IDT79RC64V474-180DP [IDT]

RISControllerTM Embedded 64-bit Microprocessor, based on; RISControllerTM嵌入式64位微处理器,基于
IDT79RC64V474-180DP
型号: IDT79RC64V474-180DP
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

RISControllerTM Embedded 64-bit Microprocessor, based on
RISControllerTM嵌入式64位微处理器,基于

微处理器
文件: 总25页 (文件大小:750K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RC64474™  
RC64475™  
RISControllerTM Embedded  
64-bit Microprocessor, based on  
RISCore4000TM  
Software compatible with entire RISController Series of  
Embedded Microprocessors  
Features  
High performance 64-bit microprocessor, based on the  
RISCore4000  
Industrial temperature range support  
Active power management  
Minimized branch and load delays, through streamlined  
5-stage scalar pipeline.  
Powers down inactive units, through sleep-mode feature  
100% pin compatibility between RC64574, RC64474 and  
RC4640  
Single and double precision floating-point unit  
125 peak MFLOP/s at 250 MHz  
330 Dhrystone MIPS at 250 MHz  
Flexible RC4700-compatible MMU  
Joint TLB on-chip, for virtual-to-physical address mapping  
100% pin compatibility between RC64575, RC64475 and  
RC4650  
RC64474 available in 128-pin QFP package, for 32-bit only  
systems  
On-chip two-way set associative caches  
16KB instruction cache (I-cache)  
16KB data cache (D-cache)  
RC64475 available in 208-pin QFP package, for full 64/32 bit  
systems  
Optional I-cache and D-cache locking (per set), provides  
improved real-time support  
Simplified board-level testing, through full Joint Test Action  
Group (JTAG) boundary scan  
Enhanced, flexible bus interface allows simple, low-cost  
design  
Windows® CE compliant  
64-bit Bus Interface option, 1000MB/s bandwidth support  
32-bit Bus Interface option, 500MB/s bandwidth support  
SDRAM timing protocol, through delayed data in write cycles  
RC4000/RC5000 family bus-protocol compatibility  
Bus runs at fraction of pipeline clock (1/2 to 1/8)  
Implements MIPS-III Instruction Set Architecture (ISA)  
3.3V core with 3.3V I/O  
Block diagram  
System Control  
Coprocessor  
(CPO)  
330 MIPS  
64-bit  
125 MFLOPS  
Single/Double  
Precision  
RISCore4000  
CPU Core  
FPA  
Control Bus  
Data Bus  
Instruction Bus  
16KB  
Instruction Cache  
16KB  
Data Cache  
32-/64-bit  
(Lockable)  
(Lockable)  
Synchronized  
System  
Interface  
The IDT logo is a trademark and RC32134, RC32364, RC64145, RC64474, RC64475, RC4650, RC4640, RC4600,RC4700 RC3081, RC3052, RC3051, RC3041, RISController, and RISCore are trademarks of Inte-  
grated Device Technology, Inc.  
1 of 25  
April 10, 2001  
DSC 4952  
© 2001 Integrated Device Technology, Inc.  
RC64474™ RC64475™  
Device Overview1  
operating system kernels, and faster execution of floating-point intensive  
applications.  
Extending Integrated Device Technology’s (IDT) RISCore4000 based  
choices (see Table 1), the RC64474 and RC64475 are high perfor-  
mance 64-bit microprocessors targeted towards applications that require  
high bandwidth, real-time response and rapid data processing and are  
ideal for products ranging from internetworking equipment (switches,  
routers) to multimedia systems such as web browsers, set-top boxes,  
The RISCore4000 integer unit implements a load/store architecture  
with single cycle ALU operations (logical, shift, add, subtract) and an  
autonomous multiply/divide unit. The ALU consists of the integer adder  
and logic unit. The adder performs address calculations in addition to  
arithmetic operations, and the logic unit performs all of the processor’s  
logical and shift operations. Each unit is highly optimized and can  
perform an operation in a single pipeline cycle. Both 32- and 64-bit data  
operations are performed by the RISCore4000, utilizing 32 general  
purpose 64-bit registers (GPR) that are used for integer operations and  
address calculation. A complete on-chip floating-point co-processor  
(CP1), which includes a floating-point register file and execution units,  
forms a “seamless” interface, decoding and executing instructions in  
parallel with the integer unit.  
video games, and Windows®CE based products. These processors are  
rated at 330 Dhrystone MIPS and 125 Million floating point operations  
per second, at 250 MHz. The internal cache bandwidth for these devices  
is over 3GB/second. The 64-bit external bus bandwidth is at more than  
1000MB/s, and the 32-bit external bus bandwidth is at 500MB/s.  
The RC64474 is packaged in a 128-pin QFP footprint package and  
uses a 32-bit external bus, offering the ideal combination of 64-bit  
processing power and 32-bit low-cost memory systems. The RC64475  
is packaged in a 208-pin QFP footprint package and uses the full 64-bit  
external bus. The RC64475 is ideal for applications requiring 64-bit  
performance and 64-bit external bandwidth.  
CP1’s floating-point execution units support both single and  
double precision arithmetic—as specified in the IEEE Standard 754—  
and are separated into a multiply unit and a combined add/convert/  
divide/square root unit. Overlap of multiplies and add/subtract is  
supported, and the multiplier is partially pipelined, allowing the initiation  
of a new multiply instruction every fourth pipeline cycle.  
IDT’s RISCore4000 is a 250MHz 64-bit execution core that uses a  
5-stage pipeline, eliminating the “issue restrictions” associated with  
other more complex pipelines. The RISCore4000 implements the  
MIPS-III Instruction Set Architecture (ISA) and is upwardly compatible  
with applications that run on earlier generation parts.  
The floating-point register file is made up of thirty-two 64-bit regis-  
ters. The floating-point unit can take advantage of the 64-bit wide data  
cache and issue a co-processor load or store doubleword instruction in  
every cycle. The RISCore4000’s system control coprocessor (CP0)  
registers are also incorporated on-chip and provide the path through  
which the virtual memory system’s page mapping is examined and  
changed, exceptions are handled, and any operating mode selections  
are controlled.  
Implementation of the MIPS-III architecture results in 64-bit opera-  
tions, improved performance for commonly used code sequences in  
1.  
Detailed system operation information is provided in the RC64474/RC64475  
user’s manual.  
RISCore4000/RISCore5000 Family of Socket Compatible Processors  
32-bit Processors  
64-bit Processors  
RC4640  
RC64474  
RC64574  
RC4650  
RC64475  
RC64575  
64-bit RISCore4000  
w/ DSP extensions  
