IDT82V8313BBG [IDT]

Framer, PBGA208, 17 X 17 MM, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-208;
IDT82V8313BBG
型号: IDT82V8313BBG
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Framer, PBGA208, 17 X 17 MM, 1 MM PITCH, LEAD FREE, PLASTIC, BGA-208

文件: 总140页 (文件大小:1708K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3 VOLT M13 MULTIPLEXER  
IDT82V8313  
Version 3  
June 3, 2004  
2975 Stender Way, Santa Clara, California 95054  
Telephone: (800) 345-7015 • • FAX: (408) 492-8674  
Printed in U.S.A.  
© 2004 Integrated Device Technology, Inc.  
DISCLAIMER  
Integrated Device Technology, Inc. reserves the right to make changes to its products or specifications at any time, without notice, in order to improve design or performance  
and to supply the best possible product. IDT does not assume any responsibility for use of any circuitry described other than the circuitry embodied in an IDT product. The  
Company makes no representations that circuitry described herein is free from patent infringement or other rights of third parties which may result from its use. No license is  
granted by implication or otherwise under any patent, patent rights or other rights, of Integrated Device Technology, Inc.  
LIFE SUPPORT POLICY  
Integrated Device Technology's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to  
such intended use is executed between the manufacturer and an officer of IDT.  
1. Life support devices or systems are devices or systems which (a) are intended for surgical implant into the body or (b) support or sustain life and whose failure to perform,  
when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.  
2. A critical component is any components of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device  
or system, or to affect its safety or effectiveness.  
Table of Contents  
FEATURES................................................................................................................................................................................................................ 1  
PACKAGE ..............................................................................................................................................................................................................2-4  
PIN DESCRIPTIONS.........................................................................................................................................................................................5-12  
REGISTER MEMORY MAP..........................................................................................................................................................................13-16  
REGISTER DESCRIPTIONS............................................................................................................................................................................. 17  
Master Reset/Lock Status............................................................................................................................................................................... 17  
Revision/Global PMON Update ...................................................................................................................................................................... 17  
Master Bypass Configuration.......................................................................................................................................................................... 18  
Master HDLC Configuration............................................................................................................................................................................ 19  
Master Loopback Configuration...................................................................................................................................................................... 20  
Master Interface Configuration........................................................................................................................................................................ 21  
Master Alarm Enable/Network Requirement Bit ............................................................................................................................................. 22  
Master Test ..................................................................................................................................................................................................... 23  
Master Interrupt Source #1............................................................................................................................................................................. 24  
Master Interrupt Source #2............................................................................................................................................................................. 25  
Master Interrupt Source #3............................................................................................................................................................................. 25  
DS3 Transmit Configuration............................................................................................................................................................................ 26  
DS3 Transmit Diagnostic ................................................................................................................................................................................ 27  
DS3 PMON Interrupt Enable/Status ............................................................................................................................................................... 28  
DS3 LCV Count LSB....................................................................................................................................................................................... 28  
DS3 LCV Count MSB...................................................................................................................................................................................... 29  
DS3 FERR Count LSB.................................................................................................................................................................................... 29  
DS3 FERR Count MSB................................................................................................................................................................................... 29  
DS3 EXZS Count LSB .................................................................................................................................................................................... 30  
DS3 EXZS Count MSB ................................................................................................................................................................................... 30  
DS3 PERR Count LSB.................................................................................................................................................................................... 30  
DS3 PERR Count MSB................................................................................................................................................................................... 31  
DS3 CPERR Count LSB................................................................................................................................................................................. 31  
DS3 CPERR Count MSB................................................................................................................................................................................ 31  
DS3 FEBE Count LSB .................................................................................................................................................................................... 32  
DS3 FEBE Count MSB ................................................................................................................................................................................... 32  
XFDL TSB Configuration ................................................................................................................................................................................ 33  
XFDL Interrupt Status ..................................................................................................................................................................................... 33  
XFDL TSB Transmit Data ............................................................................................................................................................................... 34  
RFDL TSB Configuration ................................................................................................................................................................................ 34  
Table of Contents  
iv  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
RFDL TSB Interrupt Control/Status ................................................................................................................................................................ 35  
RFDL TSB Status ........................................................................................................................................................................................... 36  
RFDL TSB Receive Data................................................................................................................................................................................ 36  
MX23 Configuration........................................................................................................................................................................................ 37  
DeMux AIS Insert Register ............................................................................................................................................................................. 38  
MX23 MUX AIS Insert Register ...................................................................................................................................................................... 38  
MX23 Loopback Activate Register.................................................................................................................................................................. 39  
MX23 Loopback Request Insert Register....................................................................................................................................................... 39  
MX23 Loopback Request Detect Register...................................................................................................................................................... 40  
MX23 Loopback Request Interrupt Register................................................................................................................................................... 40  
FEAC XBOC TSB Code.................................................................................................................................................................................. 41  
RBOC Configuration/Interrupt Enable............................................................................................................................................................. 41  
RBOC Interrupt Status.................................................................................................................................................................................... 42  
DS3 FRMR Configuration............................................................................................................................................................................... 43  
DS3 FRMR Interrupt Enable (ACE=0)............................................................................................................................................................ 44  
DS3 FRMR Additional Configuration Register (ACE=1)................................................................................................................................. 45  
DS3 FRMR Interrupt Status............................................................................................................................................................................ 46  
DS3 FRMR Status .......................................................................................................................................................................................... 47  
DS2 FRMR Configuration............................................................................................................................................................................... 48  
DS2 FRMR Interrupt Enable........................................................................................................................................................................... 49  
DS2 Framer Interrupt Status........................................................................................................................................................................... 50  
DS2 Framer Status ......................................................................................................................................................................................... 51  
DS2 Framer Monitor Interrupt Enable/Status.................................................................................................................................................. 52  
DS2 FRMR FERR Count................................................................................................................................................................................ 52  
DS2 FRMR PERR Count (LSB)...................................................................................................................................................................... 53  
DS2 FRMR PERR Count (MSB)..................................................................................................................................................................... 53  
MX12 Configuration And Control.................................................................................................................................................................... 54  
MX12 Loopback Code Select Register........................................................................................................................................................... 55  
MX12 AIS Insert Register ............................................................................................................................................................................... 56  
MX12 Loopback Activate Register.................................................................................................................................................................. 56  
MX12 Loopback Interrupt Register................................................................................................................................................................. 57  
DS1 Transmit And Receive Edge Select ........................................................................................................................................................ 57  
FUNCTIONAL DESCRIPTION..................................................................................................................................................................... 59-78  
DATA LINK......................................................................................................................................................................................................... 79-92  
FUNCTIONAL TIMING................................................................................................................................................................................... 93-94  
LOOPBACK MODES.................................................................................................................................................................................... 95-100  
DC ELECTRICAL CHARACTERISTICS .............................................................................................................................................. 101-102  
Absolute Maximum Ratings .......................................................................................................................................................................... 101  
Recommended Operating Conditions(1) ...................................................................................................................................................... 101  
DC Electrical Characteristics ........................................................................................................................................................................ 102  
Table of Contents  
iv  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
AC ELECTRICAL CHARACTERISTICS .............................................................................................................................................. 103-114  
Microprocesser Interface Timing Characteristics/Microprocessor Read Access .......................................................................................... 103  
Microprocessor Write Access ....................................................................................................................................................................... 104  
Timing Characteristics .................................................................................................................................................................................. 105  
Transmit DS3 Input....................................................................................................................................................................................... 106  
Transmit Overhead input .............................................................................................................................................................................. 106  
Transmit Tributary Input................................................................................................................................................................................ 107  
Transmit Data Link Input............................................................................................................................................................................... 107  
Transmit Data Link EOM Input...................................................................................................................................................................... 108  
Transmit DS3 Output .................................................................................................................................................................................... 109  
Receive DS3 Output......................................................................................................................................................................................110  
Receive Overhead Output .............................................................................................................................................................................111  
Transmit Overhead Output ............................................................................................................................................................................112  
Receive Tributary Output...............................................................................................................................................................................112  
Receive Data Link Output..............................................................................................................................................................................113  
JTAG ................................................................................................................................................................................................................ 115-120  
JTAG Timing Solutionsl..................................................................................................................................................................................115  
JTAG AC Electrical Characteristics................................................................................................................................................................116  
Identification Register Definitions...................................................................................................................................................................116  
Scan Register Sizes.......................................................................................................................................................................................116  
System Interface Parameters ........................................................................................................................................................................117  
JTAG Scan Order................................................................................................................................................................................... 118-120  
ORDERING INFORMATION............................................................................................................................................................................ 121  
GLOSSARY ................................................................................................................................................................................................... 123-126  
STANDARDS................................................................................................................................................................................................. 127-128  
INDEX .............................................................................................................................................................................................................. 129-130  
Table of Contents  
iv  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
Table of Contents  
iv  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
List of Tables  
Table 1 — Pin Descriptions ..................................................................................................................................................................................... 5-11  
Table 2 — Register Memory Map...........................................................................................................................................................................13-16  
Table 3 — FERF Status (X1 & X2 State)..................................................................................................................................................................... 62  
Table 4 — C-Bit Parity Mode DS3 C-Bit Assignments................................................................................................................................................. 63  
Table 5 — DS3 FEAC Loopback Control Message..................................................................................................................................................... 65  
Table 6 — DS3 FEAC Alarm and Status Message...................................................................................................................................................... 65  
Table 7 — DS1 Bit Oriented Codes Command and Response Message.................................................................................................................... 67  
Table 8 — DS1 Bit Oriented Priority Message............................................................................................................................................................. 67  
Table 9 — DS1 Bit Oriented Codes Reserved Messages ........................................................................................................................................... 67  
Table 10 — Data Link Format...................................................................................................................................................................................... 68  
Table 11 — Max Jitter Tolerance on DS if CAT II......................................................................................................................................................... 70  
List of Tables  
vi  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
List of Tables  
vi  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
DS3 Framer Block................................................................................................................................................................................ 59  
DS3 Frame .......................................................................................................................................................................................... 59  
B3ZS Coding ....................................................................................................................................................................................... 60  
Transmit BOC...................................................................................................................................................................................... 66  
Receive BOC....................................................................................................................................................................................... 66  
Jitter Definition..................................................................................................................................................................................... 69  
Maximum Jitter Tolerance on DSn Interface Inputs............................................................................................................................. 70  
M23 Multiplexer Block.......................................................................................................................................................................... 71  
DS3 Stuff Block.................................................................................................................................................................................... 72  
DS2 Framer Block................................................................................................................................................................................ 73  
DS2 Frame ......................................................................................................................................................................................... 73  
G.747 Frame Format ........................................................................................................................................................................... 74  
M12 Block............................................................................................................................................................................................ 77  
DS2 Stuff Block.................................................................................................................................................................................... 78  
XFDL.................................................................................................................................................................................................... 79  
XFDL Polled Mode............................................................................................................................................................................... 80  
XFDL Interrupt Mode ........................................................................................................................................................................... 81  
XFDL Interrupt Service Routine........................................................................................................................................................... 81  
XFDL DMA Mode................................................................................................................................................................................. 82  
XFDL Normal Data Sequence ............................................................................................................................................................. 83  
XFDL Underrun Sequence................................................................................................................................................................... 84  
TDLINT Timing Normal Data TX.......................................................................................................................................................... 85  
TDLEOMI Timing EOMI After CRC...................................................................................................................................................... 86  
RFDL .................................................................................................................................................................................................. 87  
RFDL Polled Mode............................................................................................................................................................................... 88  
RFDL Interrupt Driven Mode................................................................................................................................................................ 89  
RFDL Interrupt Service Routine........................................................................................................................................................... 89  
RFDL DMA Mode................................................................................................................................................................................. 90  
RFDL Normal Data And Abort Sequence ............................................................................................................................................ 91  
Receive DS3 OH Serial Stream........................................................................................................................................................... 93  
Transmit DS3 OH Serial Stream.......................................................................................................................................................... 93  
Functional Receive OH Timing Low-Speed......................................................................................................................................... 93  
Functional Receive Timing PMON....................................................................................................................................................... 94  
Functional Receive OH Timing High-Speed........................................................................................................................................ 94  
DS3 Diagnostic Loopback.................................................................................................................................................................... 96  
DS3 Line Loopback ............................................................................................................................................................................. 97  
DS2/G.747 Demultiplex Loopback....................................................................................................................................................... 98  
DS1/E1 Demultiplex Loopback............................................................................................................................................................ 99  
Microprocessor Read Access Timing ................................................................................................................................................ 103  
Microprocessor Write Access Timing................................................................................................................................................. 104  
Receive DS3 Input Timing................................................................................................................................................................. 105  
Transmit DS3 Input Timing................................................................................................................................................................ 106  
Transmit Overhead Input Timing ....................................................................................................................................................... 106  
Transmit Tributary Input Timing......................................................................................................................................................... 107  
Transmit Data Link Input Timing........................................................................................................................................................ 107  
Figure 9  
Figure 10  
Figure 11  
Figure 12  
Figure 13  
Figure 14  
Figure 15  
Figure 16  
Figure 17  
Figure 18  
Figure 19  
Figure 20  
Figure 21  
Figure 22  
Figure 23  
Figure 24  
Figure 25  
Figure 26  
Figure 27  
Figure 28  
Figure 29  
Figure 30  
Figure 31  
Figure 32  
Figure 33  
Figure 34  
Figure 35  
Figure 36  
Figure 37  
Figure 38  
Figure 39  
Figure 40  
Figure 41  
Figure 42  
Figure 43  
Figure 44  
Figure 45  
List of Figures  
viii  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
Figure 46  
Figure 47  
Figure 48  
Figure 49  
Figure 50  
Figure 51  
Figure 52  
Figure 53  
Transmit Data Link EOM Input Timing............................................................................................................................................... 108  
Transmit DS3 Output Timing ............................................................................................................................................................. 109  
Receive DS3 Output Timing .............................................................................................................................................................. 110  
Receive Overhead Output Timing ..................................................................................................................................................... 111  
Transmit Overhead Output Timing .................................................................................................................................................... 112  
Receive Tributary Output Timing....................................................................................................................................................... 112  
Receive Data Output Link Output Timing .......................................................................................................................................... 113  
Standad JTAG Timing ....................................................................................................................................................................... 115  
List of Figures  
viii  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
3.3 VOLT M13 MULTIPLEXER  
IDT82V8313  
‹
DS2 LOF detectors and DS2 AIS DS2 X-bit access  
FEATURES:  
‹
‹
‹
‹
‹
DS2 transmit/receive X-bit control/status  
DS2 F, M, and X bit insertion  
Full featured single chip M13-ideal for upgrading existing  
multi-line T1/E1 line cards to single line channelized T3 service  
‹
DS2 FERF and AIS under microprocessor control  
Small footprint 17mm x 17mm BGA package and 208 pin PQFP  
packages available  
Transmission of RAI and reserved bit under microprocessor  
control  
‹
3.3V operation with 5V tolerant I/O  
‹
‹
Programmable preemptive inversion of C-bits for remote  
loopback  
28 independent DS1 clock inputs each with programmable  
clock edge adapter  
‹
‹
‹
‹
‹
‹
DS3 idle signal generators  
28 independent DS1 outputs eatch with programmable clock  
edge adapter  
DS3 LOS, LOF, P-bit Parity, C-bit Parity, AIS and idle detectors  
DS3 X-bit access  
‹
M12 bypass for direct input of DS2 in to the M23 multiplexer  
‹
Programmable clock edge  
DS3 transmit and receive AIS generation and detection  
DS3 M-frame and M-subframe boundary indications  
‹
Supports M23 or C-bit parity format formats  
‹
G.747 formats for E1 to be multiplexed onto a DS3  
JTAG  
TX O/H  
Access  
XBOC TX  
FEAC  
XFDL TX  
HDLC  
TXDS1CLK1-4  
TXDS1D1-4  
M12  
MUX  
#1  
1
DS2 TX  
Framer #1  
TX3CLK  
DS3 TX  
Framer  
B3ZS  
Encoder  
M23  
MUX  
TX3POS/TX3D  
TX3NEG/TX3FP  
TXDS1CLK5-28  
TXDS1D5-28  
M12  
MUX  
#2-7  
2-7  
DS2 TX  
Framer #2-7  
M21  
MUX  
#1  
1
RXDS1CLK1-4  
RXDS1D1-4  
DS2 RX  
Framer #1  
RX3CLK  
B3ZS  
Decoder  
DS3 RX  
Framer  
M32  
MUX  
RX3POS/RX3D  
RX3NEG/RX3FP  
2-7  
M21  
MUX  
#2-7  
RXDS1CLK5-28  
RXDS1D5-28  
DS2 RX  
Framer #2-7  
RFDL RX  
RDLCLK  
RX O/H  
Access  
RBOC RX  
FEAC  
PMON  
Microprocessor  
Port  
6143 drw01  
IDT an the IDT logo are registered trademarks of Integrated Device Technology, Inc.  
1
June 3, 2004  
DSC -6143/2  
2004 Integrated Device Technology, Inc.  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
PACKAGE  
A1 BALL PAD CORNER  
A
TCLK  
TD2CLK  
RD1  
DAT1  
RD1  
CLK1  
RD1  
DAT2 DAT3  
TD1  
RD1  
CLK3  
RD1  
CLK4  
TD1  
CLK5  
TD1  
CLK6  
TD1  
CLK7  
RD1  
DAT8  
RD1  
CLK8  
TD1  
DAT9  
RD1  
DAT9  
TD1  
DAT1  
B
TD1  
CLK4  
TPOS_  
DAT  
GD2CLK TIMFP  
TD1  
CLK1  
TD1  
DAT2  
TD1  
CLK2 DAT3  
RD1  
GND  
RD1  
DAT5  
RD1  
DAT6  
RD1  
DAT7  
TD1  
DAT8  
TD1  
CLK8  
RD1  
CLK9  
TD1  
CLK9  
C
TNEG_  
MFP  
TICLK  
RAIS  
TDLCLK TDLSIG_ RD1  
TD1  
CLK3  
TD1  
DAT4  
RD1  
DAT4  
TD1  
DAT5  
TD1  
DAT6  
TD1  
DAT7  
RD1  
CLK7  
TD1  
RD1  
TD1  
DAT10  
_INT  
UDR  
CLK2  
CLK10 DAT10  
D
RDLCLK  
_INT  
TD1  
CLK11  
TDLEOMI GND  
VCC  
VCC  
VCC  
VCC  
RD1  
CLK5  
RD1  
CLK6  
RD1  
DAT11 DAT11  
TDI  
RD1  
CLK10  
RODAT  
ROCLK  
RMFP  
E
ROHP  
TOHCLK TOHFP RDLSIG  
_EOM  
TD1  
RD1  
TD1  
RD1  
CLK11  
CLK12 DAT12 DAT12  
F
RMSFP  
TOH  
TOHEN ROHFP  
TD1  
RD1  
TD1  
RD1  
CLK13 DAT13 DAT13  
CLK12  
G
ROH  
ROHCLK RLOS  
VCC  
VCC  
GND  
GND  
GND  
GND  
VCC  
RD1  
DAT14 DAT14  
TD1  
RD1  
CLK13  
H
RCLK  
ROOF_ RFERF  
RED  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
TD1  
DAT5  
RD1  
CLK14  
TD1  
CLK14  
VCC  
VCC  
J
RNEG_  
LCV  
RPOS_  
DAT  
REXZ  
RD1  
DAT15 CLK15  
TD1  
RD1  
CLK15  
VCC  
VCC  
K
D1  
D0  
D4  
GND  
GND  
GND  
TD1  
RD1  
TD1  
CLK16  
INT  
VCC  
RD1  
DAT16 DAT16  
L
D5  
D3  
D2  
D6  
TD1  
RD1  
TD1  
CLK17  
CLK16 DAT17 DAT17  
M
D7  
A0  
RD1  
TD1  
RD1  
TD1  
CLK18  
ALE  
CS  
A1  
A3  
CLK17 DAT18 DAT18  
N
A2  
RD1  
DAT28  
TD1  
CLK27  
VCC  
RD1  
VCC  
RD1  
VCC  
TD1  
VCC  
RD1  
VCC  
RD1  
TD1  
TD1  
RD1  
TD1  
RD1  
DAT19  
VCC  
CLK23 CLK22 CLK18 DAT19  
P
A4  
EX_RST  
TD1  
CLK28  
JTAG_  
TDI  
JTAG_  
RD1  
RD1  
TD1  
TD1  
CLK19  
RD1  
CLK19  
CLK26 DAT26 CLK25 DAT25  
CLK24 TCLK DAT23 DAT22 CLK21  
R
RD  
WR  
3
RD1  
CLK28  
A5  
A8  
A7  
RD1  
TD1  
JTAG_  
RD1  
CLK25  
JTAG_  
TMS  
TD1 TD1 TD1 TD1 RD1  
CLK24 DAT24 DAT23 DAT22 DAT21 CLK20  
RD1  
TD1  
DAT20  
CLK27 DAT27 TDO  
T
JTAG_  
TRST  
RD1  
DAT20  
A6  
TD1 RD1 TD1  
DAT28 DAT27 CLK26 DAT26 DAT25  
TD1  
TD1  
RD1  
RD1  
RD1  
RD1  
TD1  
TD1  
DAT24 CLK23 CLK22 CLK21 DAT21 CLK20  
1
2
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
6143 drw02  
PBGA: 1mm pitch, 17mm x 17mm (BB208-1, order code: BB)  
TOP VIEW  
PACKAGE  
2
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
PIN 1  
TICLK  
TCLK  
TPOS/TDAT  
RAIS  
TNEG/TMFP  
GD2CLK  
1
TD1CLK9  
156  
155  
154  
153  
152  
151  
150  
149  
148  
147  
146  
145  
144  
143  
142  
141  
140  
139  
138  
137  
136  
135  
