MPC941AER2 [IDT]

TQFP-48, Reel;
MPC941AER2
型号: MPC941AER2
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

TQFP-48, Reel

驱动 逻辑集成电路
文件: 总12页 (文件大小:690K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
LOW VOLTAGE, 1:27 CLOCK DISTRIBUTION CHIP  
MPC941  
The MPC941 is a 1:27 low voltage clock distribution chip. The device features  
the capability to select either a differential LVPECL or an LVCMOS compatible  
input. The 27 outputs are LVCMOS compatible and feature the drive strength to  
drive 50 series or parallel terminated transmission lines. With output-to-output  
skews of 250 ps, the MPC941 is ideal as a clock distribution chip for the most  
demanding of synchronous systems. For a similar product with a smaller number  
of outputs, please consult the MPC940 data sheet.  
LOW VOLTAGE 3.3 V/2.5 V  
1:27 CLOCK  
DISTRIBUTION CHIP  
LVPECL or LVCMOS Clock Input  
250 ps Maximum Output-to-Output Skew  
Drives Up to 54 Independent Clock Lines  
Maximum Output Frequency of 250 MHz  
High Impedance Output Enable  
Extended Temperature Range: –40°C to +85°C  
48-Lead LQFP Packaging  
48-Lead Pb-free Package Available  
3.3 V or 2.5 V VCC Supply Voltage  
With a low output impedance, in both the HIGH and LOW logic states, the  
FA SUFFIX  
48-LEAD LQFP PACKAGE  
CASE 932-03  
output buffers of the MPC941 are ideal for driving series terminated transmission  
lines. More specifically, each of the 27 MPC941 outputs can drive two series  
terminated 50 transmission lines. With this capability, the MPC941 has an  
effective fanout of 1:54. With this level of fanout, the MPC941 provides enough  
copies of low skew clocks for most high performance synchronous systems.  
The differential LVPECL inputs of the MPC941 allow the device to interface  
directly with an LVPECL fanout buffer like the MC100EP111 to build very wide  
clock fanout trees or to couple to a high frequency clock source. The LVCMOS  
input provides a more standard interface for applications requiring only a single  
clock distribution chip at relatively low frequencies. In addition, the two clock  
sources can be used as a test clock interface as well as the primary system clock.  
A logic HIGH on the LVCMOS_CLK_Sel pin will select the LVCMOS level clock  
input.  
AE SUFFIX  
48-LEAD LQFP PACKAGE  
Pb-FREE PACKAGE  
CASE 932-03  
The MPC941 is fully 3.3 V and 2.5 V compatible. The 48-lead LQFP package was chosen to optimize performance, board  
space and cost of the device. The 48-lead LQFP has a 7x7 mm body size.  
IDT™ / ICS™ CLOCK DISTRIBUTION CHIP  
1
MPC941 REV. 8 APRIL 29, 2008  
MPC941  
LOW VOLTAGE, 1:27 CLOCK DISTRIBUTION CHIP  
LOGIC DIAGRAM  
PECL_CLK  
Pulldown  
0
1
PECL_CLK  
Q0  
LVCMOS_CLK  
Pulldown  
25  
Q1–Q25  
Q26  
LVCMOS_CLK_SEL  
Pulldown  
OE  
PULLDOWN  
Pinout: 48-Lead TQFP (Top View)  
36 35 34 33 32 31 30 29 28 27 26 25  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
24  
GND  
Q16  
Q17  
Q18  
VCC  
Q19  
Q20  
GND  
Q21  
Q22  
Q23  
VCC  
VCC  
Q7  
FUNCTION TABLE  
LVCMOS_CLK_SEL  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
Input  
Q6  
0
1
PECL_CLK  
LVCMOS_CLK  
Q5  
GND  
Q4  
MPC941  
Q3  
VCC  
Q2  
Q1  
Q0  
GND  
1
2
3
4
5
6
7
8
9
10 11 12  
Table 1. Pin Configuration  
Pin  
I/O  
Type  
Function  
PECL_CLK,  
PECL_CLK  
Input  
LVPECL  
LVPECL differential reference clock inputs  
LVCMOS_CLK  
Input  
Input  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
Supply  
Alternative reference clock input  