64-bit RISCore4000  
64-bit RISCore5000 w/  
DSP extensions  
64-bit RISCore4000  
w/ DSP extensions  
64-bit RISCore4000  
64-bit RISCore5000  
w/ DSP extensions  
CPU  
>350MIPS  
>330MIPS  
>440MIPS  
>350MIPS  
>330MIPS  
>440MIPS  
Performance  
FPA  
89 mflops, single pre-  
cision only  
125 mflops, single and  
double precision  
666 mflops, single and  
double precision  
89 mflops, single pre-  
cision only  
125 mflops, single  
and double precision  
666 mflops, single  
and double precision  
8kB/8kB, 2-way, lock-  
able by set  
16kB/16kB, 2-way,  
lockable by set  
32kB/32kB, 2-way,  
lockable by line  
8kB/8kB, 2-way, lock-  
able by set  
16kB/16kB, 2-way,  
lockable by set  
32kB/32kB, 2-way,  
lockable by line  
Caches  
32-bit  
32-bit, Superset pin  
compatible w/RC4640  
32-bit, Superset pin  
compatible w/RC4640,  
RC64474  
32- or 64-bit  
32-or 64-bit, Super-  
set pin compatible w/  
RC4650  
32-or 64-bit, Super-  
set pin compatible w/  
RC4650, RC64475  
External Bus  
3.3V  
3.3V  
2.5V  
3.3V  
3.3V  
2.5V  
Voltage  
100-267 MHz  
128 PQFP  
Base-Bounds  
180-250 MHz  
128 QFP  
200-333 MHz  
128 QFP  
100-267 MHz  
208 QFP  
180-250 MHz  
208 QFP  
200-333 MHz  
208 QFP  
Frequencies  
Packages  
MMU  
96 page TLB  
96 page TLB  
Base-Bounds  
96 page TLB  
96 page TLB  
Cache locking, on-  
chip MAC, 32-bit  
external bus  
Cache locking, JTAG,  
syncDRAM mode, 32-  
bit external bus  
Cache locking, JTAG,  
syncDRAM mode, 32-  
bit external bus  
Cache locking, on-  
chip MAC, 32-bit & 64  
bit bus option  
Cache locking, JTAG,  
syncDRAM mode, 32-  
64- bit bus option  
Cache locking, JTAG,  
syncDRAM mode, 32-  
64- bit bus option  
Key Features  
Table 1 RISCore4000/RISCore5000 Processor Family  
2 of 25  
April 10, 2001  
RC64474™ RC64475™  
can be locked into the TLB and avoid being randomly replaced, which  
facilitates the design of real-time systems, by allowing deterministic  
access to critical software.  
A secure user processing environment is provided through the user,  
supervisor, and kernel operating modes of virtual addressing to  
system software. Bits in a status register determine which of these  
modes is used.  
The TLB also contains information to control the cache coherency  
protocol, and cache management algorithm for each page. However,  
hardware-based cache coherency is not supported.  
If configured for 64-bit virtual addressing, the virtual address space  
layout becomes an upwardly compatible extension of the 32-bit virtual  
address space layout. Figure 1 is an illustration of the address space  
layout for the 32-bit virtual address operation.  
The RC64474 and RC64475 enhance IDT’s entire RISCore4000  
series through the implementation of features such as boundary scan, to  
facilitate board level testing; enhanced support for SyncDRAM, to  
simplify system implementation and improve performance.  
0xFFFFFFFF  
Kernel virtual address space  
(kseg3)  
The RC64474/475 processors offer a direct migration path for  
designs based on IDT’s RC4640/RC4650 processors2, through full pin  
and socket compatibility. Also, full 64-bit-family software and bus-  
protocol compatibility ensures the RC64474/475 access to a robust  
development tools infrastructure, allowing quicker time to market.  
0xE0000000  
0xDFFFFFFF  
Mapped, 0.5GB  
Supervisor virtual address space  
(sseg)  
Mapped, 0.5GB  
0xC0000000  
0xBFFFFFFF  
Development Tools  
Uncached kernel physical address space  
(kseg1)  
Unmapped, 0.5GB  
An array of hardware and software tools is available to assist system  
designers in the rapid development of RC64474/475 based systems.  
This accessibility allows a wide variety of customers to take full advan-  
tage of the device’s high-performance features while addressing today’s  
aggressive time-to-market demands.  
0xA0000000  
0x9FFFFFFF  
Cached kernel physical address space  
(kseg0)  
Unmapped, 0.5GB  
0x80000000  
0x7FFFFFFF  
Cache Memory  
To keep the RC64474 and RC64475’s high-performance pipeline full  
and operating efficiently, on-chip instruction and data caches have been  
incorporated. Each cache has its own data path and can be accessed in  
the same single pipeline clock cycle.  
User virtual address space  
(useg)  
The 16KB two-way set associative instruction cache (I-cache) is  
virtually indexed, physically tagged, and word parity protected. Because  
this cache is virtually indexed, the virtual-to-physical address translation  
occurs in parallel with the cache access, further increasing performance  
by allowing both operations to occur simultaneously. The instruction  
cache provides a peak instruction bandwidth of 1000MB/sec at 250MHz.  
Mapped, 2.0GB  
0x00000000  
Figure 1 Kernel Mode Virtual Addressing (32-bit Mode)  
The RC64474/RC64475’s Memory Management Unit (MMU)  
controls the virtual memory system’s page mapping and consists of a  
translation lookaside buffer (TLB) used for the virtual memory-mapping  
subsystem.  
The 16KB two-way set associative data cache (D-cache) is byte  
parity protected and has a fixed 32-byte (eight words) line size. Its tag is  
protected with a single parity bit. To allow simultaneous address transla-  
tion and data cache access, the D-cache is virtually indexed and physi-  
cally tagged. The data cache can provide 8 bytes each clock cycle, for a  
peak bandwidth of 2GB/sec.  
This large, fully associative TLB maps 96 virtual pages to their  
corresponding physical addresses. The TLB is organized as 48 pairs of  
even-odd entries and maps a virtual address and address space identi-  
fier into the large, 64GB physical address space. To assist in controlling  
the amount of mapped space and the replacement characteristics of  
various memory regions, two mechanisms are provided. First, the page  
size can be configured on a per-entry basis, to map a page size of 4KB  
to 16MB (in increments of 4x).  
To lock critical sections of code and/or data into the caches for quick  
access, a “cache locking” feature has been implemented. Once  
enabled, a cache is said to be locked when a particular piece of code or  
data is loaded into the cache and that cache location will not be selected  
later for refill by other data. This feature locks a set (8KB) of Instructions  
and/or Data.  
The second mechanism controls the replacement algorithm, when a  
TLB miss occurs. A random replacement algorithm is provided to select  
a TLB entry to be written with a new mapping; however, the processor  
provides a mechanism whereby a system specific number of mappings  
