IDT79RV5000-180BS [IDT]

64-BIT, 180MHz, RISC PROCESSOR, PBGA272, SBGA-272;
IDT79RV5000-180BS
型号: IDT79RV5000-180BS
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

64-BIT, 180MHz, RISC PROCESSOR, PBGA272, SBGA-272

文件: 总16页 (文件大小:291K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MULTI-ISSUE  
64-BIT MICROPROCESSOR  
79RC5000  
Large, efficient on-chip caches  
32KB Instruction Cache, 32KB Data Cache  
2-set associative in each cach  
Virtually indexed and physically tagged to minimize cache  
flushes  
Write-back and write-through selectable on a per page  
basis  
Critical word first cache miss processing  
Supports back-to-back loads and stores in any combination  
at full pipeline rate  
Features  
-
-
-
Dual issue super-scalar execution core  
-
-
300 MHz frequency  
Dual issue floating-point ALU operations with other  
instruction classes  
Traditional 5-stage pipeline, minimizes load and branch  
latencies  
-
-
-
-
Single-cycle repeat rate for most floating point ALU oper-  
ations  
High level of performance for a variety of applications  
High-performance 64-bit integer unit achieves 400 dhry-  
stone MIPS (dhrystone 2.1)  
Ultra high-performance floating-point accelerator,  
directly implementing single- and double-precision oper-  
ations achieves 600mflops  
Extremely large on-chip primary cache  
On-chip secondary cache controller  
MIPS-IV 64-bit ISA for improved computation  
Compound floating-point operations for 3D graphics and  
floating-point DSP  
High-performance memory system  
-
-
-
-
-
-
Large primary caches integrated on-chip  
Secondary cache control interface on-chip  
High-frequency 64-bit bus interface runs up to 125MHz  
Aggregate bandwidth of on-chip caches, system interface  
of 5.6GB/s  
High-performance write protocols for graphics and data  
communications  
Compatible with a variety of operating systems  
Windows™ CE  
Numerous MIPS-compatible real-time operating systems  
-
-
-
-
-
-
-
Conditional move operations  
Uses input system clock, with processor pipeline clock multi-  
plied by a factor of 2-8  
Large on-chip TLB  
Active power management, including use of WAIT operation  
Block diagram  
Phase Lock Loop  
Data Tag A  
Instruction Set A  
Instruction Select  
Data Set A  
Store Buffer  
DTLB Physical  
SysAD  
Integer Instruction Register  
FP Instruction Register  
Address Buffer  
Instruction Tag A  
ITLB Physical  
Write Buffer  
Read Buffer  
Data Set B  
DBus  
Instruction Set B  
IntIBus  
Instruction Tag B  
FPIBus  
Control  
AuxTag  
Joint TLB  
Tag  
Load Aligner  
Floating Point Register File  
Unpacker/Packer  
Integer Register File  
Integer/Address Adder  
Coprocessor 0  
Data TLB Virtual  
DVA  
System/Memory  
Control  
Floating Point  
MAdd,Add,Sub, Cvt  
Div, SqRt  
Shifter/Store Aligner  
IVA  
PC Incrementer  
Branch Adder  
Logic Unit  
ABus  
Instruction TLB Virtual  
Program Counter  
Integer Multiply, Divide  
The IDT logo is a registered trademark and RC4600, RC4640, RC4650, RC4700, RC5000, RV5000, and RISController are trademarks of Integrated Device Technology, Inc.  
MIPS is a registered trademark of MIPS Computer Systems, Inc.  
1 of 16  
June 21, 1999  
ã
1999 Integrated Device Technology, Inc.  
79RC5000  
MULTI-ISSUE 64-BIT MICROPROCESSOR  
Integer pipeline  
The RC5000 is a limited dual-issue machine that utilizes a tradi-  
tional 5-stage integer pipeline. This basic integer pipeline of the  
RC5000 is illustrated in Figure 1. The integer instruction execution  
speed is tabulated (in number of pipeline clocks) as follows:  
DESCRIPTION  
The RC5000 serves many performance critical embedded  
applications, such as high-end internetworking systems, color  
printers, and graphics terminals.  
The RC5000 is optimized for high-performance applications,  
with special emphasis on system bandwidth and floating point  
operations, through integration of high-performance computational  
units and a high-performance memory hierarchy. For this class of  
application, the result is a relatively low-cost CPU capable of  
approximately 400 Dhrystone MIPS.  
Operation  
Latency  
Repeat  
Load  
2
1
Store  
2
1
IDT’s objectives in offering the RC5000 include:  
MULT/MULTU  
DMULT/DMULTU  
DIV/DIVU  
DDIV/DDIVU  
Other Integer ALU  
Branch  
8
8
Offering a high performance upgrade path to existing  
12  
36  
68  
1
12  
36  
68  
1
embedded customers in the internetworking, office auto-  
mation and visualization markets.  