Input reference clock select  
Output tristate control  
LVCMOS_CLK_SEL  
OE  
GND  
VCC  
Negative voltage supply output bank (GND)  
Positive voltage supply  
Supply  
Q0–Q26  
Output  
LVCMOS  
Clock outputs  
IDT™ / ICS™ CLOCK DISTRIBUTION CHIP  
2
MPC941 REV. 8 APRIL 29, 2008  
MPC941  
LOW VOLTAGE, 1:27 CLOCK DISTRIBUTION CHIP  
Table 2. Absolute Maximum Ratings(1)  
Symbol  
VCC  
VIN  
Characteristics  
Min  
–0.3  
–0.3  
–0.3  
Max  
3.6  
Unit  
V
Supply Voltage  
DC Input Voltage  
DC Output Voltage  
DC Input Current  
DC Output Current  
Storage Temperature  
VCC+0.3  
VCC+0.3  
±20  
V
VOUT  
IIN  
IOUT  
TS  
V
mA  
mA  
°C  
±50  
–40  
125  
1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these  
conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute-maximum-rated  
conditions is not implied.  
Table 3. DC Characteristics (VCC = 3.3 V ± 5%, TA = –40 to +85°C)  
Symbol  
VIH  
Characteristics  
Min  
2.0  
Typ  
Max  
VCC + 0.3  
0.8  
Unit  
V
Condition  
LVCMOS  
Input High Voltage  
Input Low Voltage  
Input Current  
LVCMOS_CLK  
LVCMOS_CLK  
VIL  
–0.3  
V
LVCMOS  
IIN  
±120(1)  
µA  
mV  
VPP  
Peak-to-Peak Input Voltage  
PECL_CLK,  
PECL_CLK  
500  
1.2  
2.4  
LVPECL  
VCMR  
Common Mode Range  
PECL_CLK,  
PECL_CLK  
VCC –0.8  
V
LVPECL  
VOH  
VOL  
Output High Voltage  
Output Low Voltage  
V
IOH = –24 mA(2)  
IOL = 24 mA(2)  
IOL = 12 mA  
0.55  
0.40  
V
V
IOZ  
ZOUT  
CPD  
CIN  
Output Tristate Leakage Current  
Output Impedance  
100  
10  
5
µA  
14 – 17  
7-8  
Power Dissipation Capacitance  
Input Capacitance  
pF  
pF  
mA  
V
Per Output  
4.0  
ICCQ  
VTT  
Maximum Quiescent Supply Current  
Output Termination Voltage  
All VCC Pins  
V
CC ÷ 2  
1. Input pull-up / pull-down resistors influence input current.  
2. The MPC941 is capable of driving 50 transmission lines on the incident edge. Each output drives one 50 parallel terminated transmission  
line to a termination voltage of VTT. Alternatively, the device drives up to two 50 series terminated transmission lines.  
IDT™ / ICS™ CLOCK DISTRIBUTION CHIP  
3
MPC941 REV. 8 APRIL 29, 2008  
MPC941  
LOW VOLTAGE, 1:27 CLOCK DISTRIBUTION CHIP  
Table 4. AC Characteristics (VCC = 3.3 V ± 5%, TA = –40 to +85°C)(1)  
Symbol  
fMAX  
Characteristics  
Maximum Output Frequency  
Min  
Typ  
Max  
250(2)  
1.0(3)  
Unit  
MHz  
ns  
Condition  
0
tr, tf  
LVCMOS_CLK Input Rise/Fall Time  
0.8 to 2.0 V  
tPLH  
tPHL  
Propagation Delay  
PECL_CLK to any Q  
LVCMOS_CLK to any Q  
1.2  
0.9  
1.8  
1.5  
2.6  
2.3  
ns  
ns  
tPLZ, HZ  
tPZL, LZ  
tsk(O)  
Output Disable Time  
Output Enable Time  
Output-to-Output Skew  
ns  
ns  
ps  
PECL_CLK to any Q  
LVCMOS_CLK to any Q  
125  
125  
250  
250  
tsk(PP)  
tsk(PP)  
DCQ  
tr, tf  
Device-to-Device Skew  
Device-to-Device Skew  
Output Duty Cycle  
PECL_CLK to any Q  
1000  
1000  
ps  
ps  
For a given TA and  
VCC, any Q  
LVCMOS_CLK to any Q  
PECL_CLK to any Q  
LVCMOS_CLK to any Q  
1400  
1400  
ps  
ps  
For any TA, VCC  
and Q  
PECL_CLK to any Q  
LVCMOS_CLK to any Q  
45  
45  
50  
50  
60  
55  
%
%
DCREF = 50%  
DCREF = 50%  
Output Rise/Fall Time  
0.2  
1.0  
ns  
0.55 to 2.4 V  
1. AC characteristics apply for parallel output termination of 50 to VTT.  
2. AC characteristics are guaranteed up to fmax. Please refer to applications section for information on power consumption versus operating  
frequency and thermal management.  