Table 2 lists the RC64474/475 Instruction and data cache attributes.  
2.  
To ensure socket compatibility, refer to Table 8 and Table 9 at back of data  
sheet.  
3 of 25  
April 10, 2001  
RC64474™ RC64475™  
A boot-time mode control interface initializes fundamental  
processor modes. The boot-time mode control interface is a serial inter-  
face that operates at a very low frequency (MasterClock divided by  
256). This low-frequency operation allows the initialization information to  
be kept in a low-cost EPROM; alternatively, the twenty-or-so bits could  
be generated by the system interface ASIC or a simple PAL. The boot-  
time serial stream and configuration options are listed in Table 3.  
Characteristics Instruction  
Data  
Size  
16KB  
16KB  
Organization  
2-way set  
2-way set  
associative  
associative  
Line size  
read unit  
write policy  
32B  
32B  
The clocking interface allows the CPU to be easily mated with  
external reference clocks. The CPU input clock is the bus reference  
clock and can be between 25 and 125MHz. An on-chip phase-locked-  
loop (PLL) generates the pipeline clock (PClock) through multiplication  
of the system interface clock by values of 2,3,4,5,6,7 or 8, as defined at  
system reset. This allows the pipeline clock to be implemented at a  
significantly higher frequency than the system interface clock. The  
RC64474/475 support single data (one to eight bytes) and 8-word block  
transfers on the SysAD bus.  
32-bits  
na  
64-bits  
write-back, write-through  
with or without write-allocate  
Line transfer order  
sub-block order,  
for refill  
sub-block order, for load  
sequential order, for store  
Miss restart  
after transfer of:  
entire line  
miss word  
The RC64474/475 implement additional write protocols that  
double the effective write bandwidth. The write re-issue has a repeat  
rate of 2 cycles per write. Pipelined writes have the same 2-cycle per  
write repeat rate, but can issue an additional write after WrRdy* de-  
asserts.  
Parity  
per-word  
per set  
per-byte  
per set  
Cache locking  
Table 2 RC64474/RC64475 Instruction/Data Cache Attributes  
Choosing a 32- or 64-bit wide system interface dictates whether a  
cache line block transaction requires 4 double word data cycles or 8  
single word cycles as well as whether a single data transfer—larger than  
4 bytes—must be divided into two smaller transfers.  
System Interfaces  
The RC64475 supports a 64-bit system interface that is bus compat-  
ible with the RC4650 and RC64575 system interface. The system inter-  
face consists of a 64-bit Address/Data bus with 8 check bits and a 9-bit  
command bus that is parity protected.  
Board-level testing during Run-Time mode is facilitated through the  
full JTAG boundary scan facility. Six pins—TDI, TDO, TMS, TCK, TRST*  
and JTAG32*—have been incorporated to support the standard JTAG  
interface.  
During 64-bit operation, RC64475 system address/data (SysAD)  
transfers are protected with an 8-bit parity check bus, SysADC. When  
initialized for 32-bit operation, the RC64475’s SysAD can be viewed as a  
32-bit multiplexed bus that is protected by 4 parity check bits.  
System Enhancement  
To facilitate discrete interface to SDRAM, the RC64474/475 bus  
interface is enhanced during write cycles with a programmable delay  
that is inserted between the write address and the write data (for both  
block and non-block writes).  
The RC64474 supports a 32-bit system interface that is bus compat-  
ible with the RC4640. During 32-bit operation, SysAD transfers are  
performed on a 32-bit multiplexed bus (SysAD 31:0) that is protected by  
4 parity check bits (SysADC 6:0).  
The bus delay can be defined as 0 to 7 MasterClock cycles and is  
activated and controlled through mode bit (17:15) settings selected  
during the reset initialization sequence. The ‘000’ setting provides the  
same write operations timing protocol as the RC4640, RC4650, and  
RC5000 processors.  
Writes to external memory—whether they are cache miss write-  
backs, stores to uncached or write-through addresses—use the on-chip  
write buffer. The write buffer holds a maximum of four 64-bit addresses  
and 64-bit data pairs. The entire buffer is used for a data cache write-  
back and allows the processor to proceed in parallel with memory  
updates.  
Included in the system interface are six handshake signals:  
RdRdy*, WrRdy*, ExtRqst*, Release*, ValidOut*, and ValidIn*; six inter-  
rupt inputs, and a simple timing specification that is capable of trans-  
ferring data between the processor and memory at a peak rate of  
1000MB/sec. A boot-time selectable option to run the system interface  
as 32-bits wide—using basically the same protocols as the 64-bit  
system—is also supported.  
4 of 25  
April 10, 2001  
RC64474™ RC64475™  
Serial  
Bit  
Description  
Value & Mode Setting  
255:18  
17:15  
Reserved  
Must be 0  
WAdrWData_Del  
Write address to write data delay in Master-  
Clock cycles.®  
000 0 cycles  
001 1 cycle  
010 2 cycles  
011 3 cycles  
100 4 cycles  
101 5 cycles  
110 6 cycles  
111 7 cycles  
14:13  
Drv_Out  
Output driver strength:  
output driver slew rate control. Bit 14 is MSB. 10 100% strength (fastest)  
Affects only non-clock outputs.  
11 83% strength  
00 67% strength  
01 50% strength (slowest)  
12  
System interface bus width  
0 64-bit system interface  
1 32-bit system interface  
11  
TmrIntEn  
Disables the timer interrupt on Int*[5]  
0 Enabled Timer Interrupt  
1 Disabled Timer Interrupt  
10:9  
Non-block write  
00 RC4x00 compatible  
Selects non-block write type. Bit 10 is MSB. 01 Reserved  
10 Pipelined writes  
11 Write re-issue  
7:5  
Clock  
Multiplier  
Clock multiplier:  
0 Multiply by 2  
MasterClock is multiplied internally to gener- 1 Multiply by 3  
ate PClock  
2 Multiply by 4  
3 Multiply by 5  
4 Multiply by 6  
5 Multiply by 7  
6 Multiply by 8  
7 Reserved  
8
EndBit  
Specifies byte ordering  
0 Little endian  
1 Big endian  
4:1  
Writeback data rate  
64-bit:  
32-bit:  
System interface data rate for block writes  
only: bit 4 is MSB  
9:15 Reserved  
8 dxxxdxxxdxxxdxxx  
7 ddxxxxxxddxxxxxx  
6 dxxdxxdxxdxx  
5 ddxxxxddxxxx  
4 ddxxxddxxx  
3 dxdxdxdx  
2 ddxxddxx  
1 ddxddx  
9:15 Reserved  
8 wxxxwxxxwxxxwxxxwxxxwxxxwxxxwxxx  
7 wwxxxxxxwwxxxxxxwwxxxxxxwwxxxxxx  
6 wxxwxxwxxwxxwxxwxxwxxwxx  
5 wwxxxxwwxxxxwwxxxxwwxxxx  
4 wwxxxwwxxxwwxxxwwxxx  
3 wxwxwxwxwxwxwxwx  
2 wwxxwwxxwwxxwwxx  
1 wwxwwxwwxwwx  
0 dddd  
0 Æ wwwwwwww  
0