Providing a significant improvement in the floating- point  
performance currently available in a moderately priced  
MIPS CPU.  
2
2
Providing improvements in the memory hierarchy of desk-  
Jump  
2
2
top systems by using large primary caches and integrat-  
ing a secondary cache controller.  
Table 1: Integer Instruction Execution Speed  
Enabling improvements in performance through the use of  
The RC5000’s short pipeline keeps the load and branch latencies  
very low. The caches contain special logic that allows any combina-  
tion of loads and stores to execute in back-to-back cycles without  
requiring pipeline slips or stalls. (This assumes that the operation  
does not miss in the cache.)  
the MIPS-IV ISA.  
Instruction issue mechanism  
The RC5000 recognizes two general classes of instructions for  
multi-issue:  
Floating-point ALU  
All others  
These instruction classes are pre-decoded by the RC5000, as  
they are brought on-chip. The pre-decoded information is stored in  
the instruction cache.  
Assuming that there are no pending resource conflicts, the  
RC5000 can issue one instruction per class per pipeline clock  
cycle. Note that this broad separation of classes insures that there  
are no data dependencies to restrict multi-issue.  
However, long-latency resources in either the floating-point ALU  
(e.g. DIV or SQRT instructions) or instructions in the integer unit  
(such as multiply) can restrict the issue of instructions. Note that  
the R5000 does not perform out-of-order or speculative execution;  
instead, the pipeline slips until the required resource becomes  
available.  
There are no alignment restrictions on dual-issue instruction  
pairs. The RC5000 fetches two instructions from the cache per  
cycle. Thus, for optimal performance, compilers should attempt to  
align branch targets to allow dual-issue on the first target cycle,  
since the instruction cache only performs aligned fetches.  
Instruction set architecture  
The RC5000 implements the MIPS-IV 64-bit ISA, including CP1  
and CP1X functional units (and their instruction set).  
2 of 16  
79RC5000  
MULTI-ISSUE 64-BIT MICROPROCESSOR  
I0  
I1  
I2  
1I  
2I  
1R  
1I  
2R  
2I  
1A  
1R  
1I  
2A  
2R  
2I  
1D  
1A  
1R  
2D  
2A  
2R  
1W  
1D  
1A  
2W  
2D  
2A  
1W  
1D  
2W  
2D  
1
W
I3  
I4  
1I  
2I  
1R  
1I  
2R  
2I  
1A  
1R  
2A  
2R  
1D  
1A  
one cycle  
Figure 1 R5000 Integer Pipeline Stages  
Key to Figure  
1I-1R  
2I  
Instruction cache access  
Instruction virtual to physical address translation  
Data cache access and load align  
2A-  
2D  
1D  
1D-  
2D  
Data virtual to physical address translation  
Virtual to physical address translation  
2R  
2R  
2R  
2R  
1A  
Register file read  
Bypass calculation  
Instruction decode  
Branch address calculation  
Issue or slip decision  
Integer add, logical, shift  
1A-  
2A  
1A  
2A  
1A  
2W  
Data virtual address calculation  
Store align  
Branch decision  
Register file write  
3 of 16  
79RC5000  
MULTI-ISSUE 64-BIT MICROPROCESSOR  
The following equation relates ambient and case temperatures:  
RC5000 Computational Units  
The RC5000 contains the following computational units:  
Integer ALU. The RC5000 implements a full, single-cycle 64-bit  
ALU for all integer ALU functions other than multiply and divide.  
Bypassing is used to support back-to-back ALU operations at the  
full pipeline rate, without requiring stalls for data dependencies.  
Integer Multiply/Divide Unit. This unit is separated from the  
primary ALU, to allow these longer latency operations to run in  
parallel with other operations. The pipeline stalls only if an attempt  
to access the HI or LO registers is made before the operation  
completes.  
Floating-point ALU. This unit is responsible for all CP1/CP1X  
ALU operations other than DIV/SQRT. The unit is pipelined to allow  
a single-cycle repeat rate for single-precision operations  
Floating-point DIV/SQRT unit. This unit is separated from the  
other floating-point ALU, so that these long latency operations do  
not prevent the issue of other floating point operations.  
In addition, the RC5000 implements separate logical units to  
implement loads, stores, and branches.  
TA = TC - P * ÆCA  
where P is the maximum power consumption at hot temperature,  
calculated by using the maximum ICC specification for the device.  
Typical values for ÆCA at various airflows are shown in Table 1.  
ÆCA  
Airflow (ft/min)  
PGA  
0
200  
7
400  
5
600  
3
800  
2.5  
