IDT79RC64V475-200DP9 [IDT]

RISC Microprocessor, 64-Bit, 200MHz, PQFP208, QFP-208;
IDT79RC64V475-200DP9
型号: IDT79RC64V475-200DP9
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

RISC Microprocessor, 64-Bit, 200MHz, PQFP208, QFP-208

时钟 外围集成电路
文件: 总25页 (文件大小:921K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
RC64474™  
RC64475™  
RISControllerTM Embedded  
64-bit Microprocessor, based on  
RISCore4000TM  
Software compatible with entire RISController Series of  
Embedded Microprocessors  
High performance 64-bit microprocessor, based on the  
RISCore4000  
Industrial temperature range support  
Active power management  
Minimized branch and load delays, through streamlined  
5-stage scalar pipeline.  
Single and double precision floating-point unit  
125 peak MFLOP/s at 250 MHz  
330 Dhrystone MIPS at 250 MHz  
Flexible RC4700-compatible MMU  
Powers down inactive units, through sleep-mode feature  
100% pin compatibility between RC64574, RC64474 and  
RC4640  
100% pin compatibility between RC64575, RC64475 and  
RC4650  
Joint TLB on-chip, for virtual-to-physical address mapping  
RC64474 available in 128-pin QFP package, for 32-bit only  
systems  
On-chip two-way set associative caches  
Optional I-cache and D-cache locking (per set), provides  
improved real-time support  
16KB instruction cache (I-cache)  
16KB data cache (D-cache)  
RC64475 available in 208-pin QFP package, for full 64/32 bit  
systems  
Simplified board-level testing, through full Joint Test Action  
Group (JTAG) boundary scan  
Enhanced, flexible bus interface allows simple, low-cost  
design  
Windows® CE compliant  
64-bit Bus Interface option, 1000MB/s bandwidth support  
32-bit Bus Interface option, 500MB/s bandwidth support  
SDRAM timing protocol, through delayed data in write cycles  
RC4000/RC5000 family bus-protocol compatibility  
Bus runs at fraction of pipeline clock (1/2 to 1/8)  
Implements MIPS-III Instruction Set Architecture (ISA)  
3.3V core with 3.3V I/O  
System Control  
Coprocessor  
(CPO)  
330 MIPS  
64-bit  
125 MFLOPS  
Single/Double  
Precision  
RISCore4000  
CPU Core  
FPA  
Control Bus  
Data Bus  
Instruction Bus  
16KB  
Instruction Cache  
16KB  
Data Cache  
32-/64-bit  
(Lockable)  
(Lockable)  
Synchronized  
System  
Interface  
The IDT logo is a registered trademark and RC32134, RC32364, RC64145, RC64474, RC64475, RC4650, RC4640, RC4600,RC4700 RC3081, RC3052, RC3051, RC3041, RISController, and RISCore are trade-  
marks of Integrated Device Technology, Inc.  
1 of 25  
April 17, 2000  
DSC 4952  
1999 Integrated Device Technology, Inc.  
RC64474™ RC64475™  
operating system kernels, and faster execution of floating-point intensive  
applications.  
Extending Integrated Device Technologys (IDT) RISCore4000 based  
choices (see Table 1), the RC64474 and RC64475 are high perfor-  
mance 64-bit microprocessors targeted towards applications that require  
high bandwidth, real-time response and rapid data processing and are  
ideal for products ranging from internetworking equipment (switches,  
routers) to multimedia systems such as web browsers, set-top boxes,  
The  
implements a load/store architecture  
RISCore4000 integer unit  
with single cycle ALU operations (logical, shift, add, subtract) and an  
autonomous multiply/divide unit. The ALU consists of the integer adder  
and logic unit. The adder performs address calculations in addition to  
arithmetic operations, and the logic unit performs all of the processors  
logical and shift operations. Each unit is highly optimized and can  
perform an operation in a single pipeline cycle. Both 32- and 64-bit data  
operations are performed by the RISCore4000, utilizing 32 general  
purpose 64-bit registers (GPR) that are used for integer operations and  
address calculation. A complete on-chip floating-point co-processor  
(CP1), which includes a floating-point register file and execution units,  
forms a “seamless” interface, decoding and executing instructions in  
parallel with the integer unit.  
®
video games, and Windows CE based products. These processors are  
rated at 330 Dhrystone MIPS and 125 Million floating point operations  
per second, at 250 MHz. The internal cache bandwidth for these devices  
is over 3GB/second. The 64-bit external bus bandwidth is at more than  
1000MB/s, and the 32-bit external bus bandwidth is at 500MB/s.  
The RC64474 is packaged in a 128-pin QFP footprint package and  
uses a 32-bit external bus, offering the ideal combination of 64-bit  
processing power and 32-bit low-cost memory systems. The RC64475  
is packaged in a 208-pin QFP footprint package and uses the full 64-bit  
external bus. The RC64475 is ideal for applications requiring 64-bit  
performance and 64-bit external bandwidth.  
support both single and  
CP1’s floating-point execution units  
double precision arithmeticas specified in the IEEE Standard 754—  
and are separated into a multiply unit and a combined add/convert/  
divide/square root unit. Overlap of multiplies and add/subtract is  
supported, and the multiplier is partially pipelined, allowing the initiation  
of a new multiply instruction every fourth pipeline cycle.  
is a 250MHz 64-bit execution core that uses a  
IDT’s RISCore4000  
5-stage pipeline, eliminating the issue restrictions” associated with  
other more complex pipelines. The RISCore4000 implements the  
MIPS-III Instruction Set Architecture (ISA) and is upwardly compatible  
with applications that run on earlier generation parts.  
The  
is made up of thirty-two 64-bit regis-  
floating-point register file  
ters. The floating-point unit can take advantage of the 64-bit wide data  
cache and issue a co-processor load or store doubleword instruction in  
Implementation of the MIPS-III architecture results in 64-bit opera-  
tions, improved performance for commonly used code sequences in  
every cycle. The RISCore4000s  
system control coprocessor (CP0)  
are also incorporated on-chip and provide the path through  
registers  
which the virtual memory systems page mapping is examined and  
changed, exceptions are handled, and any operating mode selections  
are controlled.  
1. Detailed system operation information is provided in the RC64474/RC64475  
users manual.  
CPU  
64-bit RISCore4000  
w/ DSP extensions  
64-bit RISCore4000  
>330MIPS  
64-bit RISCore5000 w/  
DSP extensions  
64-bit RISCore4000  
w/ DSP extensions  
64-bit RISCore4000  
>330MIPS  
64-bit RISCore5000  
w/ DSP extensions  
>350MIPS  
>440MIPS  
>350MIPS  
>440MIPS  
Performance  
FPA  
89 mflops, single pre-  
cision only  
125 mflops, single and  
double precision  
666 mflops, single and  
double precision  
89 mflops, single pre-  
cision only  
125 mflops, single  
and double precision  
666 mflops, single  
and double precision  
Caches  
8kB/8kB, 2-way, lock-  
able by set  
16kB/16kB, 2-way,  
lockable by set  
32kB/32kB, 2-way,  
lockable by line  
8kB/8kB, 2-way, lock-  
able by set  
16kB/16kB, 2-way,  
lockable by set  
32kB/32kB, 2-way,  
lockable by line  
External Bus  
32-bit  
32-bit, Superset pin  
compatible w/RC4640  
32-bit, Superset pin  
compatible w/RC4640,  
RC64474  
32- or 64-bit  
32-or 64-bit, Super-  
set pin compatible w/  
RC4650  
32-or 64-bit, Super-  
set pin compatible w/  
RC4650, RC64475  
Voltage  
3.3V  
3.3V  
2.5V  
3.3V  
3.3V  
2.5V  
100-267 MHz  
128 PQFP  
Base-Bounds  
180-250 MHz  
128 QFP  
200-333 MHz  
128 QFP  
100-267 MHz  
208 QFP  
180-250 MHz  
208 QFP  
200-333 MHz  
208 QFP  
Frequencies  
Packages  
MMU  
96 page TLB  
96 page TLB  
Base-Bounds  
96 page TLB  
96 page TLB  
Cache locking, on-  
chip MAC, 32-bit  
external bus  
Cache locking, JTAG,  
syncDRAM mode, 32-  
bit external bus  
Cache locking, JTAG,  
syncDRAM mode, 32-  
bit external bus  
Cache locking, on-  
chip MAC, 32-bit & 64  
bit bus option  
Cache locking, JTAG,  
syncDRAMmode, 32-  
64- bit bus option  
Cache locking, JTAG,  
syncDRAM mode, 32-  
64- bit bus option  
Key Features  
Table 1 RISCore4000/RISCore5000 Processor Family  
2 of 25  
April 17, 2000  
 