Reserved  
Must be zero  
Table 3 Boot-time Mode Stream  
5 of 25  
April 10, 2001  
RC64474™ RC64475™  
January 17, 2000: Added “with DSP extensions” in the CPU row  
under RC64574 and RC64575 columns in Table 1. Added “lockable by  
line” in the Caches row under RC64574 and RC64575 columns in Table  
1. Revised Data Output and Data Output Hold rows in System Interface  
Parameters table.  
Power Management  
Executing the WAIT instruction enables the processor to enter  
Standby mode. The internal clocks will shut down, thus freezing the  
pipeline. The PLL, internal timer, and some of the input pins (Int[5:0]*,  
NMI*, ExtReq*, Reset*, and ColdReset*) will continue to run. Once the  
CPU is in Standby Mode, any interrupt, including the internally gener-  
ated timer interrupt, will cause the CPU to exit Standby Mode.  
February 10, 2000: Revised values in Table 4, Thermal Resistance.  
Old values were:  
CA  
Thermal Considerations  
The RC64474/475 come in a QFP with a drop-in heat spreader and  
are guaranteed in a case temperature range of 0° to +85° C, for  
commercial temperature devices; - 40° to +85° for industrial tempera-  
ture devices. The type of package, speed (power) of the device, and  
airflow conditions affect the equivalent ambient temperature conditions  
that will meet this specification.  
Airflow (ft/min)  
0
200 400 600 800 1000  
128 QFP  
208 QFP  
20  
20  
12  
12  
9
9
8
8
7
7
6
6
March 13, 2000: Replaced existing figure in Mode Configuration  
Interface Reset Sequence section with 3 reset figures.  
The equivalent allowable ambient temperature, TA, can be calculated  
using the thermal resistance from case to ambient (CA) of the given  
package. The following equation relates ambient and case tempera-  
tures:  
March 28, 2000: Removed the symbol tDZ from Figure 3.  
April 17, 2000: Changed VIH value in 200MHz column from 2.0V to  
0.7VCC  
.
TA = TC - P * CA  
April 10, 2001: In the Data Output and Data Output Hold categories  
of the System Interface Parameters table, changed values in the Min  
column for all speeds from 1.0 to 0. Deleted Output for Loading AC  
Testing diagram and added Output Loading for AC Timing diagram  
(Figure 8).  
where P is the maximum power consumption at hot temperature,  
calculated by using the maximum ICC specification for the device.  
Typical values for CA at various airflows are shown in Table 4. Note  
that the RC64474/475 processors implement advanced power manage-  
ment, which substantially reduces the typical power dissipation of the  
device.  
CA  
Airflow (ft/min)  
0
200 400 600 800 1000  
128 QFP  
208 QFP  
16  
20  
10  
13  
9
7
9
6
8
5
7
10  
Table 4 Thermal Resistance (CA) at Various Airflows  
Data Sheet Revision History  
December 1998: Changed ordering code on 128-pin package from  
DQ / DQI (Industrial) to DZ / DZI (Industrial).  
January 1999: Removed 5V tolerance capability and deleted 5V  
tolerant pin.  
February 1999: Changed the package drawings to reflect the new  
208-pin DP (DPI) and 128-pin DZ (DZI) packages.  
May 1999: Removed “Preliminary” status from data sheet.  
Changes in DC Electrical Characteristics table. Changes in Pin  
Description table. Changes in Clock Parameters table. Changes in  
System Interface Parameters table.  
September 1999: Updated Revision History section.  
6 of 25  
April 10, 2001  
RC64474™ RC64475™  
Pin Description Table  
The following is a list of system interface pins available on the RC64474/475. Pin names ending with an asterisk (*) are active when low.  
Pin Name  
Type  
Description  
System Interface  
ExtRqst*  
I
External request  
An external agent asserts ExtRqst* to request use of the System interface. The processor grants the request by asserting  
Release*.  
Release*  
O
Release interface  
In response to the assertion of ExtRqst* or a CPU read request, the processor asserts Release* and signals to the request-  
ing device that the system interface is available.  
RdRdy*  
WrRdy*  
ValidIn*  
I
I
I
Read Ready  
The external agent asserts RdRdy* to indicate that it can accept a processor read request.  
Write Ready  
An external agent asserts WrRdy* when it can now accept a processor write request.  
Valid Input  
Signals that an external agent is now driving a valid address or data on the SysAD bus and a valid command or data iden-  
tifier on the SysCmd bus.  
ValidOut*  
O
Valid output  
Signals that the processor is now driving a valid address or data on the SysAD bus and a valid command or data identifier  
on the SysCmd bus.  
SysAD(63:0)  
I/O  
System address/data bus  
A 64-bit address and data bus for communication between the processor and an external agent. During address phases  
only, SysAd(35:0) contains valid address information. The remaining SysAD(63:36) pins are not used. The whole 64-bit  
SysAD(63:0) may be used during the data transfer phase.  
In 32-bit mode and in the RC64474, SysAD(63:32) is not used, regardless of Endianness. A 32-bit address and data com-  
munication between processor and external agent is performed via SysAD(31:0).  
SysADC(7:0)  
I/O  
System address/data check bus  
An 8-bit bus containing parity check bits for the SysAD bus during data bus cycles.  
In 32-bit mode and in the RC64474, SysADC(7:4) is not used. The SysADC(3:0) contains check bits for SysAD(31:0).  
SysCmd(8:0)  
SysCmdP  
I/O  
I/O  
System command/data identifier bus  
A 9-bit bus for command and data identifier transmission between the processor and an external agent.  
System Command Parity  
A single, even-parity bit for the Syscmd bus. This signal is always driven low.  
Clock/Control Interface  
MasterClock  
I
Master Clock  
Master clock input establishes the processor and bus operating frequency. It is multiplied internally by 2,3,4,5,6,7,8 to gen-  
erate the pipeline clock (PClock). This clock must be driven by 3.3V (Vcc) clock signals, regardless of the 5V tolerant pin  
setting.  
VCCP  
VSSP  
I
I
Quiet VCC for PLL  
Quiet VCC for the internal phase locked loop.  
Quiet VSS for PLL  
Quiet VSS for the internal phase locked loop.  
Interrupt Interface  
Int*(5:0)  
I
Interrupt  
Six general processor interrupts, bit-wise ORed with bits 5:0 of the interrupt register.  
Table 5 Pin Descriptions (Page 1 of 2)  
7 of 25  
April 10, 2001  
RC64474™ RC64475™  
Pin Name Type  
Description  
NMI*  
I
Non-maskable interrupt  
Non-maskable interrupt, ORed with bit 6 of the interrupt register.  
Initialization Interface  
V
CCOk  
I
I
I
VCC is OK  