1000  
2
16  
BGA  
14  
6
4
3
2.5  
2
Table 2: Thermal Resistance (ÆCA) at Various Airflows  
Note: The RC5000 implements advanced power management to  
substantially reduce the average power dissipation of the device. This  
operation is described in the IDT79RV5000 RISC Microprocessor  
Reference Manual.  
Operating frequency  
Note:  
The input clock operates in a frequency range of 33MHz to  
100MHz. The pipeline frequency for the RC5000 is 2 to 8 times the  
input clock (up to the maximum for the speed grade of CPU).  
Per the RC5000 Documentation errata, Revicion 1.0, dated  
February 1999 and per the RC5000 Device errata, dated February  
1999, mode bits 20, 33 and 37 must be set to 1.  
Thermal considerations  
Revision history  
The RC5000 utilizes special packaging techniques, to improve  
the thermal properties of high-speed processors. The RC5000 is  
packaged using cavity down packaging in a 223-pin PGA package  
with integral thermal slug, and a 272-pin BGA package. These  
packages effectively dissipate the power of the CPU, increasing  
device reliability.  
Changes to version dated January 1996:  
Pin Description section:  
-
Corrected pin list for Clock/Control, Initialization, and  
Secondary Cache interfaces.  
Advance Pin-Out section:  
-
Changed pins AA19 and AA21 from Vcc to Vss.  
The RC5000 utilizes an all-aluminum package with the die  
attached to a normal copper lead frame mounted to the aluminum  
casing. Due to the heat-spreading effect of the aluminum, the  
package allows for an efficient thermal transfer between the die  
and the case. The aluminum offers less internal resistance from  
one end of the package to the other, reducing the temperature  
gradient across the package and therefore presenting a greater  
area for convection and conduction to the PCB for a given temper-  
ature. Even nominal amounts of airflow will dramatically reduce the  
junction temperature of the die, resulting in cooler operation.  
The RC5000 is guaranteed in a case temperature range of 0° to  
+85° C. The type of package, speed (power) of the device, and  
airflow conditions affect the equivalent ambient temperature condi-  
tions that will meet this specification.  
Changes to version dated March 1997:  
-
Upgraded data sheet status from “Preliminary” to Final.  
Added section on thermal considerations  
Added section on absolute maximum ratings  
-
-
Changes to version dated June 1997:  
-
Revised Power Consumption and System Interface Param-  
eters  
Changes to version dated September 1997:  
-
Added user notation on Boot Mode Bits 20 and 33 for 200  
MHz frequency  
Changes to version dated June 1998:  
-
Added 250 MHz  
Changed naming conventions  
-
Changes to version dated June 1999:  
-
Added 267 MHz and 300 MHz  
The equivalent allowable ambient temperature, TA, can be  
calculated using the thermal resistance from case to ambient  
(ÆCA) of the given package.  
4 of 16  
79RC5000  
MULTI-ISSUE 64-BIT MICROPROCESSOR  
Logic diagram  
64  
8
2
SysAD(63:0)  
ScWord (1:0)  
ScTCE*  
SysADC(7:0)  
SysCmd(8:0)  
SysCmdP  
ValidIn*  
9
ScTDE*  
ScTOE*  
ScCLR*  
ValidOut*  
ExtRqst*  
ScDCE*  
ScDOE*  
Release*  
RdRdy*  
ScCWE*  
ScLine (15:0)  
16  
WrRdy*  
ScMATCH  
ScVALID  
RC5000  
Logic  
Symbol  
6
SysClock  
VccP  
Int (5:0)*  
NMI*  
VssP  
34  
34  
Vcc  
Vss  
BigEndian  
ModeClock  
ModeIN  
VccOk  
ColdReset*  
Reset*  
JTDI  
JTDO  
JTMS  
JTCK  
Table 3: RC5000 Logic Symbol Diagram  
5 of 16  
79RC5000  
MULTI-ISSUE 64-BIT MICROPROCESSOR  
Pin description  
The RC5000 implements a bus similar to that of the RC4700. Table 2 lists and describes the RC5000 signals.  
Pin Name  
Type  
Description  
System interface  
ExtRqst*  
Input  
External Request.  
Signals that the system interface needs to submit an external request.  
Release*  
RdRdy*  
WrRdy*  
ValidIn*  
Output  
Input  
Input  
Input  
Release Interface.  
Signals that the processor is releasing the system interface to slave state  
Read Ready.  
Signals that an external agent can now accept a processor read.  
Write Ready.  
Signals that an external agent can now accept a processor write request.  
Valid Input.  
Signals that an external agent is now driving a valid address or data on the SysAD bus and a  
valid com mand or data identifier on the SysCmd bus.  
ValidOut*  
Output  
Valid Output.  
Signals that the processor is now driving a valid address or data on the SysAD bus and a valid  
com mand or data identifier on the SysCmd bus.  