3. Fast input signal transition times are required to maintain part-to-part skew specification. If part-to-part skew is not critical to the application,  
signal transition times smaller than 3 ns can be applied to the MPC941.  
Table 5. DC Characteristics (VCC = 2.5 V ± 5%, TA = –40 to +85°C)  
Symbol  
VIH  
Characteristics  
Min  
1.7  
Typ  
Max  
VCC + 0.3  
0.7  
Unit  
V
Condition  
LVCMOS  
Input High Voltage  
Input Low Voltage  
Input Current  
LVCMOS_CLK  
LVCMOS_CLK  
VIL  
–0.3  
V
LVCMOS  
IIN  
±120(1)  
µA  
mV  
VPP  
Peak-to-Peak Input Voltage  
PECL_CLK,  
PECL_CLK  
500  
1.1  
1.8  
LVPECL  
LVPECL  
VCMR  
Common Mode Range  
PECL_CLK,  
PECL_CLK  
VCC – 0.7  
V
VOH  
VOL  
IOZ  
Output High Voltage  
V
V
IOH = –15 mA(2)  
IOL = 15 mA(2)  
Output Low Voltage  
0.6  
Output Tristate Leakage Current  
Output Impedance  
100  
µA  
ZOUT  
CPD  
CIN  
18 – 20  
7 – 8  
4.0  
Power Dissipation Capacitance  
Input Capacitance  
10  
5
pF  
pF  
mA  
V
Per Output  
ICCQ  
VTT  
Maximum Quiescent Supply Current  
Output Termination Voltage  
All VCC Pins  
V
CC ÷ 2  
1. Input pull-up / pull-down resistors influence input current.  
2. The MPC941 is capable of driving 50 transmission lines on the incident edge. Each output drives one 50 parallel terminated transmission  
line to a termination voltage of VTT. Alternatively, the device drives up to two 50 series terminated transmission lines.  
IDT™ / ICS™ CLOCK DISTRIBUTION CHIP  
4
MPC941 REV. 8 APRIL 29, 2008  
MPC941  
LOW VOLTAGE, 1:27 CLOCK DISTRIBUTION CHIP  
Table 6. AC Characteristics (VCC = 2.5 V ± 5%, TA = –40 to +85°C)(1)  
Symbol  
fMAX  
Characteristics  
Maximum Output Frequency  
Min  
Typ  
Max  
250(2)  
1.0(3)  
Unit  
MHz  
ns  
Condition  
0
tr, tf  
LVCMOS_CLK Input Rise/Fall Time  
Propagation Delay  
0.7 to 1.7 V  
tPLH  
tPHL  
PECL_CLK to any Q  
1.3  
1.0  
2.1  
1.8  
2.9  
2.6  
ns  
ns  
LVCMOS_CLK to any Q  
tPLZ, HZ  
tPZL, LZ  
tsk(O)  
Output Disable Time  
Output Enable Time  
Output-to-Output Skew  
ns  
ns  
ps  
PECL_CLK to any Q  
LVCMOS_CLK to any Q  
125  
125  
250  
250  
tsk(PP)  
tsk(PP)  
DCQ  
tr, tf  
Device-to-Device Skew  
Device-to-Device Skew  
Output Duty Cycle  
PECL_CLK to any Q  
1200  
1200  
ps  
ps  
For a given TA and  
VCC, any Q  
LVCMOS_CLK to any Q  
PECL_CLK to any Q  
LVCMOS_CLK to any Q  
1600  
1600  
ps  
ps  
For any TA, VCC  
and Q  
PECL_CLK to any Q  
LVCMOS_CLK to any Q  
45  
45  
50  
50  
60  
55  
%
%
DCREF = 50%  
DCREF = 50%  
Output Rise/Fall Time  
0.2  
1.0  
ns  
0.6 to 1.6 V  
1. AC characteristics apply for parallel output termination of 50 to VTT  
.
2. AC characteristics are guaranteed up to fMAX. Please refer to the applications section for information on power consumption versus operating  
frequency and thermal management.  
3. Fast input signal transition times are required to maintain part-to-part skew specification. If part-to-part skew is not critical to the application,  
signal transition times smaller than 3 ns can be applied to the MPC941.  
IDT™ / ICS™ CLOCK DISTRIBUTION CHIP  
5
MPC941 REV. 8 APRIL 29, 2008  
MPC941  
LOW VOLTAGE, 1:27 CLOCK DISTRIBUTION CHIP  
APPLICATIONS INFORMATION  
Driving Transmission Lines  
output impedance does not match the parallel combination of  
the line impedances. The voltage wave launched down the  
two lines will equal:  
The MPC941 clock driver was designed to drive high-  
speed signals in a terminated transmission line environment.  
To provide the optimum flexibility to the user, the output  