134  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
116  
115  
114  
113  
112  
111  
110  
109  
108  
107  
106  
105  
2
RD1CLK9  
TD1DAT10  
RD1DAT10  
TD1CLK10  
RD1CLK10  
TD1DAT11  
RD1DAT11  
TD1CLK11  
3
4
5
6
RODAT  
GND  
VCC  
ROCLK  
RMFP  
ROHP  
7
8
9
(2)  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
NC  
RD1CLK11  
TD1DAT12  
RD1DAT12  
TD1CLK12  
RD1CLK12  
(2)  
NC  
TOHCLK  
TOHFP  
RMSFP  
TOH  
TOHEN  
ROHFP  
ROH  
ROHCLK  
RLOS  
RFERF  
TD1DAT13  
(2)  
NC  
RD1DAT13  
TD1CLK13  
RD1CLK13  
TD1DAT14  
RD1DAT14  
TD1CLK14  
RD1CLK14  
GND  
ROOF/RRED  
REXZ  
RCLK/VCLK  
(2)  
NC  
GND  
TD1DAT15  
RD1DAT15  
TD1CLK15  
RD1CLK15  
TD1DAT16  
(2)  
NC  
RPOS/RDAT  
RNEG/RLCV  
RDLCLK/RDLINT  
RDLSIG/RDLEOM  
(2)  
NC  
RD1DAT16  
TD1CLK16  
RD1CLK16  
VCC  
INT  
D0  
D1  
GND  
D2  
D3  
TD1DAT17  
(2)  
NC  
D4  
RD1DAT17  
TD1CLK17  
RD1CLK17  
TD1DAT18  
RD1DAT18  
(2)  
NC  
D5  
D6  
VCC  
D7  
CS  
(2)  
NC  
TD1CLK18  
GND  
RD1CLK18  
TD1DAT19  
RD1DAT19  
TD1CLK19  
ALE  
A0  
A1  
A2  
A3  
A4  
A5  
RD1CLK19  
TD1DAT20  
6143 drw03  
NOTE:  
1. JTAG  
2. NC = No Connect  
PQFP: 0.50mm pitch, 28mm x 28mm (DS208-1, order code: DS)  
TOP VIEW  
PACKAGE  
3
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
PACKAGE  
4
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
PIN DESCRIPTIONS  
TABLE 1 — PIN DESCRIPTIONS  
TQFP  
BGA  
SYMBOL  
NAME  
I/O  
DESCRIPTION  
PIN NO. Pin No.  
RCLK  
Receive Clock  
I
26  
29  
H1  
J2  
This is the DS3 receive clock input. RCLK is nominally a 44.736 MHz, 50% duty cycle  
clock.  
RPOS/RDAT  
RNEG/RLCV  
ReceivePositive  
Pulse/Receive  
Data  
I
I
In dual rail mode, this pin is RPOS and represents the positive pulses of a B3ZS-encoded  
signal. In single rail mode, this pin is RDAT and represents the unipolar DS3 input data.  
The M13 can be configured to sample data on either the rising or falling edge of RCLK.  
Receive  
30  
J1  
In dual rail mode, this pin is RNEG and represents the negative pulses of a  
B3ZS-encoded signal. In single rail mode, this pin is RLCV and can be used to insert line  
code violations on the DS3 input. The M13 can be configured to sample data on either  
the rising or falling edge of RCLK.  
Negative Pulse/  
Receive Line  
Code Violation  
ROCLK  
RODAT  
RMFP  
Receive Output  
Clock  
O
O
O
10  
7
D2  
D1  
D3  
The DS3 receive output clock is a buffered version of the input RCLK. Like the RCLK, this  
is nominally a 44.736 MHz, 50% duty cycle clock. REXZ, RLOS, RMFP, RMSFP, and  
RODAT are updated on the falling edge of ROCLK.  
Receive Output  
Data  
This is a 44.736 Mb/s DS3 NRZ receive data stream decoded from the B3ZS line signal.  
RODAT is aligned to the frame alignment signals RMFP, RMSFP, and ROHP. RODAT is  
updated in the falling edge of ROCLK.  
Receive M-  
Frame Pulse  
11  
The receive M-frame pulse signal and marks the first bit in the M-frame (X1) of the DS3  
data on RODAT. In an OOF (Out Of Frame) condition the M13 internal counters will  
maintain the old M-frame alignment position. When the framer regains frame alignment  
the RMFP timing will be updated to the new timing. This may result in a change of frame  
alignment. RMFP is updated on the falling edge of ROCLK.  
RMSFP  
Receive M-  
subframe Frame  
Pulse  
O
16  
F1  
The receive M-subframe pulse signal and marks the first bit of each M-subframe  
(X, P, and M) in each M-subframe of the DS3 on RODAT. In an OOF (Out Of Frame)  
condition the M13 internal counters will maintain the old M-frame alignment position.  
When the framer regains frame alignment the RMSFP timing will be updated to the new  
timing. This may result in a change of frame alignment. RMSFP is updated on the falling  
edge of ROCLK.  
ROHP  
Receive  
Overhead Pulse  
O
O
12  
21  
E1  
G2  
The receive overhead pulse signal and marks the overhead bit positions (X, P, M, C, and  
F) in the DS3 data on RODAT. In an OOF (Out Of Frame) condition the M13 internal  
counters will maintain the old frame alignment position. When the framer regains frame  
alignment, the ROHP timing will be updated to the new timing. This may result in a  
change of frame alignment. ROHP is updated in the falling edge of ROCLK.  
ROHCLK  
Receive  
Overhead Clock  
The receive overhead clock and transitions on each overhead bit. ROHCLK is nominally  
a 526 KHz. RAIS, RFERF, RFERR, RIDL, ROH, ROHFP, and ROOF are updated on the  
falling edge of ROHCLK.  
ROH  
Receive  
Overhead Data  
O
O
20  
19  
G1  
F4  
The receive overhead data signal transmits the overhead bits, C, F, M, P, and X bits from  
the receive DS3 stream. ROH is updated on the falling edge of ROHCLK.  
ROHFP  
Receive  
Overhead  
Frame Pulse  
The receive overhead frame pulse is used to mark the positions of the overhead bits  
within the overhead stream, ROH. ROHFP will remain high during the X1 overhead bit.  
ROHFP is updated on the falling edge of ROHCLK.  
RLOS  
Receive Loss of  
Signal  
O
22  
G3  
The receive loss of signal will remain high when the dual rail NRZ format stream is  
selected or when a loss of signal condition is detected (175 successive zeros on RPOS  
and RNEG). When the ones density is greater than 33% for 175 +/i 1 bit period on the  
RPOS and RNEG inputs, RLOS will be set low. RLOS is updated on the falling edge of  
ROCLK.  
PIN DESCRIPTION  
5
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TABLE 1 — PIN DESCRIPTIONS  
TQFP  
BGA  
SYMBOL  
NAME  
I/O  
DESCRIPTION  
PIN NO. Pin No.  
REXZ  
Receive  
Excessive Zeros  
O
25  
J3  
The receive excessive zero indicates the detection of an excessive zero condition. When  
3 or more successive zeros are received on the DS3 bipolar stream REXZ pulses high for  
one ROCLK cycle. In the uni-polar mode, REXZ is low. REXZ is updated on the falling  
edge of ROCLK.  
RAIS  
Receive Alarm  
Indication Signal  
O
O
4
C3  
The receive alarm indication signal is used to indicate and AIS (alarm indication) in the  
received DS3 signal. The RAIS will be set high when the AIS pattern has been detected  
for 2.23 ms or 13.5 ms as programmed by software. When the AIS pattern is absent in  
the DS3 signal for 2.23 ms or 13.5 ms the RAIS will be set low. RAIS is updated on the  
falling edge of ROHCLK.  
ROOF/RRED  
Receive Out of  
Frame/Receive  
Red Alarm  
24  
H2  
ROOF/RREF will be ROOF when the REDO bit in the Master Alarm Enable register is 0  
and will indicate an receive out-of-frame error. When no out-of-frame errors exist the  
ROOF will be low. ROOF will be high when there is an out-of-frame condition: 3 out of 16  
(default) or 3 out of 8 consecutive F-bit errors are detected, or when more M-bit errors are  
detected in 3 out of 4 consecutive M-frames. ROOF is updated on the falling edge of  
ROHCLK. ROOF/RRED will be RRED when the REDO bit the Master Alarm Enable  
register is 1 and will indicate an out-of-frame condition or a DS3 loss of signal condition. A  
DS3 out-of-frame condition is considered when there are no transitions for 2.23 ms or  
13.5 ms (software programmable) and RRED will be set high. RRED will be reset low  
when the out-of-frame condition or loss of signal condition are absent for 2.23 or 13.5 ms.  
RRED is updated on the falling edge of ROHCLK.  
RFERF  
Receive FarEnd  
Receive Failure  
O
O
23  
31  
H3  
D4  
The receive far end receive failure reflects the internal state of the internal FERF but the  
RFERF state is delayed by two M-frames. FERF is set high when both X1 and X2 are 0 in  
the M-frame. When X1 and X2 are both high in the M-frame, FERF is set low. Otherwise,  
FERF remains in its previous state when X1 • X2 in the current frame. The RFERF  
latency is used to provide better than 99.99% chance of freezing (holding FERF in its  
previous state) upon a valid state value during an out-of-frame. RFERF is updated every  
M-frame on the falling edge on ROHCLK.  
RDLCLK/  
RDLINT  
Receive Data  
Link Clock/  
Receive Data  
Link Interrupt  
RDLCLK/RDLINT will be RDLCLK when the REXHDLC bit in the Master HDLC  
Configuration Register is set to 1 and is used as the receive data link clock when an  
external HDLC receiver is selected. The RDLCLK is the clock for the external processing  
of the data link signal extracted by the DS3 framer. RDLCLK is nominally a 28.2 kHz  
clock that is low for at least 1.9us per cycle and is updated 3 times per M-frame. RDLCLK  
is updated on the falling edge of the ROHCLK. RDLCLK/RDLINT will be RDLINT when  
the REXHDLC bit in the Master HDLC Configuration Register is set to 0 and is used as  
the data link interrupt when an internal HDLC receiver is selected. When an HDLC  
receiver event occurs the RDLINT will reflect a change in status. By reading the Interrupt  
Enable/Status register, the interrupt will be cleared, both the register and the RDLINT pin.  
RDLINT is updated on the falling edge of ROHCLK. RDLINT is a configurable active low  
open-drain out or active high open-drain output. In the case where an external DMA  
device is used, RDLINT would be directly connected, however if the interrupt is being  
handled by a microprocessor, the RFDL may be wired-ORed with the INT output. In this  
later case, RDLINT should be configured as a active-low open drain output.  
PIN DESCRIPTION  
6
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TABLE 1 — PIN DESCRIPTIONS  
TQFP  
BGA  
SYMBOL  
NAME  
I/O  
DESCRIPTION  
PIN NO. Pin No.  
RDLSIG/  
RDLEOM  
Receive Data  
Link Signal/  
Receive Data  
Link End Of  
Message  
O
32  
E4  
RDLSIG/RDLEOM will be RDLSIG when the REXHDLC bit in the Master HDLC  
Configuration Register is set to 1 and is used as the receive data link signal when an  
external HDLC receiver is selected. The RDLSIG is the C-bit message used in C-bit parity  
mode and transmits the three C-bits from the fifth M-subframe in the DS3 frame. RDLSIG  
is updated on the falling edge of the RDLCLK. RDLSIG/RDLEOM will be RDLEOM when  
the REXHDLC bit in the Master HDLC Configuration Register is set to 0 and is used as  
the receive end of message signal when an internal HDLC receiver is selected. RDLEOM  
is used to denote the last byte of a sequence that is read from the HDLC receiver or to  
denote an overflow condition in the receive HDLC buffer. RDLEOM is updated on the fall-  
ing edge of ROHCLK. In order to clear/deassert the RDLEOM the supervising micropro-  
cessor must read the Interrupt Enable/Status Register. In the case where RDLEOM  
would be connected to a supervising microprocessor, an external DMA is used. The  
RDLEOM would be programmed to be active-low, open-drain and wired-ORed with the  
INT to signal the microprocessor that the a complete message is ready.  
RD1CLK1-28  
Receive DS1  
Clock  
O
*See TQFP *See BGA RD1CLK1-28 are the receive DS1 clocks used in conjunction with the RD1DAT. These  
table below tablebelow clocks are at the T1 nominal rate of 1.544MHz, but will have jitter due to the  
for details.  
for details, demultiplexing and destuffing processes. RD1DAT28-1 can be programmed to update on  
either the rising or falling edge of RD1CLK. For G.747, the internal M12 multiplexers still  
uses the RD1CLKs to clock RD1DAT out, however every fourth clock, RD1CLK4, 8, 12,  
16, 20, 24, and 28 clocks, is unused and in turn output LOW. These clocks run at the  
nominal rate of 2.048MHz but will have jitter due to the demultiplexing and destuffing  
processes. If a DS2 is inserted into the M13, thereby bypassing the M12 multiplexer,  
every fourth clock RD1CLK4, 8, 12, 16, 20, 24, and 28 can be used as a DS2 clock. In  
this case the unused clocks for that group will output LOW. The DS2 clock has a nominal  
rate of 6.312MHz.  
RD1DAT1-28  
TD1CLK1-28  
Receive DS1  
Data  
O
*See TQFP *See BGA RD1DAT1-28 is the DS1 data demultiplexed from the incoming DS3 stream.  
table below tablebelow RD1DAT1-28 are updated on either the rising or falling edge of the corresponding  
for details.  
for details  
RD1CLK1-28. In G.747, where the M12 multiplexers mux E1 data, RD1DAT 4, 8, 12, 16,  
20, 24, and 28 are held low, while the remaining streams operate at a nominal 2.048MHz  
data rate. M12 multiplexers are bypassed and DS2 data is output the fourth stream of the  
group is used to output data. The remaining three streams of the group will be held low.  
Transmit DS1  
Clock  
I
*See TQFP *See BGA The transmit DS1 clock, TD1CLK1-28 is used to sample incoming data on TD1DAT1-28  
table below tablebelow to be multiplexed into a DS3. The M13 expects a nominal 1.544MHz clocks and expects  
for details.  
for deatils  
minimal jitter and wander of a standard DS1. TD1DAT1-28 are sampled on either the  
rising or falling edge of TD1CLK1-28. In G.747 multiplexing not all TD1 inputs are used.  
In this case, every fourth input (TD1CLK4, 8, 12, 16, 20, 24, and 28) is unused, ignored  
and must be tied to GND. The remaining clocks should be running at a nominal rate of  
2.048MHz and expects minimal jitter and wander of a standard DS1. When the internal  
M12 multiplexers are bypassed, the M13 device will use every fourth clock (TD1CLK4, 8,  
12, 16, 20, 24, and 28) as the DS2 input clock. In this case, the remaining clocks are  
unused, ignored and the unused inputs must be tied to GND.  
TD1DAT1-28  
Transmit DS1  
Data  
I
*See TQFP *See BGA The transmit DS1 data TD1DAT is the input data that is multiplexed in to a DS3. Input  
table below tablebelow data can be programmed to sample on either the rising or falling edges of TD1CLK1-28.  
for details.  
fo details  
In G.747, where the M12 multiplexers mux E1 data, every fourth data stream (TD1DAT4,  
8, 12, 16, 20, 24, and 28) is ignored and must be tied to GND. In cases where a DS2 is  
inserted directly into the M23 stage, every fourth TD1DAT (TD1DAT4, 8, 12, 16, 20, 24,  
and 28) can be used. In this case the remaining TD1DAT streams of the group are  
ignored and must be tied to GND.  
PIN DESCRIPTION  
7
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TABLE 1 — PIN DESCRIPTIONS  
TQFP  
BGA  
SYMBOL  
NAME  
I/O  
DESCRIPTION  
PIN NO. Pin No.  
GD2CLK  
Generated DS2  
Clock  
O
6
B2  
In M13 and C-bit parity modes, this is the transmit generated DS2 clock. In M13 operation  
this clock is nominally a 6.311993 MHz clock which translates to a 39.1% stuffing ratio. In  
C-bit parity mode this clock is nominally a 6.3062723 MHz clock, which translates to a  
stuffing rate of 100% (used for C-bit parity). The GD2CLK may be tied directly to the  
TD2CLK clock.  
TD2CLK  
Transmit DS2  
Clock  
I
206  
205  
A2  
C5  
The TD2CLK is the transmit DS2 clock and is the clock used in the M12 multiplexer.  
TD2CLK is nominally a 6.312 MHz, 50% duty cycle clock and can be derived from the  
GD2CLK.  
TDLSIG/  
TDLUDR  
Transmit Data  
Link Signal/  
Transmit Data  
Underrun  
O
The TDLSIG/TDLUDR will be transmit data link, TDLSIG, when the TEXHDLC bit in the  
Master HDLC Configuration Register is a logic 1. When an external HDLC receiver is  
selected, TDLSIG will carry the the three C-bits in M-subframe #5 in the DS3. When C-bit  
parity mode is not enabled TDLSIG is ignored. TDLSIG is sampled on the rising edge of  
TDLCLK.The TDLSIG/TDLUDR will be the transmit data link underrun, TDLUDR, when  
the TEXHDLC bit in the Master HDLC Configuration Register is a logic 0. When an  
internal HDLC receiver is selected, TDLUDR is asserted when an internal HDLC  
transmitter underruns. TDLUDR can be cleared (deasserted) by writing to the XFDL  
Interrupt Status Register. TDLUDR is a programmable polarity, open-drain output. On  
reset, TDLSIG/TDLUDR is TDLSIG. The TEXHDLC register should be programmed  
after reset to the appropriate mode. When an external DMA is used, TDLUDR will be  
configured as an active-low output and wired-ORed with the INT output and routed to the  
supervising microprocessor. In that way, in the case of a transmit buffer underrun the  
supervising microprocessor will be notified.  
TDLCLK/  
TDLINT  
Transmit Data  
Link Clock/  
Transmit Data  
Link Interrupt  
O
207  
C4  
The TDLCLK/TDLINT will be transmit data link clock, TDLCLK, when the TEXHDLC bit in  
the Master HDLC Configuration Register is a logic 1. When an external HDLC receiver is  
selected, TDLCLK will provide the timing for the external maintenance data link inserted  
by the DS3. TDLCLK is nominally a 28.2 KHz clock which is low for at least 1.9us per  
cycle. TDLCLK is updated on the falling edge of the TOHCLK and cycles three times per  
M-frame (one for each C-bit). The TDLCLK/TDLINT will be the transmit data link interrupt,  
TDLINT, when the TEXHDLC bit in the Master HDLC Configuration Register is a logic 0.  
When an internal HDLC receiver is selected, TDLINT is asserted when the last data byte  
is written to the internal HDLC transmitter. A write to the XFDL Configuration Register will  
end the current message transmission while a write to the XFDL Transmit Data Register  
will provide more data. TDLINT is a programmable polarity, open-drain output. On reset,  
TDLCLK/TDLINT is TDLINT. The TEXHDLC register should be programmed after reset  
to the appropriate mode. When an external DMA is used, TDLINT will be configured as  
an active-low output and wired-ORed with the INT output and routed to the supervising  
microprocessor. In that way, the supervising microprocessor will be notified and can  
service the XFDL.  
TDLEMOI  
Transmit Data  
Link End Of  
Message Input  
I
204  
D5  
The transmit data link end of message input, TDLEMOI, is an alternate method for an  
external DMA controller to signal the end of the transmitted message to the HDLC  
transmitter. As the TDLEMOI is an alternative to writing the XFDL configuration register,  
appropriately the TDLEMOI will set the EOM bit in the XFD: Configuration register. The  
TDLEMOI input may be asserted before or after the write of the last byte, but must be  
asserted before the next byte (within 210 us of the last assertion of TDLINT or the INT bit  
in the XFDL Status Register). If no data transmission is pending, TDLEMOI is ignored.  
PIN DESCRIPTION  
8
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TABLE 1 — PIN DESCRIPTIONS  
TQFP  
BGA  
SYMBOL  
NAME  
I/O  
DESCRIPTION  
PIN NO. Pin No.  
TICLK  
Transmit Input  
Clock  
I
1
C2  
B3  
The transmit input clock, TICLK, provides the timing for the DS3 input. TICLK is nominally  
a 44.736 MHz, 50% duty cycle clock. TIMFP is sampled on the rising edge of TICLK.  
TIMFP  
Transmit Input  
M-frame Frame  
Pulse  
I
208  
The transmit M-frame pulse, TIMFP, provides the timing/alignment of the M-frame within  
the DS3 data, TDAT. The first bit (X1) of the M-frame on TDAT will occur within several  
TICLK cycle and will be confirmed by the output on TMFP. TIMFP may be pulled low if  
this kind of feedback is not required. TIMFP is sampled on the rising edge of TICLK.  
TOH  
Transmit  
Overhead Data  
I
I
17  
18  
F2  
F3  
The transmit overhead data, TOH, represents the overhead bits (C, F, M, P, and X) that  
may be inserted into the transmitted DS3. TOH is sampled on the rising edge of  
TOHCLK.  
TOHEN  
Transmit  
Overhead  
Enable  
The transmit overhead insertion, TOHEN, is the enable signal that is used in conjunction  
with the TOH, data input. When TOHEN is high the associated data on TOH will be  
inserted in to the DS3. When the TOHEN is low, the internal DS3 framer generates and  
inserts the DS3 overhead bits into the output DS3 stream. TOHEN is sampled on the  
rising edge of TOHCLK.  
TOHFP  
Transmit  
Overhead  
Frame Pulse  
O
O
15  
14  
E3  
E2  
The transmit overhead frame position, TOHFP, marks the beginning of the first M-frame,  
and aligns the TOH data to the DS3 M-frame. TOHFP will be high during the X1 overhead  
bit position. TOHFP is updated on the falling edge of TOHCLK.  
TOHCLK  
Transmit  
Overhead Clock  
The transmit overhead clock, TOHCLK, provides the timing transmit overhead bits.  
TOHCLK is nominally a 526 KHz clock. TOHFP is updated on the falling edge of  
TOHCLK. TOH and TOHEN are sampled on the rising edge of TOHCLK.  
JCLK  
Transmit DS3  
Clock  
O
O
2
3
A1  
B1  
The transmit clock, TCLK, provides timing for other circuitry to synchronize with the DS3  
transmitter. TCLK is nominally a 44.736 MHz, 50% duty cycle clock.  
TPOS/TDAT  
Transmit DS3  
Positive Pulse/  
Transmit DS3  
Data  
In dual rail mode, TPOS/TDAT, is TPOS and represents the positive pulses of a  
B3ZS-encoded line. TPOS is updated on the falling edge of TCLK by default but may be  
configured to update on the rising edge of TCLK. In single rail mode, TPOS/TDAT, is  
TDAT and represents the unipolar DS3 output data. Like the TPOS, TDAT is updated on  
the falling edge of TCLK by default but may be configured to update on the rising edge of  
TCLK.  
TNEG/TMFP  
Transmit DS3  
Negative Pulse/  
Transmit Multi-  
frame Pulse  
O
5
C1  
In dual rail mode, TNEG/TMFP, is TNEG and represents the negative pulses of a  
B3ZS-encoded line. TNEG is updated on the falling edge of TCLK by default but may be  
configured to update on the rising edge of TCLK. In single rail mode, TNEG/TMFP, is  
TMFP and represents the transmit multi-frame pulse. TMFP will be high during the first bit  
of the DS3 multiframe output on TDAT. TMFP is updated on the falling edge of TCLK by  
default but may be configured to update on the rising edge of TCLK.  
INT  
CS  
Interrupt  
O
I
33  
45  
K3  
INT is the output interrupt pin. When an interrupt occurs in any of the TSBs, DS2 FRMR,  
DS3 FRMR, MX12, MX23, PMON, or RBOC, INT will go low, unless the interrupt is  
masked. In order to clear INT, all pending interrupt TSBs must be read and cleared, oth-  
erwise INT will remain low. INT is an open drain output so it can be wired-ORed with  
other active-low open-drain output pins of the device.  
Chip Select  
M2  
This active LOW input is used by a microprocessor to activate the microprocessor port.  
CS must go low for at least once after powerup. If CS is not used it must be tied to an  
inverted version of RST.  
RD  
Microprocessor  
Read  
I
I
57  
56  
R3  
T3  
This active low input controls the direction of the data bus lines (D0-7) during a micropro-  
cessor access. When RD is low, D0-7 are output.  
WR  
Microprocessor  
Write  
This active low input controls the direction of the data bus lines (D0-7) during a micropro-  
cessor access. When WR is low, D0-7 are input.  
PIN DESCRIPTION  
9
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TABLE 1 — PIN DESCRIPTIONS  
TQFP  
BGA  
SYMBOL  
D0-7  
NAME  
I/O  
DESCRIPTION  
PIN NO. Pin No.  
Microprocessor  
Data  
I/O *See TQFP *See BGA These pins are the data bits of the microprocessor port.  
table below tablebelow  
for details  
for deatils  
A0-8  
RST  
ALE  
VCC  
VCC  
GND  
Microprocessor  
Address  
I
I
I
I
I
I
*See TQFP *See BGA These address lines access all internal memories.  
table below tablebelow  
for details  
for details  
Reset  
58  
P3  
This input puts the IDT82V8313 into a reset state that clears the device internal counters  
and registers. The RESET pin must be held LOW for a minimum of 100ns to properly  
reset the device. This pin has a weak internal pull-up resistor.  
Address Latch  
Enable  
46  
M1  
The address latch enable is an active high input that will latch the A0-7 address bus. The  
ALE is used in a multiplexed address/data microprocessor environment. The ALE has a  
weak internal pull-up resistor.  
VCC  
*See TQFP *See BGA This is the +3.3 Volt power supply for the core of the device.  
table below tablebelow  
for details  
for details  
VCC  
*See TQFP *See BGA This is the +3.3 Volt power supply for the i/o of the device.  
table below tablebelow  
for details  
for details  
Ground  
*See TQFP *See BGA Ground Rail.  
table below tablebelow  
for details  
for details  
TDI  
JTAG Test  
Serial Data In  
I
O
I
P5  
JTAG serial test instructions and data are shifted in on this pin. This pin is pulled HIGH by  
an internal pull-up when not driven.  
TDO  
TRST  
JTAG Test  
Serial Data Out  
R7  
T4  
JTAG serial data is output on this pin on the falling edge of TCK. This pin is held in high-  
impedance state when JTAG scan is not enabled.  
JTAG Test  
Reset  
Asynchronously initializes the JTAG Test Access Port controller by putting it in the Test-  
Logic-Reset state. This pin is pulled HIGH by an internal pull-up when not driven. This pin  
should be pulsed LOW on power-up, or held LOW, to ensure that the IDT72V71660 is in  
the normal functional mode.  
TCLK  
TMS  
JTAG Test  
Clock  
I
I
P11  
R9  
Provides the clock to the JTAG test logic.  
JTAG Test  
Mode Select  
JTAG signal that controls the state transitions of the Test Access Port controller. This pin  
is pulled HIGH by an internal pull-up when not driven.  
PIN DESCRIPTION  
10  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TQFP PIN NUMBER TABLE  
SYMBOL  
NAME  
I/O  
PIN NUMBER  
RD1CLK1-28  
Receive DS1  
Clock  
O
198, 193, 186, 180, 175, 170, 166, 159, 155, 151, 146, 142, 137, 133, 127, 122, 116, 110, 106, 102, 98, 91, 87, 82, 76,  
71, 66, 62.  
RD1DAT1-28 Receive DS1  
Data  
O
I
202, 195, 188, 182, 177, 173, 168, 161, 157, 153, 149, 144, 139, 135, 129, 124, 118, 114, 108, 104, 100, 94, 89, 84, 78,  
74, 69, 64.  
TD1CLK1-28  
TD1DAT1-28  
D0-7  
Transmit DS1  
Clock  
201, 194, 187, 181, 176, 172, 167, 160, 156, 152, 148, 143, 138, 134, 128, 123, 117, 112, 107, 103, 99, 92, 88, 83, 77,  
72, 68, 63.  
Transmit DS1  
Data  
I
203. 196, 190, 184, 179, 174, 169, 162, 158, 154, 150, 145, 141, 136, 130, 126, 120, 115, 109, 105, 101, 97, 90, 86, 81,  
75, 70, 65.  
Microprocessor  
Data  
I/O 34, 35, 37, 38, 39, 41, 42, 44.  
A0-8  
Microprocessor  
Address  
I
47, 48, 49, 50, 51, 52, 53, 54, 55.  
Vcc  
Vcc  
I
I
9, 43, 60, 95, 121, 164, 189, 199.  
GND  
Ground  
8, 11, 27, 36, 59, 80, 96, 111, 132, 163, 183, 185, 191, 192, 200.  
BGA PIN NUMBER TABLE  
SYMBOL  
NAME  
I/O  
PIN DESCRIPTION  
RD1CLK1-28 Receive DS1  
Clock  
O
A 5, C6, A8, A9, D11, D12, C13, A14, B15, D16, E16, F16, G16, H16, J16, L13, M13, N14, R16, R15, T13, T12, T11,  
P10, R8, P6, R5, R4.  
RD1DAT1-28 Receive DS1  
Data  
O
I
A4, A6, B7, C9, B10, B11, B12, A13, A16, C15, D14, E14, J14, K15, L15, M15, N16, J15, R14, P13, T10, P9, P7, T6,  
N4.  
TD1CLK1-28  
Transmit DS1  
Clock  
B4, B6, C7, B9, A10, A11, A12, B14, B16, C14, D13, E13, F13, H16, J15, K16, L16, M16, P15, T15, P14, N13, N12,  
R10, P8, T7, N5, P4.  
TD1DAT1-28 Transmit DS1  
Transmit  
I
A3, B5, A7, C8, C10, C11, C12, B13, A15, C16, D15, E15, F15, G15, H14, K14, L14, M14, N15, R16, T14, R13, R12,  
R11, T9, T8, R6, T5.  
D0-7  
Microprocessor  
Data  
I/O K2, K1, L4, L3, L2, L1, M4, M3.  
A0-8  
Microprocessor  
Address  
I
N3, N2, P2, P1, R1,T1, T2, R2.  
Vcc  
Vcc  
I
I
G4, H4, J4, K4, N6, N7, N8, N9, N10, N11, K13, J13, K13, G13, D6, D7, D8, D9, D10.  
B8, D6, G7-G10, H7-H10, J7-J10, K7-K10.  
GND  
Ground  
PIN DESCRIPTION  
11  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
PIN DESCRIPTION  
12  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
REGISTER MEMORY MAP  
TABLE 2 — REGISTER MEMORY MAP  
Register  
Reg  
R/W  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
00H  
R/W DS3RCACT DS3TCACT DS2TCACT  
-
-
-
-
Reset  
ID0  
Master Reset/Clock  
Status  
01H  
02H  
03H  
04H  
05H  
06H  
R
ID7  
ID6  
ID5  
ID4  
BYP5  
-
ID3  
ID2  
ID1  
BYP2  
Revision/Global  
PMON Update  
R/W  
R/W  
R/W  
R/W  
R/W  
EXD2CLK  
BYP7  
BYP6  
BYP4  
BYP3  
BYP1  
Master Bypass  
Configuration  
REXHDLC TEXHDLC  
-
-
REOMPOL TUDRPOL  
RINTPOL  
LLBE  
TINTPOL Master HDLC  
Configuration  
-
-
LINEAIS1  
TFALL  
LINEAIS2  
TUNI  
DLBE  
Master Loopback  
Configuration  
-
-
-
TINV  
REDO  
RINV  
RFALL  
Master Interface  
Configuration  
TNR  
RNR  
ALTFEBE  
RED2ALME DS2ALME RED3ALME DS3ALME Master Alarm  
Enable/Network  
Requirement Bit  
07H  
08H  
R/W  
R
-
-
-
-
DBCTRL  
-
HIZDATA  
HIZIO  
RBOC  
Master Test  
REG2  
REG3  
XFDLINT  
MX23  
DS3FRMR  
RFDLINT  
RFDLEOM  
Master Interrupt  
Source #1  
09H  
0AH  
R
R
XFDLUDR DS2FRMR7 DS2FRMR6 DS2FRMR5 DS2FRMR4 DS2FRMR3 DS2FRMR2 DS2FRMR1 Master Interrupt  
Source #2  
DS3PMON  
MX12 7  
MX12 6  
MX12 5  
MX12 4  
MX12 3  
MX12 2  
MX12 1  
Master Interrupt  
Source #3  
0BH  
0CH  
-
-
-
-
-
-
-
-
-
-
-
Reserved  
R/W  
CBTRAN  
AIS  
IDL  
FERF  
SBOW  
CBIT  
DS3 TRAN  
Configuration  
0DH  
R/W  
-
DLOS  
DLCV  
-
DFERR  
DMERR  
DCPERR  
-
DPERR  
-
DFEBE  
-
DS3 TRAN  
Diagnostic  
0EH -  
11H  
-
-
-
-
-
-
-
-
-
Reserved  
11H  
R/W  
-
-
INTE  
-
INTR  
-
OVR  
DS3 PMON Interrupt  
Enable/Status  
12H -  
13H  
-
-
-
-
-
Reserved  
14H  
15H  
16H  
17H  
18H  
R
LCV7  
LCV15  
FERR7  
-
LCV6  
LCV14  
FERR6  
-
LCV5  
LCV13  
FERR5  
-
LCV4  
LCV12  
FERR4  
-
LCV3  
LCV11  
FERR3  
-
LCV2  
LCV10  
FERR2  
-
LCV1  
LCV9  
FERR1  
FERR9  
EXZS1  
LCV0  
LCV8  
DS3 PMON LCV  
Count (LSB)  
R
DS3 PMON LCV  
Count (MSB)  
R
FERR0  
FERR8  
EXZS0  
DS3 PMON FERR  
Count (LSB)  
R
DS3 PMON FERR  
Count (MSB)  
R
EXZS7  
EXZS6  
EXZS5  
EXZS4  
EXZS3  
EXZS2  
DS3 PMON EXZS  
Count (LSB)  
REGISTER MEMORY MAP  
13  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TABLE 2 — REGISTER MEMORY MAP  
Register  
Reg  
R/W  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
19H  
R
EXZS15  
EXZS14  
EXZS13  
EXZS12  
EXZS11  
EXZS10  
EXZS9  
EXZS8  
PERR0  
PERR8  
CPERR0  
CPERR8  
FEBE0  
FEBE8  
EN  
DS3 PMON EXZS  
Count (MSB)  
1AH  
1BH  
1CH  
1DH  
1EH  
1FH  
20H  
21H  
22H  
R
R
PERR7  
PERR6  
PERR5  
PERR13  
CPERR5  
CPERR13  
FEBE5  
FEBE13  
-
PERR4  
PERR12  
CPERR4  
CPERR12  
FEBE4  
FEBE12  
EOM  
PERR3  
PERR11  
CPERR3  
CPERR11  
FEBE3  
FEBE11  
INTE  
PERR2  
PERR10  
CPERR2  
CPERR10  
FEBE2  
FEBE10  
ABT  
PERR1  
PERR9  
CPERR1  
CPERR9  
FEBE1  
FEBE9  
CRC  
DS3 PMON PERR  
Count (LSB)  
-
-
DS3 PMON PERR  
Count (MSB)  
R
CPERR7  
CPERR6  
DS3 PMON CPERR  
Count (LSB)  
R
-
-
DS3 PMON CPERR  
Count (MSB)  
R
FEBE7  
FEBE6  
DS3 PMON FEBE  
Count (LSB)  
R
-
-
-
-
DS3 PMON FEBE  
Count (MSB)  
R/W  
R/W  
R/W  
XFDL TSB  
Configuration  
-
-
-
-
-
-
INT  
UDR  
XFDL TSB Interrupt  
Status  
TD7  
TD6  
TD5  
TD4  
TD3  
TD2  
TD1  
TD0  
XFDL TSB Transmit  
Data  
23H  
24H  
--  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Reserved  
R/W  
TR  
EN  
RFDL TSB  
Configuration  
25H  
R/W  
-
-
-
-
-
INTC1  
INTC0  
INT  
RFDL Interrupt  
Control/Status  
26H  
27H  
R
R
FE  
OVR  
RD6  
FLG  
RD5  
EOM  
RD4  
CRC  
RD3  
NVB2  
RD2  
NVB1  
RD1  
NVB0  
RD0  
RFDL TSB Status  
RD7  
RFDL TSB Receive  
Data  
28H  
29H  
R/W  
R/W  
-
-
-
-
-
LBCOD1  
DAIS4  
LBCODE0  
DAIS3  
CBE  
INTE  
MX23 Configuration  
DAIS7  
DAIS6  
DAIS5  
DAIS2  
DAIS1  
MX23 Demux AIS  
Insert  
2AH  
2BH  
R/W  
R/W  
-
-
MAIS7  
LBA7  
MAIS6  
LBA6  
MAIS5  
LBA5  
MAIS4  
LBA4  
MAIS3  
LBA3  
MAIS2  
LBA2  
MAIS1  
LBA1  
MX23 Mux AIS Insert  
MX23 Loopback  
Activate  
2CH  
2DH  
2EH  
R/W  
R
0
-
ILBE7  
ILBE6  
LBRD6  
LBRI6  
-
ILBE5  
LBRD5  
LBRI5  
-
ILBE4  
LBRD4  
LBRI4  
-
ILBE3  
LBRD3  
LBRI3  
-
ILBE23  
LBRD2  
LBRI2  
-
ILBE1  
LBRD1  
LBRI1  
-
MX23 Loopback  
Request Insert  
LBRD7  
MX23 Loopback  
Request Detect  
R
-
LBRI7  
MX23 Loopback  
Request Interrupt  
2FH -  
30H  
-
-
-
-
Reserved  
31H  
R/W  
-
BC5  
BC4  
BC3  
BC2  
BC1  
BC0  
FEAC XBOC Code  
June 3, 2004  
REGISTER MEMORY MAP  
14  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TABLE 2 — REGISTER MEMORY MAP  
Register  
Reg  
R/W  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
32H  
R/W  
-
-
-
-
-
IDLE  
AVC  
BOCE  
FEAC RBOC  
Configuration/  
Interrupt Enable  
33H  
34H  
R
IDLEI  
BOCI  
FDET  
BOC5  
BOC4  
M3O8  
BOC3  
UNI  
BOC2  
REFR  
BOC1  
AISC  
BOC0  
CBE  
FEAC RBOC  
Interrupt Status  
R/W  
R/W  
AISPAT  
MBDIS  
DS3 FRMR  
Configuration  
35H  
ACE=0  
ACE=1  
DS3 FRMR Interrupt  
Enable/Additional  
COFAE  
-
REDE  
-
CBITE  
AISONES  
FERFE  
BPVO  
IDLE  
EXZSO  
AISE  
EXTYPE  
OOFE  
SALGO  
LOSE  
ALGOTYPE Configuration  
36H  
R
COFAI  
REDI  
CBITI  
FERFI  
IDLI  
AISI  
OOFI  
LOSI  
DS3 FRMR Interrupt  
Status  
37H  
R/W  
-
ACE  
-
REDV  
-
CBITV  
-
FERFV  
-
IDLV  
-
AISV  
-
OOFV  
-
LOSV  
-
DS3 FRMR Status  
Reserved  
38H -  
3FH  
40H  
41H  
42H  
43H  
44H  
R/W  
R/W  
R
G747  
-
-
-
-
-
WORD  
REDE  
REDI  
REDV  
-
M2O5  
FERFE  
FERFI  
FERFV  
-
MDBIS  
RESE  
RESI  
RESV  
-
REF  
AISE  
AISI  
-
-
DS2 #1 FRMR PERR  
Configuration  
COFAE  
OOFE  
OOFI  
OOFV  
INTR  
-
DS2 #1 FRMR PERR  
Interrupt Enable  
COFAI  
-
-
DS2 #1 FRMR PERR  
Interrupt Status  
R
-
-
AISV  
INTE  
DS2 #1 FRMR PERR  
Status  
R/W  
OVR  
DS2 #1 FRMR  
Monitor Interrupt  
Enable/Status  
45H  
46H  
47H  
48H  
R
R
FERR7  
PERR7  
-
FERR6  
PERR6  
-
FERR5  
PERR5  
-
FERR4  
PERR4  
PERR12  
FINV  
FERR3  
PERR3  
PERR11  
ZAIS  
FERR2  
PERR2  
PERR10  
XFERF  
FERR1  
PERR1  
PERR9  
XRES  
FERR0  
PERR0  
PERR8  
INTE  
DS2 #1 FRMR FERR  
Count  
DS2 #1 FRMR PERR  
Count (LSB)  
R
DS2 #1 FRMR PERR  
Count (MSB)  
R/W  
G747  
PINV  
MINV  
DS2 #1 MX12  
Configuration and  
Control  
49H  
R/W  
-
-
-
-
-
-
LBCODE1  
LBCODE0 DS2 #1 MX12  
Loopback Code  
Select  
4AH  
4BH  
4CH  
R/W  
R/W  
R
MAIS4  
ILBR4  
LBRI4  
MAIS3  
ILBR3  
LBRI3  
MAIS2  
ILBR2  
LBRI2  
MAIS1  
ILBR1  
LBRI1  
DAIS4  
LBA4  
DAIS3  
LBA3  
DAIS2  
LBA2  
DAIS1  
DS2 #1 MX12 AIS  
Insert  
LBA1  
DS2 #1 MX12  
Loopback Active  
LBRD4  
LBRD3  
LBRD2  
LBRD1  
DS2 #1 MX12  
Loopback Interrupt  
REGISTER MEMORY MAP  
15  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TABLE 2 — REGISTER MEMORY MAP  
Register  
Reg  
R/W  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
Name  
4DH  
R/W  
TXESEL4  
TXESEL3  
TXESEL2  
TXESEL1  
RXESEL4  
RXESEL3  
RXELES2  
RXESEL2 DS1 #1 Transmit and  
Receive Edge Select  
50H -  
57H  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
DS2 #4 MX12  
Registers  
58H -  
5DH  
DS2 #2 MX12  
Registers  
60H -  
67H  
DS2 #3 FRMR  
Registers  
68H -  
6DH  
DS2 #3 MX12  
Registers  
70H -  
77H  
DS2 #4 FRMR  
Registers  
78H -  
7DH  
DS2 #4 MX12  
Registers  
80H -  
87H  
DS2 #5 FRMR  
Registers  
88H -  
8DH  
DS2 #5 MX12  
Registers  
90H -  
97H  
DS2 #6 FRMR  
Registers  
98H -  
9DH  
DS2 #6 MX12  
Registers  
A0H  
A1H  
A2H  
A3H  
A4H  
A5H  
A6H  
A7H  
G747  
COFAE  
COFAI  
-
-
WORD  
REDE  
REDI  
REDV  
-
FERR5  
PERR5  
-
M2O5  
FERFE  
FERFI  
FERFV  
-
FERR4  
PERR4  
PERR12  
MDBIS  
RESE  
RESI  
RESV  
-
FERR3  
PERR3  
PERR11  
REF  
AISE  
AISI  
AISV  
INTE  
FERR2  
PERR2  
PERR10  
-
-
-
-
COFAE  
OOFE  
OFFI  
OOFV  
INTR  
FERR1  
PERR1  
PERR9  
-
-
-
R/W  
R/W  
-
DS2 #7 FRMR  
Registers  
-
OVR  
FERR7  
PERR7  
-
FERR6  
PERR6  
-
FERR0  
PERR0  
PERR8  
A8H  
A9H  
AAH  
ABH  
ACH  
ADH  
G747  
-
MAIS4  
ILBR4  
LBR4  
TXESEL4  
PINV  
-
MAIS3  
ILBR3  
LBR3  
TXESEL3  
MINV  
-
MAIS2  
ILBR2  
LBR2  
FINV  
-
MAIS1  
ILBR1  
LBR1  
XAIS  
-
DAIS4  
LBA4  
LBDR4  
RXESEL4  
XFERF  
-
DAIS3  
LBA3  
LBDR3  
RXESEL3  
XREF  
LBCODE1  
DAIS2  
LBA2  
LBDR2  
INTE  
LBCODE0  
DAIS1  
LBA1  
LBDR1  
RXESEL1  
DS2 #7 MX12  
Registers  
TXESEL2  
TXESEL1  
RXESEL2  
AEH -  
FFH  
-
-
-
-
-
-
-
-
-
-
-
-
-
Reserved  
Reserved  
100H -  
1FFH  
-
-
-
-
-
Note:  
All Reserved Registers should not be read/written  
REGISTER MEMORY MAP  
16  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
REGISTER DESCRIPTIONS  
MASTER RESET/CLOCK STATUS  
Read/Write Addresses: 00H  
Reset Value:  
00H  
7
6
5
4
0
3
0
2
0
1
0
0
DS3RCACT DS3TCACT DS2TCACT  
RESET  
Bit  
Name  
DS3RCACT  
Description  
The DS3 Receive Clock Activity (DS3RCACT) bit indicates at least one LOW to HIGH transaction has occurred on the RCLK input  
7
6
5
(DS3 Receive Clock since the last read of this register. The DS3RCACT bit is set to a logic 1 by a rising edge on the RCLK input and is cleared to a logic  
Activity)  
0 by a read of this register.  
DS3TCACT  
The DS3 Transmit Clock Activity (DS3TCACT) bit indicates at least one LOW to HIGH transaction has occurred on the TD2CLK input  
(DS3 Transmit Clock since the last read of this register. The DS3TCACT bit is set to a logic 1 by a rising edge on the TICLK input and is cleared to a logic  
Activity)  
0 by a read of this register.  
DS2TCACT  
The DS2 Transmit Clock Activity (DS2TCACT) bit indicates at least one LOW to HIGH transaction has occurred on the TICLK input  
(DS2 Transmit Clock since the last read of this register. The DS2TCACT bit is set to a logic 1 by a rising edge on the TD2CLK input and is cleared to a  
Activity)  
logic 0 by a read of this register. Note that if the TD2CLK signal is absent for a period of time (i.e., TD2CLK clock failure), the D3MX  
must be reset once the TD2CLK signal is restored.  
4-1 Unused  
Must be zero for normal operation.  
0
RESET  
(Software Reset)  
The RESET bit implements a software reset. If the RESET bit is a logic1, the entire D3MX is held in reset. This bit is not self-clearing;  
therefore, a logic 0 must be written to bring the D3MX out of reset. Holding the D3MX in a reset clears the RESET bit, thus  
deasserting the software reset.  
REVISION/GLOBAL PMON UPDATE  
Read/Write Addresses: 01H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
ID7  
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
Bit  
Name  
Description  
7-0 ID 7-0  
The version identification bits ID 7-0, are set to a fixed value representing the version number of the D3MX. These bits can be read by  
software to determine the version number. Writing to this register causes all performance monitor counters (DS3 and DS2/G.747) to  
be updated simultaneously.  
(Identification Bits)  
REGISTER DESCRIPTION  
17  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
MASTER BYPASS CONFIGURATION  
Read/Write Addresses: 02H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
EXD2CLK  
BYP7  
BYP6  
BYP5  
BYP4  
BYP3  
BYP2  
BYP1  
Bit  
Name  
EXD2CLK  
Description  
7
The EXD2CLK bit selects between an internally generated DS2 clock and the clock input on the TD2CLK pin. If EXD2CLK is a logic  
0, the DS2 clock for the multiplexing side becomes the generated clock derived from the DS3 transmit TICLK clock. The generated  
DS2 clock is nominally 6.306272 MHz while in C-bit parity mode and while in M23 mode, it is nominally 6.311993 MHz. If EXD2CLK  
is a logic 1, the transmit DS2 clock becomes TD2CLK.  
(External DS2 CLK)  
6-0 BYP 7-1  
(M12 Bypass)  
The BYP 7-1bits allow for each of the seven MX12blocks to be individually bypassed so that the external DS2 may be multiplexed  
and duplexed directly without the intermediate M12 multiplexing. If BYP[n] is a logic 1, the following applies:  
1. A nominally 6.312 MHz clock is expected on TD1CLK(4n).  
2. A data stream synchronous to TD1CLK(4n) is expected on TD1DAT(4n).  
3. The clocks on TD1CLK(4n-1), TD1CLK(4n-2) and TD1CLK(4n-3) have no effect and should be tied to ground.  
4. The data streams in TD1DAT(4n-1), TD1CLK(4n-2) and TD1CLK(4n-3) are ignored and should be tied to ground.  
5. A nominally 6.312 MHz clock is presented on RD1CLK(4n).  
6. A data stream synchronous to RD1CLK(4n) is presented on RD1DAT(4n).  
7. The signals on RD1CLK(4n-1), RD1CLK(4n-2),RD1CLK(4n-3), RD1DAT(4n-1), RD1DAT(4n-2) and  
RD1DAT(4n-3) are always LOW.  
REGISTER DESCRIPTION  
18  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
MASTER HDLC CONFIGURATION  
Read/Write Addresses: 03H  
Reset Value:  
40H  
7
6
5
0
4
0
3
2
1
0
REXHDLC  
TEXHDLC  
REOMPOL  
TUDRPOL  
RINTPOL  
TINTPOL  
Bit  
Name  
REXHDLC  
(Receive External  
HDLC)  
Description  
7
The state of the receive external HDLC (REXHDLC) bit determines weather the C-bit parity path maintenance data link is terminated  
by the internal HDLC receiver or by an external HDLC receiver. When the REXHDLC bit is a logic 0, the internal HDLC receiver is  
selected; the RDLCLK/RDLINT pin is configured to output the interrupt signal (RDLINT) from the internal HDLC receiver and the  
RDLSIG/RDLEOM pin is configured to output the end-of-message signal (RDLEOM) from the internal HDLC receiver. When the  
REXHDLC bit is a logic 1, the use of an external HDLC receiver is selected; the RDLSIG/RDLEOM pin is configured to output the  
data stream (RDLSIG) and the RDLCLK/RDLINT pin is configured to output the data link clock signal (RDLCLK). The REXHDLC bit  
is cleared to logic 0 upon reset.  
6
TEXHDLC  
(Transmit External  
HDLC)  