SysAD(63:0)  
Input/Output System Address/Data bus.  
A 64-bit address and data bus for communication between the processor and an external  
agent.  
SysADC(7:0)  
SysCmd(8:0)  
Input/Output System Address/Data check bus.  
An 8-bit bus containing parity check bits for the SysAD bus during data bus cycles.  
Input/Output System Command/data identifier bus.  
A 9-bit bus for command and data identifier transmission between the processor and an exter-  
nal agent.  
SysCmdP  
Input/Output Reserved System Command/data identifier bus parity.  
For the RC5000, unused on input and zero on output.  
Clock/control interface  
SysClock  
Input  
Master Clock.  
Master clock input at the bus frequency. The pipeline clock is derived by multiplying this clock  
up.  
VCCP  
VSSP  
Input  
Input  
Quiet VCC for PLL.  
Quiet VCC for the internal phase locked loop.  
Quiet VSS for PLL.  
Quiet VSS for the internal phase locked loop.  
Interrupt interface  
Int(5:0)*  
Input  
Input  
Interrupt.  
Six general processor interrupts, bit-wise ORed with bits 5:0 of the interrupt register.  
Non-maskable interrupt. Non-maskable interrupt, ORed with bit 6 of the interrupt register.  
NMI*  
Table 4: RC5000 Signal Names and Descriptions (Page 1 of 3)  
6 of 16  
79RC5000  
JTAG interface:  
MULTI-ISSUE 64-BIT MICROPROCESSOR  
JTDI  
Input  
Input  
Output  
Input  
JTAG Data In.  
Connected directly to JTDO. No JTAG implemented; should be pulled High.  
JTAG Clock Input.  
JTCK  
JTDO  
JTMS  
Unused input; should be pulled High.  
JTAG Data Out.  
Connected directly to JTDI. If no external scan used, this is a no connect.  
JTAG Command.  
Unused input. Should be pulled High.  
Initialization interface:  
VCCOk  
Input  
VCC is OK.  
When asserted, this signal indicates to the RC5000 that the power supply has been aboveVcc  
mini mum for more than 100 milliseconds and will remain stable. The assertion of VCCOk ini-  
tiates the read ing of the boot-time mode control serial stream.  
ColdReset*  
Reset*  
Input  
Input  
Cold Reset.  
This signal must be asserted for a power on reset or a cold reset. ColdReset must be de-  
asserted syn chronously with SysClock.  
Reset.  
This signal must be asserted for any reset sequence. It may be asserted synchronously or  
asynchro nously for a cold reset, or synchronously to initiate a warm reset. Reset must be syn-  
chronously de-asserted with SysClock.  
ModeClock  
Output  
Boot Mode Clock.  
Serial boot-mode data clock output at the system clock frequency divided by two hundred and  
fifty six.  
ModeIn  
Input  
Input  
Boot Mode Data In.  
Serial boot-mode data input.  
Endian mode select.  
BigEndian  
Allows the system to change the processor addressing mode without rewriting the mode ROM.  
If endi anness is to be specified by using the BigEndian pin, program mode ROM bit 8 to 0; if  
endianness is to be specified by the mode ROM, ground the BigEndian pin.  
Secondary cache interface:  
ScCLR*  
Output  
Output  
Output  
Input  
Secondary Cache Block Clear.  
Clears all valid bits in those Tag RAM’s which support this function.  
Secondary Cache Write Enable.  
ScCWE*(1:0)  
ScDCE*(1:0)  
ScDOE*  
Asserted during writes to the secondary cache  
Data RAM Chip Enable.  
Chip Enable for Secondary Cache Data RAM  
Data RAM Output Enable.  
Asserted by the external agent to enable data onto the SysAD bus  
Data RAM Output Enable.  
ScLine (15:0)  
Output  
Cache line index for secondary cache  
Table 4: RC5000 Signal Names and Descriptions (Page 2 of 3)  
7 of 16  
79RC5000  
MULTI-ISSUE 64-BIT MICROPROCESSOR  
ScMATCH  
Input  
Secondary cache Tag Match.  
Asserted by Tag RAM on Secondary cache tag match  
Secondary cache Tag RAM Chip Enable.  
ScTCE*  
Output  
Output  
Output  
Chip enable for secondary cache tag RAM.  
Secondary cache Tag RAM Data Enable.  
ScTDE*  
Data Enable for Secondary Cache Tag RAM.  
Secondary cache Tag RAM Output Enable.  
Tag RAM Output enable for Secondary Cache Tag RAM’s  
ScTOE*  
ScWord (1:0)  
ScValid  
Input/Output Secondary cache Word Index.  
Determines correct double-word of Secondary cache Index  
Input/Output Secondary cache Valid.  
Always driven by the CPU except during a cache probe operation, when it is driven by the tag  
RAM.  
Table 4: RC5000 Signal Names and Descriptions (Page 3 of 3)  
Absolute maximum ratings  
Symbol  
VTERM  
TC  
Rating  
Commercial (3.3V±5%)  
–0.5(2) to +4.6  
0 to +85  
Unit  
V
Terminal Voltage with respect to GND  