RC64474™ RC64475™  
can be locked into the TLB and avoid being randomly replaced, which  
facilitates the design of real-time systems, by allowing deterministic  
access to critical software.  
A secure user processing environment is provided through the  
user,  
of virtual addressing to  
supervisor, and kernel operating modes  
system software. Bits in a status register determine which of these  
modes is used.  
The TLB also contains information to control the cache coherency  
protocol, and cache management algorithm for each page. However,  
hardware-based cache coherency is not supported.  
If configured for 64-bit  
, the virtual address space  
virtual addressing  
layout becomes an upwardly compatible extension of the 32-bit virtual  
address space layout. Figure 1 is an illustration of the address space  
layout for the 32-bit virtual address operation.  
The RC64474 and RC64475 enhance IDT’s entire RISCore4000  
series through the implementation of features such as boundary scan, to  
facilitate board level testing; enhanced support for SyncDRAM, to  
simplify system implementation and improve performance.  
0xFFFFFFFF  
Kernel virtual address space  
(kseg3)  
The RC64474/475 processors offer a  
for  
direct migration path  
2
0xE0000000  
0xDFFFFFFF  
Mapped, 0.5GB  
designs based on IDT’s RC4640/RC4650 processors , through full pin  
and socket compatibility. Also, full 64-bit-family software and bus-  
protocol compatibility ensures the RC64474/475 access to a robust  
development tools infrastructure, allowing quicker time to market.  
Supervisor virtual address space  
(sseg)  
Mapped, 0.5GB  
0xC0000000  
0xBFFFFFFF  
Uncached kernel physical address space  
(kseg1)  
Unmapped, 0.5GB  
An array of hardware and software tools is available to assist system  
designers in the rapid development of RC64474/475 based systems.  
This accessibility allows a wide variety of customers to take full advan-  
tage of the devices high-performance features while addressing todays  
aggressive time-to-market demands.  
0xA0000000  
0x9FFFFFFF  
Cached kernel physical address space  
(kseg0)  
Unmapped, 0.5GB  
0x80000000  
0x7FFFFFFF  
To keep the RC64474 and RC64475s high-performance pipeline full  
and operating efficiently, on-chip instruction and data caches have been  
incorporated. Each cache has its own data path and can be accessed in  
the same single pipeline clock cycle.  
User virtual address space  
(useg)  
The 16KB two-way set associative  
is  
instruction cache (I-cache)  
Mapped, 2.0GB  
virtually indexed, physically tagged, and word parity protected. Because  
this cache is virtually indexed, the virtual-to-physical address translation  
occurs in parallel with the cache access, further increasing performance  
by allowing both operations to occur simultaneously. The instruction  
cache provides a peak instruction bandwidth of 1000MB/sec at 250MHz.  
0x00000000  
Figure 1 Kernel Mode Virtual Addressing (32-bit Mode)  
The RC64474/RC64475s  
controls the virtual memory systems page mapping and consists of a  
translation lookaside buffer (TLB) used for the virtual memory-mapping  
subsystem.  
Memory Management Unit (MMU)  
The 16KB two-way set associative  
is byte  
data cache (D-cache)  
parity protected and has a fixed 32-byte (eight words) line size. Its tag is  
protected with a single parity bit.To allow simultaneous address transla-  
tion and data cache access, the D-cache is virtually indexed and physi-  
cally tagged. The data cache can provide 8 bytes each clock cycle, for a  
peak bandwidth of 2GB/sec.  
This large,  
maps 96 virtual pages to their  
fully associative TLB  
corresponding physical addresses. The TLB is organized as 48 pairs of  
even-odd entries and maps a virtual address and address space identi-  
fier into the large, 64GB physical address space. To assist in controlling  
the amount of mapped space and the replacement characteristics of  
various memory regions, two mechanisms are provided. First, the page  
To lock critical sections of code and/or data into the caches for quick  
access, a  
feature has been implemented. Once  
“cache locking”  
enabled, a cache is said to be locked when a particular piece of code or  
data is loaded into the cache and that cache location will not be selected  
later for refill by other data. This feature locks a set (8KB) of Instructions  
and/or Data.  
size can be configured on a  
to 16MB (in increments of 4x).  
, to map a page size of 4KB  
per-entry basis  
The second mechanism controls the replacement algorithm, when a  
TLB miss occurs. A random replacement algorithm is provided to select  
a TLB entry to be written with a new mapping; however, the processor  
provides a mechanism whereby a system specific number of mappings  
Table 2 lists the RC64474/475 Instruction and data cache attributes.  
2. To ensure socket compatibility, refer to Table 8 and Table 9 at back of data  
sheet.  
3 of 25  
April 17, 2000  
 