The state of the transmit external HDLC (TEXHDLC) bit determines weather the C-bit parity path maintenance data link is sourced by  
the internal HDLC transmitter or by an external HDLC transmitter. When the TEXHDLC bit is a logic 0, the internal HDLC transmitter  
is selected; the TDLCLK/TDLINT pin is configured as an output to present the interrupt signal (TDLINT) from the internal HDLC trans-  
mitter and the TDLSIG/TDLUDR pin is configured to output the underrun signal (TDLUDR) from the internal HDLC transmitter.  
When the TEXHDLC bit is a logic 1, the use of an external HDLC transmitter is selected; the TDLSIG/TDLUDR pin is configured to  
output the data link data stream (TDLSIG) and the TDLCLK/TDLINT pin is configured to output the data link clock signal (TDLCLK).  
The TEXHDLC bit is set to logic 1 upon reset.  
5-4 Unused  
Must be zero for normal operation.  
3
2
1
0
REOMPOL  
The Receive End-of-Message Polarity (REOMPOL) bit determines the assertion level of the RDLEOM output. If REOMPOL is a logic  
(Receive End-of-Mes- 0, the RDLEOM output is an active LOW open-drain output. If REOMPOL is a logic 1, the RDLEOM output is asserted HIGH and  
sage Polarity)  
always has a strong drive. If the REXHDLC bit is a logic 1, this bit has no effect.  
TUDRPOL  
The Transmit Underflow Polarity (TUDRPOL) bit determines the assertion level of the TDLUDR output. If TUDRPOL is a logic 0, the  
(Transmit Underflow TDLUDR output is an active LOW open-drain output. If TUDRPOL is a logic 1, the TDLUDR output is asserted HIGH and always has  
Polarity)  
a strong drive. If the TEXHDLC bit is a logic 1, this bit has no effect.  
RINTPOL  
(Receive Interrupt  
Polarity)  
The Receive Interrupt Polarity (RINTPOL) bit determines the assertion level of the RDLINT output. If RINTPOL is a logic 0, the  
RDLINT output is an active LOW open-drain output. If RINTPOL is a logic 1, the RDLINT output is asserted HIGH and always has a  
strong drive. If the REXHDLC bit is a logic 1, this bit has no effect.  
TINTPOL  
(Transmit Interrupt  
Polarity)  
The Transmit Interrupt Polarity (TINTPOL) bit determines the assertion level of the TDLINT output. If TINTPOL is a logic 0, the  
TDLINT output is an active LOW open-drain output. If TINTPOL is a logic 1, the TDLINT output is asserted HIGH and always has a  
strong drive. If the TEXHDLC bit is a logic 1, this bit has no effect.  
REGISTER DESCRIPTION  
19  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
MASTER LOOPBACK CONFIGURATION  
Read/Write Addresses: 04H  
Reset Value:  
00H  
7
6
0
5
0
4
0
3
2
1
0
0
LINEAIS1  
LINEAIS2  
LLBE  
DLBE  
Bit  
Name  
Description  
7-4 Unused  
Must be zero for normal operation.  
3-2 LINEAIS 1-2  
The line AIS (LINEAIS 1-0) bits allow the generation of various AIS patterns on the TDAT output when TUNI is set to logic 1, or on the  
TPOS and TNEG outputs when TUNI is set to logic0, independent of the data stream being transmitted. The LINEAIS 1-0 option is  
expected to be used when the diagnostic loopback is invoked, ensuring that only a valid DS3 stream enters the network. The LIN-  
EAIS 1-0 bits select one of the following AIS patterns for transmission:  
(Line Alarm Indica-  
tion Signal)  
LINEAIS 1-0 AIS Transmitted  
00  
01  
10  
11  
none  
Framed, repetitive 1010... pattern with C-bits forced to logic 0  
Framed, repetitive 1111... pattern with C-bits forced to logic 0  
Unframed, all-ones pattern  
The LINEAIS 1-0=01 option is compatible with TR-TSY000009 Section 3.7 objectives.If the intention is to loopback the AIS, the AIS  
bit in the DS3 TRAN Configuration Register should be written instead.  
1
0
LLBE  
The diagnostic loopback enable (LLBE) bit allows the looping back of the received DS3 into the transmitted DS3 path. If the LLBE bit  
(Diagnostic loopback is a logic 1, the RPOS, RNEG, and RCLK signals are connected internally to replace the signals normally output on the TPOS,  
Enable)  
TNEG, and TCLK pins.  
DLBE  
(Diagnostic Loop-  
back Enable)  
The diagnostic loopback enable (DLBE) bit allows the looping back of the transmitted DS3 into the receive DS3 path for diagnostic  
purposes. If the DLBE bit is a logic 1, the TPOS, TNEG, and TCLK signals are connected internally to replace the signals normally  
input on the RPOS, RNEG, and RCLK pins.  
REGISTER DESCRIPTION  
20  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
MASTER INTERFACE CONFIGURATION  
Read/Write Addresses: 05H  
Reset Value:  
00H  
7
6
0
5
0
4
3
2
1
0
0
TINV  
TRISE  
TUNI  
RINV  
RFALL  
Bit  
Name  
Description  
7-5 Unused  
Must be zero for normal operation.  
The transmit invert (TINV) bit enables data inversion of the DS3 transmit interface. When TINV is a logic 1, the TPOS and TNEG  
4
3
2
1
0
TINV  
(DS3 Transmit Edge signals are active LOW. When TINV is a logic 0, the TPOS and TNEG signals are active HIGH. Inversion only takes place when the  
Invert)  
DS3 transmit interface is configured for dual rail operation.  
TRISE  
The transmit falling edge select (TRISE) bit configures the updating edge used on the DS3 transmit interface. When TRISE is a logic  
(DS3 Transmit Edge 1, the DS3 transmit interface is updated on the rising edge of TCLK. When TRISE is a logic 0, the DS3 transmit interface is updated  
Falling)  
on the falling edge of TCLK.  
TUNI  
(DS3Transmit  
Unipolar)  
The transmit unipolar (TUNI) bit configures the DS3 transmit interface for unipolar or dual rail operation. When TUNI is a logic 1, the  
DS3 transmit interface is configured as TDAT and TMFP. When TUNI is a logic 0, the DS3 transmit interface is configured as TPOS  
and TNEG.  
RINV  
(DS3 Receive Edge  
Invert)  
The receive invert (RINV) bit enables data inversion of the DS3 receive interface. When RINV is a logic 1, the RPOS and RNEG  
signals are active LOW. When RINV is a logic 0, the RPOS and RNEG signals are active HIGH. Inversion only takes place when the  
DS3 receive interface is configured for dual rail operation.  
RFALL  
The receive falling edge select (RFALL) bit configures the sampling edge used on the DS3 receive interface. When RFALL is a logic  
1, the DS3 receive interface is sampled on the falling edge of RCLK. When RFALL is a logic 0, the DS3 receive interface is sampled  
on the rising edge of RCLK.  
(DS3 Receive Edge  
Falling)  
REGISTER DESCRIPTION  
21  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
MASTER ALARM ENABLE/NETWORK REQUIREMENT BIT  
Read/Write Addresses: 06H  
Reset Value:  
80H  
7
6
5
4
3
2
1
0
TNR  
RNR  
ALTFEBE  
REDO  
RED2ALME  
DS2ALME  
RED3ALME  
DS3ALME  
Bit  
Name  
Description  
The Transmit Network Requirement (TNR) bit determines the value inserted into the Network Requirement (N ) bit transmitted in the  
7
TNR  
r
(Transmit Network  
Requirement)  
second C-bit in M-subframe 1 when in DS3 C-bit parity mode. A logic 1 in the TNR bit causes a one to be transmitted in the N  
r
overhead bit timeslot. The TNR bit is set to a logic 1 upon either a hardware or software reset. If C-bit parity is not selected, the TNR  
bit has no effect. Note that the serial control input, TOHEN, takes precedence over the effect of this bit when TOHEN is asserted  
during the Network Requirement Bit position. While TOHEN is asserted at the second C-bit position of M-subframe 1, the data on the  
TOH input is transmitted in the N , bit.  
r
6
5
RNR  
(Receive Network  
Requirement)  
The Receive Network Requirement (RNR) bit reflects the real time value of the Network Requirement (N ) bit presented in the second  
r
C-bit in M-subframe 1 when in DS3 C-bit parity mode. The RNR bit is a logic 1 if a logic one occurs in the N overhead bit timeslot. If  
r
C-bit parity is not selected, the value of RNR is meaningless and random.  
ALTFEBE  
(Alternate Far End  
Block Error)  
The Alternate Far End Block Error (ALTFEBE) bit selects the error conditions detected to define a FEBE indication. If ALTFEBE is a  
logic 1, a FEBE indication is generated in the outgoing C-bit Parity DS3 transmit stream if a C-bit parity error occurred in the last  
received M-frame. If no C-bit Parity error occurred, no FEBE is generated. If ALTFEBE is a logic 0, a FEBE indication is generated  
if either one or more framing bit errors or a C-bit parity error has occurred in the last received M-frame. If no framing bit errors nor  
C-bit parity errors have occurred, then no FEBE is generated.  
4
3
REDO  
The RED DS2 Alarm Output Enable (REDO) bit selects the type of signal output on the ROOF/RRED pin. If REDO is a logic 1, DS3  
(RED DS2 Alarm Out- RED status signal is available on the ROOF/RRED output pin. If REDO is a logic O, DS3 OOF status signal is available on the  
put Enable)  
ROOF/RRED output pin.  
RED2ALME  
(RED DS2 Alarm  
Enable)  
The RED DS2 Alarm Enable (RED2ALME) bit works in conjunction with the DS2ALME and enables detection of DS2 RED condition  
to be used in place of DS2/G.747 out-of-frame in the above criteria for demultiplexed AIS generation. When DS2ALME is set to logic  
1 and RED2ALME is set to logic 1, the occurrence of OOF for 53 consecutive DS2/G.747 M-frames” causes a DS2 RED alarm  
condition and generates the DS1 AIS. When DS2ALME is set to logic 1 and RED2ALME is set to 0, any occurrence of OOF  
generates the DS1 AIS. If DS3ALME is a logic 0, the RED3ALME bit is ignored.  
2
DS2ALME  
(DS2 Alarm Enable)  
The DS2 Alarm Enable (DS2ALME) bit allows the automatic generation of AIS in the DS1s demultiplexed from a DS2 or G.747  
stream which is in an alarm condition. If DS2ALME is a logic 1, a DS2 or G.747 out-of-frame (OOF) condition (i.e. immediately after  
2-of-n F-bit errors where n is 4 or 5, or 3-of-4 M-frames containing M-bit errors for DS2, or immediately after 4 consecutive framing  
word errors for G.747) or detection of DS2 or G.747 AIS causes each of the associated DS1s to be replaced by an unframed all ones  
pattern immediately. If DS2ALME is a logic 0, AIS can still be generated in the demultiplexed DS1s under software control by setting  
the bits in the appropriate MX12 AIS Insert Register. Note that the removal of the auto all-ones insertion is performed upon the first  
DS2 M-frame or G.747 frame pulse after the DS2 FRMR has found frame alignment.  
1
0
RED3ALME  
(RED DS3 Alarm  
Enable)  
The RED DS3 Alarm Enable (RED3ALME) bit works in conjunction with the DS3ALME and enables detection of DS3 RED alarm  
condition to be used in place of DS3 loss if signal and DS3 out-of-frame in the above criteria for demultiplexed AIS generation. When  
DS3ALME is set to logic 1 and RED3ALME is set to logic 1, the occurrence of LOS or OOF for 127 consecutive M-frames (or 21  
consecutive M-frames, if FDET is set to logic 1 in the DS3 FRMR configuration register) causes a DS3 RED alarm condition and  
generates the DS2 AIS. When DS3ALME is set to logic 1 and RED3ALME is set to 0, any occurrence of LOS or OOF generates the  
DS2 AIS. If DS3ALME is a logic 0, the RED3ALME bit is ignored.  
DS3ALME  
(DS3 Alarm Enable)  
The DS3 Alarm Enable (DS3ALME) bit allows the automatic generation of AIS in all of the demultiplexed DS2s upon a DS3 alarm  
condition. If DS3ALME is a logic 1, a DS3 loss of signal (>175 zeros), a DS3 out-of-frame (OOF) condition (i.e. immediately after  
3-of-n F-bit errors where n is 8 or 16, or 3-of-4 M-frames containing M-bit errors). DS3 idle code detection or DS3 AIS detection  
causes all of the DS2s to be replaced by an unframed all ones pattern immediately. Generation of AIS continues while the detected  
alarm condition persists. If DS3ALME is a logic 0, AIS can still be generated in the demultiplexed DS2s under software control by  
setting the bits in the MX23 Demux AIS Insert Register.  
REGISTER DESCRIPTION  
22  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
MASTER TEST  
Read/Write Addresses: 07H  
Reset Value:  
00H  
7
6
0
5
0
4
0
3
2
0
1
0
0
DBCTRL  
HIZDATA  
HIZIO  
Bit  
Name  
Description  
7-4 Unused  
Must be zero for normal operation.  
3
DBCTRL  
The DBCTRL bit is used to pass control of the data bus to the CS pin. While the DBCTRL is set, holding the CS pin HIGH causes the  
(Data Bus Control) D2MX to drive the data bus and holding the CS pin LOW tri-states the data bus. The DBCTRL bit overrides the HIZDATA bit. The DBC-  
TRL bit is used to measure the drive capability of the data bus driver pads.  
2
Unused  
Must be zero for normal operation.  
1- 0 HIZDATA, HIZIO  
(Hi-Z Data)  
The HIZDATA and HIZIO bits control the tri-state modes of the D3MX. While the HIZIO bit is a logic 1, all output pins of the D3MX. While  
the HIZIO bit is a logic 1, all output pins of the D3MX except the data bus are held in a HIGH-impedance state. The microprocessor inter-  
face is sill active. While the HIZDATA bit is a logic 1, the data bus is also held in a HIGH-impedance state which inhibits microprocessor  
read cycles.  
(Hi-Z I/O)  
REGISTER DESCRIPTION  
23  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
MASTER INTERRUPT SOURCE #1  
Read/Write Addresses: 08H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
REG2  
REG3  
XFDLINT  
MX23  
DS3FRMR  
RFDLINT  
RFDLEOM  
RBOC  
Bit  
Name  
Description  
7
6
5
REG2  
(Red Alarm 2)  
If REG2 bit is a logic 1, at least one bit in the Master Interrupt Source #2 Register is set, that is, at least one DS2 Farmer or the XFDL  
is generating an interrupt.  
REG3  
(Red Alarm 3)  
If REG3 bit is a logic 1, at least one bit in the Master Interrupt Source #3 Register is set, that is, at least one M12 Multiplexer is gen-  
erating an interrupt.  
XFDLINT  
(Transmit Facility  
Data Link Interrupt)  
If XFDLINT bit is a logic 1, the XDFL TSB is generating an interrupt (also visible on the TDLINT output when configured for internal  
HDLC, i.e. TEXHDLC=0)  
4
3
2
MX23  
(MX23 TX Interrupt)  
If MX23 bit is a logic 1, the MX23 FRMR TSB is generating an interrupt due to the detection of a DS2 loopback request.  
DS3FRMR  
If DS3FRMR bit is a logic 1, the DS3 FRMR TSB is generating an interrupt. Register 36H should be read to determine which event in  
(D3 Framer Interrupt) DS3 FRMR has caused to interrupt.  
RFDLINT  
If RFDLINT bit is a logic 1, the RFDL TSB is generating an interrupt (also visible on the RFDLINT output when configured for internal  
(Receive FacilityData HDLC, i.e. REXHDLC=0).  
Link Interrupt)  
1
0
RFDLEOM  
If RFDLEOM bit is a logic 1, the RFDL TSB is generating an interrupt due to an end of message occurrence (also visible on the  
(Receive FacilityData RDLEOM output when configured for internal HDLC, i.e. REXHDLC=0).  
Link End of Message  
Interrupt)  
RBOC  
If RBOC bit is a logic 1, the FEAC RBOC TSB is generating an interrupt. Register 33H should be read to determine which event in  
(Receive Bit Oriented RBOC has caused to interrupt.  
Code Interrupt)  
REGISTER DESCRIPTION  
24  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
MASTER INTERRUPT SOURCE #2  
Read/Write Addresses: 09H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
XFDLUDR DS2FRMR 7 DS2FRMR 6 DS2FRMR 5 DS2FRMR 4 DS2FRMR 3 DS2FRMR 2 DS2FRMR 1  
Bit  
Name  
XFDLUDR  
(Transmit Facility  
Data Link Underrun  
Interrupt)  
Description  
7
This bit allows software to determine whether the XFDL TSB produced an underrun condition.  
If the XFDLUDR bit is a logic 1, the XFDL TSB is generating an interrupt due to an underrun of the transmit data buffer (also visible  
on the TDLUDR output when configured for internal HDC, i.e. TEXHDLC=0).  
Reading this register does not remove the interrupt indication; the corresponding TSBs interrupt status register must be read to  
remove the interrupt indication.  
6-0 DS2FRMR 7-1  
(DS2 Framer  
These bits allow software to determine which of the seven DS2 framer TSBs produced the interrupt on the INTB output pin.  
Reading this register does not remove the interrupt indication; the corresponding TSBs interrupt status register must be read to  
remove the interrupt indication.  
Interrupt)  
MASTER INTERRUPT SOURCE #3  
Read/Write Addresses: 0AH  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
DS3PMON  
MX12 7  
MX12 6  
MX12 5  
MX12 4  
MX12 3  
MX12 2  
MX12 1  
Bit  
Name  
DS3PMON  
Description  
DS3 PMON TSB produced the interrupt on the INTB output pin.  
7
(DS3 Performance  
Monitor Interrupt)  
6-0 M12 7-1  
(M12 Performance  
Monitor Interrupt)  
These bits correspond to which M12 TSB produced an interrupt. Reading this register does not remove the interrupt indication; the  
corresponding TSBs interrupt status register must be read to remove the interrupt indication.  
REGISTER DESCRIPTION  
25  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS3 TRANSMIT CONFIGURATION  
Read/Write Addresses: 0CH  
Reset Value:  
00H  
7
6
5
4
3
2
0
1
0
0
CBTRAN  
AIS  
IDL  
FERF  
SBOW  
CBIT  
Bit  
Name  
CBTRAN  
(DS3 C-Bit Transmit  
Configuration)  
Description  
7
The CBTRAN bit controls the C-bits during AIS transmission. When CBTRAN is a logic 0, the C-bits are overwritten with zeros dur-  
ing AIS transmission (as is currently specified in ANSI T1.107a Section 8.1.3.1). The only exception is the network requirement bit,  
which is forced to the TNR register value. When CBTRAN is a logic 1 and the M23 application is enabled the C-bits pass through  
transparently during AIS transmission. When CBTRAN is a logic 1, and the C-bit parity application is enabled, the C-bits are over-  
written with the appropriate C-bit parity functions during AIS transmission.  
6
5
4
3
AIS  
The AIS bit enables transmission of the alarm indication signal. When AIS is a logic 1, the transmit DS3 payload (on the TDAT/  
TPOS and TNEG outputs) is overwritten with the pattern 1010...  
(DS3Alarm Indication  
Signal Configuration)  
IDL  
The IDL bit enables transmission of the alarm indication signal and the idle signal. When IDL is a logic 1, the transmit DS3 payload  
is overwritten with the pattern 1100...  
(DS3 Idle Pattern  
Configuration)  
FERF  
(DS3 Far End Receive  
Failure Configuration)  
The FERF bit enables transmission of far end receive failure in the outgoing DS3 stream. When FERF is a logic 1, the X1 and X2  
overhead bit positions in the DS3 stream are set to logic 0. When FERF is a logic 0, the X1 and X2 overhead bit positions in the  
DS3 stream are set to logic 1.  
SBOW  
The SBOW bit selects weather to insert the bit from the TOH input into the stuff opportunity bit or into the F4 bit. When SBOW is a  
logic 1, the bit from the TOH input is inserted into the stuff opportunity bit. When SBOW is a logic 0, the bit from the TOH input is  
inserted into the F4 bit.  
(DS3 Stuff Bit  
Opportunity Window  
Configuration)  
2-1 Unused  
Must be zero for normal operation.  
0
CBIT  
(DS3 C-Bit parity  
Configuration)  
The CBIT bit enables the C-bit parity application. When CBIT is a logic 1, C-bit parity is enabled, and the associated functions are  
inserted in the C-bit positions of the incoming DS3 stream. When CBIT is a logic 0, the M23 application is selected, and the C-bits  
are passed transparently through the DS3 TRAN.  
REGISTER DESCRIPTION  
26  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS3 TRANSMIT DIAGNOSTIC  
Read/Write Addresses: 0DH  
Reset Value:  
00H  
7
6
5
0
4
3
2
1
0
DLOS  
DLCV  
DFERR  
DMERR  
DCPERR  
DPERR  
DFEBE  
Bit  
Name  
Description  
7
DLOS  
(DS3 Loss of Signal)  
The DLOS controls the insertion of loss of signal in the outgoing DS3 stream. When DLOS is set to a logic 1, the data on outputs  
TPOS, TNEG, and TDAT are forced to continuous zeros.  
6
DLCV  
(DS3 Line Code Viola-  
tion)  
The DLCV controls the insertion of a single line code violation in the outgoing DS3 stream. When DLCV is set to a logic 1, a line  
code violation is inserted by generating an incorrect polarity of violation in the next B3ZS signature. The data being transmitted  
must therefore contain periods of three consecutive zeros in order for the line code violation to be inserted. For example line code  
violations may not be inserted when transmitting AIS, but will be inserted when transmitting the idle signal. This bit is automatically  
cleared upon insertion of the line code violation.  
5
4
Unused  
Must be zero for normal operation.  
DFERR  
(DS3 F-Bit Errors)  
The DFERR controls the insertion of framing errors (F-bit errors) in the outgoing DS3 stream. When DFERR is set to a logic 1, and  
the F-bits are inverted before insertion in the DS3 stream.  
3
2
1
0
DMERR  
(DS3 M-Bit Errors)  
The DMERR controls the insertion of framing errors (M-bit errors) in the outgoing DS3 stream. When DMERR is set to a logic 1, and  
the M-bits are inverted before insertion in the DS3 stream.  
DCPERR  
The DCPERR controls the insertion of C-bit parity errors in the outgoing DS3 stream. When DCPERR is set to a logic 1, and the C-  
(DS3 C-Bit Parity Errors) bit parity application is enabled, the three C-bits in M-subframe 3 are inverted before insertion in the DS3 stream.  
DPERR  
(DS3 P-Bit Errors)  
The DPERR controls the insertion of parity errors (P-bit errors) in the outgoing DS3 stream. When DPERR is set to a logic 1, and  
the P-bits are inverted before insertion in the DS3 stream.  
DFEBE  
(DS3 Far End Block  
Errors)  
The DFEBE controls the insertion of far end block errors in the outgoing DS3 stream. When DFEBE is set to a logic 1, and the C-bit  
parity application is enabled, the three C-bits in M-subframe 4 are set to a logic 0.  
REGISTER DESCRIPTION  
27  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS3 PMON INTERRUPT ENABLE/STATUS  
Read/Write Addresses: 11H  
Reset Value:  
00H  
7
6
0
5
0
4
0
3
0
2
1
0
0
INTE  
INTR  
OVR  
Bit  
Name  
Description  
7-3 Unused  
Must be zero for normal operation.  
2
INTE  
(DS3 Performance  
A logic 1 in the INTE bit position enables the DS3 PMON to generate a microprocessor interrupt and assert the INTB output when  
the counter values are transferred to the holding registers. A logic 0 in the INTE bit position disables the DS3 PMON from generat-  
Monitor Interrupt Enable) ing an interrupt. When the TSB is reset, the INTE bit is set to logic 0, disabling the interrupt. The interrupt is cleared when this reg-  
ister is read.  
1
0
INTR  
(DS3 Interrupt)  
The interrupt (INTR) bit indicates the current status of the internal interrupt signal. A logic 1 in this bit position indicates that a trans-  
fer of counter values to the holding registers has occurred; a logic 0 indicates that no transfer has occurred.  
The INTR bit is set to logic 0 when this register is read. The value of the INTR bit is not affected by the value of the INTE bit.  
OVR  
(DS3 Overrun)  
The overrun (OVR) bit indicates the overrun status of the holding registers. A logic 1 in this bit position indicates that a previous  
interrupt has not been cleared before the end of the next accumulation interval, and that the contents of the holding registers have  
been overwritten. A logic 0 indicates that no overrun has occurred. This bit is reset to logic 0 when this register is read.  
DS3 LCV COUNT LSB  
Read/Write Addresses: 14H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
LCV7  
LCV6  
LCV5  
LCV4  
LCV3  
LCV2  
LCV1  
LCV0  
Bit  
Name  
Description  
7-0 LCV 7-0  
These bits indicate the number of DS3 Line Code Violation (LCV) events that occurred during the previous accumulation interval. A  
transfer operation of all counter registers within the selected PMON can be triggered by writing to either LCV Count Register.  
(DS3 Line Code  
Violation)  
REGISTER DESCRIPTION  
28  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS3 LCV COUNT MSB  
Read/Write Addresses: 15H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
LCV15  
LCV14  
LCV13  
LCV12  
LCV11  
LCV10  
LCV9  
LCV8  
Bit  
Name  
Description  
7-0 LCV 15-8  
(DS3 Line Code  
Violation)  
These bits indicate the number of DS3 Line Code Violation (LCV) events that occurred during the previous accumulation interval.  
A transfer operation of all counter registers within the selected PMON can be triggered by writing to either LCV Count Register.  
DS3 FERR COUNT LSB  
Read/Write Addresses: 16H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
FERR7  
FERR6  
FERR5  
FERR4  
FERR3  
FERR2  
FERR1  
FERR0  
Bit  
Name  
Description  
7-0 FERR 7-0  
These bits indicate the number of DS3 framing error (FERR) events that occurred during the previous accumulation interval.  
A transfer operation of all counter registers within the selected PMON can be triggered by writing to either FERR Count Register.  
(DS3 Far End Receive  
Error)  
DS3 FERR COUNT MSB  
Read/Write Addresses: 17H  
Reset Value:  
00H  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
FERR9  
FERR8  
Bit  
Name  
Description  
7-2 Unused  
Must be zero for normal operation.  
1-0 FERR 9-8  
These bits indicate the number of DS3 framing error (FERR) events that occurred during the previous accumulation interval.  
A transfer operation of all counter registers within the selected PMON can be triggered by writing to either FERR Count Register.  
(DS3 Far End  
Receive Error)  
REGISTER DESCRIPTION  
29  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS3 EXZS COUNT LSB  
Read/Write Addresses: 18H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
EXZS7  
EXZS6  
EXZS5  
EXZS4  
EXZS3  
EXZS2  
EXZS1  
EXZS0  
Bit  
Name  
Description  
These registers indicate the number of summed Excessive Zeros (EXZS) that occurred during the previous accumulation interval.  
7-0 EXZS 7-0  
(DS3 Excessive Zero One or more excessive zeros occurrences within an 85 bit block is counted as one summed excessive zero.  
Suppression) A transfer operation of all counter registers within the selected PMON can be triggered by writing to either FERR Count Register.  
DS3 EXZS COUNT MSB  
Read/Write Addresses: 19H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
EXZS15  
EXZS14  
EXZS13  
EXZS12  
EXZS11  
EXZS10  
EXZS9  
EXZS8  
Bit  
Name  
Description  
These registers indicate the number of summed Excessive Zeros (EXZS) that occurred during the previous accumulation interval.  
7-0 EXZS 7-0  
(DS3 Excessive Zero One or more excessive zeros occurrences within an 85 bit block is counted as one summed excessive zero.  
Suppression) A transfer operation of all counter registers within the selected PMON can be triggered by writing to either FERR Count Register.  
DS3 PERR COUNT LSB  
Read/Write Addresses: 1AH  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
PERR7  
PERR6  
PERR5  
PERR4  
PERR3  
PERR2  
PERR1  
PERR0  
Bit  
Name  
Description  
7-0 PERR 7-0  
(DS3 Parity Error)  
These bits indicate the number of P-bit parity error (PERR) events that occurred during the previous accumulation interval.  
A transfer operation of all counter registers within the selected PMON can be triggered by writing to either EXZS Count Register or  
writing to the Global PMON Update Register 0x01.  
REGISTER DESCRIPTION  
30  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS3 PERR COUNT MSB  
Read/Write Addresses: 1BH  
Reset Value:  
00H  
7
6
0
5
4
3
2
1
0
0
PERR13  
PERR12  
PERR11  
PERR10  
PERR9  
PERR8  
Bit  
Name  
Description  
7-0 PERR 13-8  
(DS3 Parity Error)  
These bits indicate the number of P-bit parity error (PERR) events that occurred during the previous accumulation interval.  
A transfer operation of all counter registers within the selected PMON can be triggered by writing to either EXZS Count Register.  
DS3 CPERR COUNT LSB  
Read/Write Addresses: 1CH  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
CPERR7  
CPERR6  
CPERR5  
CPERR4  
CPERR3  
CPERR2  
CPERR1  
CPERR0  
Bit  
Name  
Description  
7-0 CPERR 7-0  
(DS3 C-Bit Parity  
Error)  
These bits indicate the number of C-bit parity error (CPERR) events that occurred during the previous accumulation interval.  
A transfer operation of all counter registers within the selected PMON can be triggered by writing to either CPERR Count Register.  
DS3 CPERR COUNT MSB  
Read/Write Addresses: 1DH  
Reset Value:  
00H  
7
6
0
5
4
3
2
1
0
0
CPERR13  
CPERR12  
CPERR11  
CPERR10  
CPERR9  
CPERR8  
Bit  
Name  
Description  
7-6 Unused  
Must be zero for normal operation.  
5-0 CPERR 13-8  
These bits indicate the number of C-bit parity error (CPERR) events that occurred during the previous accumulation interval.  
A transfer operation of all counter registers within the selected PMON can be triggered by writing to either CPERR Count Register.  
(DS3 C-Bit Parity  
Error)  
REGISTER DESCRIPTION  
31  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS3 FEBE COUNT LSB  
Read/Write Addresses: 1EH  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
FEBE7  
FEBE6  
FEBE5  
FEBE4  
FEBE3  
FEBE2  
FEBE1  
FEBE0  
Bit  
Name  
Description  
7-0 FEBE 7-0  
(DS3 Far End Bit  
Error)  
These bits indicate the number of far end block error (FEBE) events that occurred during the previous accumulation interval.  
A transfer operation of all counter registers within the selected PMON can be triggered by writing to either FEBE Count Register.  
DS3 FEBE COUNT MSB  
Read/Write Addresses: 1FH  
Reset Value:  
00H  
7
6
0
5
4
3
2
1
0
0
FEBE13  
FEBE12  
FEBE11  
FEBE10  
FEBE9  
FEBE8  
Bit  
Name  
Description  
7-0 FEBE 13-8  
(DS3 Far End Bit  
Error)  
These bits indicate the number of far end block error (FEBE) events that occurred during the previous accumulation interval.  
A transfer operation of all counter registers within the selected PMON can be triggered by writing to either FEBE Count Register.  
REGISTER DESCRIPTION  
32  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
XFDL TSB CONFIGURATION  
Read/Write Addresses: 20H  
Reset Value:  
00H  
7
6
0
5
0
4
3
2
1
0
0
EOM  
INTE  
ABT  
CRC  
EN  
Bit  
Name  
Description  
7-5 Unused  
Must be zero for normal operation.  
4
EOM  
The EOM bit indicates that the last byte of data written in the Transmit Data register is the end of the present data packet. If the  
(XFDL End of Message) CRC bit is set then the 16-bit FCS word is appended to the last data byte transmitted and a continuous stream of flags is gener-  
ated. The EOM bit is automatically cleared before transmission of the next data packet begins. The EOM register bit value can be  
set to logic 1 by pulsing the TDLEMOI input pin.  
3
2
INTE  
The INTE bit enables the generation of an interrupt via the TDLINT output. Setting the INTE bit to logic 1 enables the generation of  
(XFDL Interrupt Enable) an interrupt by asserting the TDLINT output; setting INTE to logic 0 disables the generation of an interrupt.  
ABT  
The Abort (ABT) controls the sending of the 7 consecutive ones HDLC abort code. Setting the ABT bit to a logic 1 causes the  
11111110 code to be transmitted after the last byte from the Transmit Data Register. Aborts are continuously sent until this bit is  
reset to logic 0.  
(XFDL Abort Code)  
1
0
CRC  
The CRC enable bit controls the generation of the CCITT-CRC frame check sequence (FCS). Setting the CRC bit to logic 1  
enables the CCITT-CRC generator and the appends the 16 bit FCS to the end of each message. When the CRC bit is set to logic  
0, the FCS is not appended to the end of the message. The CRC type used is the CCITT-CRC with generator polynomial =  
x16+x12+x5+1. The HIGH order bit of the FCS word is transmitted first.  
(XFDL Cyclical  
Redundancy Check)  
EN  
The enable bit (EN) controls the overall operation of the XFDL TSB. When the EN bit is set to a logic 1, the XDFL TSB is enabled  
and flag sequences are sent until data is written into the Transmit Data Register. When the EN bit is set to logic 0, the XFDL TBS  
is disabled.  
(XFDL Enable)  
XFDL TSB INTERRUPT STATUS  
Read/Write Addresses: 21H  
Reset Value:  
00H  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
INT  
UDR  
Bit  
Name  
Description  
7-2 Unused  
Must be zero for normal operation.  
1
INT  
The INT bit indicates when the XFDL TSB is ready to accept a new data byte for transmission. The INT bit is set to a logic 1 when  
the previous byte in the Transmit Data register has been loaded into the parallel to serial converter and a new byte can be written  
into the Transmit Data register. The INT bit is set to a logic 0 while new data is in the Transmit Data register. The INT bit is not dis-  
abled by the INTE bit in the configuration register.  
(XFDL Interrupt)  
0
UDR  
(XFDL Underrun)  
The UDR bit indicates when the XFDL TSB has underrun the data in the Transmit Data register. The UDR bit is set to a logic 1 if  
the parallel to serial conversion of the last byte in the Transmit Data register has completed before the new byte was written into  
the Transmit Data register. Once an underrun has occurred, the XFDL transmits an ABORT, followed by a flag, and waits to trans-  
mit the next valid data byte. If the UDR bit is still set after the transmission of the flag the XFDL will continuously transmit the all-  
ones idle pattern. The UDR bit can only be cleared by writing a logic 0 to the UDR bit position in the register.  
REGISTER DESCRIPTION  
33  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
XFDL TSB TRANSMIT DATA  
Read/Write Addresses: 22H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
TD7  
TD6  
TD5  
TD4  
TD3  
TD2  
TD1  
TD0  
Bit  
Name  
Description  
Data written to this register is serialized and transmitted on the path maintenance data lint least significant bit first. The XFDL  
7-0 TD 7-0  
(XFDL Transmit Data Byte) TSB signals when the next data byte is required by asserting the TDLINT output (if enabled) and by setting the INT bit in the  
Status register high. When INT and/or TDLINT is set, the Transmit Data register must be written with the next message byte  
within 4 data bit periods to prevent the occurrence of an underrun. At a nominal 28.2 kbit/sec link data rate the required write  
interval is 110µsec.  
RFDL TSB CONFIGURATION  
Read/Write Addresses:24H  
Reset Value:  
00H  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
TR  
EN  
Bit  
Name  
Description  
7-2 Unused  
Must be zero for normal operation.  
1
TR  
Setting the terminate reception bit (TR) forces the RFDL TSB to immediately terminate the reception of the current LAPD  
frame, empty the FIFO, clear the interrupts, and begin searching for a new flag sequence. The RFDL handles the TR input in  
the same manner as if the EN bit had been cleared and then set. The TR bit in the Configuration register will reset itself after a  
rising and falling edge have occurred on the CLK input to the RFDL TSB once the write to this register has completed and WEB  
goes inactive. If the Configuration register is read after this time, the TR value returned will be zero. The RFDL TSB handles the  
TR input in the same manner as clearing and setting the EN bit, therefore, the RFDL state machine will begin searching for  
flags and an interrupt will be generated when the first flag is detected.  
(RDFL Terminate  
Reception)  
0
EN  
The enable bit (EN) controls the overall operation of the RFDL TSB. When set, the RDFL TSB is enabled; When reset, the  
RDFL TSB is disabled. When the TSB is disabled, the FIFO and interrupts are all cleared, however, the programming of the  
Interrupt Control/Status Register is not affected. When the TSB is enabled, it will immediately begin looking for flags.  
(RFDL Enable)  
REGISTER DESCRIPTION  
34  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
RFDL TSB INTERRUPT CONTROL/STATUS  
Read/Write Addresses: 25H  
Reset Value:  
00H  
7
6
0
5
0
4
0
3
0
2
1
0
0
INTC1  
INTC0  
INT  
Bit  
Name  
Description  
7-3 Unused  
Must be zero for normal operation.  
The INTC1 and INTC0 bits control when an interrupt is asserted based on the number of received data bytes in the FIFO as follows:  
2, 1 INTC1, INTC0  
(RDFL Interrupt  
Control Bits)  
INTC1  
INTC0  
Description  
0
0
1
1
0
1
0
1
Disable interrupts (All sources)  
Enable interrupt when FIFO receives data  
Enable interrupt when FIFO has 2 bytes of data  
Enable interrupt when FIFO has 3 bytes of data  
0
INT  
The INT bit reflects the Status of the external RDLINT interrupt unless the INTC1 and INTC0 bits are set to disable interrupts, In that  
case, the RDLINT output is forced to 0 and the INT bit of the Interrupt Control/Status register will reflect the state of the internal inter-  
rupt latch.  
(RDFL Interrupt  
Status)  
REGISTER DESCRIPTION  
35  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
RFDL TSB STATUS  
Read/Write Addresses:26H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
FE  
OVR  
FLG  
EOM  
CRC  
NVB2  
NVB1  
NVB0  
Bit  
Name  
Description  
7
FE  
The FIFO Empty bit (FE) is HIGH when the last FIFO entry is read and goes LOW when the FIFO is loaded with new data.  
(RDFL FIFO Empty)  
6
OVR  
(RDFL Overrun)  
The Receiver Overrun bit (OVR) is set when data is written over unread data in the FIFO. This bit is not reset until after the Status  
register is read. While OVR is HIGH, the RFDL and FIFO are held in the reset state, causing the FLG and EOM bits in the status reg-  
ister to be reset also.  
5
4
FLG  
(RDFL Flag)  
The flag bit (FLG) is set if the RFDL TSB has detected the presence of the LAPD flag sequence (01111110) in the data. FLG is reset  
only when the LAPD abort sequence (01111111) is detected in the data or when the RFDL TSB is disabled. This bit is passed  
through the FIFO with the Data so that the status will correspond to the Data just read from the FIFO. The reception of bit oriented  
codes over the data link will also force an abort due to its eight ones pattern.  
EOM  
The End of Message bit (EOM) follows the RDLEOM output. It is set when:  
(RFDL End of Mes-  
sage)  
1. The last byte in the LAPD frame (EOM) is being read from the Receive Data Register.  
2. An abort sequence is detected while not in the receiving all-ones state and the byte, written to the FIFO due to  
the detection of the abort sequence, is being read from the FIFO,  
3. Immediately on detection of FIFO overrun.  
The EOM bit is passed through the FIFO with the Data so that the Status will correspond to the Data just read from the FIFO.  
3
CRC  
The CRC bit is set if a CRC error was detected in the last received LAPD frame. The CRC bit is only valid when EOM is logic 1 and  
FLG is a logic 1 and OVR is a logic 0.  
(RFDL Cyclical  
Redundancy Check)  
2-0 NVB 2-0  
(RFDL Number of  
Valid Bits)  
The NVB 2-0 bit positions indicate the number of valid bits in the Receive Data Register byte. It is possible that not all of the bits in the  
Receive Data Register are valid when the last data byte is read since the data frame can be any number of bits in length and not nec-  
essarily an integral number of bytes. The receive Data Register is filled from the MSB to the LSB bit position, with one to eight data  
bits being valid. The number of valid bits is equal to 1 plus the value of NVB 2-0 value of 000 binary indicates that only the MSB in the  
register is valid. NVB 2-0 is only valid when the EOM bit is a logic 1 and the FLG bit is a logic 1 and the OVR bit is a logic 0.  
RFDL TSB RECIVE DATA  
Read/Write Addresses: 27H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
RD7  
RD6  
RD5  
RD4  
RD3  
RD2  
RD1  
RD0  
Bit  
Name  
Description  
RD0 corresponds to the first bit of the serial byte received by the RFDL.  
7-0 RD 7-0  
(RFDL Receive Byte)  
REGISTER DESCRIPTION  
36  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
MX23 CONFIGURATION  
Read/Write Addresses: 28H  
Reset Value:  
00H  
7
6
0
5
0
4
0
3
2
1
0
0
LBCODE1  
LBCODE0  
CBE  
INTE  
Bit  
Name  
Description  
7-4 Unused  
Must be zero for normal operation.  
3-2 LBCODE 1-0  
The LBCODE 1-0 bits select the valid state for a loopback request coded in the C-bits of the DS3 signals. Transmit and receive are not  
independent; the same code is expected in the receive DS3 as is inserted in the transmitted DS3. The following table gives the corre-  
spondence between LBCODE 1-0 bits and the valid codes:  
(Loopback Code)  
LBCODE1:0] Loopback Code  
00  
01  
10  
11  
C1 = C2 and C1 = C3  
C1 = C3 and C1 = C2  
C2 = C3 and C1 = C2  
C1 = C2 and C1 = C3  
If LDCODE 1-0 is ‘b00 or ‘b11, the loopback code is as per ANSI T1.107a Section 8.2.1 and TR-TDY-000009 Section 3.7. Because  
TR-TSY 000233 Section 5.3.14.1 recommends compatibility with non-compliant existing equipment, the two other loopback command  
possibilities are also supported  