Operating Temperature (case)  
Case Temperature Under Bias  
Storage Temperature  
DC Input Current  
°C  
°C  
°C  
mA  
mA  
TBIAS  
TSTG  
IIN  
–55 to +125  
–55 to +125  
20(3)  
IOUT  
DC Output Current  
50(4)  
NOTES:  
1Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating  
only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification  
is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.  
2.V  
IN minimum = –2.0V for pulse width less than 15ns. VIN should not exceed VCC +0.5 Volts.  
3.When VIN < 0V or VIN > VCC.  
4.Not more than one output should be shorted at a time. Duration of the short should not exceed 30 seconds.  
Recommended operation temperature and supply voltage  
RV5000  
Grade  
Temperature  
GND  
VCC  
Commercial  
0°C to +85°C (Case)  
0V  
3.3V±5%  
8 of 16  
79RC5000  
MULTI-ISSUE 64-BIT MICROPROCESSOR  
AC electrical characteristics  
(VCC= 3.3V± 5%; Tcase = 0°C to +85°C )  
Clock Parameters—RC50001  
180MHz  
200MHz  
250MHz  
267 MHz  
300 MHz  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Parameter  
Symbol  
Units  
Pipeline Clock  
Frequency  
PCLk  
100  
180  
100  
200  
100  
250  
100  
267  
100  
300  
SysClock HIGH  
tSCHIGH  
tSCLOW  
3
3
100  
30  
2
3
125  
30  
2
3
125  
20  
2
3
125  
20  
2
ns  
SysClock LOW  
3
3
3
3
3
ns  
SysClock Frequency  
SysClock Period  
SysClock Rise Time  
SysClock Fall Time  
ModeClock Period  
33  
11.1  
90  
30  
2.5  
2.5  
33  
10  
33  
8
33  
8
50  
8
MHz  
ns  
tSCP  
tSCRise  
tSCFall  
ns  
2
2
2
2
ns  
tMo-  
256  
256  
256  
256  
256  
ns  
tSCP  
tSCP  
tSCP  
tSCP  
tSCP  
deCKP  
Capacitive load deration—RC5000  
180MHz  
Symbol Test Conditions Min Max  
200MHz  
250MHz  
267MHz  
300MHz  
Parameter  
Load Derate CLD  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Units  
2
2
2
2
2
ns/25pF  
1. Boot Mode Bits 20, 33 and 37 must be set to “1” for all frequencies  
9 of 16  
79RC5000  
MULTI-ISSUE 64-BIT MICROPROCESSOR  
System interface parameters—RC5000  
180 MHz  
pipeline / 90  
MHz Bus  
200 MHz  
pipeline /  
100MHz Bus  
Frequency  
250MHz  
pipeline /  
125 MHz Bus  
Frequency  
267Mhz  
Pipeline /  
89MHz Bus  
Frequency  
300Mhz  
pipeline /  
100MHz Bus  
Frequency  
Parameter  
Symbol  
Test Conditions  
Frequency  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max Units  
Data Output  
tDM= Min  
tDO = Max (fastest)  
mode14..13 = 10  
1.5*  
7
1.5  
5
1.5*  
4.7  
1.0  
4.7  
1.0  
4.7  
ns  
ns  
ns  
mode14..13 = 01  
(slowest)  
1.5*  
1.0  
11  
1.5  
1.0  
11  
1.5  
1.0  
7
7
7
Data Output  
Hold  
tDOH*  
mode14..13 = 10  
(fastest)  
1.0  
1.0  
tDS  
tDH  
trise = 3ns  
tfall = 3ns  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
1.5  
0.5  
ns  
ns  
Data Input  
*Guaranteed by design  
50 pf loading on external output signals  
Boot time interface parameters—RC5000  
180MHz / 90 200MHz / 100 250MHz / 125 267 MHz / 300 MHz / 100  
Units  
Sym Test  
bol Conditions  
MHz  
MHz  
MHz  
89MHz  
MHz  
Parameter  
Conditions  
Min Max Min Max Min Max Min Max Min Max  
Mode Data Setup tDS  
Mode Data Hold tDH  
4
0
4
0
4
0
4
0
4
0
ns  
ns  
Master Clock Cycle  
Master Clock Cycle  
10 of 16  
79RC5000  
MULTI-ISSUE 64-BIT MICROPROCESSOR  
DC electrical characteristics  
(Vcc = 3.3V± 5%; Tcase = 0°C to +85°C)  
180MHz  
Min Max  
200MHz  
Min Max  
250MHZ  
Min Max  
267MHz  
Min  
300MHz  
Min  
Max  
0.1V  
Max  
0.1V  
VCC - 0.1V —  
Parameter  
VOL  
Conditions  
0.1V  
0.1V  
0.1V  
|IOUT|= 20uA  
VOH  
VCC  
- 0.1V  
VCC  
- 0.1V  
VCC  
- 0.1V  
VCC - 0.1V  
VOL  
VOH  
VIL  
0.4V  
0.4V  
0.4V  
0.4V  
0.4V  
|IOUT|= 4mA  
2.4V  
–0.5V  
2.4V  
2.4V  
2.4V  
2.4V  
0.2VCC –0.5V  
0.2VCC –0.5V  
0.2VCC –0.5V  
0.2VCC  
–0.5V  
0.7VCC  
0.2VCC  
VIH  
0.7VCC VCC +  
0.5V  
0.7VCC VCC + 0.7VCC VCC +  
0.7VCC  
VCC +  
0.5V  
VCC +  
0.5V  
0.5V  
0.5V  
IIN  
±10uA  
10pF  
10pF  
10pF  
20uA  
±10uA  
10pF  
10pF  
10pF  
20uA  
±10uA  
10pF  
10pF  
10pF  
20uA  
±10uA  
10pF  
10pF  
10pF  
20uA  
±10uA  
10pF  
10pF  
10pF  
20uA  
0 £ VIN £ VCC  
CIN  
CIO  
Cclk  
I/OLEAK  
Input/Output  
Leakage  
Power consumption—RC5000  
180MHz  
200MHz  
250MHz  
Max  
267MHz  
Max  
300MHz  
Parameter  
Max  
Max  
Max  
300/100MHz  
130mA  
3500  
Conditions  
System Condition  
180/45MHz  
120mA  
200/50MHz  
120mA  
250/62.5MHz 267/89MHz  
Icc  
Standby  
Active  
120mA  
130mA  
3000  
CL = 50 pF  
CL = 50pF  
1100mA  
1300mA  
1800mA  
Pipelined writes or write re-  