RC64474™ RC64475™  
A
initializes fundamental  
boot-time mode control interface  
processor modes. The boot-time mode control interface is a serial inter-  
face that operates at a very low frequency (MasterClock divided by  
256). This low-frequency operation allows the initialization information to  
be kept in a low-cost EPROM; alternatively, the twenty-or-so bits could  
be generated by the system interface ASIC or a simple PAL. The boot-  
time serial stream and configuration options are listed in Table 3.  
Size  
16KB  
16KB  
Organization  
2-way set  
associative  
2-way set  
associative  
Line size  
read unit  
write policy  
32B  
32-bits  
na  
32B  
The  
allows the CPU to be easily mated with  
clocking interface  
external reference clocks. The CPU input clock is the bus reference  
clock and can be between 25 and 125MHz. An on-chip  
64-bits  
phase-locked-  
generates the pipeline clock (PClock) through multiplication  
write-back, write-through  
with or without write-allocate  
loop (PLL)  
of the system interface clock by values of 2,3,4,5,6,7 or 8, as defined at  
system reset. This allows the pipeline clock to be implemented at a  
significantly higher frequency than the system interface clock. The  
RC64474/475 support single data (one to eight bytes) and 8-word block  
transfers on the SysAD bus.  
Line transfer order  
sub-block order,  
for refill  
sub-block order, for load  
sequential order, for store  
Miss restart  
after transfer of:  
entire line  
miss word  
The RC64474/475 implement additional  
that  
write protocols  
Parity  
per-word  
per set  
per-byte  
per set  
. The write re-issue has a repeat  
double the effective write bandwidth  
rate of 2 cycles per write. Pipelined writes have the same 2-cycle per  
write repeat rate, but can issue an additional write after WrRdy* de-  
asserts.  
Cache locking  
Table 2 RC64474/RC64475 Instruction/Data Cache Attributes  
Choosing a 32- or 64-bit wide system interface dictates whether a  
cache line block transaction requires 4 double word data cycles or 8  
single word cycles as well as whether a single data transferlarger than  
4 bytesmust be divided into two smaller transfers.  
The RC64475 supports a 64-bit system interface that is bus compat-  
ible with the RC4650 and RC64575 system interface. The system inter-  
face consists of a 64-bit Address/Data bus with 8 check bits and a 9-bit  
command bus that is parity protected.  
during Run-Time mode is facilitated through the  
Board-level testing  
full JTAG boundary scan facility. Six pinsTDI, TDO, TMS, TCK, TRST*  
and JTAG32*have been incorporated to support the standard JTAG  
interface.  
During 64-bit operation, RC64475 system address/data (SysAD)  
transfers are protected with an 8-bit parity check bus, SysADC. When  
initialized for 32-bit operation, the RC64475s SysAD can be viewed as a  
32-bit multiplexed bus that is protected by 4 parity check bits.  
To facilitate discrete  
, the RC64474/475 bus  
interface to SDRAM  
interface is enhanced during write cycles with a programmable delay  
that is inserted between the write address and the write data (for both  
block and non-block writes).  
The RC64474 supports a 32-bit system interface that is bus compat-  
ible with the RC4640. During 32-bit operation, SysAD transfers are  
performed on a 32-bit multiplexed bus (SysAD 31:0) that is protected by  
4 parity check bits (SysADC 6:0).  
The bus delay can be defined as 0 to 7 MasterClock cycles and is  
activated and controlled through mode bit (17:15) settings selected  
during the reset initialization sequence. The 000’ setting provides the  
same write operations timing protocol as the RC4640, RC4650, and  
RC5000 processors.  
Writes to external memorywhether they are cache miss write-  
backs, stores to uncached or write-through addressesuse the on-chip  
. The write buffer holds a maximum of four 64-bit addresses  
write buffer  
and 64-bit data pairs. The entire buffer is used for a data cache write-  
back and allows the processor to proceed in parallel with memory  
updates.  
Included in the system interface are  
:
six handshake signals  
RdRdy*, WrRdy*, ExtRqst*, Release*, ValidOut*, and ValidIn*;  
six inter-  
and a  
specification that is capable of trans-  
simple timing  
rupt inputs,  
ferring data between the processor and memory at a peak rate of  
1000MB/sec. A boot-time selectable option to run the system interface  
as 32-bits wideusing basically the same protocols as the 64-bit  
systemis also supported.  
4 of 25  
April 17, 2000  