The LBCODE 1-0 bits become logical 0 upon either a hardware or software reset.  
1
0
CBE  
When set HIGH, the CBE bit enables C-bit parity operation. When CBE is LOW, M23 operation is enabled. While in C-bit parity mode,  
(C-Bit Parity Enable) loopback request insertion are disabled. The generated DS2 clock, GD2CLK, is nominally 6.3062723 MHz while in C-bit parity mode,  
received C bits are ignored, and transmitted C bits are set to 1. While in M23 mode, the generated DS2 clock, GD2CLK, is nominally  
6.311993 MHz and C bit decoding and encoding is fully operational.  
INTE  
When set HIGH, the INTE bit enables the MX23 to activate the interrupt output, INTB, whenever any of the LBRI 7-1 bits are set HIGH  
(M23 Interrupt Enable) in the MX23 Loopback Request Interrupt register. MX23 interrupts are masked when INTE is cleared LOW.  
REGISTER DESCRIPTION  
37  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DEMUX AIS INSERT REGISTER  
Read/Write Addresses: 2AH  
Reset Value:  
00H  
7
0
6
5
4
3
2
1
0
DAIS7  
DAIS6  
DAIS5  
DAIS4  
DAIS3  
DAIS2  
DAIS1  
Bit  
Name  
Unused  
6-0 DAIS 7-1  
Description  
7
Must be zero for normal operation.  
Setting any of the DAIS7-1 bits activates insertion of the alarm indication signal (all ones) into the corresponding DS2 stream demul-  
tiplexed from the DS3 signal input on RDAT. Demux AIS Insertion takes place after the point where per DS2 loopback may be  
invoked using the Loopback Activate register thus allowing demux AIS to be inserted into the through path while a DS2 loopback is  
activated, if desired.  
(Demux Alarm  
Indication Signal)  
MX23 MUX AIS INSERT REGISTER  
Read/Write Addresses: 2AH  
Reset Value:  
00H  
7
0
6
5
4
3
2
1
0
MAIS7  
MAIS6  
MAIS5  
MAIS4  
MAIS3  
MAIS2  
MAIS1  
Bit  
Name  
Unused  
6-0 MAIS 7-1  
Description  
7
Must be zero for normal operation.  
Setting any of the MAIS 7-1 bits activates insertion of the alarm indication signal (all ones) into the corresponding DS2 stream  
multiplexed into the DS3 signal output on TDAT. Mux AIS Insertion takes place before the point where per DS2 loopback may be  
invoked using the Loopback Activate register and thus mux AIS cannot be inserted while a DS2 loopback is activated.  
(Multiplexed Alarm  
Indication Signal)  
REGISTER DESCRIPTION  
38  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
MX23 LOOPBACK ACTIVATE REGISTER  
Read/Write Addresses: 2BH  
Reset Value:  
00H  
7
0
6
5
4
3
2
1
0
LBA7  
LBA6  
LBA5  
LBA4  
LBA3  
LBA2  
LBA1  
Bit  
Name  
Unused  
6-0 LBA 7-1  
Description  
7
Must be zero for normal operation.  
Setting any of the LBA 7-1 bits activates loopback of the corresponding DS2 stream from the input DS3 signal to the output DS3  
(DS2 Loopback)  
signal.  
The demultiplexed DS2 signals continue to present valid payloads while loopbacks are activated. The MX23 Demux AIS Insert  
Register allows insertion of DS2 AIS if required.  
MX23 LOOPBACK REQUEST INSERT REGISTER  
Read/Write Addresses: 2CH  
Reset Value:  
00H  
7
0
6
5
4
3
2
1
0
ILBR7  
ILBR6  
ILBR5  
ILBR4  
ILBR3  
ILBR2  
ILBR1  
Bit  
Name  
Unused  
6-0 ILBR 7-1  
Description  
7
Must be zero for normal operation.  
Setting any of the ILBR 7-1 bits enables the insertion of a loopback request in corresponding DS2 stream in the output DS3 signal.  
The format of the loopback request is determined by the LBCODE 1-0 bits in the MX23 Configuration Register.  
(MX23 Insertion  
Loopback Request)  
REGISTER DESCRIPTION  
39  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
MX23 LOOPBACK REQUEST DETECT REGISTER  
Read/Write Addresses: 2DH  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
0
LBRD7  
LBRD6  
LBRD5  
LBRD4  
LBRD3  
LBRD2  
LBRD1  
Bit  
Name  
Unused  
6-0 LBRD 7-1  
Description  
7
Must be zero for normal operation.  
The LBRD 7-1 bits are set HIGH while a loopback request is detected for the corresponding DS2 stream in the input DS3 signal. The  
LBRD 7-1 bits are set LOW otherwise.  
The format of the loopback request expected is determined by the LBCODE 1-0 bits in the MX23 Configuration Register. As per  
TR-TSY-000009 Section 3.7, the loopback request must be present for five successive M-frames before declaration of detection.  
Removal of the loopback request is declared when it has be absent for five successive M-frames.  
(MX23 Loopback  
Request Detector)  
MX23 LOOPBACK REQUEST INTERRUPT REGISTER  
Read/Write Addresses: 2EH  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
0
LBRI7  
LBRI6  
LBRI5  
LBRI4  
LBRI3  
LBRI2  
LBRI1  
Bit  
Name  
Unused  
6-0 LBRI 7-1  
Description  
7
Must be zero for normal operation.  
The LBRI 7-1 bits are set HIGH while a loopback request is asserted or deasserted for the corresponding DS2 stream in the input  
DS3 signal. The LBRI 7-1 bits are set HIGH whenever the corresponding LBRI 7-1 bits change state. If interrupts are enabled using  
the INTE bit in the Configuration register then the interrupt output, INTB is activated. The LBRI 7-1 bits are to logic 0 immediately  
following a read of the register, acknowledging the interrupt and deactivating the INTB output.  
(MX23 Loopback  
Request Interrupt)  
REGISTER DESCRIPTION  
40  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
FEAC XBOC TSB CODE  
Read/Write Addresses: 31H  
Reset Value:  
3FH  
7
6
0
5
4
3
2
1
0
0
BC5  
BC4  
BC3  
BC2  
BC1  
BC0  
Bit  
Name  
Description  
7-6 Unused  
5-0 BC 5-0  
Must be zero for normal operation.  
This register enables the XBOC TSB to generate a bit oriented code and selects the 6-bit code to be transmitted.  
When this register is written with any 6-bit code other than 111111, that code will be transmitted repeatedly in the far-end alarm and  
control (FEAC) channel with the format 111111110[BC0][BC1][BC2][BC3][BC4][BC5]0. When the register is written with 111111, the  
XBOC TSB is disabled.  
RBOC CONFIGURATION/INTERRUPT ENABLE  
Read/Write Addresses: 32H  
Reset Value:  
00H  
7
6
0
5
0
4
0
3
0
2
1
0
0
IDLE  
AVC  
BOCE  
Bit  
Name  
Description  
7-3 Unused  
Must be zero for normal operation.  
2
IDLE  
(Idle)  
The IDLE bit position enables or disables the generation of an interrupt when there is a transition from a validated BOC to idle code.  
A logic 1 in this bit position enables generation of an interrupt; a logic 0 in this bit position disables interrupt generation.  
1
AVC  
The AVC bit position selects the validation criterion used in determining a valid BOC. A logic 0 selects the 8 out of 10 matching BOC  
(Alternative Validation criterion; a logic 1 in the AVC bit position selects the alternative” validation criterion of 4 out of 5 matching BOCs.  
Criterion)  
0
BOCE  
(Bit Oriented Code  
Enable)  
The BOCE bit position enables or disables the generation of an interrupt when a valid BOC is detected. A logic 1 in this bit position  
enables generation of an interrupt; a logic 0 in this bit position disables interrupt generation. When the D3MX is reset, BOCE is reset  
to logic 0; therefore, interrupt generation is disabled.  
REGISTER DESCRIPTION  
41  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
RBOC INTERRUPT STATUS  
Read/Write Addresses: 33H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
IDLEI  
BOCI  
BOC5  
BOC4  
BOC3  
BOC2  
BOC1  
BOC0  
Bit  
Name  
Description  
7
IDLEI  
(Idle Interrupt)  
The IDLEI bit indicates whether an interrupt was generated by the detection of the transition from a valid BOC to idle code. A logic 1 in  
the IDLEI bit position indicates that a transition from a valid BOC to idle code has generated an interrupt; a logic 0 in the IDLEI bit  
position indicates that no transition from a valid BOC to idle code has been detected. IDLEI is cleared to logic 0 when the register is  
read.  
6
BOCI  
(Bit Oriented Code  
Interrupt)  
Indicates a logic 1 in the BOCI bit position indicates that a validated BOC code has generated an interrupt; a logic 0 in the BOCI bit  
position indicates that no BOC has been detected. Since the bit-oriented code 111111” is not recognized by the RBOC, the BOC 5-0  
bits are set to all ones (111111) if no valid code has been detected. The BOCI bit position is cleared to logic 0 and the interrupt is  
deasserted when this register is read.  
5-0 BOC 5-0  
(Bit Oriented Code)  
The bit positions BOC 5-0 contain the received bit-oriented codes. A logic 1 in the BOCI bit position indicates that a validated BOC  
code has generated an interrupt; a logic 0 in the BOCI bit position indicates that no BOC has been detected. Since the bit-oriented  
code 111111” is not recognized by the RBOC, the BOC 5-0 bits are set to all ones (111111) if no valid code has been detected. The  
BOCI bit position is cleared to logic 0 and the interrupt is deasserted when this register is read.  
REGISTER DESCRIPTION  
42  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS3 FRMR CONFIGURATION  
Read/Write Addresses: 34H  
Reset Value:  
80H  
7
6
5
4
3
2
1
0
AISPAT  
FDET  
MBDIS  
M3O8  
UNI  
REFR  
AISC  
CBE  
Bit  
Name  
AISPAT  
Description  
The AISPAT bit controls the pattern used to detect the alarm indication signal (AIS). When a logic 1 is written to AISPAT, the AIS  
7
(DS3 Alarm Indication detection algorithm checks that a framed DS3 signal containing the repeating pattern 1010...is present. The C-bits are checked for  
Pattern)  
the value specified by the AISC bit setting. When a logic 0 is written to AISPAT, the AIS detection algorithm is determined solely by  
the settings of AISC and AISONES register bits (see bit mapping table in the Additional Configuration Register description).  
6
5
FDET  
The FDET bit selects the fast detection timing for AIS, IDLE and RED. When FDET is set to logic 1, the AIS, IDLE, and RED detec-  
(DS3 Fast Detection) tion time is 2.23 ms; when FDET is set to logic 0, the detection time is 13.5 ms.  
MBDIS The MBDIS bit disables the use of M-bit errors as a criteria for losing frame alignment. When MBDIS is set to logic 1, M-bit errors are  
(DS3 M-Bit Error Dis- disabled from causing an OOF; the loss of frame criteria is based solely on the number of F-bit errors selected by the M3O8 bit.  
able)  
When MBDIS is logic 0, an OOF can occur when one or more M-bit errors occur in 3 out of 4 consecutive M-frames, or when the F-  
bit error ratio selected by the M3O8 bit is exceeded.  
4
3
2
1
M3O8  
The M3O8 bit configures the out of frame decision criteria. If M3O8 is a logic 1, out of frame is declared if at least 3 of 8 framing bits  
(DS3 M-Bit 3 out of 8 are in error. If M3O8 is a logic 0, the standard 3 of 16 bits in error criteria is used.  
Framing Error)  
UNI  
The UNI bit is used to configure the FRMR to accept either unipolar or bipolar data streams. When a logic 1 is written to UNI, the  
(DS3 Unipolar Select) FRMR accepts unipolar data and line code violation indication on its inputs. When a logic 0 is written to UNI, the FRMR accepts bipo-  
lar data on its inputs and performs B3ZS decoding and line code violation reporting.  
REFR  
(DS3 Re-Framing)  
The REFR bit is used to trigger reframing. If a logic 1 is written to REFR when it was previously logic 0, the FRMR is forced out-of-  
frame, and a new search for frame alignment is initiated. Note that only a LOW to HIGH transition of the REFR bit triggers reframing;  
multiple write operations are required to ensure such a transitions  
AISC  
The AISC bit controls the algorithm used to detect the alarm indication signal (AIS). When a logic 1 is written to AISC, the algorithm  
checks that a framed DS3 signal with all C-bits set to logic 0 is observed for a period of time before declaring AIS. The payload con-  
tents are checked to the pattern selected by the AISPAT bit. When a logic 0 is written to AISC, the AIS detection algorithm is deter-  
mined solely by the settings of AISPAT and AISONES register bits (see bit mapping table in the Additional Configuration Register  
description).  
(DS3 Alarm  
IndicationSignal  
Configuration)  
0
CBE  
(DS3 C-Bit Parity  
Enable)  
The CBE bit selects whether the C-bit parity application is enabled. When a logic 1 is written to CBE, C-bit parity mode is enabled.  
When a logic 0 is written, C-bit parity mode is disabled.  
REGISTER DESCRIPTION  
43  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS3 FRMR INTERRUPT ENABLE (ACE=0)  
Read/Write Addresses: 35H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
COFAE  
REDE  
CBITE  
FERFE  
IDLE  
AISE  
OOFE  
LOSE  
Bit  
Name  
COFAE  
(DS3 Change of  
Frame Alignment  
Enable)  
Description  
7
The COFAE bit enables an interrupt to be generated when a change of frame alignment (i.e. a COFA event) occurs. When COFAE is  
set to logic 1, the interrupt output, INTB, is set LOW when the COFA event occurs.  
6
REDE  
(DS3 RED Alarm  
Enable)  
The REDE bit enables an interrupt to be generated when a change of state of the DS3 RED indication occurs. The DS3 RED  
indication is visible in the REDV bit location in the DS3 FRMR Status register and on the ROOF/RRED pin when the REDO bit in the  
Master Alarm Enable register (register 06Hex) is set to logic 1. When REDE is set to logic 1, the interrupt output, INTB, is set LOW  
when the state of the RED indication changes.  
5
4
CBITE  
(DS3 C-Bit  
Identification Enable) changes.  
The CBITE bit enables an interrupt to be generated when a change of state in the C-bit Identification indication internal to the DS3  
FRMR occurs. When CBITE is set to logic 1, the interrupt output, INTB, is set LOW when the state of the C-bit Identification indication  
FERFE  
The FERFE bit enables an interrupt to be generated when a change of state of the FERF indication occurs. The FERF indication is  
(DS3 Far End  
Receive Failure  
Enable)  
visible in the FERFV bit location in the DS3 FRMR Status register and on the RFERF pin. When FERFE is set to logic 1, the interrupt  
output, INTB, is set LOW when the state of the FERF output changes.  
3
2
IDLE  
(DS3 Idle Enable)  
The IDLE bit enables an interrupt to be generated when a change of state of the DS3 AIS signal detector occurs. When IDLE is set to  
logic 1, the interrupt output, INTB, is set LOW when the state of the IDLE detector changes.  
AISE  
The AISE bit enables an interrupt to be generated when a change of state of the DS3 AIS signal detector occurs. The state of the AIS  
(DS3 Alarm Indication detector is visible in the AISV bit location in the DS3 FRMR Status register and on the RAIS pin. When AISE is set to logic 1, the  
Signal Enable)  
interrupt output, INTB, is set LOW when the state of the AIS detector changes.  
1
OOFE  
(DS3 Out of Frame  
Enable)  
The OOFE bit enables an interrupt to be generated when a change of state of the DS3 FRMR frame alignment acquisition circuitry  
occurs. The state of the frame alignment acquisition circuitry occurs. The state of the frame alignment acquisition circuitry is visible in  
the OOFV bit location in the DS3 FRMR Status register and on the ROOF/RRED pin when the REDO bit in the Master Alarm Enable  
register is logic 0. When the circuitry has lost frame aliment and is searching for the new alignment, and out frame is indicated and  
the OOFV bit and ROOF pin are set to logic 1. When the circuitry has found frame alignment, the OOFV bit and ROOF pin are set to  
logic 0. When OOFE is set to logic 1, the interrupt output, INTB, is set LOW when the state of the OOF indication changes.  
0
LOSE  
(DS3 Loss of Signal  
Enable)  
The LOSE bit enables an interrupt to be generated when a change of state of the loss of signal detector occurs. The state of the  
detector is visible in the LOSV bit position in the DS3 FRMR Status register and on the RLOS pin. When LOSE is set to logic 1, the  
interrupt output, INTB, is set LOW when the state of the LOS indication changes.  
REGISTER DESCRIPTION  
44  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS3 FRMR ADDITIONAL CONFIGURATION REGISTER (ACE=1)  
Read/Write Addresses: 35H  
Reset Value:  
00H  
7
6
0
5
4
3
2
1
0
0
AISONES  
BPVO  
EXZSO  
EXTYPE  
SALGO  
ALGOTYPE  
Bit  
Name  
Description  
7-6 Unused  
Must be zero for normal operation.  
5
AISONES  
(DS3 Alarm  
Indication Signal)  
The AISONES bit controls the pattern used to detect the alarm indication signal (AIS) when both AISPAT and AISC bits in DS3  
FRMR Configuration register (34H) are logic 0; if either AISPAT or AISC are logic 1, the AISONES bit is ignored. When a logic 0 is  
written to AISONES, the algorithm checks that a framed all-ones payload pattern (1111...) signal is observed for a period of time  
before declaring AIS. Only the payload bits are observed to follow an all-ones pattern, the overhead bits (X, P, M, F, C) are ignored.  
When a logic 1 is written to AISONES, the algorithm checks that an unframed all-ones pattern (1111...) signal is observed for a period  
of time before declaring AIS. In this case all the bits, including the overhead, are observed to follow an all-ones pattern. The valid  
combinations of AISPAT, AISC, and AISONES bits are summarized below:  
AISPAT AISC AISONES AIS Detected  
1
0
1
0
0
0
1
1
0
0
X
X
X
0
Framed DS3 stream containing repeating 1010... pattern; overhead bits ignored.  
Framed DS3 stream containing C-bits all logic 0; payload bits ignored.  
Framed DS3 stream containing repeating 1010... pattern and C-bits all logic 0.  
Framed DS3 stream containing all-ones payload pattern; overhead bits ignored.  
Unframed all-ones DS3 stream.  
1
4
3
BPVO  
(DS3 Bipolar  
Violations)  
The BPVO bit enables only bipolar violations to indicate line code violates and be accumulated in the PMON LCV Count Registers.  
When BPVO is set to logic 1, only BPVs not part of a valid B3ZS signature generate an LCV indication and increment the PMON LCV  
counter. When BPVO is set to logic 0, both BPVs not part of a valid B3ZS signature, and either 3 consecutive zeros or excessive  
zeros generate an LCV indication and increment the PMON LCV counter.  
EXZSO  
The EXZSO bit enables only summed zero occurrences to be accumulated in the PMON EXZS Count Registers. When EXZSO is set  
(DS3 Excessive Zero to logic 1, any excessive zero occurrences over an 85 bit period increments the PMON EXZS counter by one. When EXZSO is set to  
Occurrences)  
logic 0, summed LCVs are accumulated in the PMON EXZS Count Registers. A summed LCV is defined as the occurrence of either  
BPVs not part of a valid B3ZS signature or 3 consecutive zeros (or excessive zeros if EXZDET=1) occurring over an 85 bit period;  
each summed LCV occurrence increment the PMON EXZS counter by one.  
2
EXTYPE  
The EXTYPE bit determines the type of zero occurrences to be included in the LCV indication. When EXTYPE is set to logic 1, the  
(DS3 Excessive Zero occurrence of an excessive zero generates a single pulse indication that is used to indicate an LCV.When EXTYPE is set to logic 0,  
Type)  
every occurrence of 3 consecutive zeros generates a pulse indication that is used to indicate an LCV. For example, if a sequence of  
15 consecutive zeros were received, with EXTYPE=1 only a single LCV would be indicated for this string of excessive zeros; with  
EXTYPE=0, five LCVs would be indicated for this string (i.e. one LCV for every 3 consecutive zeros).  
1
0
SALGO  
(DS3 Signature  
Algorithm)  
The SALGO bit determines the criteria used to establish a valid B3ZS signature used to map BPVs to line code violation indications.  
Any BPV that is not part of a valid B3ZS signature is indicated as an LCV. When the SALGO bit is set to logic 1, a valid B3ZS signa-  
ture is declared whenever a zero followed by a bipolar violation is observed. When SALGO is set to logic 0, a valid B3ZS signature is  
declared whenever a zero followed by a bipolar violation of the opposite polarity to the last observed BPV is seen.  
ALGOTYPE  
The ALGOTYPE bit determines the criteria used to decode a valid B3ZS signature. When the ALGOTYPE is set to logic 1, a valid  
(DS3 Algorithm Type) B3ZS signature is declared and 3 zeros substituted whenever a zero followed by a bipolar violation of the opposite polarity to the last  
observed BPV is seen. When the ALGOTYPE bit is set to logic 0, a valid B3ZS signature is declared and the 3 zeros are substituted  
whenever a zero followed by a bipolar violation is observed.  
REGISTER DESCRIPTION  
45  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS3 FRMR INTERRUPT STATUS  
Read/Write Addresses: 36H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
COFAI  
REDI  
CBITI  
FERFI  
IDLI  
AISI  
OOFI  
LOSI  
Bit  
Name  
COFAI  
(DS3 Change of  
Frame Alignment  
Indication)  
Description  
7
The COFAI bit indicates that a change of frame alignment (i.e. a COFA event) signal detector has occurred.  
When the COFAI bit is a logic 1, the frame alignment acquisition circuitry has detected that the new alignment differs from the previ-  
ous frame alignment. When the COFAI bit is logic 0, there was no difference from the current frame alignment and the previous frame  
alignment.  
6
REDI  
The REDI bit indicates that a change of state of the DS3 RED indication has occurred. The DS3 RED indication is visible in the REDV  
(DS3 RED Indication) bit location of the DS3 FRMR Status register and on the ROOF/RRED pin when the REDO bit in the Master Alarm Enable register  
(register 06Hex) is set to logic 1.  
When the REDI bit is a logic 1, a change in the RED state has occurred. When the REDI bit is logic 0, no change in the RED state  
has occurred.  
5
4
3
2
1
CBITI  
(DS3 C-Bit  
Identification)  
The CBITI bit indicates that a change of state in the C-bit identification indication internal to the DS3 FRMR has occurred.  
When the CBITI bit is a logic 1, a change in the internal CBIT state has occurred. When the CBITI bit is logic 0, no change in the  
CBIT state has occurred.  
FERFI  
(DS3 FERF  
Indication)  
The FERFI bit indicates that a change of state of the FERF indication has occurred. The FERF indication is visible in the FERFV bit  
location of the DS3 FRMR Status register and on the RFERF pin. When the FERFI bit is a logic 1, a change in the FERF state has  
occurred. When the FERFI bit is logic 0, no change in the FERF state has occurred.  
IDLI  
The IDLI bit indicates that a change of state of the DS3 IDLE signal detector has occurred. When the IDLI bit is a logic 1, a change in  
the IDLE detector state has occurred. When the IDLI bit is logic 0, no change in the IDLE signal detector state has occurred.  
(DS3 IDLE Signal  
Detector)  
AISI  
(DS3 AIS Signal  
Detector)  
The AISI bit indicates that a change of state of the DS3 AIS signal detector has occurred. The state of the AIS detector is visible in the  
AISV bit location in the DS3 FRMR Status register and on the RAIS pin. When the AISI bit is a logic 1, a change in the AIS detector  
state has occurred. When the AISI bit is logic 0, no change in the AIS detector state has occurred.  
OOFI  
(DS3 FRMR Status)  
The OOFI bit indicates that a change of state of the DS3 FRMR Status frame alignment acquisition circuitry has occurred. The state  
of the frame alignment acquisition circuitry is visible in the OOFV bit location in the DS3 FRMR Status register and on the ROOF/  
RRED pin when the REDO bit in the Master Alarm Enable register is logic 0. When the circuitry has lost frame alignment and is  
searching for the new alignment, an out frame is indicated and the OOFV bit and ROOF pin are set to logic 1. When the circuitry has  
found frame alignment, the OOFI bit and ROOF pin are set to logic 0.  
When the OOFV bit is a logic 1, a change in the OOF state has occurred. When the OOFV bit is logic 0, no change in the OOF state  
has occurred.  
0
LOSI  
The LOSI bit indicates that a change of state of loss of signal detector has occurred. The state of the detector is visible in the LOSV  
(DS3 Loss of Signal) bit position in the DS3 FRMR Status register and on the RLOS pin. When the LOSI bit is a logic 1, a change in the LOS state has  
occurred. When the LOSI bit is logic 0, no change in the LOS state has occurred.  
REGISTER DESCRIPTION  
46  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS3 FRMR STATUS  
Read/Write Addresses: 37H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
ACE  
REDV  
CBITV  
FERFV  
IDLV  
AISV  
OOFV  
LOSV  
Bit  
Name  
Description  
7
6
5
ACE  
(DS3 Additional  
Configuration Enable)  
The ACE bit selects the Additional Configuration Register. This register is located at address 35H, and is only accessible when the  
ACE bit is to logic 1. When ACE is set to logic 0, the Interrupt Enable register is accessible at address 35H.  
REDV  
(DS3 Red Alarm  
Violation)  
The REDV bit indicates the current state of the DS3 RED indication. When the REDV bit is a logic 1, the DS3 FRMR alignment acqui-  
sition circuitry has been out of frame for 2.23ms (or for 13.5ms when FDET is logic 0). When the REDV bit is logic 0, the frame align-  
ment circuitry has found frame (i.e. OODFV=0) for 2.23ms (or 13.4ms if FDET=0)  
CBITV  
The CBITV bit indicates the current state in the C-bit Identification indication. When the CBITV bit is a logic 1, the first C-bit or M sub-  
(DS3 C-Bit Violation) frame 1 has been observed to be logic 1 for 63 consecutive occasions. When the CBITV bit is logic, the first C-bit of sub-frame 1 has  
either not been logic 1 for 63 consecutive occasions or, if CBITV was previously logic 1, the first C-bit of sub-frame 1 has been  
observed to be logic 0 for 2 or more times within 15 consecutive occasions.  
4
3
2
1
0
FERFV  
The FERFV bit indicates the current state of the FERF indication. When the FERFV bit is a logic 1, the FRMR detects that the second  
(DS3 Far End Enable to last M-frames X2=X1=0. When the FERFV bit is logic 0, the second to last M-frames X2=X1=1.  
Error Violation)  
IDLV  
(DS3 Idle Violation)  
The IDLV bit indicates the current state of the DS3 IDLE signal detector. When the IDLV bit is a logic 1, the DS3 IDLE pattern has  
been received for 2.23ms (or for 13.5ms when FDET is logic 0). When the IDLV bit is logic 0, the DS3 IDLE pattern has not been  
received for either 2.23ms or 13.5ms.  
AISV  
The AISV bit indicates the current state of the DS3 AIS signal detector. When the AISV bit is a logic 1, the DS3 AIS pattern has been  
(DS3 Alarm Indication received for 2.23ms (or for 13.5ms when FDET is logic 0). When the AISV bit is logic 0, the DS3 AIS pattern has not been received  
Violation)  
for either 2.23ms or 13.5ms.  
OOFV  
(DS3 Out of Frame  
Violation)  
The OOFV bit indicates the current state of the DS23 FRMR frame alignment acquisition circuitry. When the circuitry has lost frame  
alignment and is searching for the new alignment, an out of frame is indicated and the OOFV bit is set to logic 1. When the circuitry  
has found frame alignment, the OOFV bit is set to logic 0.  
LOSV  
(DS3 Los of Signal  
Violation)  
The LOSV bit indicates the current state of the loss of signal detector. When the LOSV bit is a logic 1, a sequence of 175 consecutive  
zeros was detected on the dual-rail RPOS and RNEG DS3 inputs. When the LOSV bit is logic 0, a valid DS3 signal with a ones’ den-  
sity greater than 33% for 175 ± 1 bit periods was detected on the dual-rail inputs.  
REGISTER DESCRIPTION  
47  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS2 FRMR CONFIGURATION  
Read/Write Addresses: 40H, 50H, 60H, 70H, 80H, 90H, A0H  
Reset Value:  
00H  
7
6
0
5
4
3
2
1
0
0
0
G747  
WORD  
M2O5  
MDBIS  
REF  
Bit  
Name  
Description  
7
G747  
(DS2 G.747  
Enable)  
The G747 bit configures the FRMR for G.747 operation. If the G747 bit is a logic 1, the FRMR will process a G.747 signal. If the G747 bit is  
a logic 0, the FRMR will process a DS2 signal as defined in ANSTI T1.107 Section 7.  
6
5
Unused  
Must be zero for normal operation.  
WORD  
The WORD bit determines the method of accumulating G.747 framing errors. If the WORD bit is a logic 0, each frame alignment signal (FAS)  
bit error results in a single FERR count. If the WORD bit is a logic 1, one or more bit errors in a FAS word result in a single FERR count.  
(DS2 Frame  
Alignment  
Signal Errors  
Method)  
4
M2O5  
The M2O5 bit selects the error ratio for declaring out-of-frame (OOF) when in DS2 mode only. When a 1 is written to M2O5, the framer  
(DS2 M-bit 2 out declares OOF when 2 F-bit errors out of 5 consecutive F-bits are observed. When a 0 is written, the framer declares OOF when 2 F-bit errors  
of 5)  
out of 4 consecutive F-bits are observed. (These two ratios are recommended in T-TSY000009 Section 4.1.2). When the FRMR is config-  
ured for G.747 operation (the G747 bit is set to logic 1), the OOF status is declared when 4 consecutive framing word errors occur (as per  
CCITT Rec. G747 Section 4), regardless of the M2O5 bit setting.  
3
2
MBDIS  
(DS2 M-bit  
The MBDIS bit disables the declaration of out-of-frame upon excessive M-bit errors. If MBDIS is a logic 0, out-of-frame is declared when one  
or more M-bit errors are detected in 3 out of 4 consecutive M-frames. If MBDIS is a logic 1, the state of the M-bits is ignored once in frame.  
Error Disable) Regardless of the state of the MBDIS bit, the F-bits are always monitored for invalid framing.  
REF  
(DS2  
Reframing  
Mode)  
The REF bit is used to trigger reframing. If a logic 1 is written to REF when it was previously logic 0, the FRMR is forced out-of-frame, and a  
new search for frame alignment is initiated. Note that only a LOW-to-HIGH transition of the REF bit triggers reframing; multiple write opera-  
tions are required to ensure such a transition.  
1-0 Unused  
Must be zero for normal operation.  
REGISTER DESCRIPTION  
48  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS2 FRMR INTERRUPT ENABLE  
Read/Write Addresses: 41H, 51H, 61H, 71H, 81H, 91H, A1H  
Reset Value:  
00H  
7
6
0
5
4
3
2
1
0
COFAE  
REDE  
FERFE  
RESE  
AISE  
OOFE  
0
Bit  
Name  
COFAE  
(DS2 Change of  
Frame Alignment  
Enable)  
Description  
7
The COFAE bit is an interrupt enable. A change of frame alignment (COFA) event causes the interrupt output to be set HIGH when  
the COFAE bit is written with a logic 1.  
6
5
Unused  
Must be zero for normal operation.  
REDE  
(DS2 Red Alarm  
Enable)  
The REDE bit is a interrupt enable. A change of state on a corresponding DS2 FRMR status causes the interrupt output INTB, to be  
asserted low when the corresponding interrupt enable bit is written with a logic 1.  
4
3
FERFE  
(DS2 Far End  
Receive Error Enable)  
The FERFE bit is a interrupt enable. A change of state on a corresponding DS2 FRMR status causes the interrupt output INTB, to be  
asserted low when the corresponding interrupt enable bit is written with a logic 1.  
RESE  
The RESE bit is an interrupt enable. A change in the debounced value of the reserved bit in Set II when in G.747 mode causes the  
(Reserved Bit Enable) interrupt output to be set HIGH when the RESE bit is written with a logic 1. The debounced value of the reserved bit only changes  
when the reserved bit is the same for two consecutive frames. The RESE bit has no effect in DS2 mode The interrupt output, INTBm  
is deasserted when the Interrupt Status Register is read if its assertion was a result an OOF, AIS, FERF, RED, RES, or COFA event.  
2
AISE  
The AISE bit is a interrupt enable. A change of state on a corresponding DS2 FRMR status causes the interrupt output INTB, to be  
asserted low when the corresponding interrupt enable bit is written with a logic 1.  
(DS2 Alarm  
Indication Signal  
Interrupt Enable)  
1
0
OOFE  
(DS2 Out of Frame  
Interrupt Enable)  
The OOFE bit is a interrupt enable. A change of state on a corresponding DS2 FRMR status causes the interrupt output INTB, to be  
asserted low when the corresponding interrupt enable bit is written with a logic 1.  
Unused  
Must be zero for normal operation.  
REGISTER DESCRIPTION  
49  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS2 FRAMER INTERRUPT STATUS  
Read/Write Addresses: 42H, 52H, 62H, 72H, 82H, 92H, A2H  
Reset Value:  
00H  
7
6
0
5
4
3
2
1
0
COFAI  
REDI  
FERFI  
RESI  
AISI  
OOFI  
0
Bit  
Name  
COFAI  
(DS2 Change of  
Frame Alignment  
Indication)  
Description  
7
The COFAI bit is an interrupt status indicator. As per TR-TSY-000820, the Change of Frame Alignment (COFA) interrupt is only  
asserted if a frame search results in a frame alignment which is different from the prior frame alignment.  
6
5
Unused  
Must be zero for normal operation.  
REDI  
(DS2 Red Alarm  
Interrupt Indication)  
The REDI bit is a interrupt status indicator. A change of state on the corresponding DS2 FRMR status causes the corresponding  
interrupt status bit to be set to logic 1.  
4
FERFI  
The FERFI bit is a interrupt status indicator. A change of state on the corresponding DS2 FRMR status causes the corresponding  
interrupt status bit to be set to logic 1.  
(DS2 Far End  
Receive Frame  
Interrupt Indication)  
3
2
RESI  
(DS2 Reserved Bit  
Indication)  
The RESI bit is an interrupt status indicator. A change in the debounced value of the reserved bit in Set II when in G.747 mode  
causes this bit to be set to logic 1. The debounced value of the reserved bit only changes when the reserved bit is the same for two  
consecutive frames, This bit has no effect in DS2 mode.  
AISI  
The AISI bit is a interrupt status indicator. A change of state on the corresponding DS2 FRMR status causes the corresponding inter-  
(DS2 Alarm Indication rupt status bit to be set to logic 1.  
Signal Interrupt  
Indication)  
1
0
OOFI  
The OOFI bit is a interrupt status indicator. A change of state on the corresponding DS2 FRMR status causes the corresponding  
interrupt status bit to be set to logic 1.  
(DS2 Out of Frame  
Violation Interrupt  
Indication.  
Unused  
Must be zero for normal operation.  
REGISTER DESCRIPTION  
50  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS2 FRAMER STATUS  
Read/Write Addresses: 43H, 53H, 63H, 73H, 83H, 93H, A3H  
Reset Value:  
00H  
7
0
6
0
5
4
3
2
1
0
REDV  
FERFV  
RESV  
AISV  
OOFV  
0
Bit  
Name  
Description  
7-6 Unused  
Must be zero for normal operation.  
5
4
REDV  
(DS2 Red Alarm  
Violation)  
The REDV bit is a logic 1 if an out-of-frame condition has persisted for 9.9ms (6.9ms in G.747 mode). This is less than 1.5 times the  
maximum average reframe time allowed. The REDV status will remain asserted for 9.9ms (6.6ms in G.747 mode) after frame align-  
ment has been declare and then become logic 0.  
FERFV  
The FERFV bit in this register reflects the status of the corresponding DS2 FRMR value. In DS2 mode, the FERFV bit reflects the  
debounced state of the X bit (first bit of the M4-Subframe). If the X-bit has been a ZERO for two consecutive M-frames, the FERFV bit  
becomes a logic 1. If the X-bit has been a one for two consecutive M-frames, the FERFV bit becomes a logic 0.  
In G.747 mode, FERFV bit reflects the debounced state of the Remote Alarm Indication (RAI, bit 1 of Set II) bit. If the RAI bit has  
been a one for two consecutive frames, the FERFV bit becomes logic 1. If the RAI bit has been a zero for two consecutive frames,  
the FERFV bit becomes a logic 0.  
(DS2 Far End  
Receive Frame  
Violation)  
A six frame latency of the FERFV status ensures a virtually 100% probability of freezing correctly in DS2 mode upon an out-of-frame  
condition and a better than 99.9% probability of freezing correctly in G.747 mode.  
3
2
1
0
RESV  
(DS2 Reserved Bit  
Violation)  
The RESV bit reflects the debounced state of the reserved bit in Set II when in G.747 mode. The debounced value of the reserved bit  
only changes when the reserved bit is the same for two consecutive frames.  
AISV  
The AISV bit in this register reflects the status of the corresponding DS2 FRMR value. The AISV bit is a logic 1 if AIS has been  
(DS2 Alarm Indication declared.  
Signal Violation)  
OOFV  
(DS2 Out of Frame  
Violation)  
The OOFV bit in this register reflects the status of the corresponding DS2 FRMR value. The OOFV bit is a logic 1 if the DS2 framer is  
presently out-of-frame.  
Unused  
Must be zero for normal operation.  
REGISTER DESCRIPTION  
51  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS2 FRAMER MONITOR INTERRRUP ENABLE/STATUS  
Read/Write Addresses: 44H, 54H, 64H, 74H, 84H, 94H, A4H  
Reset Value  
00H  
7
6
0
5
0
4
0
3
0
2
1
0
0
INTE  
INTR  
OVR  
Bit  
Name  
Description  
7-3 Unused  
Must be zero for normal operation.  
2
INTE  
(DS2 Interrupt  
Enable)  
The interrupt enable (INTE) bit allows the DS2 FRMR to assert the INTB output upon register transfers. A logic 1 in the INTE bit posi-  
tion enables the DS2 to generate a microprocessor interrupt when the counter values are transferred to a Holding Registers. A logic  
0 in the INTE bit position disables the DS2 FRMR from generating an interrupt. When the TSB is reset, the INTE bit is set to logic 0,  
disabling the interrupt. The interrupt is cleared when this register is read if its assertion was a result a transfer operation.  
1
0
INTR  
(DS2 Interrupt)  
The interrupt (INTR) bit indicated the current status of the internal interrupt signal. A logic 1 in this bit position indicates that a transfer  
of counter values to the Holding Registers has occurred; a logic 0 indicates that no transfer has occurred. This bit is set to logic 0  
when this register is read. The value of the INTR bit is not affected by the value of the INTE bit.  
OVR  
(DS2 Overrun)  
The overrun (OVR) bit indicates the overrun status of the Holding Registers. A logic 1 in this bit position indicates that a previous  
interrupt has not been cleared before the end of the next accumulation interval, and that the contents of the Holding Registers have  
been overwritten. A logic 0 indicates that no overrun has occurred. This bit is reset to logic 0 when this register is read. To generate a  
transfer of the counters to the holding registers, a microprocessor write to the Global PMON Update Register is required.  
DS2 FRMR FERR COUNT  
Read/Write Addresses: 45H, 55H, 65H, 75H, 85H, 95H, A5H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
FERR7  
FERR6  
FERR5  
FERR4  
FERR3  
FERR2  
FERR1  
FERR0  
Bit  
Name  
Description  
7-0 FERR7-0  
(DS2 Framing Bit  
Error)  
This register indicates the number of DS2 framing bit error events or G.747 framing word errors that occurred during the previous  
accumulation interval. A DS2 framing bit error event is either an M-bit or and F-bit error. One or more bit errors in a G.747 frame  
alignment signal results in a single framing word error. A transfer operation can be triggered by writing to the Global PMON Update  
Register.  
REGISTER DESCRIPTION  
52  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS2 FRMR PERR COUNT (LSB)  
Read/Write Addresses: 46H, 56H, 66H, 76H, 86H, 96H, A6H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
PERR7  
PERR6  
PERR5  
PERR4  
PERR3  
PERR2  
PERR1  
PERR0  
Bit  
Name  
Description  
These registers indicate the number of G.747 parity events that occurred during the pervious accumulation interval.  
7-0 PERR 7-0  
(DS2 Parity Bit Error) A transfer operation can be triggered by writing to the Global PMON Update Register  
DS2 FRMR PERR COUNT (MSB)  
Read/Write Addresses: 47H, 57H, 67H, 77H, 87H, 97H, A7H  
Reset Value:  
00H  
7
6
0
5
0
4
3
2
1
0
0
PERR12  
PERR11  
PERR10  
PERR9  
PERR8  
Bit  
Name  
Description  
7-5 Unused  
Must be zero for normal operation.  
4-0 PERR 12-8  
(DS2 Parity Bit Error)  
These registers indicate the number of G.747 parity events that occurred during the pervious accumulation interval.  
A transfer operation can be triggered by writing to the Global PMON Update Register  
REGISTER DESCRIPTION  
53  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
MX12 CONFIGURATION AND CONTROL  
Read/Write Addresses: 48H, 58H, 68H, 78H, 88H, 98H, A8H  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
G747  
PINV  
MINV  
FINV  
XAIS  
XFERF  
XRES  
INTE  
Bit  
Name  
Description  
7
G747  
When G747 is HIGH, the MX12 supports CCITT Recommendation G.747. In this mode, three 2048b/bits tributaries are multiplexed  
(G747 Configuration)  
into and demultiplex out of a 840 bit frame. If G747 is LOW, the frame is compatible with DS2 as specified in the ANSI T1.107 Stan-  
dard.  
6
5
4
PINV  
When PINV is set HIGH, the transmitted parity bit in the G.747 formatted output stream is inverted for diagnostic purposes. This  