issue  
Tc = 25oC  
11 of 16  
79RC5000  
MULTI-ISSUE 64-BIT MICROPROCESSOR  
Physical specifications  
The RC5000 is available in two packages, the 223-pin CPGA and the 272-ball SBGA. The 223-pin CPGA package is shown in Figure 2  
and Table 3; information on the SBGA package is shown in Figure 3 and Table 4.  
V
U
T
R
P
N
M
L
K
223-Pin CPGA  
J
H
G
F
E
D
C
B
A
1
2
3
4
5
6
7
8
9 10 11 12 13 14 15 16 17 18  
Figure 2 RC5000 223-pin CPGA Pin Orientation (Bottom View)  
12 of 16  
79RC5000  
MULTI-ISSUE 64-BIT MICROPROCESSOR  
223-Pin CPGA Pinout  
Pin # Function Pin  
Function Pin Function  
Pin  
Function Pin Function Pin  
Function  
A2  
Vcc  
C5  
SysADC[6]  
SysAD[16]  
SysAD[50]  
SysAD[22]  
SysAD[24]  
SysAD[28]  
SysAD[62]  
SysAD[44]  
SysAD[10]  
SysAD[38]  
SysAD[4]  
SysAD[34]  
SysAD[2]  
Vss  
E18  
F1  
Vcc  
K17  
VssP  
R6  
SysAD[51]  
SysAD[55]  
SysAD[27]  
SysAD[31]  
SysAD[43]  
SysAD[39]  
SysAD[35]  
SysAD[1]  
ScWord[1]  
ScLine[0]  
ScLine[3]  
ScLine[6]  
Vss  
U9  
SysAD[63]  
SysAD[13]  
SysAD[11]  
SysAD[9]  
SysAD[37]  
SysAD[3]  
ScWord[0]  
Vcc  
A3  
Vss  
C6  
Vcc  
K18  
L1  
Vss  
R7  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
V1  
A4  
Vcc  
C7  
F2  
Reserved  
ScValid  
INT[1]*  
ScDCE[0]*  
ScCWE[0]*  
ScTDE*  
Vss  
Vss  
R8  
A5  
Vss  
C8  
F3  
L2  
SysCmd[8]  
SysCmd[7]  
SysCmd[5]  
ScLine[12]  
ScLine[14]  
ScLine[15]  
Vcc  
R9  
A6  
Vss  
C9  
F4  
L3  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
T1  
A7  
Vcc  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
D1  
F15  
F16  
F17  
F18  
G1  
L4  
A8  
Vss  
L15  
L16  
L17  
L18  
M1  
M2  
M3  
M4  
M15  
M16  
M17  
M18  
N1  
A9  
Vcc  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
B1  
Vss  
Vss  
Vcc  
Vss  
Vss  
Vss  
G2  
Reserved  
Reserved  
Reserved  
ScCLR*  
ScTCE*  
ModeIn  
Vcc  
Vcc  
Vss  
Vcc  
G3  
SysCmd[6]  
SysCmd[4]  
SysCmd[1]  
ScLine[8]  
ScLine[10]  
ScLine[13]  
Vss  
V2  
Vss  
Vss  
G4  
V3  
Vcc  
Vss  
G15  
G16  
G17  
G18  
H1  
Vss  
V4  
Vss  
Vcc  
Vss  
T2  
SysAD[15]  
SysAD[47]  
SysAD[17]  
SysAD[19]  
SysAD[23]  
SysAD[57]  
SysAD[29]  
Vcc  
V5  
Vss  
Vss  
D2I  
D3  
INT3*  
T3  
V6  
Vcc  
Vss  
INT5*  
T4  
V7  
Vss  
Vss  
D4  
Release*  
Vcc  
Vcc  
T5  
V8  
Vcc  
B2  
Vss  
D5  
H2  
Reserved  
Reserved  
Reserved  
VccOK  
ModeClock  
SysClock  
Vss  
Vss  
T6  
V9  
Vss  
B3  
Vcc  
D6  
SysADC[2]  
SysAD[48]  
SysAD[52]  
SysAD[56]  
SysAD[60]  
SysAD[14]  
SysAD[42]  
SysAD[8]  
SysAD[36]  
ColdReset*  
SysAD[0]  
ScTOE*  
H3  
N2  
SysCmd[3]  
SysCmd[2]  
SysADC[7]  
ScLine[5]  
ScLine[7]  
ScLine[11]  
Vcc  
T7  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
Vcc  
B4  
SysADC[4]  
SysADC[0]  
SysAD[18  
SysAD[20]  
SysAD[54]  
SysAD[26]  
0SysAD[58]  
SysAD[30]  
SysAD[46]  
SysAD[12]  
SysAD[40]  
SysAD[6]  
Vss  
D7  
H4  
N3  
T8  
Vss  
B5  
D8  
H15  
H16  
H17  
H18  
J1  
N4  
T9  
Vcc  
B6]  
B7]  
B8  
D9  
N15  
N16  
N17  
N18  
P1  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
U1  
SysAD[45]  
SysAD[41]  
SysAD[7]  
SysAD[5]  
SysAD[33]  
Reset*  
Vss  
D10  
D11  
D12S  
D13  
D14  
D15  
D16  
D17  
D18  
E1  
Vcc  
Vss  
B9  
Vss  
Vss  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
C1  
J2  
WrRdy*  
ValidIn*  
ExtReq*  
JTDO  
Vcc  
Vcc  
J3  
P2  
SysCmd[0]  
SysCmdP  
SysADC[1]  
ScLine[2]  
ScLine[4]  
ScLine[9]  
Vss  
Vss  
J4  
P3  
ScLine[1]  
Vcc  
J15  
J16  
J17  
J18  
K1  
P4  
JTDI  
P15  
P16  
P17  
P18  
R1  
Vcc  
Vcc  
JTCK  
Vcc  
Vss  
Vcc  
U2  
Vcc  
Vcc  
E2  
INT[0]*  
Vcc  
U3  
Vss  
Vcc  
E3  
INT[2]*  
K2  
ScMatch  
RdRdy*  
cDOE*  
JTMS  
Vcc  
U4  
SysAD[21]  
SysAD[53]  
SysAD[25]  
SysAD[59]  
SysAD[61]  
Vcc  
E4  
NT[4]*  
K3  
R2  
SysADC[5]  
SysADC[3]  
BigEndian  
SysAD[49]  
U5  
C2  
Vcc  
E15  
E16  
SysAD[32]  
ScDCE[1]*  
K4S  
K15  
R3  
U6  
C3  
ValidOut*  
NMI*  
R4  
U7  
C4  
E17  
ScCWE[1]* K16  
VccP  
R5  
U8  
13 of 16  
79RC5000  
MULTI-ISSUE 64-BIT MICROPROCESSOR  
272-Ball SBGA package  
21 20 19 18 17 16 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
G
H
J
K
L
272-Ball SBGA  
M
N
P
R
T
U
V
W
Y
AA  
Figure 3 Ball Grid Array Package (Bottom View)  
14 of 16  
79RC5000  
MULTI-ISSUE 64-BIT MICROPROCESSOR  
272-Ball SBGA Pinout  
Pkg Pin Function Pkg Pin  
Function  
SysAD0  
ScTOE*  
ScCLR*  
ScTDE*  
ModeClock  
JTDI  
Pkg Pin Function Pkg Pin Function  
Pkg Pin  
P21  
R1  
Function  
SysAD55  
Vss  
Pkg Pin  
W1  
Function  
Vss  