RC64474™ RC64475™  
255:18  
17:15  
Reserved  
Must be 0  
WAdrWData_Del  
Write address to write data delay in Master-  
Clock cycles.®  
000 0 cycles  
001 1 cycle  
010 2 cycles  
011 3 cycles  
100 4 cycles  
101 5 cycles  
110 6 cycles  
111 7 cycles  
14:13  
Drv_Out  
Output driver strength:  
output driver slew rate control.  
Affects only non-clock outputs.  
10 100% strength (fastest)  
11 83% strength  
Bit 14 is MSB.  
00 67% strength  
01 50% strength (slowest)  
12  
System interface bus width  
TmrIntEn  
0 64-bit system interface  
1 32-bit system interface  
11  
0 Enabled Timer Interrupt  
1 Disabled Timer Interrupt  
Disables the timer interrupt on Int*[5]  
10:9  
Non-block write  
Selects non-block write type.  
00 RC4x00 compatible  
01 Reserved  
Bit 10 is MSB.  
10 Pipelined writes  
11 Write re-issue  
7:5  
Clock  
Multiplier  
Clock multiplier:  
0 Multiply by 2  
MasterClock is multiplied internally to gener- 1 Multiply by 3  
ate PClock  
2 Multiply by 4  
3 Multiply by 5  
4 Multiply by 6  
5 Multiply by 7  
6 Multiply by 8  
7 Reserved  
8
EndBit  
Specifies byte ordering  
0 Little endian  
1 Big endian  
4:1  
Writeback data rate  
64-bit:  
32-bit:  
System interface data rate for block writes  
9:15 Reserved  
9:15 Reserved  
only:  
8 dxxxdxxxdxxxdxxx  
7 ddxxxxxxddxxxxxx  
6 dxxdxxdxxdxx  
5 ddxxxxddxxxx  
4 ddxxxddxxx  
3 dxdxdxdx  
2 ddxxddxx  
1 ddxddx  
8 wxxxwxxxwxxxwxxxwxxxwxxxwxxxwxxx  
7 wwxxxxxxwwxxxxxxwwxxxxxxwwxxxxxx  
6 wxxwxxwxxwxxwxxwxxwxxwxx  
5 wwxxxxwwxxxxwwxxxxwwxxxx  
4 wwxxxwwxxxwwxxxwwxxx  
3 wxwxwxwxwxwxwxwx  
2 wwxxwwxxwwxxwwxx  
1 wwxwwxwwxwwx  
bit 4 is MSB  
0 dddd  
0 Æ wwwwwwww  
0
Reserved  
Must be zero  
Table 3 Boot-time Mode Stream  
5 of 25  
April 17, 2000  
RC64474™ RC64475™  
January 17, 2000: Added with DSP extensions” in the CPU row  
under RC64574 and RC64575 columns in Table 1. Added lockable by  
linein the Caches row under RC64574 and RC64575 columns in Table  
1. Revised Data Output and Data Output Hold rows in System Interface  
Parameters table.  
Executing the WAIT instruction enables the processor to enter  
Standby mode. The internal clocks will shut down, thus freezing the  
pipeline. The PLL, internal timer, and some of the input pins (Int[5:0]*,  
NMI*, ExtReq*, Reset*, and ColdReset*) will continue to run. Once the  
CPU is in Standby Mode, any interrupt, including the internally gener-  
ated timer interrupt, will cause the CPU to exit Standby Mode.  
February 10, 2000: Revised values in Table 4, Thermal Resistance.  
Old values were:  
The RC64474/475 come in a QFP with a drop-in heat spreader and  
are guaranteed in a case temperature range of 0 to +85 C, for  
°
°
128 QFP  
208 QFP  
20  
20  
12  
12  
9
9
8
8
7
7
6
6
commercial temperature devices; - 40 to +85 for industrial tempera-  
°
°
ture devices. The type of package, speed (power) of the device, and  
airflow conditions affect the equivalent ambient temperature conditions  
that will meet this specification.  
March 13, 2000: Replaced existing figure in Mode Configuration  
Interface Reset Sequence section with 3 reset figures.  
The equivalent allowable ambient temperature, TA, can be calculated  
using the thermal resistance from case to ambient ( CA) of the given  
package. The following equation relates ambient and case tempera-  
tures:  
March 28, 2000: Removed the symbol t from Figure 3.  
DZ  
April 17, 2000: Changed V value in 200MHz column from 2.0V to  
IH  
0.7V .  
CC  
TA = TC - P * CA  
where P is the maximum power consumption at hot temperature,  
calculated by using the maximum ICC specification for the device.  
Typical values for CA at various airflows are shown in Table 4. Note  
that the RC64474/475 processors implement advanced power manage-  
ment, which substantially reduces the typical power dissipation of the  
device.  
128 QFP  
208 QFP  
16  
20  
10  
13  
9
7
9
6
8
5
7
10  
Table 4 Thermal Resistance ( CA) at Various Airflows  
Changed ordering code on 128-pin package from  
December 1998:  
DQ / DQI (Industrial) to DZ / DZI (Industrial).  
Removed 5V tolerance capability and deleted 5V  
January 1999:  
tolerant pin.  
Changed the package drawings to reflect the new  
February 1999:  
208-pin DP (DPI) and 128-pin DZ (DZI) packages.  
Removed Preliminary” status from data sheet.  
May 1999:  
Changes in DC Electrical Characteristics table. Changes in Pin  
Description table. Changes in Clock Parameters table. Changes in  
System Interface Parameters table.  
Updated Revision History section.  
September 1999:  
6 of 25  
April 17, 2000  
 