drivers were designed to exhibit the lowest impedance  
possible. With an output impedance of less than 20 Ω, the  
drivers can drive either parallel or series terminated  
transmission lines. For more information on transmission  
lines, the reader is referred to Freescale application note  
AN1091 in the Timing Solutions data book (DL207/D).  
In most high performance clock networks, point-to-point  
distribution of signals is the method of choice. In a point-to-  
point scheme, either series terminated or parallel terminated  
transmission lines can be used. The parallel technique  
terminates the signal at the end of the line with a 50 Ω  
resistance to VCC/2. This technique draws a fairly high level  
of DC current, and thus, only a single terminated line can be  
driven by each output of the MPC941 clock driver. For the  
series terminated case, however, there is no DC current  
draw; thus, the outputs can drive multiple series terminated  
lines. Figure 1 illustrates an output driving a single series  
terminated line vs two series terminated lines in parallel.  
When taken to its extreme, the fanout of the MPC941 clock  
driver is effectively doubled due to its capability to drive  
multiple lines.  
VL = VS ( ZO / (RS + RO + ZO))  
ZO = 50 || 50 Ω  
RS = 36 || 36 Ω  
RO = 14 Ω  
VL = 3.0 (25 / (18 + 14 + 25) = 3.0 (25 / 57)  
= 1.31 V  
At the load end, the voltage will double, due to the near  
unity reflection coefficient, to 2.5 V. It will then increment  
towards the quiescent 3.0 V in steps separated by one round  
trip delay (in this case, 4.0 ns).  
3.0  
OutA  
tD = 3.8956  
2.5  
2.0  
1.5  
1.0  
0.5  
0
OutB  
tD = 3.9386  
IN  
MPC941  
Output  
Buffer  
ZO = 50Ω  
RS = 36Ω  
14Ω  
IN  
OutA  
2
4
6
8
10  
12  
14  
TIME (ns)  
Figure 2. Single versus Dual Waveforms  
MPC941  
Output  
Buffer  
ZO = 50Ω  
ZO = 50Ω  
RS = 36Ω  
RS = 36Ω  
Since this step is well above the threshold region, it will not  
cause any false clock triggering; however, designers may be  
uncomfortable with unwanted reflections on the line. To better  
match the impedances when driving multiple lines, the  
situation in Figure 3 should be used. In this case, the series  
terminating resistors are reduced such that when the parallel  
combination is added to the output buffer impedance, the line  
impedance is perfectly matched.  
OutB0  
OutB1  
14Ω  
IN  
Figure 1. Single versus Dual Transmission Lines  
MPC941  
Output  
Buffer  
The waveform plots of Figure 2 show the simulation  
results of an output driving a single line vs two lines. In both  
cases, the drive capability of the MPC941 output buffer is  
more than sufficient to drive 50 transmission lines on the  
incident edge. Note from the delay measurements in the  
simulations, a delta of only 43 ps exists between the two  
differently loaded outputs. This suggests that the dual line  
driving need not be used exclusively to maintain the tight  
output-to-output skew of the MPC941. The output waveform  
in Figure 2 shows a step in the waveform. This step is caused  
by the impedance mismatch seen looking into the driver. The  
parallel combination of the 36 series resistor plus the  
RS = 22Ω  
RS = 22Ω  
ZO = 50Ω  
14Ω  
Z
O = 50Ω  
14+ 22|| 22= 50||50Ω  
25= 25Ω  
Figure 3. Optimized Dual Line Termination  
IDT™ / ICS™ CLOCK DISTRIBUTION CHIP  
6
MPC941 REV. 8 APRIL 29, 2008  
MPC941  
LOW VOLTAGE, 1:27 CLOCK DISTRIBUTION CHIP  
Power Consumption of the MPC941 and Thermal  