(G747 Parity Inversion) only has effect when the G747 bit is HIGH.  
MINV  
When MINV is set HIGH, the transmitted M bits in the DS2 output stream are inverted for diagnostic purposes. This only has effect  
(G747 M-Bit Inversion) when the G747 bit is LOW.  
FINV  
When FINV is set HIGH and G747 is LOW, all the transmitted F bits in the DS2 output stream are logically inverted for diagnostic  
(G747 F-Bit Inversion)  
purposes. If G.747 is HIGH when FINV is set HIGH, the nine bit frame alignment signal (111010000) is logically inverted (i.e.  
000101111).  
3
2
XAIS  
(Transmit AIS)  
When set HIGH, the XAIS bit enables the transmission of the alarm indication signal (AIS) in the 6312kbit/s output stream. When  
XAIS is set HIGH, the transmitted data is set to all ones; otherwise the transmitted data is not affected.  
XFERF  
(Transmit Far End  
Receive Failure)  
When set HIGH, the XFERF bit enables the transmission of the far end receive failure (FERF0 signal in the DS2 output stream  
when in DS2 mode (i.e.G747 bit LOW). When XFERF is set HIGH, the transmitted X bit is set to 0, provided that AIS is not being  
transmitted; otherwise the transmitted X bit is set to 1. When in G.747 mode (i.e. G747 bit HIGH), the remote alarm indication (RAI)  
is set to 1 when XFERF is set HIGH; otherwise, the transmitted RAI bit is set to 0 unless AIS is being transmitted.  
1
0
XRES  
The XRES bit only has effect in G.747 mode. When XRES is set HIGH and AIS is not being transmitted, the reserved bit (Set II, bit  
(Transmit Reserved Bit) 3) is set to 0; otherwise, the transmitted reserved bit is set to 1.  
INTE  
When set HIGH, the INTE bit enables the activation of the interrupt output, INTB, whenever any of the LBRI 4-1 bits are set HIGH  
(LoopbackRequirement in the Loopback Request Interrupt register. Interrupts are masked when INTE is cleared LOW.  
Interrupt Enable)  
REGISTER DESCRIPTION  
54  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
MX12 LOOPBACK CODE SELECT REGISTER  
Read/Write Addresses: 49H, 59H, 69H, 79H, 89H, 99H, A9H  
Reset Value:  
00H  
7
6
0
5
0
4
0
3
0
2
0
1
0
0
LBCODE1  
LBCODE0  
Bit  
Name  
Description  
7-2 Unused  
Must be zero for normal operation.  
1-0 LBCODE1-0  
The LBCODE 1-0 bits select the valid state for a loopback request coded in the C-bits of the DS2 signals. Transmit and receive are  
not independent; the same code is expected in the demultiplexed DS2 as is inserted in the DS2 to be multiplexed. The following table  
gives the correspondence between LBCODE 1-0 bits and the valid codes:  
(Loopback Code)  
LBCODE 1-0  
Loopback Code  
00  
01  
10  
11  
C1 = C2 and C1 = C3  
C1 = C3 and C1 = C2  
C1 = C3 and C1 = C2  
C1 = C2 and C1 = C3  
If LBCODE 1-0 is ‘b00 or ‘b11, the loopback code is as per ANSI T1.107 Section 7.2.1.1 and TR-TSY-000009 Section 3.7. Because  
TR-TSY-000233 Section 5.3.14.1 recommends compatibility with non-compliant existing equipment, the two other loopback com-  
mand possibilities are also supported. The LBCODE 1-0 bits will also select the valid state for a loopback request coded in the C-bits  
of the G.747 formatted signal. Again, the transmit and receive are not independents; the same code is expected in the demultiplexed  
G.747 stream as is inserted in the G.747 stream to be multiplexed. The valid codes are the same as those for the DS2 formatted  
stream given in the table above. The LBCODE 1-0 bits become logical 0 upon either a hardware or software reset.  
REGISTER DESCRIPTION  
55  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
MX12 AIS INSERT REGISTER  
Read/Write Addresses: 4AH, 5AH, 6AH, 7AH, 8AH, 9AH, AAH  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
MAIS4  
MAIS3  
MAIS2  
MAIS1  
DAIS4  
DAIS3  
DAIS2  
DAIS1  
Bit  
Name  
Description  
7-4 MAIS4-1  
(M12 MUX Alarm  
Indication Signal)  
Setting any of the MAIS [4:1] bits activate insertion of the alarm indication signal (all ones) into the corresponding LOW speed stream  
multiplexed into the 6312kbits HIGH speed output signal. Mux AIS insertions takes place before the point where remote loopback  
may be invoked using the Loopback Activate register and thus mux AIS cannot be inserted while a loopback is activated.  
3-0 DAIS4-1  
Setting any of the DAIS 4-1 bits activates insertion of the alarm indication signal (all ones) into the corresponding LOW speed stream  
demultiplexed from the 6312kbits HIGH speed input signal. Demux AIS insertion takes place after the point where remote loopback  
may be invoked using the Loopback Activate register thus demux AIS to be inserted into the through path while a loopback is acti-  
vated, if desired.  
(M12 DeMux Alarm  
Indication Signal)  
MX12 LOOPBACK ACTIVATE REGISTER  
Read/Write Addresses: 4BH, 5BH, 6BH, 7BH, 8BH, 9BH, ABH  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
ILBR4  
ILBR3  
ILBR2  
ILBR1  
LBA4  
LBA3  
LBA2  
LBA1  
Bit  
Name  
Description  
7-4 ILBR 4-1  
In DS2 mode, setting any of the ILBR 4-1 bits enable the insertion of a loopback request in the corresponding DS1 stream in the DS2  
output signal. The format of the loopback request is determined by the LBCODE 1-0 bits in the Loopback Code Select MX12 Regis-  
ter. In G.747 mode, ILBR[j] inverts bit Cj1, Cj2, or Cj3 in the G.747 frame in an analogous fashion.  
(Insertion Loopback  
Request)  
3-0 LBA 4-1  
Setting any of the LBA 4-1 bits activates loopback of the corresponding LOW speed stream from the HIGH speed input signal to the  
(Loopback Activation) HIGH speed output signal. LBA4 has no effect in G.747 mode, but LBA 3-1 activates the loopback of the corresponding 2048kbits  
signals. The demultiplexed DS1 signals continue to present valid payloads while loopbacks are activated. The MX12 AIS Insert Reg-  
ister allows insertion of DS1 AIS if required.  
REGISTER DESCRIPTION  
56  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
MX12 LOOPBACK INTERRUPT REGISTER  
Read/Write Addresses: 4CH, 5CH, 6CH, 7CH, 8CH, 9CH, ACH  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
LBRI4  
LBRI3  
LBRI2  
LBRI1  
LBRD4  
LBDR3  
LBDR2  
LBDR1  
Bit  
Name  
Description  
7-4 LBRI4-1  
The LBR 4-1 bits are set HIGH when a loopback request is asserted or deasserted for the corresponding LOW speed stream in the  
HIGH speed input signal. The LBR 4-1 bits are set HIGH whenever the corresponding LBRD 4-1 bits change state. If interrupts are  
enabled using the INTE bit in the Configuration register then the interrupt output, INTB is activated. The LBRI 4-1 bits are cleared  
LOW immediately following a read of the register, acknowledging the interrupt and deactivating the INTB output.  
(Loopback Request  
Interrupt)  
3-0 LBRD4-1  
The LBRD 4-1 bits are set HIGH while a loopback request is detected for the corresponding LOW speed stream in the HIGH speed  
input signal. The LBRD 4-1 bits are set LOW otherwise. The format of the loopback request expected is determined by the LBCODE  
1-0 bits in the MX12 Loopback Code Select Register. As per TR-TSY000009 Section 3.7, the loopback request must be present for  
five successive M-frames before declaration of detection. Removal of the loopback request is declared when it has been absent for  
five successive M-frames.  
(Loopback Request  
Detached)  
DS1 TRANSMIT AND RECEIVE EDGE SELECT  
Read/Write Addresses: 4DH, 5DH, 6DH, 7DH, 8DH, 9DH, ADH  
Reset Value:  
00H  
7
6
5
4
3
2
1
0
TXESEL4  
TXESEL3  
TXESEL2  
TXESEL1  
RXESEL4  
RXESEL3  
RXESEL2  
RXESEL1  
Bit  
Name  
Description  
Transmit Edge Select when 0 the DS1 data will be transmitted on the rising edge of TD1CLK. When 1 the DS1 data will be transmit-  
7-4 TXESEL4-0  
(DS1 Transmit Edge ted on the falling edge of TD1CLK.  
Select)  
3-0 RXESEL4-0  
(DS1 Receive Edge  
Select)  
Receive Edge Select when 1 the DS1 data will be sampled on the rising edge of RD1CLK. When 0 the DS1 data will be sampled on  
the falling edge of RD1CLK.  
REGISTER DESCRIPTION  
57  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
REGISTER DESCRIPTION  
58  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
1.1 DS3 Framer  
The nominal DS3 interface is 44.736 Mb/s ± 20ppm (± 895 b/s).  
The DS3 frame contains a total of 4,760 bits of which there are 4,704  
payload bits and 56 overhead bits. The total period of a DS3 frame is  
106.4µs (44.736E-6 x 4,760).  
A DS3 M-frame (Multiframe) is composed of seven DS3  
M-subframes. Each M-subframe contains eight blocks of 84 payload bits  
(bit-interleaved from the seven DS2 or 28 DS1 streams) plus one  
overhead bit (the seven subframes do not represent each separate DS2  
signals).  
External OH  
FIFO  
FIFO  
DS2  
DS2  
OH Stuffing  
B3ZS  
Encoder  
1:7  
TDAT  
DS3 Framer  
M23 / C-bit Mode  
DS2  
DS2  
B3ZS  
Decoder  
RDAT  
DS3 Framer  
1:7  
External  
OH  
Status  
6143 drw 31a  
Figure 1 DS3 Framer Block  
Nominal DS2 rate 6,312kbits/sec and multiplexing four tributaries @1,544kbit/s (6,176kbit/s)  
Nominal DS3 rate 44.736Mb/s and Multiplexing seven tributaries @ 6,312kbits/sec  
680 Bits  
C2  
X1  
X2  
P1  
P2  
84-Bits  
84-Bits  
84-Bits  
84-Bits  
F1  
F1  
F1  
F1  
84-Bits  
84-Bits  
84-Bits  
84-Bits  
C1  
C1  
C1  
C1  
84-Bits  
84-Bits  
84-Bits  
84-Bits  
F2  
F2  
F2  
F2  
84-Bits  
84-Bits  
84-Bits  
84-Bits  
84-Bits  
84-Bits  
84-Bits  
84-Bits  
F3  
84-Bits  
C3  
C3  
C3  
C3  
84-Bits  
84-Bits  
84-Bits  
84-Bits  
F4  
F4  
F4  
F4  
84-Bits  
84-Bits  
84-Bits  
84-Bits  
M Sub-Frame  
C2  
C2  
C2  
F3  
F3  
F3  
84-Bits  
84-Bits  
84-Bits  
M Frame  
M1  
M2  
M3  
84-Bits  
84-Bits  
84-Bits  
F1  
F1  
F1  
84-Bits  
84-Bits  
84-Bits  
C1  
C1  
C1  
84-Bits  
84-Bits  
84-Bits  
F2  
F2  
F2  
84-Bits  
84-Bits  
84-Bits  
C2  
C2  
C2  
84-Bits  
84-Bits  
84-Bits  
F3  
F3  
F3  
84-Bits  
84-Bits  
84-Bits  
C3  
C3  
C3  
84-Bits  
84-Bits  
84-Bits  
F4  
F4  
F4  
84-Bits  
84-Bits  
84-Bits  
Stuff Block  
6143 drw19  
Figure 2 DS3 Frame  
FUNCTIONAL DESCRIPTION  
59  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
‹
‹
Framing is declared if the M-bits are correct for three consecutive  
M-frames (and no F-bits error is detected).  
1.1.1 Framing modes  
1.1.1.1 M23 Mode  
X-bits and P-bits are ignored  
In M23 Mode the three C-bits per DS3 M-subframe indicate the  
nature of stuff opportunity bit in the last block of the M-subframe. Stuffing  
is further explained in the M23 section.  
1.1.2.2 Max Time  
The MART, maximum average reframing time (the average time  
necessary when processing all the bits in the M-frame), is 1.5ms.  
Framing goes from DS3 framing to DS2 framing.  
1.1.1.2 C-bit Parity Mode  
In C-bit parity mode the DS2s operate at the nominal DS2 rate and  
thus no stuffing is required. As such all the stuff opportunity bits contain  
stuffing (null bit) and the C-bits are used to carry performance  
monitoring, alarm, control and Data Link channel.  
1.1.3 Errors and Alarms  
1.1.3.1 Line Management  
All the alarms and errors associated with line management must be  
processed if the coding/decoding function is implemented. The 82V8313  
will manage the DS3 LIU (counting and reporting errors). But the DS3  
LIU has to control the DS3 line (encoding / decoding and errors detec-  
tion).  
1.1.1.3 Transparent Mode  
1.1.2 Reframing  
1.1.2.1 Procedure  
The search of frame alignment (based on F-bits and M-bits) will  
happen in two cases:  
1.1.3.1.1 BnZS coding overview  
BnZS corresponds to an AMI line code with the substitution of a  
unique code to replace occurrences of n consecutive zero signal  
elements. For DS3 lines, a B3ZS code (three-zero substitution) is used.  
In the B3ZS format, each block of three consecutive zeros is removed  
and replaced by a B0V or 00V code:  
‹
After a reset.  
‹
After an internal out of frame (OOF) declaration.  
‹
When the microprocessor forces the reframing process.  
The algorithm of reframing is based on the following steps:  
‹
B represents a pulse conforming to the bipolar rule.  
‹
The DS3 framer will search for the F-bits in order to find one  
potential M-subframe alignment.  
‹
0 is a zero (no pulse).  
‹
‹
V represents a pulse violating the bipolar rule.  
Then the DS3 framer will process the M-bits to detect the M-Frame  
structure (X-bits and P-bits are ignored during the reframing  
operation).  
The choice of B0V or 00V is made so that the number of B pulses  
between consecutive V pulses is odd. For DS1 lines, a B8ZS code is  
used (no more than seven consecutive zeros on a DS1 line).  
1 0 1 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0  
E
E
O
B
V
B
V
O
O
V
E
O
V
6143 drw53  
Figure 3 B3ZS Coding  
FUNCTIONAL DESCRIPTION  
60  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
‹
1.1.3.1.2 Bipolar Violation description  
Indicate to the receiving equipment that there is a transmission  
interruption located either at the equipment originating the AIS  
signal or upstream of that equipment (AIS is sent downstream until  
the incoming signal becomes correct again).  
Bipolar Violation Error (BPV) is declared when a pulse presents the  
same polarity as the previous 1 while also not following the B3ZS  
coding. This is the mechanism used to determine if there is a true line  
code violation or if there is a substitution. For each DS3 Line Code Viola-  
tion the 82V8313 will increment the DS3LCV Count Register (0x14 and  
0x15).  
Different events can be declared as AIS:  
‹
Incoming signal with valid framing (M and F-bits), valid parity, all  
DS3 stuff indicators C-bits set to 0, X-bits set to 1 and repeated  
information pattern 1010... (A 1 immediately following any of the  
control bit position) shall be identified as being DS3 AIS.  
1.1.3.1.3 Excessive zeros error description  
EXZ is declared on occurrence of more than n consecutive zeros for  
BnZS coded signal. For each EXZ violation the 82V8313 will increment  
the DS3 EXZS Count Register (0x18 and 0x19).  
‹
‹
‹
Unframed all-ones signal = Blue code.  
Framed DS3 signal with the repeated payload pattern 1010.  
Framed DS3 arbitrary pattern with all DS3 stuff indicators C-bits set  
to 0.  
1.1.3.1.4 LOS description  
‹
‹
Framed DS3 1010 pattern with all DS3 stuff indicators C-bits set to  
0.  
A LOS defect occurs when there are 175 ± 75 contiguous pulse posi-  
tions shifted in the device with no pulses of either positive or negative  
polarity at the line interface. A LOS defect is ended when there is a  
detection of an average pulse density of at least 33% (for T3 Line) over  
a same period (12.5% for T1 Line). LOS failure is declared when LOS  
defect persists for 2.5 ± 0.5s. LOS failure is cleared when LOS defect is  
absent for 10 ± 0.5 seconds for T3 Line (20 seconds or less for T1 Line).  
A LOS is indicated in the DS3 Framer Interrupt Status Register (0x36)  
and the DS3 Framer Status (0x37).  
Framed all-ones signal (the overhead bits are ignored).  
OOF detection implies to insert AIS downstream in 2.25 to 3ms. LOS  
or incoming AIS implies to send AIS downstream in maximum 0.15ms  
(0.1 MART). AIS defect occurs upon detection of AIS in contiguous  
M-frames for a time T, 0.2ms T100ms. This defect must be detected  
and cleared properly in the presence of a random BER 10-3.  
In GR-499-CORE, it is specified that AIS defect detection and termi-  
nation must be done in 2.3ms (1.5 x MART) and maximum removal time  
is 0.15ms (0.1 x MART).  
1.1.3.2 OOF (Out of Frame)  
OOF shall be declared when there is a significant ratio of frame align-  
ment, F-bit, errors. The typical ratio is three (or more) errors out of 16 (or  
fewer) consecutive framing F-bitsa sliding window methodology is  
implemented in the 82V8313. The algorithm used is a logical ORing of 1  
(or more) M-bit errors in 2 (or more) out of 4 (or fewer) consecutive  
M-frames with the F-bit error criteria. The OOF defect is ended when the  
signal does not contain any more framing bits (F-bits and M-bits) error in  
several consecutive frames (1 M-frame or more). The defect detection  
and termination must be done in less than 2.3ms (1.5 times the  
Maximum Average Reframe Time (MART). The 82V8313 can be config-  
ured for either 3 out of 16 consecutive F-bit errors or 3 out of 8 consecu-  
tive F-bit errors (DS3 Framer Configuration Register 0x34). OOF  
violations are monitored in the DS3 Framer Status Register (0x37).  
The 82V8313 has an integration counter which decrements for each  
invalid M-frame and increments the integration counter. In slow  
detection mode the count saturates 127 which results in a detection time  
of 13.5ms. In fast detection mode the saturation point is 21 and results in  
a detection time of 2.23ms.  
DS3 AIS failure is declared if an AIS defect persists for 2.5 ± 0.5 s.  
AIS failure is cleared if AIS defect is absent for 10.0 ± 0.5 s. Typically an  
Alarm Indication Signal Counter on the system is incremented each time  
an AIS failure appears. On the downstream data flow, two strategies  
must be activated during AIS defect:  
‹
Continue data processing with the last correct frame alignment  
(off-line framer).  
1.1.3.3 RED ALARM  
RED defect is defined by the occurrence of OOF or LOS in one  
M-frame.  
Note: due to the amount of errors (AIS, LOF or LOS failure  
activated), incoming data can have a M23 and M12 stuffing  
ratio between 0 and 100%. In the worst case, some applica-  
tions can have problems due to DS1 clock deviation: DS1  
clock can vary between 1.544 MHz ± 1745 ppm and 1.544  
MHz – 3218 ppm.  
1.1.3.4 LOF (Loss of Frame)  
Loss of Frame:  
‹
‹
LOF is declared when the OOF persists for 2.5 ± 0.5 s.  
Send a full 1s signal to the HDLC controller:  
‹
LOF is cleared when the OOF defect is absent for 10.0 ± 0.5 s.  
Send downstream full 1s (stopping DS2 and DS1 framers allowed: in  
that case, a full 1s signal must be sent downstream the DS1 signals).  
FCP (Failure Count Path) is incremented each time LOF failure  
appears.  
1.1.3.5 AIS  
AIS signal is transmitted downstream (instead of the normal signal  
to):  
‹
Maintain transmission continuity  
FUNCTIONAL DESCRIPTION  
61  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
1.1.3.6 RAI (Remote Alarm Indication)  
1.1.3.6.1 RAI for C-bit Parity Mode  
The RAI signal has to be immediately transmitted upon declaring  
LOS failure, LOF or AIS failure. An RAI failure is declared as soon as  
any of the four following alarm signals are detected on the far-end alarm  
channel (FEAC, explained the following section):  
TABLE 3 —FERF Status (X1 & X2 State)  
X1  
X2  
FERF Status  
0
0
1
1
0
1
0
1
1
Previous State  
Previous State  
0
‹
Equipment failure (service affecting)  
‹
LOS failure, LOF or AIS failure.  
RAI failure is cleared as soon as the absence of all of the above  
alarm signals is detected. A system counter must be incremented by  
one each time the RAI failure begins.  
1.1.3.9 Idle Signal  
If implemented, the idle signal must have correct M-bits, F-bits and  
P-bits. The 3 C-bits in subframe 3 of the M-frame must be set to 0 and all  
other C-bits can take any values (and may vary with time). The X-bits  
shall be set to 1 and the repeated information pattern 1100 must be sent  
(started with 11 after each M-frame alignment, M-subframe alignment, X-  
bit, P-bit and C-bit). Such a signal is used before the customer initializes  
the channel to avoid declaration of alarm. The identification of the idle sig-  
nal should not exceed 10 seconds in duration.  
1.1.3.6.2 RAI for M23 Mode  
RAI failure is declared when the far-end SEF/AIS defect (if  
implemented, X-bits) persists for 2.5 ± 0.5s. The RAI failure is cleared  
when SEF/AIS disappears for 10.0 ± 0.5s. A counter must be incre-  
mented by one each time the RAI failure begins.  
1.1.3.7 Parity error  
The 82V8313 uses even parity, which is defined as: if the digital sum  
of all information bits (4704 bits in the M-frame) is equal to 1 in the  
previous M-frame, the two P bits are set to 1 (similar for 0).  
1.1.3.10 C-bits signification if C-bit parity mode  
activated  
The C-bit parity mode (see M23 chapter) affected C-bits for special  
Error is indicated if the received P-bits do not match the locally  
calculated parity, or when the two P-bits do not agree. P-bit errors are  
counted in the P-bit Error Register (0xA and 0xB).  
purposes (no more stuffing bit indicators):  
Parity Error Ratio, PER, is typically defined as the number of Parity  
errors detected divided by the number of M-frames examined.  
1.1.3.8 X-bit: FERF ( Far-End SEF/AIS = RDI)  
The two X-bits must be equal in an M-frame.  
If X1 = X2 = 0, the Far End Receive Failure (FERF) is declared as  
soon as a valid framing is not identified or AIS is received.  
FERF status remains in the previous state in the following cases:  
‹
If X1 X2  
‹
If OOF is detected: FERF status can be updated only after having  
completely processed the current incoming M-frame. If the current  
M-frame is numbered n, the last valid FERF information comes from  
M-Frame numbered n-2 (error can start in end of M-frame n-1 and  
can be declared at the beginning of M-Frame n).  
The X-bits must not change more than once per second.  
FUNCTIONAL DESCRIPTION  
62  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TABLE 4 —C-BIT PARITY MODE DS3 C-BIT ASSIGNMENTS  
M-SUBFRAME  
NUMBER  
C-BIT  
FUNCTION  
NUMBER  
1
2
3
4
5
6
7
1
2
3
Application Identifications  
Reserved for future network use  
Far-End Alarm and Control (FEAC)  
1
2
3
Unused  
Unused  
Unused  
1
2
3
CP (Parity)  
CP (Parity)  
CP (Parity)  
1
2
3
Far-End Block Error (FEBE)  
Far-End Block Error (FEBE)  
Far-End Block Error (FEBE)  
1
2
3
Data Link (DL)  
Data Link (DL)  
Data Link (DL)  
1
2
3
Unused  
Unused  
Unused  
1
2
3
Unused  
Unused  
Unused  
FUNCTIONAL DESCRIPTION  
63  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
‹
‹
1.1.3.10.1 AIC  
The Application Identification Channel is used to identify the specific  
DS3 M-frame application:  
Listing order is in decreasing priority order. Codewords shall be  
transmitted continuously for the duration of the condition being  
reported, or 10 repetiions whichever is longer.  
‹
Control messages are higher in priority then any of the far end alarm  
signals.  
In M23 mode: AIC shall be random 1s and 0s.  
‹
In C-bit Parity mode: AIC shall be set to 1 (In this mode, AIC is not  
The idle state of the FEAC channel (no codeword is transmitted) is a full  
ones signal. A code is correct (no error during transmission) after being  
received 10 times. Some implementations also use algorithms that take  
care of BER: a valid BOC message is declared if a code is received 4 out  
of 5 times, or 8 out of 10 times as determined by the AVC bit in the FEAC  
Configuration Register (0x32).  
sufficient for determining identification of C-bit parity application.  
The process needs the confirmation by secondary methods such as  
the presence of 0s in the FEBE bit positions)  
‹
Unchannelized applications may have either any AIC value (if  
developed before ANSI T1.107 — 1995 standards) or all 1s (as  
C-bit parity mode). The process to identify the DS3 application  
should typically not exceed 10 seconds in duration.  
1.1.3.10.2 FEAC  
Far End Alarm and Control signals are encoded into repeating 16-bit  
0xxxxxx011111111 codewords (right-most bit transmitted first): the 6–bits  
x allowed 64 distinct signals; assigned codewords GR-499-Core code  
words areincluded for reference:  
FUNCTIONAL DESCRIPTION  
64  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TABLE 5 —DS3 FEAC LOOPBACK CONTROL MESSAGES  
Condition  
Line Loopback Activate (4)  
Codeword  
0 000111 0 11111111  
0 011100 0 11111111  
0 011011 0 11111111  
0 1---n--- 0 11111111  
Line Loopback Deactivate (4)  
DS3 Line  
DS1 Line Number n  
(1£ n £ 28) (5)  
DS1 Line - All  
0 010011 0 11111111  
TABLE 6 —DS3 FEAC ALARM AND STATUS MESSAGES  
Function  
Codeword  
DS3 Equipment Failure (Sa)  
DS3 LOS (1)  
0 011001 0 11111111  
0 001110 0 11111111  
0 000000 0 11111111  
0 010110 0 11111111  
0 011010 0 11111111  
0 001111 0 11111111  
0 011101 0 11111111  
0 010101 0 11111111  
0 000101 0 11111111  
DS3 OOF  
DS3 AIS Received  
DS3 Idle Signal Received  
DS3 Equipment Failure (Nsa)  
Common Equipment Failure (Nsa)  
Multiple DS1 LOS (2 and 3)  
DS1 Equipment Failure (Sa) (3)  
NOTES  
Sa: Service affecting.  
Nsa: Non-service affecting Single DS1 LOS (2 and 3) 0 011110 0 11111111  
1. Applicable to B2ZS-coded signal. DS1 Equipment Failure (Nsa) (3) 0 000011 0 11111111  
2. Network equipment must not respond to or generate these codewords.  
3. Applicable to all type of loopbacks.  
4. Code must be transmitted 10 times, followed immediately by 10 repetitions of the DS3 or DS1 line codeword.  
5. For Unchannelized DS3 applications, DS1s are unassigned.  
*Listing order is in decreasing priority order. Codewords shall be transmitted continuously for the duration of the condition being reported, or 10 repetitions  
whichever is longer.  
**Control messages are higher in priority than any of the far end alarm signals.  
FUNCTIONAL DESCRIPTION  
65  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
1.1.3.10.3 Bit Oriented Code Detector (BOC)  
Oriented Code (XBOC) is designed to transmit BOCs in the DS3 C-bit  
parity Far End Alarm and Control (FEAC) channel. The XBOC can  
transmit 63 of the 64 possible BOCs, and purposefully ignores the  
“111111” code which is similar to the idle HDLC flag sequence. BOCs are  
transmitted in a FEAC channel as 16–bit sequences composed of an 8–  
ones header, a zero six BOC bits, and a trailing 0 (11111111xxxxxx0”).  
The 16–sequence is repeated until disabled by forcing the six code bits  
to 111111” Some of the common BOCs are listed here for reference.  
The Receive Bit Oriented Code Detector (RBOC) is designed to  
detect the presence of BOCs in the DS3 C-bit parity Far End Alarm and  
Control (FEAC) channel. The RBOC recognizes 63 of the 64 possible  
BOCs, and purposefully ignores the 111111” code which is similar to the  
HDLC flag sequence. BOCs are received in a FEAC channel as 16–bit  
sequences composed of an 8–ones header, a zero, six BOC bits, and a  
trailing 0 (111111110xxxxxx0”). In order to validate a BOC, the same  
code must be repeated at least ten times with at least 8 of 10 or 4 out 5  
times (as specified by the AVC bit) being the same.  
The RBOC block will trigger an interrupt, unless masked, to indicate  
the receipt of a BOC or when the BOC disappears. If the BOC receives  
an invalid code the BOC bits will be set to 111111” The Transmit Bit  
DS3 C-bit Parity FEAC  
XBOC  
Bit  
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  
1 1 1 1 1 1 1 1 0 15  
Data  
6 5 4 3 2 1  
BOC_REG [6:1]  
X X X X X X  
6143 drw 35  
Figure 4 Transmit BOC  
DS3 C-bit Parity FEAC  
RBOC  
Bit  
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0  
1
1 1 1 1 1 1 1 0  
15  
Data  
6 5 4 3 2 1  
BOC_REG [6:1]  
X X X X X X  
6143 drw 36  
Figure 5 Receive BOC  
FUNCTIONAL DESCRIPTION  
66  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TABLE 7 —DS1 BIT ORIENTED CODES  
COMMAND AND RESPONSE MESSAGE  
TABLE 9 —DS1 BIT ORIENTED CODES  
RESERVED MESSAGES  
Function  
Codeword  
Under Study for Maintenance  
0 010110 0 11111111  
0 011010 0 11111111  
Line Loopback Activate  
0 000111 0 11111111  
0 011100 0 11111111  
0 001010 0 11111111  
0 011001 0 11111111  
0 001001 0 11111111  
0 010010 0 11111111  
0 010111 0 11111111  
0 010000 0 11111111  
0 001110 0 11111111  
0 1---n--- 0 111111111  
0 001100 0 11111111  
0 010011 0 11111111  
0 011000 0 11111111  
0 000110 0 11111111  
0 010001 0 11111111  
0 010100 0 11111111  
0 000010 0 11111111  
0 000100 0 11111111  
0 001000 0 11111111  
0 1000000 0 11111111  
0 111100 0 11111111  
0 111110 0 11111111  
Reserved for Network Use  
0 001011 0 11111111  
0 001101 0 11111111  
0 001111 0 11111111  
0 011101 0 11111111  
Line Loopback Deactivate  
Payload Loopback Activate  
Payload Loopback Deactivate  
For Network Use (Loopback Activate)  
Universal Loopback Deactivate  
ISDN Line Loopback (NT2)  
C1/CSU Line Loopback  
Reserved for Customer  
RAI-CI  
0 000011 0 11111111  
0 000101 0 11111111  
0 000010 0 11111111  
0 011011 0 11111111  
0 011111 0 11111111  
NOTES:  
For Network Use (NT1 Power Off)  
Protection Switch Line n (1 n 27)  
Protection Switch Acknowledge  
Protection Switch Release  
Do not use for synchronization  
Status 2 Traceable  
1. Sa-Service affecting  
2. Nsa-Non Service Affecting  
3. Applicable to B3ZS - coded signal  
4. Newtork equipment must not respond to or generate these code  
words.  
5. Applicable to all types of loopbacks  
6. Code must be transmitted 10 times, followed immediately by 10  
repetition of the DS3 or DS1 line code word.  
7. For unchannelized DS3 applications, DS1 are unassigned.  
SONET Minimum Clock Traceable  
Stratum 4 Traceable  
1.1.3.10.4 Terminal-to-Terminal application  
specific data link  
The nine C-bits in M-subframes 2, 6 and 7 are reserved for  
application specific uses in DS3 terminal equipment. If they are not  
used, they will be set to one.  
Stratum 1 Tracable  
Synchronization Traceability Unknown  
Stratum 3 Traceable  
Reserved for NetworkSynchronization  
Transmit Node Clock (TNC)  
Stratum 3E Traceable  
1.1.3.10.5 DS3 Path Parity Bits  
The three CP-bits (Parity bits instead of stuffing indication in C-bit  
parity mode) must be set to the same value as the two P-bits in the  
M-frame structure. Some transport equipment in the network may alter  
P-bits, but any intermediate equipment on the DS3 path typically does  
not modify CP–bits. Parity error detection (also called Path Error) is  
done by computing the parity of the information bits in the nth M-frame  
and is compared to the result with the majority value of the CPbits  
received in M-frame n + 1.  
TABLE 8 —DS1 BIT ORIENTED PRIORITY  
MESSAGES  
RAI/Yellow Alarm  
Loopback Retention  
RAI-CI  
0 000000 0 11111111  
0 010101 0 11111111  
0 011111 0 11111111  
1.1.3.10.6 FEBE (Far End Block Error)  
The three FEBE bits shall be set to any pattern other than 111 to  
indicate a far-end CP-bits error or framing (M or F-bits) error. The  
FEBE-bits are equal to 111 if no error is detected.  
1.1.3.10.7 DS3PMON counters  
The DS3 Performance Monitor is a collection of counter registers for  
tracking C-bit Parity Errors (CPERR), Excessive Zeros Occurrences  
(EXZS), Far End Block Errors (FEBE), Framing Bit Error (FERR), Line  
Code Violations (LCV), and P-bit Parity Errors (PERR). Each counter  
can be individually cleared and accessed via microprocessor. If the  
counter is not cleared in an appropriate interval defined by the specific  
counter register, the counter will stay at the maximum value and not  
roll over.  
FUNCTIONAL DESCRIPTION  
67  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
During a microprocessor access to a PMON register, an internal  
clock transfer signal is generated to transfer the internal count value to  
the holding registers. Once this transfer is made the internal counter is  
reset until the next interval. In this way, error events occurring during the  
reset period are not missed. To preempt an overrun condition, whenever  
a counter-to-holding-register transfer occurs, an interrupt is generated  
(unless masked). However, if the holding register is not read since the  
last interrupt, an overrun will occur and the overrun status bit in the  
corresponding register will be set.  
Messages shall be transmitted continuously at a minimum rate of  
once per second (when no message is transmitted, the data link  
contains the repeated idle pattern (01111110”). The transmitting  
terminal must perform zero stuffing to avoid flag pattern occurrence  
between opening and closing flags (equipment in receives path must  
suppress extra 0s). If the full length of an information field is not needed  
(or if the field is not used), the ASCII null character shall be used to  
indicate the end of the string. The remaining bit positions of the data field  
can contain any combination of 1s and 0s. At any time, the abort code  
can be also sent. A carrier may use this data link for the provisioning or  
maintenance of the DS3 facility or network. That may cause interrup-  
tions, delays or reduction of throughput on the data link. However, that  
should not affect the timely transmission of the messages. If not used,  
the three bits shall be set to 1.  
1.1.3.10.8 Terminal-to-Terminal Path  
Maintenance Data Link  
The three C-bits in M-subframe 5 may be used as a 28.2 kbit/s  
terminal-to-terminal data link for path maintenance data. Data link  
protocol follows a subset of the LAPD specification (Recommendation  
Q.921) with three messages defined (others are ignored):  
TABLE 10 —DATA LINK FORMAT  
Bit  
Flag  
Bit 8  
0
Bit 7  
1
Bit 6  
1
Bit 5  
1
Bit 4  
1
Bit 3  
1
Bit 2  
1
Bit 1  
0
SAPI  
TEI  
0
0
1
1
1
1
C/R  
0
0
EA  
EA  
0
0
0
0
0
0
1
Control  
0
0
0
0
0
0
1
1
76 or 82 Bytes  
Information Field  
Type (1 byte)  
EIC (10 bytes  
LIC (11 bytes)  
FIC (10 bytes)  
Unit (6 bytes)  
Final Field (38 bytes)  
FCS-16  
2-8  
2-0  
2-15  
2-7  
NOTES:  
1. C/R = 0 if DTE (from user side)  
2. C/R = 1 if Carrier (from network side)  
3. FCS: is the Frame Check Sequence CRC16 (can be disabled) Polynomial = x16 + x12 + x5 + 1  
4. Type: identify type of message (1 byte) with the following value  
- For PID message: 00111000 (76 byte info field)  
- For ISID message: 00110100 (76 byte info field)  
- For TSID message: 00110010 (76 byte info field)  
- For ITU-T path ID: 00110010 (82 byte info field)  
5. EIC: identify the specific piece of equipment (10 bytes).  
6. LIC: identify a particular location (11 bytes).  
7. FIC: identify where the equipment is located with in a building (10 bytes).  
8. UNIT: identify the equipment location with in a bay (6 bytes).  
9. Final field (38 bytes):  
- For PID message: FI to identify a specific DS3 path  
- For ISID message: PORT number to identify the port number of the equipment that initiated the idle signal.  
-For TSID message: GEN nnumber to identify the signal generator that initiated the test signal.  
FUNCTIONAL DESCRIPTION  
68  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
1.1.3.10.7 Data Link Receiver  
To prevent unintentional transmission of abort or flag characters, if  
more than five consecutive ones exist in the raw transmit data of in the  
CRC data, a zero is stuffed into the serial data output.  
The RDL block first searches for the flag characters before  
identifying the first byte of data where the RDL block then removes the  
stuff bits, calculates the CRC-CCITT frame check sequence (FCS), and  
then stores the framed data into a 4-level FIFO buffer. The RDL buffer  
has an associated control buffer, which will indicate data ready, flag  
detected, end of message (EOM) and overrun (OVR) status to maintain  
the RDL.  
The Data Link Section provides additional information about the data  
link function.  
1.1.3.11 DS3 Loopback  
The DS3 can be looped back on the line level (asked by remote  
equipment via FEAC message or local host decision). However, no  
remote DS3 payload loopback is defined. In both these cases, transmit  
and receive clocks can be of a different frequency (independent clocks).  
In that case, a slip buffer must be provided in order to manage the  
discrepancy between the incoming and outgoing data streams. When  
the slip buffer underrun (transmit clock faster than receive clock) or  
overflow (transmit clock slower than receive clock) an alarm is gener-  
ated (these events must also be counted).  
In an EOM condition, the Status Register also indicates the FCS  
status and the number of valid bits in the last data byte of the message.  
An interrupt will be generated not only when the FIFO reaches a  
programmable threshold, but also when an abort sequence, FIFO  
overrun, or terminating flag sequence are detected.  
1.1.3.10.8 Data Link Transmitter  
The XDL transmitter is designed to provide a serial path for HDLC  
data in C-bit parity applications. The XDL transmitter, will automatically  
perform data serialization, CRC generation, bit-stuffing, flag generation,  
idle sequence, and abort sequence. The XDL transmitter performs all of  
the necessary signaling to maintain the channel. An interrupt is provided  
so that a double buffered transmit data register remains full for the  
duration of the message. The XDL at the end of the frame will  
automatically calculate the CRC-CCITT FCS if enabled. Once the frame  
is complete the XDL will transmit idle codes until the following frame  
begins. Should an underrun condition occur, the XDL transmitter will  
automatically transmit an abort sequence and notify the controlling  
processor via the XDL Status Register UDR status bit. An underrun  
occurs when, the controller does not write a word to the transmit data  
register before the previous byte has been transmitted. Also, at any  
time, an abort sequence can be continuously transmitted by setting the  
ABT control bit in the XFDL TSB Configuration Register (0x20).  
For more information on the loopback capability see the Loopback  
Section.  
1.1.3.12 Jitter  
Jitter is the short-term variations of digital edges from their ideal  
positions in time. Short-term variations are phase oscillations of  
frequency greater than 10Hz (variations at frequency under 10 Hz are  
defined as wander). Jitter amplitude is measured in unit intervals (UI)  
where one UI is the phase deviation of one clock period.  
T 0  
1 U I  
The XDL can also be enabled to continuously transmit a flag  
character 01111110.” The data flow sequence for the XDL works as  
such:  
1. Step 1 continues until the all bytes for the frame are written.  
2. Transmit data bytes are written to the Transmit Data register.  
3. The XDL prepares the byte by performing a serial-to-parallel  
conversion of the byte.  
4. An interrupt is generated to signal the controller to write the next  
byte.  
T j  
0 . 5 U I  
6143 drw55  
5. After the last byte is written to the transmit data register, the EOM  
bit in the XDL configuration register should be set or the  
TDLEOMI pin should be set to indicate the end of message.  
6. The XDL sends the last data byte and then the CRC word is sent  
(if enabled) or a flag (if CRC is not enabled).  
Figure 6 Jitter Definition  
7. Once complete, the flag character is sent.  
FUNCTIONAL DESCRIPTION  
69  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
1.1.4.1.1 Dual Rail Configuration (bipolar mode)  
There are several kinds of jitter measurement:  
‹
‹
Rx3CLK (Input): 44.736 MHz clock with duty cycle between 40 and  
Jitter tolerance (GR-499-CORE 7.3.1): minimum jitter at the input of  
equipment that results in more than two errored seconds in a  
30-second interval.  
60 %; clock used to sample (on positive or negative edge: user-  
selected edge) Rx signals.  
‹
‹
‹
Rx3POS (Input): positive pulse received on the B3ZS-encoded line.  
Jitter transfer (GR-499-CORE 7.3.2): ratio of (amplitude of equipment  
output jitter) / (applied input jitter).  
‹
Rx3NEG (Input): negative pulse received on the B3ZS-encoded  
line.  
Jitter generation (GR-499-CORE 7.3.3): added jitter by the equipment  
or chip. There also exists two categories of jitter:  
‹
Tx3CLK (Output): 44.736 MHz clock with duty cycle between 40  
‹
‹
and 60%. This clock is used to sample (user-selected edge) all the  
Tx signals.  
Category I: when the correspondent line does not physically exists.  
Category II: when the line physically exists.  
‹
Tx3POS (Output): positive pulses that must be sent on B3ZS  
encoded line.  
‹
Tx3NEG (Output): negative pulses that must be sent on B3ZS  
encoded line.  
Amplitude  
peak-to-peak  
(UI)  
1.1.4.1.2 Single Rail Configuration (unipolar  
mode)  
Slope = -20dB / decade  
A 0  
‹
Rx3CLK (Input): 44.736 MHz clock with duty cycle between 40 and  
60%. This clock is used to sample (user-selected edge) all the Rx  
signals.  
A 1  
Shorter the interval measurement,  
the higher the “real time jitter”  
‹
A 2  
Rx3D (Input): logical incoming data stream received on  
B3ZS-encoded line.  
frequency  
‹
RxLCV (Input): Line code violation detected on B3ZS-encoded line.  
F 0  
F 1  
F 2  
F 3  
jitter  
F 4  
6143 drw54  
‹
Tx3CLK (Output): 44.736MHz clock with duty cycle between 40 and  
wander  
60%. This clock is used to sample (user-selected edge) all the Tx  