RC64474™ RC64475™  
The following is a list of system interface pins available on the RC64474/475. Pin names ending with an asterisk (*) are active when low.  
System Interface  
ExtRqst*  
I
External request  
An external agent asserts ExtRqst* to request use of the System interface. The processor grants the request by asserting  
Release*.  
Release*  
O
Release interface  
In response to the assertion of ExtRqst* or a CPU read request, the processor asserts Release* and signals to the request-  
ing device that the system interface is available.  
RdRdy*  
WrRdy*  
ValidIn*  
I
I
I
Read Ready  
The external agent asserts RdRdy* to indicate that it can accept a processor read request.  
Write Ready  
An external agent asserts WrRdy* when it can now accept a processor write request.  
Valid Input  
Signals that an external agent is now driving a valid address or data on the SysAD bus and a valid command or data iden-  
tifier on the SysCmd bus.  
ValidOut*  
O
Valid output  
Signals that the processor is now driving a valid address or data on the SysAD bus and a valid command or data identifier  
on the SysCmd bus.  
SysAD(63:0)  
I/O  
System address/data bus  
A 64-bit address and data bus for communication between the processor and an external agent. During address phases  
only, SysAd(35:0) contains valid address information. The remaining SysAD(63:36) pins are not used. The whole 64-bit  
SysAD(63:0) may be used during the data transfer phase.  
In 32-bit mode and in the RC64474, SysAD(63:32) is not used, regardless of Endianness. A 32-bit address and data com-  
munication between processor and external agent is performed via SysAD(31:0).  
SysADC(7:0)  
I/O  
System address/data check bus  
An 8-bit bus containing parity check bits for the SysAD bus during data bus cycles.  
In 32-bit mode and in the RC64474, SysADC(7:4) is not used. The SysADC(3:0) contains check bits for SysAD(31:0).  
SysCmd(8:0)  
SysCmdP  
I/O  
I/O  
System command/data identifier bus  
A 9-bit bus for command and data identifier transmission between the processor and an external agent.  
System Command Parity  
A single, even-parity bit for the Syscmd bus. This signal is always driven low.  
Clock/Control Interface  
MasterClock  
I
Master Clock  
Master clock input establishes the processor and bus operating frequency. It is multiplied internally by 2,3,4,5,6,7,8 to gen-  
erate the pipeline clock (PClock). This clock must be driven by 3.3V (Vcc) clock signals, regardless of the 5V tolerant pin  
setting.  
VCCP  
VSSP  
I
I
Quiet VCC for PLL  
Quiet VCC for the internal phase locked loop.  
Quiet VSS for PLL  
Quiet VSS for the internal phase locked loop.  
Interrupt Interface  
Int*(5:0)  
I
Interrupt  
Six general processor interrupts, bit-wise ORed with bits 5:0 of the interrupt register.  
Table 5 Pin Descriptions (Page 1 of 2)  
7 of 25  
April 17, 2000  
RC64474™ RC64475™  
NMI*  
I
Non-maskable interrupt  
Non-maskable interrupt, ORed with bit 6 of the interrupt register.  
Initialization Interface  
V
CCOk  
I
I
I
V is OK  
CC  
When asserted, this signal indicates to the processor that the power supply has been above the Vcc minimum for more  
than 100 milliseconds and will remain stable. The assertion of VCCOk initiates the initialization sequence.  
ColdReset*  
Reset*  
Cold reset  
This signal must be asserted for a power on reset or a cold reset. ColdReset must be de-asserted synchronously with Mas-  
terClock.  
Reset  
This signal must be asserted for any reset sequence. It can be asserted synchronously or asynchronously for a cold reset,  
or synchronously to initiate a warm reset. Reset must be de-asserted synchronously with MasterClock.  
ModeClock  
ModeIn  
O
I
Boot-mode clock  
Serial boot-mode data clock output at the system clock frequency divided by two hundred fifty-six.  
Boot-mode data in  
Serial boot-mode data input.  
JTAG Interface  
TDI  
I
JTAG Data In  
On the rising edge of TCK, serial input data are shifted into either the Instruction register or Data register, depending on the  
TAP controller state.  
TDO  
O
I
JTAG Data Out  
On the falling edge of TCK, the TDO is serial data shifted out from either the instruction or data register. When no data is  
shifted out, the TDO is tri-stated (high impedance).  
TCK  
JTAG Clock Input  
An input test clock used to shift into or out of the boundary-scan register cells. TCK is independent of the system and pro-  
cessor clock with nominal 40-60% duty cycle.  
TMS  
I
JTAG Command Select  
The logic signal received at the TMS input is decoded by the TAP controller to control test operation. TMS is sampled on  
the rising edge of TCK.  
TRST*  
I
JTAG Reset  
The TRST* pin is an active-low signal used for asynchronous reset of the debug unit, independent of the processor logic.  
During normal CPU operation, the JTAG controller will be held in the reset mode, asserting this active low pin.  
When asserted low, this pin will also tristate the TDO pin.  
JTAG32*  
JR_Vcc  
I
I
JTAG 32-bit scan  
This pin is used to control length of the scan chain for SYsAD (32-bit or 64-bit) for the JTAG mode. When set to Vss, 32-bit  
bus mode is selected. In this mode, only SysAD(31:0) are part of the scan chain. When set to Vcc, 64-bit bus mode is  
selected. In this mode, SysAD(63:0) are part of the scan chain. This pin has a built-in pull-down device to guarantee 32-bit  
scan, if it is left uncovered.  
JTAG VCC  
This pin has an internal pull-down to continuously reset the JTAG controller (if left unconnected) bypassing the TRst* pin.  
When supplied with Vcc, the TRst* pin will be the primary control for the JTAG reset.  
Table 5 Pin Descriptions (Page 2 of 2)  
8 of 25  
April 17, 2000  
RC64474™ RC64475™  
Figure 2 illustrates the direction and functional groupings for the processor signals.  
64  
SysAD(63:0)  
SysADC(7:0)  
MasterClock  
8
9
V P  
CC  
SysCmd(8:0)  
SysCmdP  
V P  
SS  
TDI  
RC64474/  
RC64475  
Logic  
VCCOK  
TDO  
TMS  
TRST*  
ColdReset*  
Reset*  
Symbol  
ModeClock  
ModeIn  
TCK  
JTag32*  
JR_Vcc  
RdRdy*  
NMI*  
WrRdy*  
6
Int*(5:0)  
ExtRqst*  
Release*  
ValidIn*  
ValidOut*  
Figure 2 Logic Diagram for RC64474/RC64475  
9 of 25  
April 17, 2000  
 