Management  
In equation 2, P stands for the number of outputs with a  
parallel or thevenin termination. VOL, IOL, VOH and IOH are a  
function of the output termination technique, and DCQ is the  
clock signal duty cyle. If transmission lines are used, ΣCL is  
zero in equation 2 and can be eliminated. In general, the use  
of controlled transmission line techniques eliminates the  
impact of the lumped capacitive loads at the end lines and  
greatly reduces the power dissipation of the device.  
Equation 3 describes the die junction temperature TJ as a  
function of the power consumption.  
Where Rthja is the thermal impedance of the package  
(junction to ambient), and TA is the ambient temperature,  
according to Table 7, the junction temperature can be used to  
estimate the long-term device reliability. Further, combining  
equation 1 and equation 2 results in a maximum operating  
frequency for the MPC941 in a series terminated  
transmission line system.  
The MPC941 AC specification is guaranteed for the entire  
operating frequency range up to 250 MHz. The MPC941  
power consumption and the associated long-term reliability  
may decrease the maximum frequency limit, depending on  
operating conditions such as clock frequency, supply voltage,  
output loading, ambient temperture, vertical convection and  
thermal conductivity of package and board. This section  
describes the impact of these parameters on the junction  
temperature and gives a guideline to estimate the MPC941  
die junction temperature and the associated device reliability.  
For a complete analysis of power consumption as a function  
of operating conditions and associated long term device  
reliability, please refer to the Freescale application note  
AN1545. According the AN1545, the long-term device  
reliability is a function of the die junction temperature:  
TJ,MAX should be selected according to the MTBF system  
requirements, and Table 7, Rthja can be derived from Table 8.  
The Rthja represent data based on 1S2P boards. Using 2S2P  
boards will result in a lower thermal impedance than indicated  
below.  
Table 7. Die Junction Temperature and MTBF  
Junction Temperature (°C)  
MTBF (Years)  
100  
110  
120  
130  
20.4  
9.1  
4.2  
2.0  
Table 8. Thermal Package Impedance of the 48ld LQFP  
Rthja (1P2S board), K/W  
Convection, LFPM  
Still air  
78  
68  
59  
56  
54  
53  
Increased power consumption will increase the die  
junction temperature and impact the device reliability  
(MTBF). According to the system-defined tolerable MTBF,  
the die junction temperature of the MPC941 needs to be  
controlled, and the thermal impedance of the board/package  
should be optimized. The power dissipated in the MPC941 is  
represented in equation 1.  
100 lfpm  
200 lfpm  
300 lfpm  
400 lfpm  
500 lfpm  
Where ICCQ is the static current consumption of the  
MPC941, CPD is the power dissipation capacitance per  
output. (Μ)ΣCL represents the external capacitive output  
load, and N is the number of active outputs (N is always 27 in  
case of the MPC941). The MPC941 supports driving  
transmission lines to maintain high signal integrity and tight  
timing parameters. Any transmission line will hide the lumped  
capacitive load at the end of the board trace, therefore, ΣCL  
is zero for controlled transmission line systems and can be  
eliminated from equation 1. Using parallel termination output  
termination results in equation 2 for power dissipation.  