signals.  
Figure 7 Maximum Jitter Tolerance on DSn Interface Inputs  
‹
Tx3D (Output): logical data that must be encoded and sent by the  
DS3 LIU.  
TxMFP (Output): M-frame pulse synchronization signal that must be high  
during one bit time (the first of the M-frame (X1).  
TABLE 11 —MAX JITTER TOLERANCE ON DS IF CAT II  
Data Rate (Mbit/s  
UI (ns)  
Jitter Amplitude  
A0 (ms)* A1 (UI)  
Filter Frequencies  
f2 (HZ)  
A2 (UI)  
f0 (HZ)  
f1 (HZ)  
f3 (HZ)  
6.43  
f5 (HZ)  
40  
1.544  
648  
192.9  
78.9  
669  
2.63  
20  
18  
10  
0.3  
1.2 x 10-5  
10  
22.3  
300  
1.1.4 DS3 Framer to LIU interface  
1.1.4.1 If DS3 Framer DS3 LIU  
The interface between a DS3 LIU and a DS3 Framer depends on which  
device is performing the line coding / decoding function:  
‹
If the line encoder / decoder is in the LIU: signals follow single rail  
configuration.  
‹
If the line encoder / decoder is in the framer: signals follow dual rail  
configuration.  
FUNCTIONAL DESCRIPTION  
70  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
1.2 M23 MULTIPLEXER  
To multiplex 7 DS2 signals into a formatted DS3 signal (respectively,  
to terminate a framed DS3 and to generate 7 independent DS2 signals).  
The M23 function is not activated when the M13 is used in an unchan-  
nelized mode. When the M23 function is used, the DS3 formatted data  
stream (but not framed) is made by taken one bit from each DS2 data  
streams in a round robin fashion.  
External OH  
FIFO  
FIFO  
DS2  
DS2  
OH Stuffing  
B3ZS  
Encoder  
1:7  
TDAT  
DS3 Framer  
M23 / C-bit Mode  
DS2  
DS2  
B3ZS  
Decoder  
RDAT  
DS3 Framer  
1:7  
External  
OH  
Status  
6143 drw 31a  
Figure 8 M23 Mulitplexer Block  
FUNCTIONAL DESCRIPTION  
71  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
‹
‹
Maximum data rat: 6.3157Mbit/s (more than 6.312 M/bits ± 20 ppm)  
1.2.1 Stuffing  
1.2.1.1 Description  
The seven DS2 are asynchronous relative to each other and there-  
fore may be operating at different rate. Bit Stuffing adjusts the different  
incoming rates. The stuff opportunity bit position exits in the last block of  
each DS3 M-subframe to adjust the transmission rate of each DS2  
stream independently (just one bit stuffing opportunity per DS2 and per  
DS3 M-subframe). The signal data rate limits are:  
Minimum data rate: 6.3063Mbit/s (less than 6.312 M/bits ± 20 ppm)  
Stuffing indication bits are the C overhead bits, 3 C bits for each  
DS2 (Ci1, Ci2, and Ci3 for DS2-i)  
If 2 or 3 C-bits are 1s, the bit in the correspondent stuffing position is a  
stuff bit (either 0 or 1): if zero or one C-bit equals, 1, the bit in the stuffing  
position is a data.  
Stuff  
Bit 3  
Info Info Info Info Info Info Info  
Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8  
Info  
Bit 84  
M1 Sub-Frame  
M2 Sub-Frame  
M3 Sub-Frame  
M4 Sub-Frame  
M5 Sub-Frame  
M6 Sub-Frame  
M7 Sub-Frame  
F4  
F4  
F4  
F4  
F4  
F4  
F4  
• • •  
Stuff  
Bit 2  
Info  
Bit 1  
Info Info Info Info Info Info  
Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8  
Info  
Bit 84  
• • •  
Stuff  
Bit 3  
Info Info  
Bit 1 Bit 2  
Info Info Info Info Info  
Bit 4 Bit 5 Bit 6 Bit 7 Bit 8  
Info  
Bit 84  
• • •  
Stuff  
Bit 4  
Info Info Info  
Bit 1 Bit 2 Bit 3  
Info Info Info Info  
Bit 5 Bit 6 Bit 7 Bit 8  
Info  
Bit 84  
• • •  
Stuff  
Bit 5  
Info Info Info Info  
Bit 1 Bit 2 Bit 3 Bit 4  
Info Info Info  
Bit 6 Bit 7 Bit 8  
Info  
Bit 84  
• • •  
Info Info Info Info Info Stuff Info Info  
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8  
Info  
Bit 84  
• • •  
Stuff  
Bit 7  
Info Info Info Info Info Info  
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6  
Info  
Bit 8  
Info  
Bit 84  
• • •  
6143 drw19a  
Figure 9 DS3 Stuff Block  
1.2.1.2 Stuffing strategies  
A particular case is the nominal stuff (DS2 signal frequency equal to  
6.312 Mbit/s). To multiplex such a DS2 in one DS3 signal, the host must  
program the stuffing speed at a special value that corresponds to a  
39.06 % stuffed M-frames (for the particular DS2). As the DS2 level is  
most often a transition between DS1 and DS3 signals, it is possible to  
use always the M23 mode with a fixed stuff: zero stuff, full stuff or  
nominal stuff.  
1.2.1.2.1 On receive line adaptation  
The number of real stuffing bits inserted in transmission is equal to  
the number of real stuffing observed in reception. It is called loop-timing  
mode.  
1.2.1.2.2 M23 Mechanism  
As each DS2 signals can be considered asynchronous, the host must  
be able to give each DS2s the stuffing speed for transmission. The range  
of each DS2 data rates is:  
1.2.1.2.3 C-bit parity Mechanism  
In this mode, the decision is a full stuff: each stuffing bit opportunity  
(for all the DS2) in all DS3 M-Frames contains a stuff except when the  
DS3 signal is unchannelized. In this case, it is possible to have a C-bit  
parity mode with a null stuff strategy. C-bits are not used for stuffing indi-  
cation (always full or zero stuff): they can be used for others purposes  
presented in DS3 framer chapter.  
‹
If zero stuff: 6.31567 MHz (6.312 MHz ± 581 ppm).  
‹
If full stuff: 6.306272 MHz (6.312 MHz ± 907 ppm).  
FUNCTIONAL DESCRIPTION  
72  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
1.3 DS2 FRAMER  
The nominal DS2 interface rate is 6.312 Mbit/s ± 33 ppm (± 208  
bit/s). Then DS2 framer function is not activated when unchannelized  
DS3 is initalized. DS2 signal is a combination of four DS1 signals. A  
DS2 M-frame is composed of four DS2 M-subframes. Moreover, each  
M-subframe contains six blocks of 48 payload bits (bit-interleaved from  
the four DS1 streams; made by M12 function) plus 1 overhead bit (the  
four subframes do not represent each separate DS1 signals). The DS2  
frame contains 1176 bits (1152 payload bits ± 24 overhead bits) and the  
period is 186.31ms.  
The DS2 Framer can also be used to frame G.747 bit streams. In  
this case the nominal DS2 rate is 6.312 Mb/s multiplexed from three  
tributaries of 2.048 Mbit/s.  
FIFO  
FIFO  
TX1  
TX4  
OH  
Stuffing  
DS2  
1:4  
DS2 Framer  
G.747 or  
DS2 Mode  
RX1  
DS2  
DS2 Framer  
1:4  
RX4  
OH  
Stuffing  
6143 drw 32a  
Figure 10 DS2 Framer Block  
294 Bits  
M1  
M2  
M2  
X
48-Bits  
48-Bits  
48-Bits  
48-Bits  
C1  
48-Bits  
F1  
F1  
F1  
F1  
48-Bits  
48-Bits  
48-Bits  
48-Bits  
C2  
C2  
C2  
C2  
48-Bits  
48-Bits  
48-Bits  
48-Bits  
C3  
C3  
C3  
C3  
48-Bits  
48-Bits  
48-Bits  
48-Bits  
F2  
F2  
F2  
F2  
48-Bits  
M Sub-Frame  
C1  
C1  
C1  
48-Bits  
48-Bits  
48-Bits  
48-Bits  
48-Bits  
48-Bits  
M Frame  
Stuff Block  
6143 drw20  
Figure 11 DS2 Frame  
FUNCTIONAL DESCRIPTION  
73  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
1.3.1 Reframing  
1.3.2 Alarms and errors  
1.3.1.1 Procedure  
1.3.2.1 OOF  
The search of frame alignment must be activated in three cases:  
Out Of Frame is declared when n out of m consecutive framing bits  
are in error (n = 2 and m = 4 or 5). Optionally, the OOF detection can  
take into accounts one or more M-bits in error in 3 or 4 consecutive  
M-frames. If configured, during DS2 OOF, an all-ones AIS signal is sent  
downstream to all concerned DS1s. Otherwise the payload extracted  
with the previous frame alignment is transmitted downstream because it  
is an off-line framer. OOF defect is terminated when the signal does not  
contain any more framing bits (F-bits and M-bits) error in several  
consecutive frames (1 M-frame or more). Defect detection / termination  
must be done in less than 10.5 ms (1.5 x MART).  
‹
After a reset.  
‹
When the microprocessor forced the reframing process.  
‹
After an internal out of frame (OOF) declaration (but reframing  
asked by microprocessor). When a DS2 reframing is in process, All-  
ones AIS signal is sent downstream for the duration of the  
reframing.  
1.3.1.2 Max Time  
The standard indicates a maximum average framing time of 7ms to  
resynchronize the incoming data flow (time necessary to check every  
bits of a structure before declaring frame synchronization). This time is  
significant only if neither mimic pattern (data payload that ìsimulateî a  
frame alignment pattern) nor other trouble (like errors) is present inside  
the incoming data flow.  
1.3.2.2 LOF  
LOF failure is declared if OOF defect is present for 2.5 ± 0.5 seconds  
except when a DS2 AIS defect is present or DS2 AIS failure has been  
declared. LOF is cleared if no error has been detected in 10 ± 0.5  
seconds.  
G.747  
Nominal DS2 rate 6312Kbit/s multiplexing three tributaries of 2048 kbit/s  
Nominal DS3 rate 44.736Mb/s multiplexting seven tributaries of 6,312kbits/sec  
Bit 0 Bit 1 Bit 2 Bit 3 Bit 4 Bit 5 Bit 6 Bit 7 Bit 8 Bit 9  
Bit 167  
Set 1  
Set 2  
1
1
1
0
1
0
0
0
0
0
AIS PAR REV  
Set 3  
Set 4  
C11 C21 C31  
C12 C22 C32  
Stuff Stuff Stuff  
C13 C23 C33  
Set 5  
1
2
3
6143 drw21  
Parity = 1 Odd  
Parity = 0 Even  
REV  
Reserved, should be set to 1  
Cji (j = 1,2,3 i = 1,2,3) indicates the ith justification control bit of the jth tributary  
Stuff (j) : Stuff bit for the jth tributary  
Positive Justification = 111 (Majority decision)  
No Justification  
= 000 (Majority decision)  
Figure 12 G.747 Frame Format  
FUNCTIONAL DESCRIPTION  
74  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
‹
‹
1.3.2.3 AIS  
Payload transmission taking with the last correct frame alignment  
(off-line framer).  
AIS Defect is declared when at least one of the three following condi-  
tions (it should be detected in less than 10.5 ms = 1.5 x MART.) is true:  
Transmission of AIS (unframed all-ones signal).  
‹
Incoming signal with more than 99.9% of ones density (unframed  
1.3.2.4 RAI  
all-ones signal = AIS from upper level).  
The RAI signal (last M-bit Mx) is transmitted upon declaration of LOF  
or AIS failure for the duration of the failure (downstream failure). RAI is  
declared when this bit presents for an interval of 0.5 to 1.5 seconds with  
no more than 10-3 1s (active state is zero). Similarly, the inactive state  
of RAI signal must be sampled between 0.5 and 1.5 seconds with no  
more than 10-3 0s.  
(Incoming signal with unframed condition (DS2 LOS or OOF).  
‹
Host command.  
The insertion of AIS (same for the AIS removal) in the downstream  
signal has to be made in less than 0.7 ms (0.1 x MART) AIS failure is  
declared if an AIS defect is present for 2.5 ± 0.5 seconds and is cleared  
if AIS a defect is absent for 10 ± 0.5 seconds. The activation of an AIS  
failure must not exceed 0.7 ms and a host can configure one of the two  
downstream transmission strategies:  
FUNCTIONAL DESCRIPTION  
75  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
integrator counter. AIS is defined as the occurrence of less than 9 zeros  
while the framer is OOF during that G.747-frame. RED alarm is defined  
as the detection of a RED defect, or OOF in an M-frame. For each  
interval, a G.747 frame, if the framer detects a Red defect or AIS event,  
the integrator counter is incremented. Accordingly, if a valid G.747 frame  
is received then integrator counter is decremented. As a result the DS2  
Framer can detect RED alarm and AIS in 6.9ms.  
1.4 G.747 Applications  
1.4.1 Reframing  
1.4.1.1 Procedure  
The search of frame alignment must be activated in three cases:  
‹
After a reset.  
‹
1.4.2.3 RAI  
When the microprocessor forced the reframing process.  
‹
The DS2 framer also extracts the DS2 X-bit and G.747 Remote  
Alarm Indication bit, RAI, to indicate a Far End Receive Failure, FERF.  
The DS2 framer uses an internal status FIFO to insure that for an OOF  
condition, nearly 100% of the time for DS2 applications and 99.9% of the  
time for G.747 applications, that the DS2 framer will freeze in a valid  
state. If two successive X-bits or RAI bits are the same, then a FERF  
status is indicated and entered into the internal status FIFO. Each  
M-frame or G.747 frame the status FIFO will be updated and shifted.  
After a total of six M-frames or G.747 frames, the error condition will  
reach the sixth (last) position of the FIFO. When the error condition  
reaches the last position in the FIFO, the DS2 Status Register will be  
updated to indicate to the controller that a FERF has occurred. The error  
indication/value will be held in that sixth(last) position while the fifth  
through second positions will freeze the FERF state of the four M-frames  
following the FERF condition. The first position of the status FIFO will  
contain the present FERF state and will be continually updated with the  
present FERF status. Once correct frame alignment has been reestab-  
lished and the OOF condition is gone, then the first FIFO status location  
will have a valid indication. At this point the FIFO will continue to operate  
normally, by shifting the FERF status through the FIFO.  
After an internal out of frame (OOF) declaration (but reframing  
asked by microprocessor). When a DS2 reframing is in process, All-  
ones AIS signal is sent downstream for the duration of the  
reframing.  
1.4.1.2 Max Time  
For G.747 applications the DS2 framer has a maximum reframe rime  
of less than 1ms. In order for the framer to declare framing however, the  
candidate frame alignment signal must be present for 3 consecutive  
frames in accordance with CCITT Rec. G.747 Section 4. Once in frame  
the DS2 framer will provide frame boundary indications as well as  
overhead bit positions.  
1.4.2 Alarms and errors  
1.4.2.1 OOF  
For alarm indications the DS2 framer is designed to indicate OOF  
conditions when 4 consecutive frame alignment signals are incorrect in  
accordance with CCITT Rec. G.747 Section 4. Much like the DS3  
framer, the DS2 framer is an "off-line" framer and will continue to  
indicate errors when OOF based on the previous frame alignment.  
1.4.2.2 AIS  
In G.747 applications the DS2 framer also uses an integration  
algorithm with a 1:1 slope to detect RED alarm and AIS. Instead of using  
DS2 frames however the DS2 framer uses G.747 frames with the  
FUNCTIONAL DESCRIPTION  
76  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
1.5.2 Stuffing  
1.5.2.1 Mechanism  
1.5 M12  
To multiplex 4 DS1 signals into a formatted DS2 signal (respectively,  
to terminate a framed DS2 and to generate 4 independent DS1 signals).  
The M12 can also multiplex/demultiplex three E1 (2.048 Mbit/s) streams  
into a G.747 formatted 6.312 Mbit/s serial stream. The M12 function is  
not activated when unchannelized DS3 initialized.  
The four DS1 are asynchronous relative to each other and may be  
operating at different rates. Bit Stuffing is used to adjust the different  
incoming rates. Stuff opportunity bit position exists in the last block of  
each DS2 M-subframe to adjust the transmission rate of each DS1  
streams independently (just one bit stuffing opportunity per DS1 and per  
DS2 M-subframe). Stuffing indicator bits are the C overhead bits, 3  
C–bits for each DS1 (Ci1, Ci2 and Ci3 for DS1-i). If in these three bits  
there are 2 or 3 1s, the bit in the stuffing position is stuff (value not  
specified: either 0 or 1); if there are 0 or 1 1, the bit in the stuffing  
position is a data.  
1.5.1 Actions on the four multiplexed  
DS1 bit-streams  
The DS2 data stream is built by taking one bit from each of the four  
DS1 data streams in a round robin fashion. However, the second and  
fourth DS1 signals must have their all bits inverted.  
FIFO  
FIFO  
TX1  
TX4  
OH  
Stuffing  
DS2  
1:4  
DS2 Framer  
G.747 or  
DS2 Mode  
RX1  
DS2  
DS2 Framer  
1:4  
RX4  
OH  
Stuffing  
6143 drw 32a  
Figure 13 M12 Block  
FUNCTIONAL DESCRIPTION  
77  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
1.5.2.2 Stuffing strategies  
1.5.2.2.2.1 DS1 nominal stuffing value if M23  
mode used between DS2 and DS3 level  
1.5.2.2.1 On receive line adaptation  
The per-DS1 in a DS2 signal (6.312 Mbit/s) data rate limits are:  
The number of real stuffing bits inserted in transmission is equal to  
the number of real stuffing observed in reception. This mode is also  
called per–T1 loop timing. In this mode, the system must free run under  
trouble condition at 1.544 Mbit/s ± 200 bit/s (1.544 Mbit/s ± 130 ppm).  
Such a mode seems to be used only if remote loopback (line or payload)  
is activated.  
‹
Maximum data rate: 1.5458 Mbit/s (more than 1.544 Mbit/s ± 20  
ppm).  
‹
Minimum data rate: 1.5404 Mbit/s (less than 1.544 Mbit/s-20 ppm).  
The nominal stuffing ratio is 33.46 % of stuffed frames (if DS2 at  
nominal data rate).  
1.5.2.2.2.2 DS1 nominal stuffing value if C-bit  
parity mode used between DS2 and DS3 level  
1.5.2.2.2 Adaptive frequency  
As each DS1 signal comes from its own source (asynchronous), the  
host processor must be able to give for each DS1 the stuffing speed for  
transmission in order to adapt the DS1 data rates independently. An  
external reference has to be used to synchronize the DS1 signals (this  
reference is also called Building Integrated Timing Source, BITS). Such  
a reference can come from one DS1 received data stream (line-timing  
mode) or from an external reference such as GPS for example (external  
reference mode). In reception, each DS1stuffing ratio must be esti-  
mated. However, the real time stuffing value depends on the mode used  
to multiplex DS2s into a DS3 signal:  
The per-DS1 in a DS2 signal (6.306 Mbit/s) data rate limits are:  
‹
Maximum data rate: 1.5444 Mbit/s (more than 1.544 Mbit/s ± 20  
ppm).  
‹
Minimum data rate: 1.5390Mbit/s(less than 1.544 Mbit/s-20 ppm).  
The nominal stuffing ratio is 7.41% of stuffed frames.  
1.5.3 OH Insertion  
During the muxing process the M12 MUX also inserts X, F, M and C  
bits.  
‹
If M23 mode, every DS1 signal works at its own speed. (Near the  
nominal stuffing value if M23 stuffing programmed near the nominal  
value for example).  
1.5.4 Per DS1 Payload Loopback  
The M12 multiplex should loopback the DS1 signal if it detects that  
Ci3 bit is the inverse of Ci1 and Ci2 bits (i defines the concerned DS1). It  
is necessary to repeat this information at least 10 times.  
‹
If C-bit parity mode, DS1 stuffing value must be under the nominal  
value (less stuff) due to the full stuff processing when DS2 signals  
are multiplexed into the DS3 formatted signal.  
More information on the Loopback modes are provided in the  
Loopback section of the data sheet.  
Stuff  
Bit 1  
Info Info Info Info  
Bit 2 Bit 3 Bit 4 Bit 5  
Info  
Bit 48  
M1 Sub-Frame  
M2 Sub-Frame  
M3 Sub-Frame  
F2  
F2  
F2  
F2  
• • •  
Stuff  
Bit 2  
Info  
Bit 1  
Info Info Info  
Bit 3 Bit 4 Bit 5  
Info  
Bit 48  
• • •  
Info Info Stuff Info Info  
Bit 1 Bit 2 Bit 3 Bit 4 Bit 5  
Info  
Bit 48  
• • •  
Info Info Info Stuff Info  
Bit 1 Bit 2 Bit 3  
Info  
Bit 48  
M4 Sub-Frame  
• • •  
Bit 4  
Bit 5  
6143 drw20a  
Figure 14 DS2 Stuff Block  
FUNCTIONAL DESCRIPTION  
78  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
The XFDL can be run in three different modes: polled, interrupt driven,  
and DMA-controlled. In the polled mode, the TDLINT and TDLUDR out-  
put of the XFDL are unused and the microprocessor must periodically poll  
(read) the XFDL Status Register to determine when to write the next byte  
to the Transmit Data FIFO. In the interrupt driven mode, the micropro-  
cessor will use the TDLINT pin as an interrupt pin to determine when the  
Transmit Data FIFO is ready for the next data byte. In the DMA controlled  
mode the TDLINT output acts as a DMA request to the DMA controller  
while DMA end signal feeds the TDLEOMI of the M13. In an under run  
condition the TDLUDR drives an interrupt on the controlling microproces-  
sor.  
Internal Data Link Transmitter:  
The Transmitter Data Link Configuration Register and the Transmit  
Data Link Control Register are the two main registers used for control-  
ling the Transmit Data Link function in the M13. After reser, XFDL is  
disabled because the EN bit in the TSB Configuration Register will be 0.  
The INTE bit, also in the XFDL TSB Configuration Register, should be  
set so that the TDLINT output is masked.  
When a frame is ready to be transmitted, the XFDL TSB should be  
configured accordingly. If the CCITT-CRC frame check sequence is de-  
sired this should be enabled. Then the INTE bit should be enabled (if in  
the interrupt driver mode), and then finally the EN bit is set to 1 enable  
the overall operation of the XFDL.  
TDL TDR TDL  
INT UDR EOM  
Data  
Reg 22  
XFDL  
Control  
Parallel-to-serial  
ZeroStuff  
Reg 20  
Reg 21  
Parallel-to-serial  
Parallel-to-serial  
Parallel-to-serial  
Parallel-to-serial  
PMDL_Out  
MUX  
6143 drw37  
Figure 15. XFDL  
DATA LINK  
79  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
Polled Mode:  
In the polled mode the controlling microprocessor will periodically initiate a service routine to complete the following.  
1) Read the XFDL Status Reg.  
2) If UDR = 1 clear the Status register by setting UDR = 0, de-asserting TDLEOMI input pin and clearing EOM. Restart the current frame.  
3) If INTR = 1 then  
a) Write next data byte to XFDL TSB Data Reg.  
b) Set EOM = 1 and INTE = 0 or assert TDLEOMI input pin.  
4) Repeat steps 1 an 2 to confirm no underrun occurred during step 3.  
82V8313  
0x21  
0x22  
XFDL TSB INT Status  
XFDL TSB TX Data  
TDLEOMI  
TDLINT  
X
X
TDLUDR  
6143 drw42  
Figure 16. XFDL Polled Mode  
DATA LINK  
80  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
Interrupt Driven Mode:  
In the interrupt driven mode the microprocessor will service the M13 when the XFDL is ready to accept another byte or when an underrun condition  
occurs. The ISR will be the same as described above.  
XFDL TSB TX Data Reg  
ready for new byte  
82V8313  
0x25  
0x26  
XFDL TSB INT Status  
XFDL TSB TX Data  
TDLINT  
X
X
6143 drw42a  
New Byte Written  
to XFDL TSB TX  
Data Register  
TDLUDR  
TDLEOMI  
Figure 17. XFDL Interrupt Mode  
INT = 0  
Write  
Read  
XFDL TSB  
INT Status  
UDR Status  
Data to  
XFDL TSB  
Data Reg  
or  
INT = 1  
Set EOMI in  
XFDL Config  
Reg. if INT = 0  
or  
UDR = 1  
Assert  
TDLEOMI  
pin & INTE = 0  
Clear Status Reg  
UDR = 0  
Deassert TDLEOMI  
Clear EOM = 0  
6143 drw42b  
Figure 18. XFDL Interrupt Service Routine  
DATA LINK  
81  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DMA Mode:  
When a DMA controller is used with the XFDL, the TDLINT will initiate a DMA request and consequently the DMA controller will send a byte to the  
M13. For each assertion of the TDLINT the DMA controller should send a byte. Once the last byte is sent from the DMA controller to the M13, to  
finish the request, the DMA controller should assert the TDLEOMI When the DMA controller sets TDLEOMI high, the EOM bit in the XFDL Configura-  
tion register will be set to complete the transaction. If an underrun condition occurs the TDLUDR will interrupt the microprocessor and will stop DMA  
controller, clear the condition, reset any necessary data pointers, and restart the DMA to resend the data frame.  
Microprocessor  
82V8313  
TDLUDR  
INT  
DMA  
Reg  
End  
TDLINT  
TDLEOMI  
6143 drw41  
Figure 19. XFDL DMA Mode  
DATA LINK  
82  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
frame. Again the microprocessor will enter the XFDL ISR and load the  
data byte in to the FIFO. Again the TDLINT will de-assert when it begins  
to transmit that data byte. This process continues until the last byte of the  
frame. Once the last data byte begins to transmit, the TDLINT will be as-  
serted, as normal. Since all of the data has been written to the FIFO the  
ISR should set the EOM bit (or assert the TDLEMI pin) to end the frame.  
Also, the INTE bit should be set to 0 so that the TDLINT interrupt is dis-  
abled and the CRC bytes and the closing flag are transmitted. When new  
data for the next frame is ready, the TDLINT can be re-enabled by setting  
the INTE bit to 1, and thus beginning the sequence over again.  
XFDL Normal Data Sequence:  
This example shows a normal XFDL interrupt driven sequence with the  
CRC enabled. In order to begin the sequence the microprocessor must  
first set the INTE bit in the XFDL Configuration/Control Register to enable  
the TDLINT interrupt. Once the interrupt is enabled the M13 will assert  
the TDLINT to interrupt the microprocessor. The interrupt routine de-  
scribed above will cause the microprocessor to write the first data byte of  
the frame to the transmit FIFO. Once the byte is written to the FIFO, the  
TDLINT will de-assert. When the XFDL begins to transmit the first byte,  
TDLINT will assert again to signal that it is ready for the next byte in the  
Serial  
RFDL Data  
Flag  
Byte 1  
Byte 2  
Byte n  
C1  
C2  
Flag  
Byte 1  
TDLINT  
D7-0  
6143 drw48  
Figure 20. XFDL Normal Data Sequence  
DATA LINK  
83  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
begins to transmit the TDLINT is asserted and the interrupt routine  
should be started. For some reason, the routine was not able to write to  
the transmit FIFO within five rising clock edges, so the Transmit Data  
Link Underrun pin, TDLUDR, is asserted. Once the TDLUDR is  
asserted, an abort followed by a flag is automatically sent out on the data  
link. The XFDL is stopped, the UDR bit is set, and the M13 must be  
serviced by the microprocessor. The UDR bit should be cleared and the  
INTE bit should be set to 0. Once this is done, the frame can be  
restarted again by setting the INTE bit to 1.  
XFDL Underrun Sequence:  
This example is also an interrupt driven example, but shows the  
XFDL inputs and outputs during and underrun error. Similar to the last  
example, the microprocessor begins by setting the INTE bit in the  
Configuration/Control Register to 1 thus enabling TDLINT interrupts.  
The TDLINT is asserted and the microprocessor enters the interrupt  
routine to write the first data byte to the transmit FIFO. Once the byte is  
written to the FIFO, the TDLINT is de-asserted. As with the previous  
example, once the XFDL begins to transmit the data, the TDLINT will be  
asserted to start the next ISR transmit data write sequence. When D3  
Serial  
XFDL Data  
Flag  
Byte 1  
Byte 2  
Byte 3  
Abort  
Flag  
Byte 1  
Byte 2  
Byte 3  
TDLINT  
TDLUDR  
D7-0  
6143 drw 49  
Figure 21. XFDL Underrun Sequence  
DATA LINK  
84  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
causing an underrun. The time from rising edge to rising edge of  
TDLINT is a result of the variation in time to transmit the data link byte  
over the 3 C-bits of the 5th M-subframe over multiple M-frames, and for  
the M13 to latch in the next byte. As shown above, the third byte write to  
the XFDL FIFO is missed and thus the TDLUDR goes high when it was  
supposed to transmit that third byte.  
TDLINT Timing Normal Data  
Transmission:  
This figure shows the timing requirements for the microprocessor to  
adequately service the transmit data link FIFO. Each byte of the packet  
must be written within 110µSec of the rising edge of the TDLINT without  
Min 216µs  
Max 311µs  
Min 216µs  
Max 311µs  
Min 216µs  
Max 311µs  
<110µs Sec  
<110µs Sec  
TDLINT  
Byte Write to  
XFDL FIFO  
Missed Write  
WRB  
(Byte Write  
to XFDL FIFO)  
TDLUDR  
6143 drw52  
Figure 22. TDLINT Timing Normal Data TX  
DATA LINK  
85  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
In the above diagram, TDLEMOI is shown going high synchro-  
nously with the write strobe but can be asserted any time up to  
210µSec after the rising edge of TDLINT. TDLEMOI is de-asserted  
before the end of the second CRC byte (or before the flag transmis-  
sion). In this example TDLINT is still active and remains high while  
waiting for the first byte of the next frame to be written to the XFDL  
Transmit FIFO. In this example, it is important to note that the TDLUDR  
is not asserted. In this situations, no underrun can occur since it is the  
first byte of the frame. However, once the first byte is written, the XFDL  
FIFO must be serviced regularly to prevent an underrun condition. As  
noted previously, TDLEOMI must be glitch free. If TDLEMOI is not  
used, it can be tied to ground or held low. In this case, the EOM bit can  
be used and the same restrictions that apply to the TDLEOMI apply to  
the EOM bit. It is strongly recommended that the interrupt routine  
described in this data sheet be used.  
TDLEOMI Timing:  
The Transmit Data Link End Of Message Indicator, TDLEMOI, is used  
to indicate to the XFDL block that the last byte of the frame has been writ-  
ten to the XFDL Transmit Data Register. When TDLEOMI has been as-  
serted, the XFDL will insert the FCS, if enabled, and flags (01111110)  
after the last byte has been transmitted. To aid designers, the M13 can  
accept a wide range of timing for the TDLEOMI. The above diagram will  
help illustrate this broad range. At the earliest, the TDLEOMI can be as-  
serted synchronously with the falling edge of the write strobe that is used  
to write the last data byte to the XFDL Transmit FIFO. At the latest, TD-  
LEOMI must be asserted before the next rising edge of TDLINT, when  
the XFDL would expect the next data byte to be written to the XFDL  
Transmit FIFO (210µSec). For de-assertion a similar logic applies and  
the earliest TDLEOMI can be de-asserted would be just after the rising  
edge of the TDLINT that registered the TDLEOMI. At the latest, TDLE-  
OMI must be de-asserted before the write of the first byte of the nest  
frame. If TDLEOMI is still high when TDLINT goes high, that byte will be  
considered that last byte and thus the CRC bytes and flag bytes will au-  
tomatically be transmitted on the data link  
<210µs  
Min 216µs  
Max 311µs  
Last Byte & CRC  
Flag “01111110"  
850µs  
<110µs  
TDLINT  
WRB  
Byte Write  
& XFDL FIFO  
First Byte  
Of Next Frame  
TDLEOMI  
6143 drw50  
Latest  
Deassertion  
Figure 23. TDLEOMI Timing EOMI After CRC  
DATA LINK  
86  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
that after the RFDL is enabled (EN = 1 or TR = 1) the RFDL will generate  
an interrupt to indicate the status of the link. As a result, the first data  
byte read should be discarded. The M13 is designed as a passive  
RFDL, any link state in the form of BOC, IDL, active flags, or other indi-  
cations should be handled by the controlling microprocessor.  
Internal Data Link Receiver:  
Like the data link transmitter, the Data Link Receiver should be  
disabled at start up by setting the EN bit in the RFDL Configuration  
Register. Before initiating the RFDL, the FIFO depth for generating an  
interrupt should be set by writing to the RFDL Interrupt Control/Status  
register.  
Much like the XFDL, the RFDL can be run in a polled, interrupt  
driven, or DMA controlled mode. In the polled mode the RDLINT and  
RDLEOM outputs are not used and the microprocessor must periodically  
read (poll) the Status register to determine when to read the data. In the  
Interrupt driven mode the M13 will generate an interrupt via RDLINT pin  
to indicate to the microprocessor that data is ready to be read. In the  
DMA controlled mode the RDLINT and RDLEOM are used as a hard-  
ware handshake to initiate, indicate and terminate the DMA.  
By setting the EN bit in the Configuration Register to 1, the RFDL will  
be enabled and assumes the link will be idle (all ones). Immediately  
after enabling the RFDL however, the RDFL will begin searching for  
flags. When the first flag is found, an interrupt will be generated and the  
data byte found before the flag will be written to the FIFO. When an  
interrupt is generated the RFDL control block guarantees that the FLG  
and EOM bits will also be written to the status register reflect the current  
state. After the interrupt is generated the data should be read out and  
EOM should be logic 1 and the FLG bit logic 1. It is important to note  
Zero Destuff  
FIFO  
Serial to Parallel  
Reg 24  
RFDL  
Control  
Reg 25  
Reg 26  
Data Out  
6143 drw38  
RDL  
INT  
RDL  
EOM  
Figure 24. RFDL  
DATA LINK  
87  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
6) If FLG = 1 and the link was inactive, then set the link to active,  
discard the byte and wait for the next period/interrupt.  
Polled Mode:  
In the polled mode the controlling microprocessor will periodically  
initiate a service routine and complete the following:  
7) Save the byte.  
1) Read the RFDL Data Register  
2) Read the RFDL Status Register  
8) If EOMR = 1, then check the CRC, NVB and process the frame  
9) If FE = 0, then go to step 1, else wait for next period/interrupt.  
3) If the FIFO has underrun (0x00) then discard byte and wait for the  
next period/interrupt.  
Steps 1 and 2 may be reserved to avoid reading the Data Register  
unneccessarily.  
4) If the FIFO has overflowed (OVR = 1) then discard the last frame  
and wait for the next period/interrupt.  
5) If FLG = 0 (i.e. abort) and the link was active discard the byte and  
wait for the next period/interrupt.  
82V8313  
0x25  
0x26  
RFDL TSB INT. Cnt/Status  
RFDL TSB Status  
RDLINT  
X
X
0x27  
RFDL TSB Receive Data  
RDLEOM  
6143 drw 39a  
Figure 25. RFDL Polled Mode  
DATA LINK  
88  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
described above. The above flow (Steps 5 and 6) assumes that the link  
state is stored as a local variable. This is done to determine if the link  
state inactive, receiving all ones or BOC which contains all ones  
sequences, or active and thus receiving data and flags.  
Interrupt Driven Mode:  
In the interrupt driven mode the microprocessor will service the M13  
when the RFDL indicates when a data byte is ready or when an error  
condition occurs. The ISR will be the same as with the polled condition  
82V8313  
0x25  
0x26  
RFDL TSB INT. Cut/Status  
RDLINT  
RFDL TSB Status  
0x27  
RFDL TSB Receive Data  
RDLEOM  
6143 drw 39b  
Figure 26. RFDL Interrupt Driven Mode  
Wait for  
Interrupt  
Read RFDL  
Data Reg  
= 0x00  
Read Status  
Reg  
Discard  
Data  
! = 0x00  
Discard  
last  
frame  
= 1  
Check  
OVR  
= 1  
= 0  
Set link to  
Active  
Set link to  
Inactive  
Check  
FLG  
Save Byte  
= 1  
= 0  
Check CRC, NVB  
Process the frame  
Check EOMR  
= 0  
= 1  
6143 drw40  
Check FE  
Figure 27. RFDL Interrupt Service Routine  
DATA LINK  
89  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
When the DMA controller reads the last byte (EOM or abort) or an  
overrun condition occurs the RDLEOM output goes high the DMA  
controller will be inhibited from reading more bytes and the processor is  
interrupted. When the processor takes over, the DMA can be halted and  
readied for the subsequent frame, and the frame processing initiated.  
DMA Mode:  
The RFDL can also be used with a DMA controller. In this case the  
RDLEOM of the M13 is connected to the interrupt pin of the micro-  
controller. The RDLEOM is also routed to a gate, with the RDLINT,  
which will inhibit a DMA request if the RDLEOM output is high. In this  
way, if the RDLEOM is low, the RDLINT will control DMA requests.  
82V8313  
Microprocessor  
INT  
RDLEOM  
DMA  
Request  
RDLINT  
6143 drw 39  
Figure 28. RFDL DMA Mode  
DATA LINK  
90  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
register those into the RFDL Data Register. In this example B1 will  
contain the remainder of the farme data and the first part of the first byte  
of CRC data. B2 will contain the second part of the first byte of the CRC  
data plus the first part of the second byte of the CRC data. And finally,  
B3 will contain only the second part of the second byte of the CRC data.  
When the status register is read for B3, the EOM bit in the RFDL Status  
Register will also be set to indicate the end of the current frame (End of  
Message --EOM). The RFDL block parses data on byte boundaries until  
the RFDL receives the end flag. The RFDL block will indicate the size of  
the remainder by setting the NVB (Number of Vaild Bits) in the RFDL  
TSB Status register (0x26). The NVB information can be used by  
controlling microprocessor to properly parse, check, and handle the  
data.  
RFDL Normal Data and Abort  
Sequence:  
The above diagram shows the relationship between the incoming  
and extracted data link data and the RDLINT, RDLEOM, and micropro-  
cessor bus. To simplify the examples each microprocessor access is a  
composition of multiple accesses following the recommended handling  
sequence, where each incoming data byte of the farme is handled”  
(read) in turn. As can be seen there is a short delay from the incoming  
data to RDLINT going high. It can also be seen that RDLINT will both be  
de-asserted until the microprocessor reads the data byte from the RFDL  
Data Register. The assert/de-assert sequence is followed through the  
entire farme until Byte (n-2) when multiple bytes exist in the buffer. In  
this case it can be seen that the RDLINT is not de-asserted. At the end  
of an interrupt sequence the controlling microprocessor should realize  
that the interrupt has not been completely cleared and thus re-enter the  
ISR. At Byte (n-1) the interrupt is cleared and the RDLINT is de-  
asserted. In a data link frame, it is not necessary to have an integral  
number bytes. In the above example, this is one of those cases. The  
R” represents the non-integral bits that remain at the end of the frame.  
The internal RFDL block will take in the remainder and the CRC and also  
In the above example, after B3 is read a new frame is started.  
Shortly after it starts, it is aborted. The microprocessor first reads Byte 1  
and then reads the B1 byte. When B1 is read the Status Register will  
indicate FLG bit and EOM bit meaning all bytes up to the abort should be  
read.  
B1  
B3  
B2  
B1'  
R
Serial  
Flag  
Byte 1  
Byte 2  
Byte 3  
Byte n-1  
Byte n  
R
C1  
C2  
Flag  
Byte 1  
Abort  
RFDL Data  
RDLINT  
(1)  
Abort  
EOM  
EOM  
RDLEOM  
D7-0  
6143 drw46  
Figure 29. RFDL Normal Data And Abort Sequence  
DATA LINK  
91  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DATA LINK  
92  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
FUNCTIONAL TIMING:  
ROHCLK  
X1 F1 C11 F0 C12 F0 C13 S1 X2 F1 C21  
F0 C22 F0 C23 S2 P1 F1 C31 F0 C32 F0 C33 S3 P2 F1 C41 F0 C42 F0 C43 S4 M1 F1 C51 F0 C52 F0 C53 S5 M2 F1 C61 F0 C62 F0 C63 S1 M3 F1 C71 F0 C72 F0 C73 S7 X1  
ROH  
ROHFP  
6143 drw43  
Figure 30. Receive DS3 OH Serial Stream  
TOHCLK  
(526 KHz)  
TOH  
X1 F1 C11 F0 C12 F0 C13 S1 X2 F1 C21 F0 C22 F0 C23 S2 P1 F1 C31 F0 C32 F0 C33 S3 P2 F1 C41 F0 C42 F0 C43 S4 M1 F1 C51 F0 C52 F0 C53 S5 M2 F1  
C61 F0 C62 F0 C63 S1 M3 F1 C71 F0 C72 F0 C73 S7 X1  
TOHFP  
TOHEN  
6143 drw43a  
Figure 31. Transmit DS3 OH Serial Stream  
ROHCLK  
(526KHz)  
RMSFP  
(X,P,M)  
ROHP  
(X,P,M,C,F)  
ROHFO  
(X1)  
X1 F1 C11 F0 C12 F0 C13 S1 X2 F1 C21 F0 C22 F0 C23 S2 P1 F1 C31 F0 C32 F0 C33 S3 P2 F1 C41 F0 C42 F0 C43 S4 M1 F1 C51 F0 C52 F0 C53 S5 M2 F1 C61 F0 C62 F0 C63 S1 M3 F1 C71 F0 C72 F0 C73 S7 X1  
ROH  
6143 drw44  
Figure 32. Functional Receive OH Timing Low Speed  
FUNCTIONAL TIMING  
93  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
ROHCLK  
RAIS  
X1 F1 C11 F0 C12 F0 C13 S1 X2 F1 C21 F0 C22 F0 C23 S2 P1 F1 C31 F0 C32 F0 C33 S3 P2 F1 C41 F0 C42 F0 C43 S4 M1 F1 C51 F0 C52 F0 C53 S5 M2 F1 C61 F0 C62 F0 C63 S1 M3 F1 C71 F0 C72 F0 C73 S7 X1  
X1 F1 C11 F0 C12 F0 C13 S1 X2 F1 C21 F0 C22 F0 C23 S2 P1 F1 C31 F0 C32 F0 C33 S3 P2 F1 C41 F0 C42 F0 C43 S4 M1 F1 C51 F0 C52 F0 C53 S5 M2 F1 C61 F0 C62 F0 C63 S1 M3 F1 C71 F0 C72 F0 C73 S7 X1  
RLOS  
ROOF  
(3 out of 16  
F-bits)  
ROOF  
(3 out of 8  
F-bits)  
RFERF  
RDLSIG  
RDLCLK  
6143 drw44a  
Figure 33. Functional Receive Timing PMON  
ROCLK  
(44.736 MHz)  
X-2bit or P-bit or M-bit  
C-bit or F-bit  
RODAT  
Info  
Info  
Info  
Info  
Info  
Info  
Info  
X-bit  
RMFP  
RMSFP  
ROHP  
6143 drw45  
Figure 34. Functional Receive OH Timing High-Speed  
FUNCTIONAL TIMING  
94  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
Loopback Modes:  
Loopback Modes  
95  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS3 Diagnostic Loopback  
For a DS3 Diagnostic Loopback, the transmitted DS3 stream will be looped back into the DS3 receive path and as a result the incoming DS3 will  
be ignored. As a result of the incoming DS3 being ignored, the receive path will use the transmit clock instead of the RPOS./RDAT and RNEG/RLCV.  
