices. Statusflagscanbedetectedfromanyonedevice.  
TheexceptionsaretheEFandFFfunctionsinIDTStandardmodeandtheIR  
andORfunctionsinFWFTmode. BecauseofvariationsinskewbetweenRCLK  
andWCLK, itis possible forEF/FF deassertionandIR/OR assertiontovary  
byonecyclebetweenFIFOs. InIDTStandardmode,suchproblems canbe  
PARTIAL RESET (PRS)  
MASTER RESET (MRS)  
FIRST WORD FALL THROUGH/  
SERIAL INPUT (FWFT/SI)  
RETRANSMIT (RT)  
Dm+1 - Dn  
m + n  
m
n
D0 - Dm  
DATA IN  
READ CLOCK (RCLK)  
IDT  
WRITE CLOCK (WCLK)  
WRITE ENABLE (WEN)  
LOAD (LD)  
IDT  
READ ENABLE (REN)  
72V3640  
72V3640  
72V3650  
72V3660  
72V3670  
72V3680  
72V3690  
72V3650  
72V3660  
OUTPUT ENABLE (OE)  
72V3670  
72V3680  
PROGRAMMABLE (PAE)  
FULL FLAG/INPUT READY (FF/IR)  
72V3690  
#1  
(1)  
EMPTY FLAG/OUTPUT READY (EF/OR) #1  
(1)  
GATE  
FULL FLAG/INPUT READY (FF/IR) #2  
GATE  
EMPTY FLAG/OUTPUT READY (EF/OR) #2  
PROGRAMMABLE (PAF)  
HALF-FULL FLAG (HF)  
FIFO  
#1  
FIFO  
#2  
m + n  
n
Qm+1 - Qn  
DATA OUT  
m
4667 drw34  
Q0 - Qm  
NOTES:  
1. Use an AND gate in IDT Standard mode, an OR gate in FWFT mode.  
2. Do not connect any output control signals directly together.  
3. FIFO #1 and FIFO #2 must be the same depth, but may be different word widths.  
Figure 29. Block Diagram of 1,024 x 72, 2,048 x 72, 4,096 x 72, 8,192 x 72, 16,384 x 72 and 32,768 x 72 Width Expansion  
40  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
FWFT/SI  
TRANSFER CLOCK  
FWFT/SI  
FWFT/SI  
READ CLOCK  
READ ENABLE  
WRITE CLOCK  
WCLK  
WEN  
IR  
RCLK  
WCLK  
RCLK  
IDT  
IDT  
72V3640  
72V3650  
72V3660  
72V3670  
72V3680  
72V3690  
72V3640  
72V3650  
72V3660  
72V3670  
72V3680  
72V3690  
WRITE ENABLE  
INPUT READY  
OR  
WEN  
REN  
OUTPUT READY  
OUTPUT ENABLE  
REN  
OR  
OE  
Qn  
IR  
OE  
GND  
n
DATA OUT  
n
n
DATA IN  
Dn  
Qn  
Dn  
4667 drw 35  
Figure 30. Block Diagram of 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36, 32,768 x 36 and 65,536 x 36 Depth Expansion  
specificationisnotmetbetweenWCLKandtransferclock,orRCLKandtransfer  
clock,fortheORflag.  
The"rippledown"delayisonlynoticeableforthefirstwordwrittentoanempty  
depthexpansionconfiguration. Therewillbenodelayevidentforsubsequent  
wordswrittentotheconfiguration.  
The first free location created by reading from a full depth expansion  
configurationwill"bubbleup"fromthelastFIFOtothepreviousoneuntilitfinally  
movesintothefirstFIFOofthechain. Eachtimeafreelocationiscreatedinone  
FIFOofthechain,thatFIFO'sIRlinegoesLOW,enablingtheprecedingFIFO  
towrite a wordtofillit.  
DEPTH EXPANSION CONFIGURATION (FWFT MODE ONLY)  
The IDT72V3640 can easily be adapted to applications requiring depths  
greater than 1,024, 2,048 for the IDT72V3650, 4,096 for the IDT72V3660,  
8,192 for the IDT72V3670, 16,384 for the IDT72V3680 and 32,768 for the  
IDT72V3690 with an 36-bit bus width. In FWFT mode, the FIFOs can be  
connectedinseries(thedataoutputsofoneFIFOconnectedtothedatainputs  
of the next) with no external logic necessary. The resulting configuration  
providesatotaldepthequivalenttothesumofthedepthsassociatedwitheach  
single FIFO. Figure 30 shows a depth expansion using two IDT72V3640/  
72V3650/72V3660/72V3670/72V3680/72V3690devices.  
Forafullexpansionconfiguration,theamountoftimeittakesforIRofthefirst  
FIFOinthechaintogoLOWafterawordhasbeenreadfromthelastFIFO is  
the sumofthe delays foreachindividualFIFO:  
CareshouldbetakentoselectFWFTmodeduringMasterResetforallFIFOs  
in the depth expansion configuration. The first word written to an empty  
configurationwillpassfromoneFIFOtothenext("rippledown")untilitfinally  
appears at the outputs of the last FIFO in the chain – no read operation is  
necessarybuttheRCLKofeachFIFOmustbefree-running. Eachtimethedata  
word appears at the outputs of one FIFO, that device's OR line goes LOW,  
enabling a write to the next FIFO in line.  