AA1  
AA2  
AA3  
AA4  
AA5  
AA6  
AA7  
AA8  
AA9  
AA10  
AA11  
AA12  
AA13  
AA14  
AA15  
AA16  
AA17  
AA18  
AA19  
AA20  
AA21  
A1  
Vss  
Vcc  
B5  
B6  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
D21  
E1  
Vss  
Vcc  
J2  
J3  
SysAD46  
SysAD14  
Vss  
W2  
Vcc  
Vss  
B7  
Vccp  
J4  
R2  
SysAD18  
SysAD48  
Vcc  
W3  
Vcc  
ValidOut*  
Vss  
B8  
Vcc  
J18  
J19  
J20  
J21  
K1  
Vss  
R3  
W4  
Vcc  
B9  
Vss  
SysAD9  
SysAD41  
Vss  
R4  
W5  
Int*5  
Int*0  
B10  
B11  
B12  
B13  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
B21  
C1  
Vcc  
R18  
R19  
R20  
R21  
T1  
Vcc  
W6  
Int*4  
Vss  
JTCK  
Vcc  
SysAD53  
SysAD23  
Vss  
W7  
Int*1  
Reserved  
Vss  
N/C  
Vss  
SysAD60  
SysAD30  
SysAD62  
Vcc  
W8  
Reserved  
Reserved  
Reserved  
ValidIn*  
ScDOE*  
SysCmd7  
SysCmd4  
SysCmd1  
SysADC7  
SysADC5  
SysAD47  
BigEndian  
Vcc  
ScLine14  
ScLine10  
ScLine9  
ScLine6  
ScLine3  
ScLine1  
Vcc  
Vcc  
K2  
W9  
WrRdy*  
Vss  
Vss  
K3  
SysAD16  
SysADC0  
SysADC2  
Vss  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
W21  
Y1  
Vcc  
K4  
T2  
ScMatch  
Vss  
Vcc  
K18  
K19  
K20  
K21  
L1  
Vcc  
T3  
Vcc  
SysAD11  
SysAD43  
SysAD13  
Vss  
T4  
SysCmd6  
Vss  
Vss  
T18  
T19  
T20  
T21  
U1  
Vss  
E2  
SysAD36  
SysAD4  
Vcc  
SysAD19  
SysAD51  
SysAD21  
Vss  
SysCmd2  
Vss  
Vcc  
E3  
Vcc  
E4  
L2  
SysAD58  
SysAD28  
Vcc  
SysADC3  
Vss  
Vss  
E18  
E19  
E20  
E21  
F1  
Vcc  
L3  
C2  
Vcc  
ScWord1  
ScWord0  
Vss  
L4  
U2  
SysADC4  
SysADC6  
Vcc  
Vcc  
C3  
ColdReset*  
SysAD34  
ScDCE*1  
ScDCE*0  
ScCWE*0  
ScTCE*  
ModeIn  
JTDO  
L18  
L19  
L20  
L21  
M1  
M2  
M3  
M4  
M18  
M19  
M20  
M21  
N1  
Vcc  
U3  
Vss  
C4  
SysAD45  
SysAD63  
Vss  
U4  
Vss  
Vss  
C5  
SysAD8  
SysAD38  
SysAD6  
Vss  
U18  
U19  
U20  
U21  
V1  
Vcc  
Vcc  
A2  
Vcc  
C6  
F2  
SysAD17  
SysAD49  
Vss  
Y2  
Vcc  
A3  
Vss  
C7  
F3  
SysAD26  
SysAD56  
SysAD24  
Vcc  
Y3  
Vcc  
A4  
SysAD32  
Vss  
C8  
F4  
Y4  
Release*  
Int*3  
A5  
C9  
F18  
F19  
F20  
F21  
G1  
Vss  
Vcc  
Y5  
A6  
ScCWE*1  
Vss  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
C21  
D1  
SysAD1  
SysAD33  
SysAD3  
Vss  
V2  
Vcc  
Y6  
Int*2  
A7  
Vssp  
Vcc  
V3  
Vcc  
Y7  
ScValid  
Reserved  
Reserved  
Reserved  
ExtRqst*  
RdRdy*  
SysCmd8  
SysCmd5  
SysCmd3  
SysCmd0  
SysCmdP  
SysADC1  
SysAD15  
A8  
VCCOK  
Vss  
JTMS  
SysAD29  
SysAd61  
SysAD31  
Vss  
V4  
Vss  
Y8  
A9  
ScLine13  
ScLine11  
ScLine8  
ScLine5  
ScLine4  
ScLine0  
Reset*  
Vcc  
V5  
NMI*  
Y9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
MasterClk  
Vss  
G2  
SysAD10  
SysAD40  
Vcc  
V6  
Vss  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
G3  
V7  
Vcc  
ScLine15  
Vss  
G4  
N2  
SysAD54  
SysAD22  
Vss  
V8  
Vcc  
G18  
G19  
G20  
G21  
H1  
Vcc  
N3  
V9  
Vss  
ScLine12  
Vss  
SysAD35  
SysAD5  
Vss  
N4  
V10  
V11  
V12  
V13  
V14  
V15  
Vcc  
N18  
N19  
N20  
N21  
P1  
Vss  
Vcc  
ScLine7  
Vss  
SysAD27  
SysAD59  
Vss  
Vcc  
Vss  
SysAD42  
SysAD44  
SysAD12  
Vss  
ScLine2  
Vss  
Vcc  
H2  
Vcc  
D2  
Vcc  
H3  
SysAD50  
Vcc  
15 of 16  
79RC5000  
MULTI-ISSUE 64-BIT MICROPROCESSOR  
A20  
A21  
B1  
Vcc  
D3  
D4  
D5  
D6  
D7  
D8  
Vcc  
Vss  
Vcc  
Vss  
Vcc  
Vcc  
H4  
H18  
H19  
H20  
H21  
J1  
Vcc  
Vcc  
P2  
P3  
SysAD52  
SysAD20  
Vcc  
V16  
V17  
V18  
V19  
V20  
V21  
Vss  
Vcc  
Vss  
Vcc  
Vcc  
Vcc  
Y20  
Y21  
Vcc  
Vcc  
Vss  
Vcc  
SysAD7  
SysAD39  
SysAD37  
Vss  
P4  
B2  
Vcc  
P18  
P19  
P20  
Vcc  
B3  
Vcc  
SysAD25  
SysAD57  
B4  
SysAD2  
Table 5: 272-Ball SBGA Pinout  
Ordering information  
IDT79  
YY  
XXXX  
999  
A
A
Operating  
Voltage  
Device  
Type  
Speed  
Package  
Temp range/  
Process  
Blank Commercial  
(0°C to +85°C Case)  
G
223-ball CPGA  
BS  
272-ball SBGA  
180 MHz Pipeline  
180  
200 MHz Pipeline  
250 MHz Pipeline  
267 MHz Pipeline  
300 MHz Pipeline  
200  
250  
267  
300  
5000 Multi-Issue  
64-bit Microprocessor  
RV  
3.3+/-5%  
Valid Combinations  
IDT79RV5000 - 180, 200MHz  
G
CPGA package  
SBGA package  
IDT79RV5000 - 180, 200, 250 ,267, 300MHz BS  
Integrated Device Technology, Inc. reserves the right to make changes to the specifications in this data sheet, to improve design or performance and to supply the best product possible  
Integrated Device Technology, Inc.  
2975 Stender Way, Santa Clara, CA 95054-3090 Telephone: (408) 727-6116 Fax (408) 492-8674  
16 of 16  