MX12 #7  
F
RCLK  
MX12 #6  
F
DS3  
RPOS/  
RDAT  
FRMR  
MX12 #5  
MX12 #4  
F
RNEG/  
RLCV  
F
MX12 #3  
MX12 #2  
MX12 #1  
F
MX23  
F
UNI  
TCLK  
F
TPOS/  
TDAT  
DS3  
R
M
R
TRAN  
TNEG/  
TMFP  
6143 Drw60  
Optional  
AIS  
Insertion  
Figure 35. DS3 Diagnostic Loopback  
Loopback Modes  
96  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS3 Line Loopback  
For a DS3 Line Loopback, the received DS3 stream will be looped back into the DS3 transmit path and as a result the internally generated DS3 will  
be ignored. Similar to the DS3 Diagnostic Loopback the transmit clock will be substituted with the receive clock.  
MX12 #7  
F
RCLK  
MX12 #6  
F
DS3  
RPOS/  
RDAT  
FRMR  
MX12 #5  
MX12 #4  
F
RNEG/  
RLCV  
F
MX12 #3  
MX12 #2  
MX12 #1  
F
MX23  
F
TCLK  
F
TPOS/  
TDAT  
DS3  
R
M
R
TRAN  
TNEG/  
TMFP  
6143 Drw61  
Figure 36. DS3 Line Loopback  
Loopback Modes  
97  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS2/G.747 Demultiplex Loopback  
For a DS2/G.747 Demultiples Loopback individual DS2 or G.747 streams can be looped from the receive DS3 stream and be placed back on the  
transmit DS3 stream. As might be expected, the internally generated DS2 or G.747 DS2 will be ignored.  
MX12 #7  
F
RCLK  
MX12 #6  
F
DS3  
RPOS/  
RDAT  
FRMR  
MX12 #5  
MX12 #4  
F
MX23  
RNEG/  
RLCV  
F
MX12 #3  
MX12 #2  
MX12 #1  
F
DS2/G.747 Tributary Loopback Path  
Optional  
DEMUX AIS  
Insertion  
F
TCLK  
F
TPOS/  
TDAT  
DS3  
R
M
R
TRAN  
TNEG/  
TMFP  
6143 Drw62  
Figure 37. DS2 / G.747 Demultiplex Loopback  
Loopback Modes  
98  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DS1/E1 Demultiplex Loopback  
For a DS1/EI Demultiplex Loopback individual DS1 or E1 streams can be looped from the received DS3 stream and be placed back on the transmit  
DS3 stream. As with the DS2/G.747 Demultiplex loopback the corresponding incoming DS1 or E1 stream will be ignored.  
MX12 #7  
F
RCLK  
MX12 #6  
F
DS3  
RPOS/  
RDAT  
FRMR  
MX12 #5  
MX12 #4  
F
MX23  
RNEG/  
RLCV  
F
MX12 #3  
MX12 #2  
MX12 #1  
F
DS1/E1 Tributary Loopback Path  
Optional  
DEMUX AIS  
Insertion  
F
TCLK  
F
RD1DATn  
RD1CLKn  
R
M
R
TPOS/  
TDAT  
DS3  
TRAN  
TD1DATn  
TD1CLKn  
TNEG/  
TMFP  
6143 Drw63  
Figure 38. DS1/E1 Demultiplex Loopback6+  
Loopback Modes  
99  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
Loopback Modes  
100  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DC ELECTRICAL CHARACTERISTICS  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Supply Voltage  
Min.  
Max.  
Unit  
Vcc  
VI  
-0.5  
GND -0.3  
-50  
+4.0  
Vcc +0.3  
50  
V
V
Voltage on Digital Inputs  
Current at Digital Outputs  
Storage Temperature  
Io  
mA  
°C  
W
Ts  
-55  
+125  
2
PD  
Package Power Dissipation  
(1)  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min.  
Typ.  
Max. Unit  
Vcc  
Positive Supply  
3.0  
2.0  
3.3  
3.6  
Vcc  
0.8  
V
V
V
(1)  
VIH  
Input HIGH Voltage  
Input LOW Voltage  
VIL  
-0.3  
Operating Temperature  
Industrial  
TOP  
-40  
25  
+85  
°C  
Notes:  
1. Inputs/Outputs are 5V tolerant.  
2. Voltages are with respect to ground (GND) unless otherwise stated.  
DC ELECTRICAL CHARACTERISTICS  
101  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
DC ELECTRICAL CHARACTERISTICS  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
Icc(1)  
Supply Current  
-10  
-10  
185  
60  
mA  
µA  
µA  
µA  
V
(3.4)  
IIL  
Input Leakage (input pins)  
Input Leakage (I/O pins)  
High-Impedance Leakage  
Output HIGH Voltage  
Output LOW Voltage  
(3.4)  
IBL  
60  
(3,4)  
IOZ  
60  
(5)  
VOH  
2.4  
0.4  
(6)  
VOL  
V
Note:  
1. Voltages are with respect to ground (GND) unless otherwise stated.  
2. Outputs unloaded.  
3. 0 V Vcc  
4. Maximum leakage on pins (output or I/O in High-Impedance state) is over an applied voltage (V).  
5. IOH = 10 mA  
6. IOL = 10 mA  
DC ELECTRICAL CHARACTERISTICS  
102  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
AC ELECTRICAL CHARACTERISTICS  
MICROPROCESSOR INTERFACE TIMING CHARACTERICSTICS  
MICROPROCESSOR READ ACCESS  
Symbol  
Parameter  
Address to Valid Read Set-up Time  
Min.  
Typ.  
Max.  
Unit  
tSAR  
tHAR  
tSALR  
tHALR  
tVL  
20  
20  
20  
20  
20  
20  
100  
20  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address to Valid Read Hold Time  
Address to Latch Set-up Time  
Address to Latch Hold Time  
Valid Latch Pulse Width  
tHLR  
tPRD  
tZRD  
tPINTH  
Latch to Read Hold  
Valid Read to Valid Data Propagation Delay  
Valid Read Deserted to Output Tristate  
Valid Read Deasserted to INTB Tristate  
50  
tSAR  
A8-0  
ALE  
Vaild Address  
tSALR  
tVL  
tHAR  
tHAL  
tHLR  
(CSB + RDB)  
tPINTH  
INTB  
D7-0  
tZRD  
tPRD  
Vaild Data  
6143 drw04  
Figure 39 Microprocessor Read Access Timing  
Notes on Microprocessor Read Timing:  
1. Output propagation delay time is the time in nanoseconds from the 1.4 Volt point of the reference signal to the 1.4 Volt point of the output.  
2. Maximum output propagation delays are measured with a 100 pF load on the microprocessor data bus, (D 7-0).  
3. A valid read cycle is defined as a logical OR of the CSB and the RDB signals.  
4. Microprocessor timing applies to normal mode register accesses only.  
5. When a set-up time is specified between an input and a clock, the set-up time is the time in nanoseconds from the 1.4 Volt point of the input to  
the 1.4 Volt point of the clock.  
6. When a hold time is specified between an input and a clock, the hold time is the time in nanoseconds from the 1.4 Volt point of the clock to the  
1.4 Volt point of the input.  
7. In non-multiplexed address/data bus architectures, ALE should be held high, parameters tSALR, tHALR, tVL, tHLR and tSLR are not applicable.  
8. Parameters tHAR and tSAR are not applicable of address latching is used.  
AC ELECTRICAL CHARACTERISTICS  
103  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
MICROPROCESSOR WRITE ACCESS  
Symbol  
Parameter  
Min.  
Max. Unit  
tSAW  
tSDW  
tSALW  
tHALW  
tVL  
Address to Valid Write Set-up Time  
Data to Valid Write Set-up Time  
Address to Latch Set-up Time  
Address to Latch Hold Time  
Valid Latch Pulse Width  
25  
20  
20  
20  
20  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tSLW  
tHLW  
tHDW  
tHAW  
tVWR  
Latch to Write Set-up  
Latch to Write Hold  
20  
20  
20  
40  
Data to Valid Write Hold Time  
Address Valid Write Hold Time  
Valid Write Pulse Width  
A8-0  
ALE  
Vaild Address  
tSALW  
tHLW  
tVL  
tSLW  
tHLW  
tVWR  
tHAW  
(CSB + RDB)  
tSDW  
tHDW  
D7-0  
Vaild Data  
6143 drw05  
Figure 40 Microprocessor Write Access Timing  
Notes on Microprocessor Write Timing:  
1. A valid write cycle is defined as a logical OR of the CSB and the WDB signals.  
2. Microprocessor timing applies to normal mode register accesses only.  
3. In non-multiplexed address/data bus architectures, ALE should be held high, parameters tSALW, tHALW, tVL, tHLW and tSLW are not applicable.  
4. Parameters tHAW and tSAW are not applicable of address latching is used.  
5. Output propagation delay time is the time in nanoseconds from the 1.4 Volt point of the reference signal to the 1.4 Volt point of the output.  
6. When a set-up time is specified between an input and a clock, the set-up time is the time in nanoseconds from the 1.4 Volt point of the input to  
the 1.4 Volt point of the clock.  
7. When a hold time is specified between an input and a clock, the hold time is the time in nanoseconds from the 1.4 Volt point of the clock to the  
1.4 Volt point of the input.  
AC ELECTRICAL CHARACTERISTICS  
104  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TIMING CHARACTERISTICS  
RECEIVE DS3 INPUT  
Symbol  
Parameter  
Min.  
Max.  
Unit  
RCLK Frequency (nominally 44.736 MHz)  
RCLK Duty Cycle  
-20  
40  
4
+20  
60  
ppm  
%
tSRPOS  
RPOS/RDAT Set-up Time  
RPOS/RDAT Hold Time  
ns  
tHRPOS  
tSRNEG  
tHRNEG  
6
ns  
RNEG/RLCV Set-up Time  
RNEG/RLCV Hold Time  
4
ns  
6
ns  
RCLK  
tSRPOS  
tSRNEG  
tHRPOS  
tHRNEG  
RPOS/RDAT  
RNEG/RDAT  
6143 drw06  
Figure 41 Receive DS3 Input Timing  
AC ELECTRICAL CHARACTERISTICS  
105  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TRANSMIT DS3 INPUT  
Symbol  
Parameter  
Min.  
Max.  
Unit  
TICLK Frequency (nominally 44.736 MHz)  
TICLK Duty Cycle  
20  
20  
20  
20  
ppm  
%
tSTIMFP  
tHTIMFP  
TIMFP Set-up Time  
ns  
TIMFP Hold Time  
ns  
TICLK  
tSTIMFP  
tHTIMFP  
TIMFP  
6143 drw07  
Figure 42 Transmit DS3 Input Timing  
TRANSMIT OVERHEAD INPUT  
Symbol  
Parameter  
TOH Set-up Time  
Min.  
Max.  
Unit  
tSTOH  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
tHTOH  
TOH Hold Time  
tSTOHEN  
tHTOHEN  
TOHEN Set-up Time  
TOHEN Hold Time  
TOHCLK  
TOH  
tSTOH  
tHTOH  
tHTOHEN  
tSTOHEN  
TOHEN  
6143 drw08  
Figure 43 Transmit Overhead Input Timing  
AC ELECTRICAL CHARACTERISTICS  
106  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TRANSMIT TRIBUTARY INPUT  
Symbol  
Parameter  
Min.  
Max.  
Unit  
TD1CLKn Frequency (nominally 1.544 MHz, when configured for  
DS1 rate operation)  
-130  
+130  
ppm  
TD1CLKn Frequency (nominally 2.048 MHz, when configured for  
E1 rate operation; not applicable for n = 4, 8, 12, 16, 20, 24, 28)  
-50  
-33  
+50  
+33  
ppm  
ppm  
TD1CLKn Frequency (nominally 6.312 MHz, when configured for  
DS2 rate operation; only applicable for n = 4, 8, 12, 16, 20, 24, 28)  
TD1CLK Duty Cycle (all configurations)  
TD2CLK Frequency (nominally 6.312 MHz)  
TD2CLK Duty Cycle  
33  
-33  
33  
20  
20  
67  
+33  
67  
%
ppm  
%
tSTD1DAT  
tHTD1DAT  
TD1DAT Set-up Time  
ns  
TD1DAT Hold Time  
ns  
TD1CLK  
TD1DAT  
tHTD1DAT  
tSTD1DAT  
6143 drw09  
Figure 44 Transmit Tributary Input Timing  
TRANSMIT DATA LINK INPUT  
Symbol  
Parameter  
Min.  
Max.  
Unit  
tSTDLSIG  
tHTDLSIG  
TDLSIG to TDLCLK Set-up Time  
TDLSIG to TDLCLK Hold Time  
20  
20  
ns  
ns  
TDLCLK  
tSTDLSIG  
tHTDLSIG  
TDLSIG  
6143 drw10  
Figure 45 Transmit Data Link Input Timing  
AC ELECTRICAL CHARACTERISTICS  
107  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TRANSMIT DATA LINK EOM INPUT  
Symbol  
Parameter  
TDLEMOI Pulse Width3  
Min.  
Max.  
Unit  
tVTEOMI  
5
0
ns  
ns  
3
tS1TEOMI  
TDLEMOI Pulse to Falling Edge of WFDL  
Transmit Data Register Write Set-up Time  
tS2TEOMI  
TDLEMOI Pulse to Next Falling Edge of  
XFDL  
0
ns  
3
Transmit Data Register Write Set-up Time  
tS3TEOMI  
TDLEMOI Pulse After TDLINT Assertion3  
210  
µs  
TDLINT  
“write of last byte”  
[i.e. WRB &  
(A[8:] = 22H])  
tHRPOS  
tS3TEOMI  
tS2TEOMI  
TDLEOMI  
tVTEOMI  
6143 drw11  
Figure 46 Transmit Data Link EOM Input Timing  
Notes on Input Timing:  
1. When a set-up time is specified between an input and a clock, the set-up time is the time in nanoseconds from the 1.4 Volt point of the input to  
the 1.4 Volt point of the clock.  
2. When a hold time is specified between an input and a clock, the hold time is the time in nanoseconds from the 1.4 Volt point of the clock to the  
1.4 Volt point of the input.  
3. TD1CLK frequency, TD2CLK frequency, tS1TEOMI, tS2TEOMI, tS3TEOMI and tVTEOMI values are guaranteed by design - not measured.  
AC ELECTRICAL CHARACTERISTICS  
108  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TRANSMIT DS3 OUTPUT  
Symbol  
Parameter  
TCLK Duty Cycle  
Min.  
Max.  
Unit  
TICLK -5 TICLK +5  
%
ns  
ns  
tPTPOS  
tPTNEG  
TCLK Low to TPOS/TDAT Valid Prop. Delay  
TCLK Low to TNEG/TMFP Valid Prop. Delay  
-2  
-2  
5
5
TCLK  
tPTPOS  
TPOS/TDAT  
tPTNEG  
TNEG/TMFP  
6143 drw12  
Figure 47 Transmit DS3 Output Timing  
AC ELECTRICAL CHARACTERISTICS  
109  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
RECEIVE DS3 OUTPUT  
Symbol  
Parameter  
Min.  
Max.  
Unit  
tPRODAT  
ROCLK Low to RODAT Valid Prop. Delay  
ROCLK Low to RMFP Valid Propagation Delay  
ROCLK Low to RMSFP Valid Prop. Delay  
ROCLK Low to ROHP Valid Propagation Delay  
ROCLK Low to RLOS Valid Propagation Delay  
-3  
-3  
-3  
-3  
-3  
3
3
3
3
3
ns  
ns  
ns  
ns  
ns  
tPRMFP  
tPRMSFP  
tPROHP  
tPRLOS  
ROCLK  
RODAT  
tPRODAT  
tPTMFP  
RMFP  
tPRMSFP  
RMSFP  
tROHP  
ROHP  
tPRLOS  
RLOS  
6143 drw13  
Figure 48 Receive DS3 Output Timing  
AC ELECTRICAL CHARACTERISTICS  
110  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
RECEIVE OVERHEAD OUTPUT  
Symbol  
Parameter  
Min.  
Max.  
Unit  
tPROH  
ROHCLK Low to ROH Valid Propagation  
Delay  
-5  
20  
ns  
tPROHFP  
tPRAIS  
ROHCLK Low to ROHFP Valid Prop. Delay  
-5  
-5  
20  
20  
ns  
ns  
ROHCLK Low to RAIS Valid Propagation  
Delay  
tPROOF  
ROHCLK Low to ROOF Valid Prop. Delay  
ROHCLK Low to RFERF Valid Prop. Delay  
-5  
-5  
20  
20  
ns  
ns  
tPRFERF  
ROHCLK  
tPROH  
ROH  
tPROHFP  
ROHFP  
tPRAIS  
tPROOF  
tPRFERF  
RAIS  
ROOF/RRED  
RFERF  
6143 drw14  
Figure 49 Receive Overhead Output Timing  
AC ELECTRICAL CHARACTERISTICS  
111  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
TRANSMIT OVERHEAD OUTPUT  
Symbol  
Parameter  
Min.  
Max.  
Unit  
tPTOHFP  
TOHCLK Low to TOHFP Valid Prop. Delay  
-10  
20  
ns  
TOHCLK  
tPTOHFP  
TOHFP  
6143 drw15  
Figure 50 Transmit Overhead Output Timing  
RECEIVE TRIBUTARY OUTPUT  
Symbol  
Parameter  
Min.  
Max.  
Unit  
tPRD1DAT  
RD1CLK Low to RD1DAT Valid Prop. Delay  
-10  
20  
ns  
RD1CLK  
tPRD1DAT  
RD1DAT  
6143 drw16  
Figure 51 Receive Tributary Output Timing  
AC ELECTRICAL CHARACTERISTICS  
112  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
RECEIVE DATA LINK OUTPUT  
Symbol  
Parameter  
Min.  
Max.  
Unit  
tPRD1DAT  
RD1CLK Low to RD1DAT Valid Prop. Delay  
-10  
20  
ns  
RDLCLK  
tPRDLSIG  
RDLSIG  
6143 drw17  
Figure 52 Receive Data Link Output Timing  
Notes on Output Timing:  
1. Output propagation delay time is the time in nanoseconds from the 1.4 Volt point of the reference signal to the 1.4 Volt point of the output.  
2. Maximum output propagation delays are measured with a 20 pF load on the high-speed DS3 outputs (TCLK, TPOS/TDAT, TNEG/TMFP,  
ROCLK, RODAT, RMFP, RMSFP, and ROHP) and a 50 pF load on the remaining outputs.  
AC ELECTRICAL CHARACTERISTICS  
113  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
AC ELECTRICAL CHARACTERISTICS  
114  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
JTAG Timing Specifications  
tJCYC  
tJR  
tJCH  
tJCL  
TCK  
(1)  
Device Inputs  
/
TDI/TMS  
tJH  
tJDC  
tJS  
(2)  
Device Outputs  
/
TDO  
tJCD  
tJRSR  
TRST  
6143 drw17a  
tJRST  
Figure 53 Standard JTAG Timing  
Notes:  
1. Device inputs = All device inputs except TDI, TMS, and TRST.  
2. Device outputs = All device outputs except TDO  
JTAG  
115  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
JTAG AC Electrical  
Characteristics (1,2,3,4)  
Symbol  
Parameter  
Min.  
Max. Units  
tJCYC  
tJCH  
tJCL  
tJR  
JTAG Clock Input Period  
JTAG Clcok HIGH  
JTAG Clock LOW  
JTAG Clock Rise Time  
JTAG Clock Fall Time  
JTAG Reset  
100  
40  
40  
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-
3(1)  
3(1)  
-
tJF  
-
tJRST  
tJRSR  
tJCD  
tJDC  
tJS  
50  
50  
-
JTAG Reset Recovery  
JTAG Data Output  
JTAG Data Output Hold  
JTAG Setup  
-
25  
-
0
15  
15  
-
tJH  
JTAG Hold  
-
Notes:  
1. Guaranteed by design.  
2. 30pF loading on external output signals.  
3. Refer to AC Electrical Test Conditions stated earlier in this document.  
4. JTAG operations occur at one speed (10MHz). The base device may run at any speed specified in this datasheet.  
Identification Register Definitions  
Instruction Field  
Revision Number (31:28)  
Value  
Description  
0x0  
0x0312(1)  
0x33  
Reserved for version number  
Defines IDT part number  
IDT Device ID (27:12)  
IDT JEDEC ID (11:1)  
Allows unique identification of device vendor as IDT  
Indicates the presence of an ID register  
ID Register Indicator Bit (Bit 0)  
1
Note:  
1. Device ID forIDT82V8313 is 0x0313.  
Scan Register Sizes  
Register Name  
Bit Size  
Instruction (IR)  
4
1
Bypass (BYR)  
Identification (IDR)  
Boundary Scan (BSR)  
32  
Note (3)  
JTAG  
116  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
plied to the pin a 1 will be read out on TDO for that corresponding pin.  
All fourteen even T1 data outputs (D1DAT2,4,6...28) are inverted after  
JTAG scan registers. So during JTAG EXTEST operation, their iverted  
values will be output on the output pads. In other words if a 0 is loaded  
into the pad, a 1 will be seen on the pin when looked at externally.  
JTAG Information  
All fourteen even T1 data inputs (TD1DAT2, 4, 6...28) are inverted before  
JTAG scan registers. So during JTAG preload/sample operation, the in-  
verted values will be shifted out in TDO output. In other words if 0 is ap-  
System Interface Parameters  
Instruction  
Code  
Description  
EXTEST  
0000  
Forces contents of the boundary scan cells onto the device outputs(1).  
Places the boundary scan register (BSR) between TDI and TDO.  
BYPASS  
IDCODE  
1111  
0010  
Places the bypass register (BYR) between TDI and TDO.  
Loads the ID register (IDR) with the vendor ID code and places the register  
between TDI and TDO.  
HIGH-Z  
0011  
0001  
Places the bypass register (BYR) between TDI and TDO. Forces all device  
output drivers to a HIGH-Z state.  
SAMPLE/PRELOAD  
Places the boundary scan register (BSR) between TDI and TDO. SAMPLE  
allows data from device input(2) to be captured in the boundary scan cells and  
shifted serially through TDO. PRELOAD allows data to be input serially into the  
boundary scan cells via the TDI.  
RESERVED  
All other codes  
Several combinations are reserved. Do not use codes other than those  
indentified above.  
Notes:  
1. Device outputs = All device outputs except TDO.  
2. Device inputs = All device inputs except TDI, TMS, and TRST  
3. The Boundary Scan Description Language (BSDL) file for this device is available on the IDT website (www.idt.com), or b y contacting you local  
IDT sales representative.  
JTAG  
117  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
JTAG SCAN ORDER  
Name  
JTAG SCAN ORDER  
In  
Out  
High-Z  
Name  
In  
Out  
High-Z  
TD1CLK27  
RD1DAT27  
TD1DAT27  
RD1CLK26  
TD1CLK26  
RD1DAT26  
TD1DAT26  
RD1CLK25  
TD1CLK25  
RD1DAT25  
TD1DAT25  
RD1CLK24  
TD1CLK24  
RD1DAT24  
TD1DAT24  
RD1CLK23  
TD1CLK23  
RD1DAT23  
TD1DAT23  
RD1CLK22  
TD1CLK22  
RD1DAT22  
TD1DAT22  
RD1CLK21  
TD1CLK21  
RD1DAT21  
TD1DAT21  
RD1CLK20  
TD1CLK20  
RD1DAT20  
TD1DAT20  
RD1CLK19  
TD1CLK19  
RD1DAT19  
TD1DAT19  
RD1CLK18  
TD1CLK18  
0
RD1DAT18  
TD1DAT18  
RD1CLK17  
TD1CLK17  
RD1DAT17  
TD1DAT17  
RD1CLK16  
TD1CLK16  
RD1DAT16  
TD1DAT16  
RD1CLK15  
TD1CLK15  
RD1DAT15  
TD1DAT15  
RD1CLK14  
TD1CLK14  
RD1DAT14  
TD1DAT14  
RD1CLK13  
TD1CLK13  
RD1DAT13  
TD1DAT13  
RD1CLK12  
TD1CLK12  
RD1DAT12  
TD1DAT12  
RD1CLK11  
TD1CLK11  
RD1DAT11  
TD1DAT11  
RD1CLK10  
TD1CLK10  
RD1DAT10  
TD1DAT10  
RD1CLK9  
55  
56  
1
2
57  
60  
63  
66  
69  
72  
75  
78  
81  
84  
87  
90  
93  
96  
99  
102  
105  
108  
3
58  
61  
64  
67  
70  
73  
76  
79  
82  
85  
88  
91  
94  
97  
100  
103  
106  
59  
62  
65  
68  
71  
74  
77  
80  
83  
86  
89  
92  
95  
98  
101  
104  
107  
4
5
6
7
8
9
10  
13  
16  
19  
22  
25  
28  
31  
34  
37  
40  
43  
46  
49  
52  
11  
14  
17  
20  
23  
26  
29  
32  
35  
38  
41  
44  
47  
50  
53  
12  
15  
18  
21  
24  
27  
30  
33  
36  
39  
42  
45  
48  
51  
54  
TD1CLK9  
JTAG  
118  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
Name  
3.3 VOLT M13 MULTIPLEXER  
In  
Out  
High-Z  
Name  
In  
Out  
High-Z  
RD1DAT9  
TD1DAT9  
RD1CLK8  
TD1CLK8  
RD1DAT8  
TD1DAT8  
RD1CLK7  
TD1CLK7  
RD1DAT7  
TD1DAT7  
RD1CLK6  
TD1CLK6  
RD1DAT6  
TD1DAT6  
RD1CLK5  
TD1CLK5  
RD1DAT5  
TD1DAT5  
RD1CLK4  
TD1CLK4  
RD1DAT4  
TD1DAT4  
RD1CLK3  
TD1CLK3  
RD1DAT3  
TD1DAT3  
RD1CLK2  
TD1CLK2  
RD1DAT2  
TD1DAT2  
RD1CLK1  
TD1CLK1  
RD1DAT1  
TD1DAT1  
TDLEMOI  
TDLSIG  
109  
110  
TDLCLK_INT  
TIMFP  
165  
167  
166  
111  
114  
117  
120  
123  
126  
129  
132  
135  
138  
141  
144  
147  
150  
153  
156  
112  
115  
118  
121  
124  
127  
130  
133  
136  
139  
142  
145  
148  
151  
154  
157  
113  
116  
119  
122  
125  
128  
131  
134  
137  
140  
143  
146  
149  
152  
155  
158  
TICLK  
168  
169  
171  
173  
175  
177  
179  
181  
183  
185  
187  
189  
191  
193  
194  
195  
197  
199  
201  
203  
205  
207  
209  
210  
211  
212  
214  
216  
218  
221  
224  
227  
TCLK  
170  
172  
174  
176  
178  
180  
182  
184  
186  
188  
190  
192  
TPOS_DAT  
RAIS  
TNEG_MFP  
GD2CLK  
RODAT  
ROCLK  
RMFP  
ROHP  
TOHCLK  
TOHFP  
RMSFP  
TOH  
TOHEN  
ROHFP  
ROH  
196  
198  
200  
202  
204  
206  
208  
ROHCLK  
RLOS  
RFERF  
ROOF_RED  
REXZ  
RCLK  
RPOS_DAT  
RNEG_LCV  
RDCLK_INT  
RDLSIG_EOM  
INT  
213  
215  
217  
219  
222  
225  
228  
D0  
220  
223  
226  
229  
D1  
D2  
159  
160  
161  
164  
D3  
162  
163  
TD2CLK  
JTAG  
119  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
Name  
In  
Out  
High-Z  
Name  
In  
Out  
High-Z  
A7  
A8  
251  
252  
253  
254  
255  
D4  
D5  
D6  
D7  
CS  
ALE  
A0  
A1  
A2  
A3  
A4  
A5  
A6  
230  
233  
236  
239  
242  
243  
244  
245  
246  
247  
248  
249  
250  
231  
234  
237  
240  
232  
235  
238  
241  
WR  
RD  
RST  
RD1CLK28  
TD1CLK28  
RD1DAT28  
TD1DAT28  
RD1CL27  
256  
259  
262  
257  
260  
263  
258  
261  
Note:  
All fourteen even T1 data inputs (TS1DAT2,4,6...28) are inverted before JTAG scan registers. So during JTAG preload/sample operation, the inverted values will be shifted out in TDO  
output. In other words if a 0 is applied to the pin 1 will be read out on TDO for that corresponding pin.  
All fourteen even T1 data outputs (RD1DAT2,4,6...28) are inverted after JTAG scan registers. So during JTAG EXTEST operation, their inverted values will be output on the output pads.  
In other words if a 0 is loades into the pad, a 1 will be seen on the pin when looked at externally.  
JTAG  
120  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
ORDERING INFORMATION  
IDT  
XXXXXX  
XX  
X
Device Type  
Package  
Process/  
Temperature  
Range  
BLANK  
Commercial (-40°C to +85°C)  
Plastic Quad Flatpack (PQFP, DS208-1)  
Plastic Ball Grid Array (PBGA, BB208-1)  
DS  
BB  
82V8313  
3.3V M13 Multiplexer  
6143 drw18  
Datasheet Document History  
12/15/2003  
03/15/2004  
06/03/2004  
Pgs. 1 thru 130  
Pgs. 3 and 121.  
Pgs. 101, 102 and 121.  
CORPORATE HEADQUARTERS  
2975 Stender Way  
Santa Clara, CA 95054  
for SALES:  
800-345-7015 or 408-727-5116  
fax: 408-492-8674  
for Tech Support:  
408-330-1552  
email:TELECOMhelp@idt.com  
www.idt.com  
The IDT logo is a registered trademark of Integrated Device Technology, Inc.  
ORDERING INFORMATION  
121  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
ORDERING INFORMATION  
122  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
STANDARDS  
American National Standards Institute (ANSI)  
ANSI T1.101 1994: Synchronization Interface Standard.  
ANSI T1.102 1993: Digital Hierarchy: Electrical Interfaces.  
ANSI T1.107 1995: Digital Hierarchy: Formats Specifications.  
ANSI T1.231 1997: Digital Hierarchy: Layer1 In-Service Digital Transmission Performance Monitoring.  
ANSI T1.403 1995: Network-to-Customer Installation Ds1 Metallic Interface.  
ANSI T1.404 1994: Network-to-Customer Installation Ds3 Metallic Interface Specification  
Bell Communications Research (Bellcore)  
TR-TSY-000009 Issue 1, 05/1986: Asynchronous Digital Multiplexes - Requirements and Objectives.  
TR-NWT-000170 Issue 2, 01/1993: Digital Cross-Connect System Generic Requirements and Objectives.  
TR-NWT-000233 Issue 3, 11/1993: Wideband and Broadband Digital Cross-Connect Systems Generic Criteria.  
TR-NWT-001112 Issue 1, 06/1993: Broadband-ISDN User to Network Interface and Network Node Interface Physical Layer Generic Criteria.  
GR-499-CORE Issue 2, 12/1998: Transport Systems Generic Requirements (TSGR) Common Requirements.  
GR-820-CORE Issue 2, 12/1997: Generic Digital Transmission Surveillance (A module of OTGR, FR-439).  
GR-1244-CORE - Issue 1, 06/1995: Clocks for the Synchronized Network: Common Generic Criteria  
International Telecommunication Union (ITU-T)  
Recommendation G.703 04/91: Physical/electrical characteristics oh hierarchical digitalinterfaces  
Recommendation G.704 07/95: Synchronous frame structures used at 1544, 6312, 2048, 8488 and 44 736 kbit/s hierarchical levels  
Recommendation G.706 04/91: Frame alignment and cyclic redundancy check (CGC) procedures relating to basic frame structures defined in  
Recommendation G.704  
Recommendation G.747 1988: Second order digital multiplex equipment operating at 6312 kbit/s and multiplexing three tributaries at 2048 kbit/s  
Recommendation G.752 1988: Characteristics of digital multiplex equipment based on a second order bit rate of 6312 kbit/s and using positive  
justification  
Recommendation G.824 03/93: The control of jitter and wander within digital networks which are based on the 1544 kbit/s hierarchy  
Recommendation M.20 10/92: Maintenance and Philosophy for telecommunication networks  
Recommendation O.150 05/96: General requirements for instrumentation for performance measurements on digital transmission equipment  
Recommendation O.151 10/92: Error performance measuring equipment operating at the primary rate and above  
Recommendation O.152 10/92: Error performance measuring equipment for bit rates of 64 kbit/s and N x 64 kbit/s signals  
Recommendation O.153 10/92: Basic parameters for the measurement of error performance at bit rates below the primary rate  
Recommendation Q.921 03/93: ISDN user-network interface Data link layer specification  
Standards  
123  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
Network Working Group  
RFC 2495 01/99: Definitions of Managed Objects for the Ds1, E1, Ds2 and E2 Interface Types.  
Other documents  
T1 Basics (Telecommunications Techniques Corporation - TTC)  
The Fundamentals of Ds3 1992 (Telecommunications Techniques Corporation - TTC)  
STANDARDS  
124  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
GLOSSARY  
ADM  
AIC  
Add / Drop Multiplexer  
Application Identification  
AIS  
Alarm Indication Singnal  
AIS-CI  
AISS  
AMI  
Alarm Indication Signal - Customer Installation  
AIS Second  
Alternate Mark Inversion  
ANSI  
B-DCS  
BER  
BERT  
BITS  
BnZS  
BOC  
BPV  
C/R  
American National Standards Institute  
Broadband DCS  
Bit Error Rate  
Bit Error Rate Testing  
Building Integrated Timing Source (or Supply)  
Bipolar with n zero Substitution (n = 3 for Ds3 and 8 for Ds1 level)  
Bit Oriented Code  
Bipolar Violation  
Command / Response  
CAS-BR  
CAS-CC  
CC  
Channel Associated Signaling - Bit Robbing (signaling distributed in each Ds0)  
Channel Associated Signaling - Common Channel (in timeslot 24 in T1 channel)  
Composite Clock  
CCS  
CFA  
CGA  
CI  
Common Channel Signaling  
Carrier Failure Alarm  
Carrier Group Alarm  
Customer Installation  
COFA  
CP  
Change of Frame Alignment  
Parity bit instead of stuffing indicator in Ds3 C-bit parity mode  
Cyclical Redundancy Check  
Controlled Slip  
CRC  
CS  
CSS  
CSU  
CV  
Controlled Slip Second  
Customer Service Unit  
Code Violation  
GLOSSARY  
125  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
CVCP  
CVP  
"Code Violation, CP-bit"  
"Code Violation, P-bit"  
DCS  
Dsx  
Digital Cross-connect System  
"Digital Signal hierarchy, level x"  
Extension Address (field)  
Extended Superframe Format  
Equipment Identification Channel  
End of Message  
EA  
EDF  
EIC  
EOM  
ERR  
ES  
Error  
Errored Second  
ESA  
ESACP  
ESAP  
ESB  
ESBCP  
ESBP  
ESCP  
ESP  
"Errored Second, type A"  
"Errored Second, type A, CP-bit"  
"Errored Second, type A, P-bit"  
"Errored Second, type B"  
"Errored Second, type B, CP-bit"  
"Errored Second, type B, P-bit"  
"Errored Second, CP-bit"  
"Errored Second, P-bit"  
Excessive Zeros  
EXZ  
EXZS  
FAS  
Excessive Zero Suppression  
Frame Alignment Signal  
Failure Count  
FC  
FCS  
Frame Check Sequence  
Facility Data Link  
FDL  
FEAC  
FEBE  
FEPR  
FERF  
FIC  
Far End Alarm and Control Channel  
Far End Block Error  
Far End Performance Report  
Far End Receive Failure  
Fast Information Channel  
General Positioning System  
High Density Bipolar Three  
High Level Data Link Control  
High Speed Serial Link  
Idle Pattern  
GPS  
HDB3  
HDLC  
HSSL  
IDL  
GLOSSARY  
126  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
ISDN  
ISID  
ITU  
Integrated Services Digital Network  
Idle Signal Identification  
International Telecommunication Union  
Line  
L
LAPD  
LCV  
LFE  
LIC  
Link Access Protocol on the D Channel  
Line Code Violation  
Line Far End  
Location Identification Channel  
Line Interface Unit  
LIU  
LOD  
LOF  
LOS  
MART  
MDL  
MOP  
NE  
Loss of Data  
Loss of Frame  
Loss of Signal  
Maximum Average Reframe Time  
Maintenance Data Link  
Message Oriented Protocol  
Network Element  
NP  
Network Path  
NPFE  
NPRM  
OC-n  
OOF  
P
Network Path  
Network Performance Report Message  
Optical Carrier level n  
Out of Frame  
Path  
PER  
PFE  
PID  
Parity Error Ratio  
Path Far End  
Path Identification  
PM  
Performance Monitoring  
Polarity  
POL  
PRM  
PRS  
PS  
Performance Report Message  
Primary Reference Source  
Protection Switching  
Protection Switching Count  
Protection Switching Duration  
Path Terminating Equipment  
Remote Alarm Indication  
PSC  
PSD  
PTE  
RAI  
GLOSSARY  
127  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
RAI-CI  
RDI  
Remote Alarm Indication - Customer Installation  
Remote Defect Indication  
RED  
SAPI  
SAS  
Red Alarm  
Service Access Point Identifier  
Severely Errored Frame / Alarm Indication Signal (SEF/AIS) Second  
Severely Errored Frame  
SEF  
SES  
Severely Errored Second  
SESCP  
SESP  
SF  
"Severely Errored Second, CP-bit"  
"Severely Errored Second, P-bit"  
Superframe Format Signal  
SLC96  
SONET  
SPRM  
STS-n  
TCA  
Subscriber Loop Carrier (96 subscriber access line)  
Synchronous Optical Network  
Supplement Performance Report Message  
Synchronous Transport Signal Level n (STS-1: transmission rate of 51.84 Mbit/s)  
Threshold Crossing Alert  
TEI  
Terminal Endpoint Identifier  
TSID  
UAS  
Test Signal Identification  
Unavailable Second  
UASCP  
UASP  
UDR  
UI  
"Unavailable Second, CP-bit"  
"Unavailable Second, P-bit"  
Underrun  
Unit Interval  
VT  
Virtual Tributary (VT1.5: 1.544 Mbit/s signal encapsulated in a higher rate)  
Wideband DCS  
W-DCS  
ZBTSI  
Zero-byte time slot interchange  
GLOSSARY  
128  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
INDEX  
FEBE - Far End Block Error...............................................11, 19, 27, 71  
ALTFEBE..................................................................................... 19  
DFEBE ........................................................................................ 23  
FEBE........................................................................................... 27  
FERF - Far End Receive Failure................... 1, 6, 22, 37, 39, 40, 42, 71  
FERF0......................................................................................... 46  
FERFE................................................................................... 37, 42  
FERFI.................................................................................... 39, 42  
FERFV....................................................................... 37, 39, 40, 43  
RFERF .................................................................... 5, 6, 37, 39, 67  
XFERF......................................................................................... 46  
H
HDLC - High Level Data Link Control...................6, 8, 11, 16, 20, 28, 71  
REXHDLC ................................................................... 6, 16, 17, 20  
TEXHDLC.............................................................. 8, 16, 17, 20, 21  
I
IDL - Idle Pattern........................................................................... 22, 71  
IDLE .................................................................... 35, 36, 37, 39, 40  
IDLEI ........................................................................................... 35  
IDLI.............................................................................................. 39  
IDLV............................................................................................. 40  
RIDL ........................................................................................ 5, 22  
L
LAPD - See Previous Page for Description....................... 29, 30, 31, 71  
LCV - Line Code Violation..............................................1, 11, 24, 38, 71  
DLCV........................................................................................... 23  
RLCV....................................................................................... 5, 63  
LOF - Los Of Frame........................................................................ 1, 71  
LOS - Loss Of Signal .......................................................... 1, 19, 39, 71  
DLOS........................................................................................... 22  
LOS ............................................................................................. 37  
LOSE........................................................................................... 37  
LOSI............................................................................................ 39  
LOSV............................................................................... 37, 39, 40  
RLOS........................................................................... 5, 37, 39, 66  
O
OOF - Out Of Frame ................................... 5, 19, 36, 37, 39, 41, 42, 71  
OOFE .................................................................................... 37, 42  
OOFI............................................................................................ 39  
OOFV ........................................................................ 37, 39, 40, 43  
ROOF................................................................ 5, 6, 19, 37, 39, 67  
ROOV.......................................................................................... 37  
P
A
AIS - Alarm Indication Signal 1, 6, 12, 17, 19, 22, 23, 32, 33, 36, 37, 38,  
39, .........................................................................40, 42, 43, 46, 47, 71  
AISC ......................................................................................36, 38  
AISE.......................................................................................37, 42  
AISI........................................................................................39, 43  
AISONES...............................................................................36, 38  
AISPAT...................................................................................36, 38  
AISV...........................................................................37, 39, 40, 43  
DAIS ......................................................................................32, 47  
LINEAIS.......................................................................................17  
MAIS......................................................................................33, 47  
RAIS ........................................................................5, 6, 37, 39, 67  
XAIS.............................................................................................46  
B
BOC - Bit Oriented Code ...............................................................35, 71  
BOCE...........................................................................................35  
BOCI............................................................................................35  
RBOC ....................................................................9, 12, 20, 35, 71  
XBOC...............................................................................12, 34, 35  
C
CRC - Cyclical Redundancy Check.........................................28, 31, 71  
CCITT-CRC .................................................................................28  
E
EOM - End Of Message...........................................8, 28, 30, 31, 65, 71  
RDLEOM ...............................................................6, 16, 17, 20, 31  
RFDLEOM ...................................................................................20  
ERR - Error..........................................................................................71  
CPERR ............................................................................ 11, 26, 27  
DCPERR......................................................................................23  
DFERR ........................................................................................23  
DMERR........................................................................................23  
DPERR ........................................................................................23  
FERR............................................................. 11, 12, 24, 25, 41, 44  
PERR......................................................................... 11, 12, 26, 45  
RFERR ..........................................................................................5  
EXZS - Excessive Zero Suppression................................. 11, 25, 38, 71  
EXZSO.........................................................................................38  
F
FDL - Facility Data Link .......................................................................71  
RFDL ...............................................................6, 12, 20, 29, 30, 31  
RFDLEOM ...................................................................................20  
RFDLINT......................................................................................20  
WFDL...........................................................................................65  
XFDL.......................................................... 8, 11, 20, 21, 28, 29, 65  
XFDLINT......................................................................................20  
XFDLUDR....................................................................................21  
FEAC - Far End Alarm Control....................................12, 20, 34, 35, 71  
POL - Polarity...................................................................................... 71  
REMPOL ..................................................................................... 17  
RINTPOL..................................................................................... 17  
TINTPOL ..................................................................................... 17  
TUDRPOL ................................................................................... 17  
INDEX  
129  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  
IDT82V8313  
3.3 VOLT M13 MULTIPLEXER  
R
RAI - Remote Alarm Indication..................................................1, 43, 46  
RED - Red Alarm.............................................19, 36, 37, 39, 40, 42, 71  
RED2 ...........................................................................................20  
RED2ALME .................................................................................19  
RED3 ...........................................................................................20  
RED3ALME .................................................................................19  
REDE.....................................................................................37, 42  
REDI ......................................................................................39, 42  
REDO ..........................................................................6, 19, 37, 39  
REDV...................................................................37, 39, 40, 42, 43  
RRED...........................................................................6, 19, 37, 39  
U
UDR - Underrun.............................................................................28, 71  
TDLUDR ......................................................................8, 16, 17, 21  
XFDLUDR....................................................................................21  
INDEX  
130  
June 3, 2004  
*Notice: The information in this document is subject to change without notice  