When asserted, this signal indicates to the processor that the power supply has been above the Vcc minimum for more  
than 100 milliseconds and will remain stable. The assertion of VCCOk initiates the initialization sequence.  
ColdReset*  
Reset*  
Cold reset  
This signal must be asserted for a power on reset or a cold reset. ColdReset must be de-asserted synchronously with Mas-  
terClock.  
Reset  
This signal must be asserted for any reset sequence. It can be asserted synchronously or asynchronously for a cold reset,  
or synchronously to initiate a warm reset. Reset must be de-asserted synchronously with MasterClock.  
ModeClock  
ModeIn  
O
I
Boot-mode clock  
Serial boot-mode data clock output at the system clock frequency divided by two hundred fifty-six.  
Boot-mode data in  
Serial boot-mode data input.  
JTAG Interface  
TDI  
I
JTAG Data In  
On the rising edge of TCK, serial input data are shifted into either the Instruction register or Data register, depending on the  
TAP controller state.  
TDO  
TCK  
O
I
JTAG Data Out  
On the falling edge of TCK, the TDO is serial data shifted out from either the instruction or data register. When no data is  
shifted out, the TDO is tri-stated (high impedance).  
JTAG Clock Input  
An input test clock used to shift into or out of the boundary-scan register cells. TCK is independent of the system and pro-  
cessor clock with nominal 40-60% duty cycle.  
TMS  
TRST*  
I
JTAG Command Select  
The logic signal received at the TMS input is decoded by the TAP controller to control test operation. TMS is sampled on  
the rising edge of TCK.  
I
JTAG Reset  
The TRST* pin is an active-low signal used for asynchronous reset of the debug unit, independent of the processor logic.  
During normal CPU operation, the JTAG controller will be held in the reset mode, asserting this active low pin.  
When asserted low, this pin will also tristate the TDO pin.  
JTAG32*  
JR_Vcc  
I
I
JTAG 32-bit scan  
This pin is used to control length of the scan chain for SYsAD (32-bit or 64-bit) for the JTAG mode. When set to Vss, 32-bit  
bus mode is selected. In this mode, only SysAD(31:0) are part of the scan chain. When set to Vcc, 64-bit bus mode is  
selected. In this mode, SysAD(63:0) are part of the scan chain. This pin has a built-in pull-down device to guarantee 32-bit  
scan, if it is left uncovered.  
JTAG VCC  
This pin has an internal pull-down to continuously reset the JTAG controller (if left unconnected) bypassing the TRst* pin.  
When supplied with Vcc, the TRst* pin will be the primary control for the JTAG reset.  
Table 5 Pin Descriptions (Page 2 of 2)  
8 of 25  
April 10, 2001  
RC64474™ RC64475™  
Logic Diagram — RC64474/RC64475  
Figure 2 illustrates the direction and functional groupings for the processor signals.  
64  
SysAD(63:0)  
SysADC(7:0)  
MasterClock  
8
9
V
CCP  
SysCmd(8:0)  
SysCmdP  
VSSP  
TDI  
RC64474/  
RC64475  
Logic  
VCCOK  
TDO  
TMS  
TRST*  
ColdReset*  
Reset*  
Symbol  
ModeClock  
ModeIn  
TCK  
JTag32*  
JR_Vcc  
RdRdy*  
NMI*  
WrRdy*  
6
Int*(5:0)  
ExtRqst*  
Release*  
ValidIn*  
ValidOut*  
Figure 2 Logic Diagram for RC64474/RC64475  
9 of 25  
April 10, 2001  
RC64474™ RC64475™  
RC64475 208-pin QFP Package Pin-out  
Pin names followed by an asterisk (*) are active when low. For maximum flexibility and compatibility with future designs, N.C. pins should be left  
floating.  
Pin  
Function  
N.C.  
Pin  
53  
Function  
JTAG32*  
Pin  
105  
Function  
N.C.  
Pin  
157  
Function  
N.C.  
1
2
3
4
5
6
7
8
9
N.C.  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
N.C.  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
N.C.  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
N.C.  
N.C.  
N.C.  
N.C.  
SysAD59  
ColdReset*  
SysAD28  
VCC  
N.C.  
N.C.  
N.C.  
N.C.  
SysCmd2  
SysAD36  
SysAD4  
SysCmd1  
VSS  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
VSS  
N.C.  
N.C.  
SysAD60  
Reset*  
SysAD29  
SysAD61  
SysAD30  
Vcc  
N.C.  
N.C.  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
SysAD11  
VSS  
Vcc  
SysAD52  
ExtRqst*  
Vcc  
SysAD35  
SysAD3  
SysCmd0  
SysAD34  
VSS  
Vcc  
SysCmd8  
SysAD42  
SysAD10  
SysCmd7  
VSS  
VSS  
SysAD21  
SysAD53  
RdRdy*  
Modein  
SysAD22  
SysAD54  
Vcc  
VSS  
SysAD62  
SysAD31  
SysAD63  
Vcc  
Vcc  
SysAD2  
Int5*  
Vcc  
SysAD41  
SysAD9  
SysCmd6  
SysAD40  
VSS  
SysAD33  
SysAD1  
VSS  
VSS  
VccOK  
SysADC3  
SysADC7  
N.C.  
VSS  
Vcc  
Release*  
SysAD23  
SysAD55  
NMI*  
Int4*  
Vcc  
SysAD32  
SysAD0  
Int3*  
TDI  
SysAD8  
SysCmd5  
SysADC4  
SysADC0  
VSS  
TRst*  
Vcc  
TCK  
VSS  
VSS  
TMS  
Vcc  
SysADC2  
SysADC6  
SysAD24  
Vcc  
TDO  
Int2*  
VccP  
Vcc  
SysAD16  
SysAD48  
Int1*  
VSSP  
SysCmd4  
SysAD39  
SysAD7  
MasterClock  
Vcc  
VSS  
VSS  
SysAD56  
VSS  
Table 6 RC64475 208-pin QFP Package Pin-Out (Page 1 of 2)  
10 of 25  
April 10, 2001  
RC64474™ RC64475™  
Pin  
Function  
SysCmd3  
VSS  
Pin  
86  
Function  
Vcc  
Pin  
138  
Function  
SysAD25  
Pin  
190  
Function  
SysADC5  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
87  
SysAD17  
SysAD49  
Int0*  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
SysAD57  
N.C.  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
SysADC1  
Vcc  
Vcc  
88  
SysAD38  
SysAD6  
ModeClock  
WrRdy*  
SysAD37  
SysAD5  
VSS  
89  
VSS  
VSS  
90  
SysAD18  
VSS  
N.C  
SysAD47  
SysAD15  
SysAD46  
Vcc  
91  
SysAD26  
SysAD58  
N.C.  
92  
Vcc  
93  
SysAD50  
ValidIn*  
SysAD19  
SysAD51  
VSS  
94  
Vcc  
VSS  
95  
VSS  
SysAD14  
SysAD45  
SysAD13  
SysAD44  
VSS  
Vcc  
96  
SysAD27  
N.C.  
N.C.  
97  
N.C.  
98  
Vcc  
JR_Vcc  
N.C.  
N.C.  
99  
ValidOut*  
SysAD20  
N.C.  
N.C.  
100  
101  
102  
103  
104  
N.C.  
Vcc  
N.C.  
N.C.  
SysAD12  
SysCmdP  
SysAD43  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
Table 6 RC64475 208-pin QFP Package Pin-Out (Page 2 of 2)  
RC64474 128-pin QFP Package Pin-out  
Pin  
Function  
JTAG32*  
Pin  
33  
Function  
Vcc  
Pin  
65  
Function  
Vcc  
Pin  
Function  
1
2
3
4
5
6
7
8
9
97  
Vcc  
SysCmd2  
Vcc  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
Vss  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
SysAD28  
ColdReset*  
SysAD27  
Vss  
98  
Vss  
SysAD13  
SysAD14  
Vss  
99  
SysAD19  
ValidIn*  
Vcc  
Vss  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
SysAD5  
WrRdy*  
ModeClock  
SysAD6  
Vcc  
Vcc  
Vcc  
Vss  
SysAD15  
Vss  
JR_Vcc  
SysAD26  
N.C.  
SysAD18  
Int0*  
Vcc  
SysAD17  
Vcc  
10  
11  
12  
13  
Vss  
SysADC1  
Vss  
Vss  
SysCmd3  
SysAd7  
SysCmd4  
N.C.  
