MPC9772 [IDT]

3.3V 1:12 LVCMOS PLL Clock Generator Internal Power-On Reset; 3.3V LVCMOS 1:12 PLL时钟产生内部上电复位
MPC9772
型号: MPC9772
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

3.3V 1:12 LVCMOS PLL Clock Generator Internal Power-On Reset
3.3V LVCMOS 1:12 PLL时钟产生内部上电复位

时钟
文件: 总17页 (文件大小:442K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
3.3V 1:12 LVCMOS PLL Clock Generator  
MPC9772  
NRND  
DATASHEET  
NRND – Not Recommend for New Designs  
The MPC9772 is a 3.3 V compatible, 1:12 PLL based clock generator targeted  
for high performance low-skew clock distribution in mid-range to  
high-performance networking, computing and telecom applications. With output  
frequencies up to 240 MHz and output skews less than 250 ps the device meets  
the needs of the most demanding clock applications.  
MPC9772  
Features  
1:12 PLL Based Low-Voltage Clock Generator  
3.3 V Power Supply  
3.3 V 1:12 LVCMOS  
PLL CLOCK GENERATOR  
Internal Power-On Reset  
Generates Cock Signals Up to 240 MHz  
Maximum Output Skew of 250 ps  
On-Chip Crystal Oscillator Clock Reference  
Two LVCMOS PLL Reference Clock Inputs  
External PLL Feedback Supports Zero-Delay Capability  
Various Feedback and Output Dividers (See Applications Information  
Section)  
AE SUFFIX  
52-LEAD LQFP PACKAGE  
Pb-FREE PACKAGE  
CASE 848D-03  
Supports Up to Three Individual Generated Output Clock Frequencies  
Synchronous Output Clock Stop Circuitry for Each Individual Output for  
Power Down Support  
Drives Up to 24 Clock Lines  
Ambient Temperature Range 0C to +70C  
Pin and Function Compatible To the MPC972  
52-Lead Pb-Free Package  
NRND – Not Recommend for New Designs  
Use replacement part ICS87972DYI-147  
Functional Description  
The MPC9772 utilizes PLL technology to frequency lock its outputs onto an input reference clock. Normal operation of the  
MPC9772 requires the connection of the PLL feedback output QFB to feedback input FB_IN to close the PLL feedback path. The  
reference clock frequency and the divider for the feedback path determine the VCO frequency. Both must be selected to match  
the VCO frequency range. The MPC9772 features an extensive level of frequency programmability between the 12 outputs as  
well as the output to input relationships, for instance 1:1, 2:1, 3:1, 3:2, 4:1, 4:3, 5:1, 5:2, 5:3, 5:4, 5:6, 6:1, 8:1, and 8:3.  
The QSYNC output will indicate when the coincident rising edges of the above relationships will occur. The selectability of the  
feedback frequency is independent of the output frequencies. This allows for very flexible programming of the input reference  
versus output frequency relationship. The output frequencies can be either odd or even multiples of the input reference. In addi-  
tion the output frequency can be less than the input frequency for applications where a frequency needs to be reduced by a non-  
binary factor. The MPC9772 also supports the 180phase shift of one of its output banks with respect to the other output banks.  
The QSYNC outputs reflects the phase relationship between the QA and QC outputs and can be used for the generation of sys-  
tem baseline timing signals.  
The REF_SEL pin selects the internal crystal oscillator or the LVCMOS compatible inputs as the reference clock signal. Two  
alternative LVCMOS compatible clock inputs are provided for clock redundancy support. The PLL_EN control selects the PLL  
bypass configuration for test and diagnosis. In this configuration, the selected input reference clock is routed directly to the output  
dividers bypassing the PLL. The PLL bypass is fully static and the minimum clock frequency specification and all other PLL char-  
acteristics do not apply.  
The outputs can be individually disabled (stopped in logic low state) by programming the serial CLOCK_STOP interface of the  
MPC9772. The MPC9772 has an internal power-on reset.  
The MPC9772 is fully 3.3 V compatible and requires no external loop filter components. All inputs (except XTAL) accept  
LVCMOS signals while the outputs provide LVCMOS compatible levels with the capability to drive terminated 50 transmission  
lines. For series terminated transmission lines, each of the MPC9772 outputs can drive one or two traces giving the devices an  
effective fanout of 1:24. The device is pin and function compatible to the MPC972 and is packaged in a 52-lead LQFP package.  
MPC9772 REVISION 7 JANUARY 8, 2013  
1
©2013 Integrated Device Technology, Inc.  
MPC9772 Data Sheet  
3.3V 1:12 LVCMOS PLL CLOCK GENERATOR  
QA0  
All input resistors have a value of 25k  
Bank A  
XTAL_IN  
XTAL_OUT  
QA1  
CLK  
XTAL  
VCC  
1
0
0
1