If the calculated maximum frequency is below 250 MHz, it  
becomes the upper clock speed limit for the given application  
conditions. The following eight derating charts describe the  
safe frequency operation range for the MPC941. The charts  
were calculated for a maximum tolerable die junction  
temperature of 110°C (120°C), corresponding to a estimated  
MTBF of 9.1 years (4 years), a supply voltage of either 3.3 V  
or 2.5 V, and series terminated transmission line or capacitive  
loading. Depending on a given set of these operating  
conditions and the available device convection, a decision on  
the maximum operating frequency can be made.  
Equation 1  
PTOT = [ ICCQ + VCC · fCLOCK · ( N · CPD + Σ CL ) ] · VCC  
M
PTOT = VCC · [ ICCQ + VCC · fCLOCK · ( N · CPD +MΣ CL ) ] + Σ [ DCQ · IOH · (VCC – VOH) + (1 – DCQ) · IOL · VOL ]  
TJ = TA + PTOT · Rthja  
Equation 2  
Equation 3  
P
Tj,MAX – TA  
1
– (ICCQ · VCC  
)
]
Equation 4  
fCLOCK,MAX =  
·
[
CPD · N · V2  
Rthja  
CC  
IDT™ / ICS™ CLOCK DISTRIBUTION CHIP  
7
MPC941 REV. 8 APRIL 29, 2008  
MPC941  
LOW VOLTAGE, 1:27 CLOCK DISTRIBUTION CHIP  
300  
300  
TA = 55°C  
TA = 35°C  
TA = 65°C  
TA = 45°C  
TA = 55°C  
fMAX (AC)  
250  
200  
250  
200  
fMAX (AC)  
TA = 75°C  
TA = 65°C  
TA = 75°C  
TA = 85°C  
150  
100  
150  
100  
TA = 85°C  
Safe operation  
Safe operation  
50  
0
50  
0
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
IFPM, CONVECTION  
IFPM, CONVECTION  
Figure 4. Maximum MPC941 frequency,  
CC = 3.3 V, MTBF 9.1 years,  
driving series terminated transmission lines  
Figure 5. Maximum MPC941 frequency,  
V
V
CC = 3.3 V, MTBF 9.1 years, 4 pF load per line  
300  
300  
TA = 65°C  
TA = 45°C  
TA = 75°C  
TA = 85°C  
TA = 55°C  
fMAX (AC)  
250  
200  
fMAX (AC)  
250  
200  
TA = 65°C  
TA = 75°C  
TA = 85°C  
150  
100  
150  
100  
Safe operation  
Safe operation  
50  
0
50  
0
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
IFPM, CONVECTION  
IFPM, CONVECTION  
Figure 7. Maximum MPC941 frequency,  
VCC = 3.3 V, MTBF 4 years,  
4 pF load per line  
Figure 6. Maximum MPC941 frequency,  
VCC = 3.3 V, MTBF 4 years,  
driving series terminated transmission lines  
IDT™ / ICS™ CLOCK DISTRIBUTION CHIP  
8
MPC941 REV. 8 APRIL 29, 2008  
MPC941  
LOW VOLTAGE, 1:27 CLOCK DISTRIBUTION CHIP  
300  
300  
TA = 75°C  
TA = 65°C  
250  
200  
fMAX (AC)  
250  
200  
fMAX (AC)  
TA = 85°C  
TA = 75°C  
TA = 85°C  
150  
100  
150  
100  
Safe operation  
Safe operation  
50  
0
50  
0
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
IFPM, CONVECTION  
IFPM, CONVECTION  
Figure 9. Maximum MPC941 frequency,  
VCC = 2.5 V, MTBF 9.1 years,  
4 pF load per line  
Figure 8. Maximum MPC941 frequency,  
VCC = 2.5 V, MTBF 9.1 years,  
driving series terminated transmission lines  
300  
300  
TA = 75°C  
TA = 85°C  
fMAX (AC)  
250  
200  
250  
200  
fMAX (AC)  
TA = 85°C  
150  
100  
150  
100  
Safe operation  
Safe operation  
50  
0
50  
0
500  
400  
300  
200  
100  
0
500  
400  
300  
200  
100  
0
IFPM, CONVECTION  
IFPM, CONVECTION  
Figure 10. Maximum MPC941 frequency,  
VCC = 2.5 V, MTBF 4 years,  
Figure 11. Maximum MPC941 frequency,  
VCC = 2.5 V, MTBF 4 years,  
4 pF load per line  
driving series terminated transmission lines  
IDT™ / ICS™ CLOCK DISTRIBUTION CHIP  
9
MPC941 REV. 8 APRIL 29, 2008  
MPC941  
LOW VOLTAGE, 1:27 CLOCK DISTRIBUTION CHIP  
DUT MPC941  
ZO = 50Ω  
ZO = 50Ω  
Pulse  
Generator  
Z = 50Ω  
RT = 50Ω  
RT = 50Ω  
VTT  