Vss  
Vcc  
SysAD25  
Vss  
Int1*  
MasterClock  
SysAD16  
Table 7 RC64474 128-pin QFP Package Pin-out (Page 1 of 2)  
11 of 25  
April 10, 2001  
RC64474™ RC64475™  
Pin  
Function  
Vcc  
Pin  
46  
Function  
VssP  
Pin  
78  
Function  
Vcc  
Pin  
110  
Function  
Int2*  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Vss  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
VccP  
TDO  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
SysAD24  
SysADC2  
Vss  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
Vcc  
SysAdC0  
SysCmd5  
SysAD8  
Vcc  
Vss  
TMS  
Int3*  
TCK  
Vcc  
SysAD0  
Int4*  
TRst*  
TDI  
NMI*  
Vss  
SysAD23  
Release*  
Vss  
Vcc  
SysCmd6  
SysAD9  
Vcc  
Vss  
Vss  
SysADC3  
VccOK  
Vss  
SysAD1  
Int5*  
Vcc  
Vss  
SysAD22  
Modein  
RdRdy*  
SysAD21  
Vss  
SysAD2  
Vcc  
SysCCmd7  
SysAD10  
SysCmd8  
Vcc  
Vcc  
SysAD31  
Vss  
Vss  
SysCmd0  
SysAd3  
Vcc  
Vcc  
Vss  
SysAD30  
SysAD29  
Reset*  
Vss  
Vcc  
SysAD11  
SysCmdP  
SysAD12  
ExtRqst*  
SysAD20  
ValidOut*  
Vss  
SysCmd1  
SysAD4  
Table 7 RC64474 128-pin QFP Package Pin-out (Page 2 of 2)  
Socket Compatibility—RC64474 & RC4640  
To ensure socket compatibility between the RC4640 and the RC64474 devices, several pin changes are required, as shown below.  
RC64574/  
RC64474  
Compatible to  
RV4640?  
Pin  
RC4640  
N.C  
Comments  
1
JTAG32*  
Yes.  
Pin has an internal pull-down, to enable 32-bit scan.  
Can also be left a N.C.  
48  
49  
50  
51  
52  
71  
Vss  
Vss  
Vss  
Vss  
Vss  
N.C.  
TDO  
TMS  
TCK  
Yes.  
Yes.  
Yes.  
Yes.  
Yes.  
Yes.  
Can be driven with Vss, if JTAG is not needed. Is tristated when TRst* is low.  
Can be driven with Vss if JTAG is not needed.  
Can be driven with Vss if JTAG is not needed.  
TRst*  
TDI  
Can be driven with Vss if JTAG is not needed.  
Can be driven with Vss if JTAG is not needed.  
JR_Vcc  
Can be left N.C. in RC64474, if JTAG is not need. If JTAG is needed, it must  
be driven to Vcc.  
Table 8 RC64574 Socket Compatibility to RC64474 and R4640  
12 of 25  
April 10, 2001  
RC64474™ RC64475™  
Socket Compatibility—RC64475 & RC4650  
RC64575  
32-bit  
RC64475  
32-bit  
RC64575  
64-bit  
RC64475  
64-bit  
RV4650  
32-bit  
RV4650  
64-bit  
Compatible  
to RV4650?  
Pin  
Comments  
53  
N.C.  
JTAG32*  
No Connect  
JTAG32*  
Yes  
In 32-bit, this pin can be left unconnected  
because of internal pull-down.  
In 64-bit, this assumes that JTAG will not be  
used. If using JTAG, this pin must be at Vcc.  
150  
N.C.  
JR_Vcc  
No Connect  
JR_Vcc  
Yes  
In RC64475, can be left a N.C, if JTAG is not  
need. If JTAG is needed, it must be driven to  
Vcc.  
180  
181  
182  
183  
184  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TDI  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
TDO  
TRsT*  
TCK  
Yes  
Yes  
Yes  
Yes  
Yes  
If JTAG is not needed, can be left a N.C.  
If JTAG is not needed, can be left a N.C.  
If JTAG is not needed, can be left a N.C.  
If JTAG is not needed, can be left a N.C.  
If JTAG is not needed, can be left a N.C.  
TRsT*  
TCK  
TMS  
TDO  
TMS  
TDIO  
Table 9 RC64575 Socket Compatibility to RC64475 & RC4650  
Absolute Maximum Ratings  
Note: Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect reliability.  
RC64474/475  
3.3V±5%  
RC64474/475  
3.3V±5%  
Symbol  
Rating  
Unit  
Commercial  
Industrial  
VTERM  
TC  
Terminal Voltage with respect to GND  
Operating Temperature(case)  
Case Temperature Under Bias  
Storage Temperature  
–0.51 to +4.6  
–0.51 to +4.6  
-40 to +85  
–55 to +125  
–55 to +125  
202  
V
0 to +85  
–55 to +125  
–55 to +125  
202  
°C  
°C  
°C  
mA  
mA  
TBIAS  
TSTG  
IIN  
DC Input Current  
IOUT  
DC Output Current  
503  
503  
1.  
V
minimum = –2.0V for pulse width less than 15ns. V should not exceed V +0.5 Volts.  
IN CC  
IN  
2.  
3.  
When V < 0V or V > V  
CC  
IN  
IN  
Not more than one output should be shorted at a time. Duration of the short should not exceed 30 seconds.  
Recommended Operation Temperature and Supply Voltage  
RC64474/475  
VCC  
Grade  
Temperature  
Gnd  
Commercial  
Industrial  
0°C to +85°C (Case)  
-40 + 85°C (Case)  
0V  
0V  
3.3V±5%  
3.3V±5%  
13 of 25  
April 10, 2001  
RC64474™ RC64475™  
DC Electrical Characteristics  
Commercial Temperature Range—RC64474/64475  
(VCC = 3.3±5%, TCASE = 0°C to +85°C)  
RC64474/RC64475  
RC64474/RC64475  
200MHz  
RC64474/RC64475  
250MHz  
180MHz  
Parameter  
Conditions  
Minimum  
Maximum Minimum Maximum Minimum Maximum  
VOL  
VOH  
VOL  
VOH  
VIL  
0.1V  
0.1V  
0.1V  
|IOUT|= 20uA  
VCC - 0.1V  
VCC - 0.1V  
VCC - 0.1V  
0.4V  
0.4V  
0.4V  
|IOUT|= 4mA  
2.4V  
–0.5V  
2.0V  
2.4V  
–0.5V  
0.7VCC  
2.4V  
–0.5V  
2.0V  
0.2VCC  
VCC + 0.5V  
±10uA  
10pF  
10pF  
20uA  
0.2VCC  
VCC + 0.5V  
±10uA  
10pF  
10pF  
20uA  
0.2VCC  
VCC + 0.5V  
±10uA  
10pF  
10pF  
20uA  
VIH  
IIN  
0 VIN VCC  
CIN  
COUT  
I/O  
Input/Output Leakage  
LEAK  
Power Consumption—RC64474  
.
RC64474 180MHz  
Parameter  
RC64474 200MHz  
RC64474 250MHz  
Conditions  
Typical1  
Max  
Typical1  
Max  
Typical1  
Max  
System Condition: 180/90MHz  
200/100MHz  
250/125MHz  
ICC  
standby  
60 mA2  
60 mA2  
100 mA2  
CL = 0pF3  
110 mA2  
630 mA2  
110 mA2  
700 mA2  
110 mA2  
850mA2  
CL = 50pF  
active  
530 mA2  
600mA2  
700 mA2  
CL = 0pF  
No SysAd activity3  
630mA2  
750 mA2  
750 mA2  
700 mA2  
850 mA2  
850 mA2  
850mA2  
1000mA2  
1400mA2  
CL = 50pF  
R4x00 compatible writes,  
TC = 25oC  
1050 mA4  
1200 mA4  
1000mA2  
CL = 50pF  
Pipelined writes or write  
re-issue,  
TC = 25oC3  
1.  
Typical integer instruction mix and cache miss rates  
2.  
3.  
4.  
These are not tested. They are the results of engineering analysis and are provided for reference only  
Guaranteed by design.  
These are the specifications IDT tests to insure compliance.  
14 of 25  
April 10, 2001  
RC64474™ RC64475™  
Power Consumption—RC64475  
RC64475 180MHz  
Parameter  
RC64475 200MHz  
RC64475 250MHz  
Conditions  
Typical1  
Max  
Typical1  
Max  
Typical1  
Max  
System Condition: 180/90MHz  
200/100MHz  
250/125MHz  
ICC  
standby  
60 mA2  
60 mA2  
100 mA2  
CL = 0pF3  
110 m2A  
850 mA2  
110 mA2  
110 mA2  
CL = 50pF  
active,  
64-bit bus  
720 mA2  
850 mA2  
1000 mA2  
935 mA2  
1100 mA2  
CL = 0pF  
No SysAd activity3  
option4  
850 mA2  
1000 mA2  
1200 mA5  
1000 mA2  
1200 mA2  
1200 mA2  
1400 mA5  
1100mA2  
1360 mA2  
1360mA2  
1600 mA2  
CL = 50pF  
R4x00 compatible writes,  
TC = 25oC  
1000 mA2  
CL = 50pF  
Pipelined writes or write re-issue,  