Foranemptyexpansionconfiguration,theamountoftimeittakesforORof  
thelastFIFOinthechaintogoLOW(i.e.validdatatoappearonthelastFIFO's  
outputs)afterawordhasbeenwrittentothefirstFIFOisthesumofthedelays  
for each individual FIFO:  
(N – 1)*(3*transfer clock) + 2 TWCLK  
where N is the number of FIFOs in the expansion and TWCLK is the WCLK  
period. NotethatextracyclesshouldbeaddedforthepossibilitythatthetSKEW1  
specificationisnotmetbetweenRCLKandtransferclock,orWCLKandtransfer  
clock,fortheIRflag.  
TheTransferClocklineshouldbetiedtoeitherWCLKorRCLK,whichever  
isfaster. Boththeseactionsresultindatamoving,asquicklyaspossible,tothe  
endofthechainandfreelocations tothebeginningofthechain.  
(N – 1)*(4*transfer clock) + 3*TRCLK  
whereNisthenumberofFIFOsintheexpansionandTRCLKistheRCLKperiod.  
Note that extra cycles should be added for the possibility that the tSKEW1  
41  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
tTCK  
t
4
t
3
t
1
t
2
TCK  
TDI/  
TMS  
tDS  
tDH  
TDO  
TDO  
t
6
tDO  
4667 drw36  
TRST  
Notes to diagram:  
t1 = tTCKLOW  
t2 = tTCKHIGH  
t
5
t3 = tTCKFALL  
t4 = tTCKRise  
t5 = tRST (reset pulse width)  
t6 = tRSR (reset recovery)  
Figure 31. Standard JTAG Timing  
JTAGACELECTRICAL  
CHARACTERISTICS  
(VCC = 3.3V ± 5%; Tcase = 0°C to +85°C)  
SYSTEMINTERFACEPARAMETERS  
Parameter  
Symbol  
Test  
Conditions Min. Max. Units  
IDT72V3640  
IDT72V3650  
IDT72V3660  
IDT72V3670  
IDT72V3680  
IDT72V3690  
JTAGClockInputPeriod tTCK  
-
-
-
-
-
-
-
100  
40  
40  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
JTAGClockHIGH  
JTAGClockLow  
tTCKHIGH  
tTCKLOW  
tTCKRise  
tTCKFall  
tRST  
-
Parameter  
Symbol Test Conditions Min. Max. Units  
JTAGClockRiseTime  
JTAGClockFallTime  
JTAGReset  
5(1)  
5(1)  
-
DataOutput  
tDO = Max  
-
20  
-
ns  
ns  
ns  
-
(1)  
DataOutputHold tDOH  
0
50  
50  
DataInput  
tDS  
tDH  
trise=3ns  
tfall=3ns  
10  
10  
-
-
JTAG Reset Recovery  
tRSR  
-
NOTE:  
1. Guaranteed by design.  
NOTE:  
1. 50pf loading on external output signals.  
42  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
TheStandardJTAGinterfaceconsistsoffourbasicelements:  
JTAGINTERFACE  
Test Access Port (TAP)  
TAPcontroller  
Instruction Register (IR)  
Data Register Port (DR)  
Five additional pins (TDI, TDO, TMS, TCK and TRST) are provided to  
support the JTAG boundary scan interface. The IDT72V3640/72V3650/  
72V3660/72V3670/72V3680/72V3690incorporatesthenecessarytapcon-  
trollerandmodifiedpadcellstoimplementtheJTAG facility.  
NotethatIDTprovidesappropriateBoundaryScanDescriptionLanguage  
programfilesforthesedevices.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
The Figure belowshows the standardBoundary-ScanArchitecture  
DeviceID Reg.  
Mux  
Boundary Scan Reg.  
Bypass Reg.  
TDO  
TDI  
T
A
clkDR, ShiftDR  
UpdateDR  
P
TMS  
TAP  
TCLK  
Cont-  
roller  
TRST  
Instruction Decode  
clklR, ShiftlR  
UpdatelR  
Instruction Register  
Control Signals  
4667 drw37  
Figure 32. Boundary Scan Architecture  
THETAPCONTROLLER  
TEST ACCESS PORT (TAP)  
TheTapcontrollerisasynchronousfinitestatemachinethatrespondsto  
TMSandTCLKsignalstogenerateclockandcontrolsignalstotheInstruction  
andDataRegisters forcaptureandupdateofdata.  
The Tap interface is a general-purpose port that provides access to the  
internaloftheprocessor. Itconsistsoffourinputports(TCLK,TMS,TDI,TRST)  
and one output port (TDO).  
43  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
1
Test-Logic  
Reset  
0
1
Select-  
IR-Scan  
0
1
1
Run-Test/  
Idle  
Select-  
DR-Scan  
0
0
1
1
Capture-DR  
Capture-IR  
0
0
0
0
Shift-DR  
Shift-IR  
1
1
1
1
Input = TMS  
Exit1-IR  
EXit1-DR  
0
0
0
0
Pause-DR  
Pause-IR  
1
1
Exit2-IR  
Exit2-DR  
0
0
1
1
Update-DR  
Update-IR  
1
0
1
0
4667 drw38  
NOTES:  
1. Five consecutive TCK cycles with TMS = 1 will reset the TAP.  