RC64474™ RC64475™  
Pin names followed by an asterisk (*) are active when low. For maximum flexibility and compatibility with future designs, N.C. pins should be left  
floating.  
1
N.C.  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
JTAG32*  
N.C.  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
N.C.  
157  
158  
159  
160  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
N.C.  
2
N.C.  
N.C.  
N.C.  
3
N.C.  
N.C.  
N.C.  
SysAD59  
ColdReset*  
SysAD28  
VCC  
4
N.C.  
N.C.  
N.C.  
5
N.C.  
SysCmd2  
SysAD36  
SysAD4  
SysCmd1  
N.C.  
6
N.C.  
N.C.  
7
N.C.  
N.C.  
V
SS  
8
N.C.  
N.C.  
SysAD60  
Reset*  
9
N.C.  
V
N.C.  
SS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
SysAD11  
V
SysAD52  
ExtRqst*  
SysAD29  
SysAD61  
SysAD30  
cc  
V
SysAD35  
SysAD3  
SS  
V
V
cc  
cc  
SysCmd8  
SysAD42  
SysAD10  
SysCmd7  
SysCmd0  
SysAD34  
V
V
cc  
SS  
SysAD21  
SysAD53  
RdRdy*  
Modein  
V
SS  
V
SysAD62  
SysAD31  
SysAD63  
SS  
V
cc  
V
SysAD2  
Int5*  
SS  
V
SysAD22  
SysAD54  
V
cc  
cc  
SysAD41  
SysAD9  
SysAD33  
SysAD1  
V
SS  
V
V
OK  
cc  
cc  
SysCmd6  
SysAD40  
V
V
SysADC3  
SysADC7  
N.C.  
SS  
SS  
V
Release*  
SysAD23  
SysAD55  
NMI*  
cc  
V
Int4*  
SS  
V
SysAD32  
SysAD0  
Int3*  
TDI  
cc  
SysAD8  
TRst*  
TCK  
SysCmd5  
SysADC4  
SysADC0  
V
cc  
V
V
TMS  
SS  
SS  
V
SysADC2  
SysADC6  
SysAD24  
TDO  
cc  
V
P
cc  
V
Int2*  
SS  
V
P
V
SysAD16  
SysAD48  
Int1*  
SS  
cc  
SysCmd4  
SysAD39  
SysAD7  
V
cc  
MasterClock  
V
V
cc  
SS  
V
SysAD56  
V
SS  
SS  
Table 6 RC64475 208-pin QFP Package Pin-Out (Page 1 of 2)  
10 of 25  
April 17, 2000  
RC64474™ RC64475™  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
SysCmd3  
86  
V
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
SysAD25  
SysAD57  
N.C.  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
201  
202  
203  
204  
205  
206  
207  
208  
SysADC5  
SysADC1  
cc  
V
87  
SysAD17  
SysAD49  
Int0*  
SS  
V
88  
V
cc  
cc  
SysAD38  
SysAD6  
89  
V
V
SS  
SS  
90  
SysAD18  
N.C  
SysAD47  
SysAD15  
SysAD46  
ModeClock  
WrRdy*  
91  
V
SysAD26  
SysAD58  
N.C.  
SS  
92  
V
cc  
SysAD37  
SysAD5  
93  
SysAD50  
ValidIn*  
V
cc  
94  
V
V
cc  
SS  
V
95  
SysAD19  
SysAD51  
V
SysAD14  
SysAD45  
SysAD13  
SysAD44  
SS  
SS  
V
96  
SysAD27  
N.C.  
cc  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
97  
V
SS  
V
JR_  
cc  
98  
V
cc  
99  
ValidOut*  
SysAD20  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
V
SS  
100  
101  
102  
103  
104  
V
cc  
SysAD12  
SysCmdP  
SysAD43  
N.C.  
N.C.  
N.C.  
N.C.  
Table 6 RC64475 208-pin QFP Package Pin-Out (Page 2 of 2)  
1
JTAG32*  
SysCmd2  
Vcc  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
V
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
V
97  
Vcc  
cc  
cc  
2
Vss  
SysAD28  
ColdReset*  
SysAD27  
Vss  
98  
Vss  
3
SysAD13  
SysAD14  
Vss  
99  
SysAD19  
ValidIn*  
Vcc  
4
Vss  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
5
SysAD5  
WrRdy*  
ModeClock  
SysAD6  
Vcc  
6
Vcc  
Vcc  
Vss  
7
SysAD15  
Vss  
JR_Vcc  
SysAD26  
N.C.  
SysAD18  
Int0*  
8
9
Vcc  
SysAD17  
Vcc  
10  
11  
12  
13  
Vss  
SysADC1  
Vss  
Vss  
SysCmd3  
SysAd7  
SysCmd4  
N.C.  
Vss  
Vcc  
SysAD25  
Vss  
Int1*  
MasterClock  
SysAD16  
Table 7 RC64474 128-pin QFP Package Pin-out (Page 1 of 2)  
11 of 25  
April 17, 2000  
RC64474™ RC64475™  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
Vcc  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
VssP  
VccP  
TDO  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
Vcc  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
128  
Int2*  
Vss  
SysAD24  
SysADC2  
Vss  
Vcc  
SysAdC0  
SysCmd5  
SysAD8  
Vcc  
Vss  
TMS  
Int3*  
TCK  
Vcc  
SysAD0  
Int4*  
TRst*  
TDI  
NMI*  
Vss  
SysAD23  
Release*  
Vss  
Vcc  
SysCmd6  
SysAD9  
Vcc  
Vss  
Vss  
SysADC3  
VccOK  
Vss  
SysAD1  
Int5*  
Vcc  
Vss  
SysAD22  
Modein  
RdRdy*  
SysAD21  
Vss  
SysAD2  
Vcc  
SysCCmd7  
SysAD10  
SysCmd8  
Vcc  
Vcc  
SysAD31  
Vss  
Vss  
SysCmd0  
SysAd3  
Vcc  
Vcc  
Vss  
SysAD30  
SysAD29  
Reset*  
Vss  
Vcc  
SysAD11  
SysCmdP  
SysAD12  
ExtRqst*  
SysAD20  
ValidOut*  
Vss  
SysCmd1  
SysAD4  
Table 7 RC64474 128-pin QFP Package Pin-out (Page 2 of 2)  
To ensure socket compatibility between the RC4640 and the RC64474 devices, several pin changes are required, as shown below.  
1
N.C  
JTAG32*  
Yes.  
Pin has an internal pull-down, to enable 32-bit scan.  
Can also be left a N.C.  
48  
49  
50  
51  
52  
71  
V
TDO  
TMS  
TCK  
TRst*  
TDI  
Yes.  
Yes.  
Yes.  
Yes.  
Yes.  
Yes.  
Can be driven with V , if JTAG is not needed. Is tristated when TRst* is low.  
ss  
ss  
V
Can be driven with V if JTAG is not needed.  
ss  
ss  
V
Can be driven with V if JTAG is not needed.  
ss  
ss  
V
Can be driven with V if JTAG is not needed.  
ss  
ss  
V
Can be driven with V if JTAG is not needed.  
ss  
ss  
N.C.  
JR_V  
Can be left N.C. in RC64474, if JTAG is not need. If JTAG is needed, it must  
cc  
be driven to V .  
cc  
Table 8 RC64574 Socket Compatibility to RC64474 and R4640  
12 of 25  
April 17, 2000  
RC64474™ RC64475™  
53  
N.C.  
N.C.  
JTAG32*  
No Connect  
No Connect  
JTAG32*  
Yes  
Yes  
In 32-bit, this pin can be left unconnected  
because of internal pull-down.  
In 64-bit, this assumes that JTAG will not be  
used. If using JTAG, this pin must be at V .  
cc  
150  
JR_V  
JR_V  
In RC64475, can be left a N.C, if JTAG is not  
need. If JTAG is needed, it must be driven to  
cc  
cc  
V .  
cc  
180  
181  
182  
183  
184  
N.C.  
N.C.  
N.C.  
N.C.  
N.C.  
TDI  
No Connect  
No Connect  
No Connect  
No Connect  
No Connect  
TDO  
TRsT*  
TCK  
TMS  
Yes  
Yes  
Yes  
Yes  
Yes  
If JTAG is not needed, can be left a N.C.  
If JTAG is not needed, can be left a N.C.  
If JTAG is not needed, can be left a N.C.  
If JTAG is not needed, can be left a N.C.  
If JTAG is not needed, can be left a N.C.  
TRsT*  
TCK  
TMS  
TDO  
TDIO  
Table 9 RC64575 Socket Compatibility to RC64475 & RC4650  
Note: Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum  
rating conditions for extended periods may affect reliability.  
1
1
V
Terminal Voltage with respect to GND  
Operating Temperature(case)  
Case Temperature Under Bias  
Storage Temperature  
–0.5 to +4.6  
–0.5 to +4.6  
V
TERM  
T
0 to +85  
-40 to +85  
°C  
°C  
°C  
mA  
mA  
C
T
–55 to +125  
–55 to +125  
–55 to +125  
–55 to +125  
BIAS  
T
STG  
2
2
I
DC Input Current  
20  
20  
IN  
3
3
I
DC Output Current  
50  
50  
OUT  
1. V minimum = –2.0V for pulse width less than 15ns. V should not exceed VCC +0.5 Volts.  
IN  
IN  
2. When V < 0V or VIN > VCC  
IN  
3. Not more than one output should be shorted at a time. Duration of the short should not exceed 30 seconds.  
Commercial  
Industrial  
0°C to +85°C (Case)  
-40 + 85°C (Case)  
0V  
0V  
3.3V±5%  
3.3V±5%  
13 of 25  
April 17, 2000  
 