VTT  
Figure 12. LVCMOS_CLK MPC941 AC Test Reference for VCC = 3.3 V and VCC = 2.5 V  
DUT MPC941  
ZO = 50Ω  
Differential Pulse  
Generator  
Z
O = 50Ω  
Z = 50Ω  
RT = 50Ω  
RT = 50Ω  
VTT  
VTT  
Figure 13. PECL_CLK MPC941 AC Test Reference for VCC = 3.3 V and VCC = 2.5 V  
VCC  
PCLK_CLK  
PCLK_CLK  
VCMR  
V
CC ÷ 2  
LVCMOS_CLK  
VPP  
GND  
VCC  
VCC  
VCC÷2  
V
CC ÷ 2  
Q
Q
GND  
GND  
tPD  
tPD  
Figure 14. LVPECL Propagation Delay (tPD  
)
Figure 15. LVCMOS Propagation Delay (tPD  
Test Reference  
)
Test Reference  
VCC  
VCC  
V
CC ÷ 2  
V
CC ÷ 2  
GND  
GND  
VOH  
tP  
V
CC ÷ 2  
t0  
GND  
DC = tP/t0 x 100%  
tSK(O)  
The time from the PLL controlled edge to the non controlled  
edge, divided by the time between PLL controlled edges,  
expressed as a percentage  
The pin-to-pin skew is defined as the worst case difference  
in propagation delay between any two similar delay path  
within a single device  
Figure 16. Output Duty Cycle (DC)  
Figure 17. Output-to-Output Skew tSK(O)  
VCC = 3.3 V VCC = 2.5 V  
VCC = 3.3 V VCC = 2.5 V  
2.0  
0.8  
1.7 V  
0.7 V  
2.4  
1.8 V  
0.6 V  
0.55  
tF  
tR  
tF  
tR  
Figure 18. Output Transition Time Test Reference  
Figure 19. Input Transition Time Test Reference  
IDT™ / ICS™ CLOCK DISTRIBUTION CHIP  
10  
MPC941 REV. 8 APRIL 29, 2008  
MPC941  
LOW VOLTAGE, 1:27 CLOCK DISTRIBUTION CHIP  
PACKAGE DIMENSIONS  
4X  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5m, 1994.  
0.200 AB T-U  
Z
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLAN AB IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS T, U, AND Z TO BE DETERMINED AT  
DATAUM PLANE AB.  
DETAILY  
9
A
P
A1  
48  
37  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE AC.  
36  
1
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.250 PER SIDE. DIMENSIONS A AND B DO  
INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE AB.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.350.  
T
U
B
V
AE  
AE  
B1  
V1  
8. MINIMUM SOLDER PLATE THICKNESS SHALL BE  
0.0076.  
9. EXACT SHAPE OF EACH CORNER IS OPTIONAL.  
12  
25  
13  
MILLIMETERS  
24  
DIM MIN  
MAX  
7.000 BSC  
3.500 BSC  
Z
A
A1  
B
B1  
C
S1  
7.000 BSC  
3.500 BSC  
T, U, Z  
1.400  
1.600  
0.270  
1.450  
0.230  
S
D
E
F
0.170  
1.350  
0.170  
DETAILY  
4X  
0.200 AC T-U  
Z
G
H
J
K
L
M
N
P
0.500 BSC  
0.050  
0.090  
0.500  
0˚  
0.150  
0.200  
0.700  
7˚  
0.080 AC  
12˚ REF  
G
AB  
AC  
0.090  
0.150  
0.160  
0.250 BSC  
R
0.250  
S
S1  
V
V1  
W
AA  
9.000 BSC  
4.500 BSC  
9.000 BSC  
4.500 BSC  
0.200 REF  
1.000 REF  
AD  
M˚  
BASE METAL  
TOP & BOTTOM  
R
N
J
E
C
F
D
M
0.080  
AC T- U Z  
SECTION AE-AE  
W
H
L˚  
K
DETAIL AD  
AA  
CASE 932-03  
ISSUE F  
48-LEAD LQFP PACKAGE  
IDT™ / ICS™ CLOCK DISTRIBUTION CHIP  
11  
MPC941 REV. 8 APRIL 29, 2008  
MPC941  
LOW VOLTAGE, 1:27 CLOCK DISTRIBUTION CHIP  
Contact Information:  
www.IDT.com  
Corporate Headquarters  
Sales  
Technical Support  
Integrated Device Technology, Inc.  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
Fax: 408-284-2775  
netcom@idt.com  
+480-763-2056  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
United States  
800-345-7015 (inside USA)  
+408-284-8200 (outside USA)  
www.IDT.com/go/contactIDT  
© 2008 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device  
Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered  
trademarks used to identify products or services of their respective owners.  
www.IDT.com  
Printed in USA  