2. TAP controller does not automatically reset upon power-up. The user must provide a reset to the TAP controller (either by TRST or TMS).  
3. TAP controller must be reset before normal FIFO operations can begin.  
Figure 33. TAP Controller State Diagram  
UPDATE-DR  
The shifting process has been completed. The data is latched into their  
Refer to the IEEE Standard Test Access Port Specification (IEEE Std.  
1149.1)forthefullstatediagram  
paralleloutputsinthisstatetobeaccessedthroughtheinternalbus.  
AllstatetransitionswithintheTAPcontrolleroccurattherisingedgeofthe  
TCLKpulse. TheTMSsignallevel(0or1)determinesthestateprogression  
thatoccursoneachTCLKrisingedge. TheTAPcontrollertakesprecedence  
overtheFIFOmemoryandmustberesetafterpowerupofthedevice. See  
TRSTdescriptionformoredetailsonTAPcontrollerreset.  
EXIT1-DR / EXIT2-DR  
Thisisatemporarycontrollerstate.IfTMSisheldhigh,arisingedgeapplied  
toTCKwhileinthisstatecausesthecontrollertoentertheUpdate-DRstate.This  
terminatesthescanningprocess.Alltestdataregistersselectedbythecurrent  
instructionretaintheirpreviousstateunchanged.  
CAPTURE-DR  
Data is loaded from the parallel input pins or core outputs into the Data  
Register.  
PAUSE-DR  
Thiscontrollerstateallowsshiftingofthetestdataregisterintheserialpath  
betweenTDIandTDOtobetemporarilyhalted.Alltestdataregistersselected  
bythecurrentinstructionretaintheirpreviousstateunchanged.  
SHIFT-DR  
Thepreviouslycaptureddataisshiftedinserially,LSBfirstattherisingedge  
ofTCLKintheTDI/TDOpathandshiftedoutserially,LSBfirstatthefallingedge  
ofTCLKtowardstheoutput.  
Capture-IR, Shift-IR and Update-IR, Exit-IR and Pause-IR are  
similartoDataregisters.Theseinstructionsoperateontheinstructionregisters.  
44  
IDT72V3640/50/60/70/80/903.3VHIGHDENSITYSUPERSYNCIITM 36-BITFIFO  
1,024 x 36, 2,048 x 36, 4,096 x 36, 8,192 x 36, 16,384 x 36 and 32,768 x 36  
COMMERCIAL AND INDUSTRIAL  
TEMPERATURE RANGES  
THE INSTRUCTION REGISTER  
31(MSB)  
Version (4 bits) Part Number (16-bit) Manufacturer ID (11-bit)  
0X0 0X33  
28 27  
12 11  
1 0(LSB)  
TheInstructionregisterallowsaninstructiontobeshiftedinseriallyintothe  
processor at the rising edge of TCLK.  
1
TheInstructionis usedtoselectthetesttobeperformed,orthetestdata  
registertobeaccessed,orboth. Theinstructionshiftedintotheregisterislatched  
atthecompletionoftheshiftingprocesswhentheTAPcontrollerisatUpdate-  
IRstate.  
Theinstructionregistermustcontain4bitinstructionregister-basedcells  
whichcanholdinstructiondata. Thesemandatorycellsarelocatednearestthe  
serialoutputstheyaretheleastsignificantbits.  
IDT72V3640/50/60/70/80/90 JTAG Device Identification Register  
JTAG INSTRUCTION REGISTER  
TheInstructionregisterallowsinstructiontobeseriallyinputintothedevice  
whentheTAPcontrollerisintheShift-IRstate. Theinstructionisdecodedto  
performthefollowing:  
Selecttestdataregistersthatmayoperatewhiletheinstructionis  
current. Theothertestdataregistersshouldnotinterferewithchip  
operationandtheselecteddataregister.  
Definetheserialtestdataregisterpaththatisusedtoshiftdatabetween  
TDI and TDO during data register scanning.  
TESTDATAREGISTER  
TheTestDataregistercontainsthreetestdataregisters:theBypass,the  
Boundary Scan register and Device ID register.  
Theseregistersareconnectedinparallelbetweenacommonserialinput  
andacommonserialdataoutput.  
TheInstructionRegisterisa4bitfield(i.e.IR3,IR2,IR1,IR0)todecode16  
differentpossibleinstructions. Instructionsaredecodedasfollows.  
Thefollowingsectionsprovideabriefdescriptionofeachelement. Fora  
completedescription,refertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
Hex  
Value  
0x00  
0x02  
0x01  
0x03  
0x0F  
Instruction  
Function  
EXTEST  
IDCODE  
SelectBoundaryScanRegister  
SelectChipIdentificationdataregister  
SAMPLE/PRELOAD SelectBoundaryScanRegister  
HI-Z  
BYPASS  
TEST BYPASS REGISTER  