 
 
RC64474™ RC64475™  
Commercial Temperature RangeRC64474/64475  
(V  
± %, T  
= 3.3 5  
= 0 C to +85 C)  
°
°
CC  
CASE  
V
0.1V  
0.1V  
0.1V  
|I |= 20uA  
OL  
OUT  
V
V
- 0.1V  
V
- 0.1V  
V
- 0.1V  
OH  
CC  
CC  
CC  
V
0.4V  
0.4V  
0.4V  
|I |= 4mA  
OL  
OUT  
V
2.4V  
–0.5V  
2.0V  
2.4V  
2.4V  
–0.5V  
2.0V  
OH  
V
0.2V  
–0.5V  
0.2V  
0.2V  
CC  
IL  
CC  
CC  
V
V
+ 0.5V  
0.7V  
V
+ 0.5V  
V
+ 0.5V  
IH  
CC  
CC  
CC  
CC  
I
±10uA  
10pF  
±10uA  
10pF  
±10uA  
10pF  
0 V V  
IN CC  
IN  
C
IN  
C
10pF  
10pF  
10pF  
OUT  
I/O  
LEAK  
20uA  
20uA  
20uA  
Input/Output Leakage  
.
System Condition: 180/90MHz  
200/100MHz  
250/125MHz  
2
2
2
3
I
standby  
60 mA  
60 mA  
100 mA  
C = 0pF  
L
CC  
2
2
2
110 mA  
110 mA  
110 mA  
C = 50pF  
L
2
2
2
2
2
2
active  
530 mA  
630 mA  
600mA  
700 mA  
700 mA  
850mA  
C = 0pF  
L
3
No SysAd activity  
2
2
2
2
2
2
630mA  
750 mA  
700 mA  
850 mA  
850mA  
1000mA  
C = 50pF  
L
R4x00 compatible writes,  
o
T = 25 C  
C
2
4
2
4
2
2
750 mA  
1050 mA  
850 mA  
1200 mA  
1000mA  
1400mA  
C = 50pF  
L
Pipelined writes or write  
re-issue,  
o
3
T = 25 C  
C
1. Typical integer instruction mix and cache miss rates  
2. These are not tested. They are the results of engineering analysis and are provided for reference only  
3. Guaranteed by design.  
4. These are the specifications IDT tests to insure compliance.  
14 of 25  
April 17, 2000  
 
 
 
 
RC64474™ RC64475™  
System Condition: 180/90MHz  
200/100MHz  
250/125MHz  
2
2
2
3
I
standby  
60 mA  
60 mA  
100 mA  
C = 0pF  
L
CC  
2
2
2
110 m A  
110 mA  
110 mA  
C = 50pF  
L
2
2
2
2
2
2
active,  
720 mA  
850 mA  
850 mA  
1000 mA  
935 mA  
1100 mA  
C = 0pF  
L
3
64-bit bus  
option  
No SysAd activity  
4
2
2
2
2
2
2
850 mA  
1000 mA  
1000 mA  
1200 mA  
1100mA  
1360mA  
C = 50pF  
L
R4x00 compatible writes,  
o
T = 25 C  
C
2
5
2
5
2
2
1000 mA  
1200 mA  
1200 mA  
1400 mA  
1360 mA  
1600 mA  
C = 50pF  
L
Pipelined writes or write re-issue,  
o
3
T = 25 C  
C
1. Typical integer instruction mix and cache miss rates  
2. These are not tested. They are the results of engineering analysis and are provided for reference only.  
3. Guaranteed by design.  
4. In 32-bit bus option, use RC64474 power consumption values.  
5. These are the specifications IDT tests to insure compliance.  
1
2
3
4
Cycle  
MasterClock  
t
MCkHigh  
t
MCkLow  
t
MCkP  
SysAD,SysCmd Driven  
SysADC  
D
D
D
t
t
DM  
DOH  
t
DO  
SysAD,SysCmd Received  
SysADC  
D
D
D
D
t
DS  
t
DH  
Control Signal CPU driven  
ValidOut*  
Release*  
t
DO  
t
DOH  
Control Signal CPU received  
RdRdy*  
WrRdy*  
ExtRqst*  
ValidIn*  
NMI*  
t
DS  
t
DH  
Int*(5:0)  
* = active low signal  
Figure 3 System Clocks Data Setup, Output, and Hold Timing  
15 of 25  
April 17, 2000  
 
 
 
 
RC64474™ RC64475™  
t
TCK  
TCK  
t5  
t3  
t1  
t2  
TDI/  
TMS  
tDS  
tDH  
TDO  
TDO  
TDO  
t
DO  
Notes to diagram:  
t1 = tTCKlow  
t2 = tTCKHIGH  
TR ST*  
t3 =  
t
TCKFALL  
t4 = T  
t5 = t  
(reset pulse width)  
RST  
t4  
TCKRise  
> = 25 ns  
Figure 4 Standard JTAG timing  
Commercial Temperature Range RC64474/RC64475  
(V =3.3V ± 5%; T  
= 0×C to +85 C)  
°
CC  
CASE  
Pipeline clock  
Frequency  
PClk  
80  
180  
80  
200  
80  
250  
MHz  
MasterClock HIGH  
MasterClock LOW  
t
Transition 3ns  
Transition 3ns  
3
90  
3
2.5  
2.5  
10  
ns  
MCHIGH  
t
3
3
ns  
MCLOW  
MasterClock  
Frequency  
10  
10  
100  
125  
MHz  
MasterClock Period  
t
11.1  
100  
10  
100  
8
100  
ns  
ps  
MCP  
Clock Jitter for  
MasterClock  
t
±250  
±250  
±250  
JitterIn  
MasterClock Rise Time  
MasterClock Fall Time  
ModeClock Period  
t
2.5  
2
2
ns  
ns  
ns  
MCRise  
t
2.5  
2
2
MCFall  
t
ModeCKP  
256*  
256*  
256*  
t
t
t
MCP  
MCP  
MCP  
JTAG Clock Input  
t
100  
40  
5
100  
40  
5
100  
40  
5
ns  
ns  
ns  
ns  
ns  
TCK  
JTAG Clock HIGH  
JTAG Clock Low  
t
TCKHIGH  
t
40  
40  
40  
TCKLOW  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
1. Timings are measured from 1.5V of the clock to 1.5V of the signal.  
t
TCKRise  
t
5
5
5
TCKFall  
16 of 25  
April 17, 2000  
RC64474™ RC64475™  
Load Derate  
C
2
2
2
ns/25pF  
LD  
Note: Operation of the RC64474/RC64475 is only guaranteed with the Phase Lock Loop enabled.  
2
3
3
3
3
Data Output  
t
= Min  
= Max  
mode  
mode  
mode  
mode  
mode  
mode  
mode  
mode  
= 10  
= 11  
= 00  
= 01  
= 10  
= 11  
= 00  
= 01  
1.0  
6
1.0  
5
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2
4.7  
4.7  
7
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
14..13  
14..13  
14..13  
14..13  
14..13  
14..13  
14..13  
14..13  
DM  
t
DO  
3
3
1.0  
6
1.0  
5
9
9
9
9
7
4
3
3
3
3
3
3
Data Output Hold  
t
1.0  
1.0  
DOH  
3
3
1.0  
1.0  
3
3
1.0  
1.0  
3
3
1.0  
2
1.0  
2
Data Setup  
Data Hold  
t
t
= 5ns  
DS  
rise  
t
= 5ns  
fall  
t
1.0  
1.0  
1.0  
DH  
1. Timings are measured from 1.5V of the clock to 1.5V of the signal.  
2. Capacitive load for all output timings is 50pF.  
3. Guaranteed by design.  
4. 50pf loading on external output signals, fastest settings. Also applies to JTAG signals (TRST*,TDO,TDI,TMS)  
Mode Data Setup  
Mode Data Hold  
t
3
0
3
0
3
0
Master Clock Cycle  
Master Clock Cycle  
DS  
t
DH  
17 of 25  
April 17, 2000  
 