相关型号:

IDT79RV5000-180G

64-BIT, 180MHz, RISC PROCESSOR, CPGA223, CERAMIC, PGA-223
IDT

IDT79RV5000-200G

64-BIT, 200MHz, RISC PROCESSOR, CPGA223, CERAMIC, PGA-223
IDT

IDT79RV5000180BS

64-BIT, 180MHz, RISC PROCESSOR, PBGA272, SBGA-272
IDT

IDT79RV5000180BS272

MULTI-ISSUE 64-BIT MICROPROCESSOR
IDT

IDT79RV5000180BS272I

MULTI-ISSUE 64-BIT MICROPROCESSOR
IDT

IDT79RV5000180G

MULTI-ISSUE 64-BIT MICROPROCESSOR
IDT

IDT79RV5000180GI

MULTI-ISSUE 64-BIT MICROPROCESSOR
IDT

IDT79RV5000200BS272

MULTI-ISSUE 64-BIT MICROPROCESSOR
IDT

IDT79RV5000200BS272I

MULTI-ISSUE 64-BIT MICROPROCESSOR
IDT

IDT79RV5000200G

MULTI-ISSUE 64-BIT MICROPROCESSOR
IDT

IDT79RV5000200GI

MULTI-ISSUE 64-BIT MICROPROCESSOR
IDT

IDT79RV5000250BS272

MULTI-ISSUE 64-BIT MICROPROCESSOR
IDT