相关型号:

IDT82V8313DSG

Framer, PQFP208, 28 X 28 MM, 0.50 MM PITCH, LEAD FREE, PLASTIC, QFP-208
IDT

IDT83ALVCH16823PA

3.3V CMOS 18-BIT BUS-INTERFACE FLIPFLOP WITH 3-STATE OUTPUTS AND BUS-HOLD
IDT

IDT83LVC162374APA

3.3V CMOS 16-BIT EDGE TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O, BUS-HOLD
IDT

IDT83LVC162374APF

3.3V CMOS 16-BIT EDGE TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O, BUS-HOLD
IDT

IDT83LVC162374APV

3.3V CMOS 16-BIT EDGE TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O, BUS-HOLD
IDT

IDT84ALVCH16823PA

3.3V CMOS 18-BIT BUS-INTERFACE FLIPFLOP WITH 3-STATE OUTPUTS AND BUS-HOLD
IDT

IDT84LVC162374APA

3.3V CMOS 16-BIT EDGE TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O, BUS-HOLD
IDT

IDT84LVC162374APF

3.3V CMOS 16-BIT EDGE TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O, BUS-HOLD
IDT

IDT84LVC162374APV

3.3V CMOS 16-BIT EDGE TRIGGERED D-TYPE FLIP-FLOP WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O, BUS-HOLD
IDT

IDT85304

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
IDT

IDT85304-01

LOW SKEW, 1-TO-5 DIFFERENTIAL-TO-3.3V LVPECL FANOUT BUFFER
IDT

IDT85304-01PG

Low Skew Clock Driver, 85304 Series, 5 True Output(s), 0 Inverted Output(s), PDSO20, TSSOP-20
IDT