JTAG  
SelectBypassRegister  
TheregisterisusedtoallowtestdatatoflowthroughthedevicefromTDI  
toTDO. Itcontainsasinglestageshiftregisterforaminimumlengthinserialpath.  
Whenthebypassregisterisselectedbyaninstruction,theshiftregisterstage  
is settoa logiczeroonthe risingedge ofTCLKwhenthe TAPcontrolleris in  
theCapture-DRstate.  
Table 6. JTAG Instruction Register Decoding  
Thefollowingsectionsprovideabriefdescriptionofeachinstruction. For  
acompletedescriptionrefertotheIEEEStandardTestAccessPortSpecification  
(IEEEStd. 1149.1-1990).  
The operation of the bypass register should not have any effect on the  
operationofthedeviceinresponsetotheBYPASSinstruction.  
THE BOUNDARY-SCAN REGISTER  
EXTEST  
TheBoundaryScanRegisterallowsserialdataTDIbeloadedintoorread  
outoftheprocessorinput/outputports. TheBoundaryScanRegisterisapart  
oftheIEEE1149.1-1990StandardJTAGImplementation.  
The mandatoryEXTESTinstructionis providedforexternalcircuityand  
boardlevelinterconnectioncheck.  
IDCODE  
THE DEVICE IDENTIFICATION REGISTER  
ThisinstructionisprovidedtoselectDeviceIdentificationRegistertoread  
outmanufacturesidentity,partnumberandversionnumber.  
The Device IdentificationRegisteris a ReadOnly32-bitregisterusedto  
specify the manufacturer, part number and version of the processor to be  
determinedthroughtheTAPinresponsetotheIDCODEinstruction.  
IDT JEDEC ID number is 0xB3. This translates to 0x33 when the parity  
is droppedinthe11-bitManufacturerIDfield.  
SAMPLE/PRELOAD  
ThemandatorySAMPLE/PRELOADinstructionallowsdatavaluestobe  
loadedontothelatchedparalleloutputsoftheboundary-scanshiftregisterprior  
toselectionofthe boundary-scantestinstruction. The SAMPLEinstruction  
allowsasnapshotofdataflowingfromthesystempinstotheon-chiplogicorvice  
versa.  
For the IDT72V3640/72V3650/72V3660/72V3670/72V3680/72V3690,  
thePartNumberfieldcontainsthefollowingvalues:  
Device  
Part# Field  
04E5  
04E4  
04E3  
04E2  
IDT72V3640  
IDT72V3650  
IDT72V3660  
IDT72V3670  
IDT72V3680  
IDT72V3690  
HIGH-Z  
Thisinstructionplacesalltheoutputpinsonthedeviceintoahighimpedance  
state.  
BYPASS  
04E1  
04E0  
TheBypassinstructioncontainsasingleshift-registerstageandissetto  
provideaminimum-lengthserialpathbetweentheTDIandtheTDOpinsofthe  
device whennotestoperationofthe device is required.  
45  
ORDERINGINFORMATION  
IDT  
XXXXX  
X
XX  
X
X
Process /  
Temperature  
Range  
Device Type  
Power  
Speed  
Package  
BLANK  
I(1)  
Commercial (0°C to +70°C)  
Industrial (-40°C to +85°C)  
PF  
BB  
Thin Plastic Quad Flatpack (TQFP, PK128-1)  
Plastic Ball Grid Array (PBGA, BB144-1)  
Commercial, PBGA & TQFP Only  
Commercial, PBGA & TQFP Only  
Commercial, TQFP Only  
6
Clock Cycle Time (tCLK  
Speed in Nanoseconds  
)
7-5  
10  
15  
Com’l & Ind’l, TQFP Only  
L
Low Power  
72V3640  
72V3650  
72V3660  
72V3670  
72V3680  
72V3690  
1,024 x 36  
2,048 x 36  
4,096 x 36  
8,192 x 36  
16,384 x 36  
32,768 x 36  
3.3V SuperSyncII FIFO  
3.3V SuperSyncII FIFO  
3.3V SuperSyncII FIFO  
3.3V SuperSyncII FIFO  
3.3V SuperSyncII FIFO  
3.3V SuperSyncII FIFO  
4667 drw 39  
NOTE:  
1. Industrial temperature range is available by special order for speed grades faster than 15ns.  
DATASHEETDOCUMENTHISTORY  
05/25/2000  
07/28/2000  
12/14/2000  
03/27/2001  
04/06/2001  
12/14/2001  
12/20/2001  
03/25/2002  
04/19/2002  
05/24/2002  
01/20/2003  
02/11/2003  
07/15/2003  
09/29/2003  
pgs. 1, 6, 7, 8, 34, and 35.  
pgs. 13, 14, and 34.  
pgs. 6, 7, and 8.  
pg. 7.  
pgs. 4, 5, and 18.  
pgs. 1-46.  
pg. 9.  
pg. 42.  
pg. 3.  
pgs. 3, and 11.  
pgs. 1, 7, 9, 10, and 16.  
pgs. 7, and 44.  
pgs. 3, 19, and 37-39.  
pg. 8.  
CORPORATE HEADQUARTERS  
2975StenderWay  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-6116  
fax: 408-492-8674  
for Tech Support:  
408-330-1753  
email:FIFOhelp@idt.com  
www.idt.com  
46  