相关型号:

MPC941FA

MPC900 SERIES, LOW SKEW CLOCK DRIVER, 27 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP48, 7 X 7 MM, PLASTIC, LQFP-48
MOTOROLA

MPC941FA

Low Skew Clock Driver, 941 Series, 27 True Output(s), 0 Inverted Output(s), PQFP48, 7 X 7 MM, LQFP-48
IDT

MPC941FA

IC,1:27 OUTPUT,ECL,QFP,52PIN,PLASTIC
NXP

MPC941FAR2

MPC900 SERIES, LOW SKEW CLOCK DRIVER, 27 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP48, 7 X 7 MM, PLASTIC, LQFP-48
MOTOROLA

MPC942C

LOW VOLTAGE 1:18 CLOCK DISTRIBUTION CHIP
MOTOROLA

MPC942CAC

942 SERIES, LOW SKEW CLOCK DRIVER, 18 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, 7 X 7 MM, 0.80 MM PITCH, PLASTIC, TQFP-32
NXP

MPC942CACR2

942 SERIES, LOW SKEW CLOCK DRIVER, 18 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, 7 X 7 MM, 0.80 MM PITCH, PLASTIC, TQFP-32
NXP

MPC942CACR2

Low Skew Clock Driver, 942 Series, 18 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, 0.80 MM PITCH, PLASTIC, TQFP-32
IDT

MPC942CFA

Low Skew Clock Driver, 942 Series, 18 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, 0.80 MM PITCH, TQFP-32
IDT

MPC942CFAR2

942 SERIES, LOW SKEW CLOCK DRIVER, 18 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, 7 X 7 MM, 0.80 MM PITCH, PLASTIC, TQFP-32
NXP

MPC942CFAR2

Low Skew Clock Driver, 942 Series, 18 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, 0.80 MM PITCH, PLASTIC, TQFP-32
IDT

MPC942P

Low Voltage 1:18 Clock Distribution Chip
IDT