TC = 25oC3  
1.  
Typical integer instruction mix and cache miss rates  
2.  
3.  
4.  
5.  
These are not tested. They are the results of engineering analysis and are provided for reference only.  
Guaranteed by design.  
In 32-bit bus option, use RC64474 power consumption values.  
These are the specifications IDT tests to insure compliance.  
Timing Characteristics—RC64474/RC64475  
1
2
3
4
Cycle  
MasterClock  
t
MCkHigh  
t
MCkLow  
t
MCkP  
SysAD,SysCmd Driven  
SysADC  
D
D
D
t
t
DM  
DOH  
t
DO  
SysAD,SysCmd Received  
SysADC  
D
D
D
D
t
DS  
t
DH  
Control Signal CPU driven  
ValidOut*  
Release*  
t
DO  
t
DOH  
Control Signal CPU received  
RdRdy*  
WrRdy*  
ExtRqst*  
ValidIn*  
NMI*  
t
t
DS  
DH  
Int*(5:0)  
* = active low signal  
Figure 3 System Clocks Data Setup, Output, and Hold Timing  
15 of 25  
April 10, 2001  
RC64474™ RC64475™  
t
TCK  
TCK  
t5  
t3  
t1  
t2  
TDI/  
TMS  
tDS  
tDH  
TDO  
TDO  
TDO  
t
DO  
Notes to diagram:  
t1 = tTCKlow  
t2 = tTCKHIGH  
TRST*  
t3 =  
t
TCKFALL  
t4 = T (reset pulse width)  
RST  
t4  
> = 25 ns  
t5 = t  
TCKRise  
Figure 4 Standard JTAG timing  
AC Electrical Characteristics  
Commercial Temperature Range RC64474/RC64475  
(VCC=3.3V ± 5%; TCASE = 0×C to +85°C)  
Clock Parameters  
RC64474/ RC64475 RC64474/ RC64475 RC64474/ RC64475  
180MHz 200MHz 250MHz  
Test  
Conditions  
Parameter1  
Symbol  
Units  
Min Max Min Max Min Max  
Pipeline clock  
PClk  
80  
180  
80  
200  
80  
250  
MHz  
Frequency  
MasterClock HIGH  
MasterClock LOW  
tMCHIGH  
tMCLOW  
Transition 3ns  
Transition 3ns  
3
90  
3
2.5  
2.5  
10  
ns  
3
3
ns  
MasterClock  
Frequency  
10  
10  
100  
125  
MHz  
MasterClock Period  
tMCP  
11.1  
100  
10  
100  
8
100  
ns  
ps  
Clock Jitter for  
MasterClock  
tJitterIn  
±250  
±250  
±250  
MasterClock Rise Time tMCRise  
2.5  
2
2
2
ns  
ns  
ns  
MasterClock Fall Time  
ModeClock Period  
tMCFall  
tModeCKP  
2.5  
2
256*  
256*  
256*  
t
t
MCP  
tMCP  
MCP  
JTAG Clock Input  
JTAG Clock HIGH  
JTAG Clock Low  
tTCK  
100  
40  
40  
5
100  
40  
40  
5
100  
40  
40  
5
ns  
ns  
ns  
ns  
ns  
tTCKHIGH  
tTCKLOW  
JTAG Clock Rise Time tTCKRise  
JTAG Clock Fall Time  
tTCKFall  
5
5
5
1.  
Timings are measured from 1.5V of the clock to 1.5V of the signal.  
16 of 25  
April 10, 2001  
RC64474™ RC64475™  
Capacitive Load Deration—RC64474/RC64475  
180MHz  
200MHz† 250MHz†  
Test  
Parameter Symbol  
Conditions  
Units  
Min Max Min Max Min Max  
Load Derate  
CLD  
2
2
2
ns/25pF  
System Interface Parameters  
Note: Operation of the RC64474/RC64475 is only guaranteed with the Phase Lock Loop enabled.  
RC64474/  
RC64475  
RC64474/  
RC64475  
RC64474/  
RC64475  
Parameter1  
Symbol  
Test Conditions  
Units  
180MHz  
200MHz  
250MHz  
Min Max Min Max Min Max  
Data Output2  
tDM= Min  
tDO = Max  
mode  
= 10  
= 11  
= 00  
= 01  
= 10  
= 11  
= 00  
= 01  
03  
03  
03  
03  
03  
03  
2
6
03  
03  
03  
03  
03  
03  
2
5
03  
03  
03  
03  
03  
03  
2
4.7  
4.7  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
14..13  
14..13  
14..13  
14..13  
14..13  
14..13  
14..13  
14..13  
mode  
mode  
mode  
mode  
mode  
mode  
mode  
6
5
9
9
9
9
7
4
Data Output Hold  
Input Data Setup  
tDOH  
tDS  
tDH  
trise = 5ns  
tfall = 5ns  
Input Data Hold  
1.0  
1.0  
1.0  
1.  
Timings are measured from 1.5V of the clock to 1.5V of the signal.  
Capacitive load for all output timings is 50pF.  
Guaranteed by design.  
2.  
3.  
4.  
50pf loading on external output signals, fastest settings. Also applies to JTAG signals (TRST*,TDO,TDI,TMS)  
Boot-Time Interface Parameters  
RC64474/  
RC64475  
RC64474/  
RC64475  
RC64474/  
RC64475  
Parameter  
Symbol  
Units  
180 MHz  
200 MHz  
250MHz  
Min Max Min Max Min Max  
Mode Data Setup  
Mode Data Hold  
tDS  
tDH  
3
0
3
0
3
0
Master Clock Cycle  
Master Clock Cycle  
17 of 25  
April 10, 2001  
RC64474™ RC64475™  
Mode Configuration Interface Reset Sequence  
2.3V  
2.3V  
Vcc  
MasterClock  
(MClk)  
TDS  
> 100ms  
256  
MClk  
VCCOK  
ModeClock  
ModeIn  
256 MClk cycles  
cycles  
TMDS  
TMDH  
Bit  
255  
Bit 1  
Bit 0  
TDS  
TDS  
TDS  
> 64K MClk cycles  
ColdReset*  
Reset*  
> 64 MClk cycles  
TDS  
Figure 5 Power-on Reset  
Vcc  
Master  
Clock  
(MClk)  
TDS  
TDS  
> 100ms  
256  
VCCOK  
ModeClock  
ModeIn  
MClk  
256 MClk cycles  
cycles  
TMDS  
TMDH  
Bit  
1
Bit  
255  
Bit  
0
TDS  
TDS  
> 64K MClk cycles  
ColdReset*  
Reset*  
> 64 MClk cycles  
TDS  
TDS  
Figure 6 Cold Reset  
Vcc  
Master  
Clock  
(MClk)  
VCCOK  
ModeClock  
ModeIn  
256 MClk cycles  
ColdReset*  
Reset*  
TDS  
TDS  
> 64 MClk cycles  
Figure 7 Warm Reset  
18 of 25  
April 10, 2001  
RC64474™ RC64475™  
1.5V  
50 Ω  
.
50 Ω  
RC64474/RC64475  
Output  
Equivalent Limp  
Capacitance  
Signal  
All Signals  
25 pF  
Figure 8 Output Loading for AC Timing  
19 of 25  
April 10, 2001  
RC64474™ RC64475™  
RC64475 Physical Specifications  
The RC64475 is available in a 208-pin power quad (PQUAD) package.  
20 of 25  
April 10, 2001  
RC64474™ RC64475™  
RC64475 208-pin Package (page 2)  
21 of 25  
April 10, 2001  
RC64474™ RC64475™  
RC64474 128-Pin Package (Page 1 of 3)  
22 of 25  
April 10, 2001  
RC64474™ RC64475™  
RC64474 128-pin Package (page 2 of 3)  
23 of 25  
April 10, 2001  
RC64474™ RC64475™  
RC64474 128-pin Package (Page 3 of 3)  
24 of 25  
April 10, 2001  
RC64474™ RC64475™  
Ordering Information  
YY  
XXXX  
A
999  
A
IDT79RCXX  
Product  
Type  
Operating  
Voltage  
Device  
Type  
Temp range/  
Process  
Package  
Speed  
Commercial Temperature  
(0°C to +85°C Case)  
Blank  
Industrial Temperature  
(-40°C to +85°C Case)  
I
128-pin QFP  
208-pin QFP  
DZ  
DP  
180  
200  
250  
180 MHz PClk  
200 MHz PClk  
250 MHz PClk  
474  
475  
Embedded Processor  
V
3.3V +/-5%  
64-bit Embedded  
Microprocessor  
79RC64  
Valid combinations  
IDT79RC64V474 - 180, 200, 250 DZ  
IDT79RC64V475 - 180, 200, 250 DP  
IDT79RC64V474 - 180, 200, 250 DZI  
IDT79RC64V475 - 180, 200, 250 DPI  
128-pin QFP package, Commercial Temperature  
208-pin QFP package, Commercial Temperature  
128-pin QFP package, Industrial Temperature  
208-pin QFP package, Industrial Temperature  
CORPORATE HEADQUARTERS  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
for SALES:  
800-345-7015 or 408-284-8200  
fax: 408-284-2775  
for Tech Support:  
email: rischelp@idt.com  
phone: 408-284-8208  
www.idt.com  
The IDT logo is a trademark of Integrated Device Technology, Inc.  
25 of 25  
April 10, 2001  