相关型号:

IDT72V3690L15PFG

FIFO, 32KX36, 10ns, Synchronous, CMOS, PQFP128, GREEN, PLASTIC, TQFP-128
IDT

IDT72V3690L15PFGI

FIFO, 32KX36, 10ns, Synchronous, CMOS, PQFP128, GREEN, PLASTIC, TQFP-128
IDT

IDT72V3690L15PFI

FIFO, 32KX36, 10ns, Synchronous, CMOS, PQFP128, PLASTIC, TQFP-128
IDT

IDT72V3690L15PFI8

FIFO, 32KX36, 10ns, Synchronous, CMOS, PQFP128, PLASTIC, TQFP-128
IDT

IDT72V3690L15PFI9

FIFO, 32KX36, 10ns, Synchronous, CMOS, PQFP128, PLASTIC, TQFP-128
IDT

IDT72V3690L39268PFG

FIFO, 32KX36, 5ns, Synchronous, CMOS, PQFP128, GREEN, PLASTIC, TQFP-128
IDT

IDT72V3690L39268PFGI

FIFO, 32KX36, 5ns, Synchronous, CMOS, PQFP128, GREEN, PLASTIC, TQFP-128
IDT

IDT72V3690L6BB

FIFO, 32KX36, 4ns, Synchronous, CMOS, PBGA144, 13 X 13 MM, 1 MM PITCH, PLASTIC, BGA-144
IDT

IDT72V3690L6BBG

FIFO, 32KX36, 4ns, Synchronous, CMOS, PBGA144, 13 X 13 MM, 1 MM PITCH, GREEN, PLASTIC, BGA-144
IDT

IDT72V3690L6PF

FIFO, 32KX36, 4ns, Synchronous, CMOS, PQFP128, PLASTIC, TQFP-128
IDT

IDT72V3690L6PF8

FIFO, 32KX36, 4ns, Synchronous, CMOS, PQFP128, PLASTIC, TQFP-128
IDT

IDT72V3690L6PFG

FIFO, 32KX36, 4ns, Synchronous, CMOS, PQFP128, GREEN, PLASTIC, TQFP-128
IDT