RC64474™ RC64475™  
2.3V  
2.3V  
Vcc  
MasterClock  
(MClk)  
TDS  
> 100ms  
256  
MClk  
256 MClk cycles  
VCCOK  
ModeClock  
ModeIn  
cycles  
TMDS  
TMDH  
Bit  
255  
Bit 1  
Bit 0  
TDS  
TDS  
TDS  
> 64K MClk cycles  
ColdReset*  
Reset*  
> 64 MClk cycles  
TDS  
Figure 5 Power-on Reset  
Vcc  
Master  
Clock  
(MClk)  
TDS  
TDS  
> 100ms  
256  
MClk  
VCCOK  
256 MClk cycles  
cycles  
ModeClock  
ModeIn  
TMDS  
TMDH  
Bit  
1
Bit  
255  
Bit  
0
TDS  
TDS  
> 64K MClk cycles  
ColdReset*  
Reset*  
> 64 MClk cycles  
TDS  
TDS  
Figure 6 Cold Reset  
Vcc  
Master  
Clock  
(MClk)  
VCCOK  
256 MClk cycles  
ModeClock  
ModeIn  
ColdReset*  
Reset*  
TDS  
TDS  
> 64 MClk cycles  
Figure 7 Warm Reset  
18 of 25  
April 17, 2000  
RC64474™ RC64475™  
+4mA  
To Device  
Under Test  
V
REF  
+
+1.5V  
C
LD  
–4mA  
All Signals  
50 pF  
19 of 25  
April 17, 2000  
RC64474™ RC64475™  
The RC64475 is available in a 208-pin power quad (PQUAD) package.  
20 of 25  
April 17, 2000  
RC64474™ RC64475™  
21 of 25  
April 17, 2000  
RC64474™ RC64475™  
22 of 25  
April 17, 2000  
RC64474™ RC64475™  
23 of 25  
April 17, 2000  
RC64474™ RC64475™  
24 of 25  
April 17, 2000  
RC64474™ RC64475™  
YY  
XXXX  
A
999  
A
IDT79RCXX  
Product  
Type  
Operating  
Voltage  
Device  
Type  
Temp range/  
Process  
Package  
Speed  
Commercial Temperature  
(0°C to +85°C Case)  
Blank  
Industrial Temperature  
(-40°C to +85°C Case)  
I
128-pin QFP  
208-pin QFP  
DZ  
DP  
180  
200  
250  
180 MHz PClk  
200 MHz PClk  
250 MHz PClk  
474  
475  
Embedded Processor  
V
3.3V +/-5%  
64-bit Embedded  
Microprocessor  
79RC64  
IDT79RC64V474 - 180, 200, 250 DZ  
IDT79RC64V475 - 180, 200, 250 DP  
IDT79RC64V474 - 180, 200, 250 DZI  
IDT79RC64V475 - 180, 200, 250 DPI  
128-pin QFP package, Commercial Temperature  
208-pin QFP package, Commercial Temperature  
128-pin QFP package, Industrial Temperature  
208-pin QFP package, Industrial Temperature  
CORPORATE HEADQUARTERS  
2975 Stender Way  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-5116  
fax: 408-492-8674  
for Tech Support:  
email: rischelp@idt.com  
phone: 408-492-8208  
www.idt.com  
The IDT logo is a registered trademark of Integrated DeviceTechnology, Inc.  
25 of 25  
April 17, 2000  

相关型号:

IDT79RC64V475-200DPG

RISC Microprocessor, 64-Bit, 200MHz, PQFP208, 28 X 28 MM, 3.40 MM HEIGHT, PLASTIC, QFP-208
IDT

IDT79RC64V475-200DPI

RISControllerTM Embedded 64-bit Microprocessor, based on
IDT

IDT79RC64V475-200DPI9

RISC Microprocessor, 64-Bit, 200MHz, PQFP208, QFP-208
IDT

IDT79RC64V475-200DQI

MICROPROCESSOR|64-BIT|CMOS|QFP|128PIN|PLASTIC
ETC

IDT79RC64V475-200DZ

RISControllerTM Embedded 64-bit Microprocessor, based on
IDT

IDT79RC64V475-200DZG

RISC Microprocessor, 64-Bit, 200MHz, PQFP128, QFP-128
IDT

IDT79RC64V475-200DZI

RISControllerTM Embedded 64-bit Microprocessor, based on
IDT

IDT79RC64V475-250DP

RISControllerTM Embedded 64-bit Microprocessor, based on
IDT

IDT79RC64V475-250DPI

RISControllerTM Embedded 64-bit Microprocessor, based on
IDT

IDT79RC64V475-250DPI9

RISC Microprocessor, 64-Bit, 250MHz, PQFP208, QFP-208
IDT

IDT79RC64V475-250DZ

RISControllerTM Embedded 64-bit Microprocessor, based on
IDT

IDT79RC64V475-250DZG

RISC Microprocessor, 64-Bit, 250MHz, PQFP128, QFP-128
IDT