相关型号:

IDT79RC64V474-180DPG

RISC Microprocessor, 64-Bit, 180MHz, PQFP208, QFP-208
IDT

IDT79RC64V474-180DPI

RISControllerTM Embedded 64-bit Microprocessor, based on
IDT

IDT79RC64V474-180DZ

RISControllerTM Embedded 64-bit Microprocessor, based on
IDT

IDT79RC64V474-180DZ8

RISC Microprocessor, 64-Bit, 180MHz, PQFP128, QFP-128
IDT

IDT79RC64V474-180DZG

64-BIT, 180MHz, RISC PROCESSOR, PQFP128, QFP-128
IDT

IDT79RC64V474-180DZI

RISControllerTM Embedded 64-bit Microprocessor, based on
IDT

IDT79RC64V474-200DP

RISControllerTM Embedded 64-bit Microprocessor, based on
IDT

IDT79RC64V474-200DPG

RISC Microprocessor, 64-Bit, 200MHz, PQFP208, QFP-208
IDT

IDT79RC64V474-200DPI

RISControllerTM Embedded 64-bit Microprocessor, based on
IDT

IDT79RC64V474-200DQI

64-Bit Microprocessor
ETC

IDT79RC64V474-200DZ

RISControllerTM Embedded 64-bit Microprocessor, based on
IDT

IDT79RC64V474-200DZ8

RISC Microprocessor, 64-Bit, 200MHz, PQFP128, QFP-128
IDT