4, 6, 8, 12  
4, 6, 8, 10  
2, 4, 6, 8  
Stop  
Ref  
2  
1  
VCO  
0
1
QA2  
QA3  
CCLK0  
0
1
PLL  
4, 6, 8, 10  
12, 16, 20  
CCLK1  
QB0  
Bank B  
CCLK_SEL  
VCC  
QB1  
CLK  
SYNC PULSE  
Stop  
QB2  
REF_SEL  
FB_IN  
FB  
QB3  
VCO_SEL  
PLL_EN  
Bank C  
QC0  
VCC  
CLK  
QC1  
Stop  
2
2
2
3
FSEL_A[0:1]  
QC2  
QC3  
0
1
FSEL_B[0:1]  
FSEL_C[0:1]  
FSEL_FB[0:2]  
CLK  
Stop  
VCC  
Power-On Reset  
Clock Stop  
QFB  
INV_CLK  
CLK  
Stop  
QSYNC  
12  
STOP_DATA  
STOP_CLK  
MR/OE  
Figure 1. Logic Diagram  
39 38 37 36 35 34 33 32 31 30 29 28 27  
40  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
FSEL_B1  
FSEL_B0  
FSEL_A1  
FSEL_A0  
QA3  
FSEL_FB1  
QSYNC  
GND  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
QC0  
VCC  
VCC  
QC1  
MPC9772  
QA2  
FSEL_C0  
FSEL_C1  
QC2  
GND  
QA1  
VCC  
VCC  
QA0  
QC3  
GND  
GND  
VCO_SEL  
INV_CLK  
1
2
3
4
5
6
7
8
9 10 11 12 13  
Figure 2. MPC9772 52-Lead Package Pinout (Top View)  
MPC9772 REVISION 7 JANUARY 8, 2013  
2
©2013 Integrated Device Technology, Inc.  
MPC9772 Data Sheet  
3.3V 1:12 LVCMOS PLL CLOCK GENERATOR  
Table 1. Pin Configuration  
Pin  
I/O  
Type  
Function  
CCLK0  
Input  
Input  
LVCMOS PLL reference clock  
LVCMOS Alternative PLL reference clock  
CCLK1  
XTAL_IN, XTAL_OUT  
FB_IN  
Analog  
Crystal oscillator interface  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
LVCMOS PLL feedback signal input, connect to an QFB  
LVCMOS LVCMOS clock reference select  
CCLK_SEL  
REF_SEL  
VCO_SEL  
PLL_EN  
LVCMOS LVCMOS/PECL reference clock select  
LVCMOS VCO operating frequency select  
LVCMOS PLL enable/PLL bypass mode select  
MR/OE  
LVCMOS Output enable/disable (high-impedance tristate) and device reset  
LVCMOS Frequency divider select for bank A outputs  
LVCMOS Frequency divider select for bank B outputs  
LVCMOS Frequency divider select for bank C outputs  
LVCMOS Frequency divider select for the QFB output  
LVCMOS Clock phase selection for outputs QC2 and QC3  
LVCMOS Clock input for clock stop circuitry  
FSEL_A[0:1]  
FSEL_B[0:1]  
FSEL_C[0:1]  
FSEL_FB[0:2]  
INV_CLK  
STOP_CLK  
STOP_DATA  
QA[0-3]  
LVCMOS Configuration data input for clock stop circuitry  
Output LVCMOS Clock outputs (Bank A)  
QB[0-3]  
Output LVCMOS Clock outputs (Bank B)  
QC[0-3]  
Output LVCMOS Clock outputs (Bank C)  
QFB  
Output LVCMOS PLL feedback output. Connect to FB_IN.  
Output LVCMOS Synchronization pulse output  
QSYNC  
GND  
Supply  
Supply  
Ground Negative power supply  
VCC PLL positive power supply (analog power supply). It is recommended to use an external RC  
VCC_PLL  
filter for the analog power supply pin VCC_PLL. Please see applications section for details.  
VCC  
Supply  
VCC  
Positive power supply for I/O and core. All VCC pins must be connected to the positive power  
supply for correct operation  
MPC9772 REVISION 7 JANUARY 8, 2013  
3
©2013 Integrated Device Technology, Inc.  
MPC9772 Data Sheet  
3.3V 1:12 LVCMOS PLL CLOCK GENERATOR  
Table 2. Function Table (Configuration Controls)  
Control Default  
0
1
REF_SEL  
1
Selects CCLKx as the PLL reference clock  
Selects the crystal oscillator as the PLL  
reference clock  
CCLK_SEL  
VCO_SEL  
1
1
Selects CCLK0  
Selects CCLK1  
Selects VCO2. The VCO frequency is scaled by a factor of 2 (low VCO Selects VCO1. (high VCO frequency range)  
frequency range).  
PLL_EN  
1
Test mode with the PLL bypassed. The reference clock is substituted for the Normal operation mode with PLL enabled.  
internal VCO output. MPC9772 is fully static and no minimum frequency  
limit applies. All PLL related AC characteristics are not applicable.  
INV_CLK  
MR/OE  
1
1
QC2 and QC3 are in phase with QC0 and QC1  
QC2 and QC3 are inverted (180phase shift)  
with respect to QC0 and QC1  
Outputs disabled (high-impedance state) and device is reset. During  
reset/output disable the PLL feedback loop is open and the internal VCO  
is tied to its lowest frequency. The MPC9772 requires reset after any loss  
of PLL lock. Loss of PLL lock may occur when the external feedback path  
is interrupted. The length of the reset pulse should be greater than one  
reference clock cycle (CCLKx). The device is reset by the internal power-  
on reset (POR) circuitry during power-up.  
Outputs enabled (active)  
VCO_SEL, FSEL_A[0:1], FSEL_B[0:1], FSEL_C[0:1], FSEL_FB[0:2] control the operating PLL frequency range and input/output frequency  
ratios. See Table 3 to Table 6 and the Applications Information for supported frequency ranges and output to input frequency ratios.  
Table 3. Output Divider Bank A (NA)  
VCO_SEL  
FSEL_A1  
FSEL_A0  
QA[0:3]  
VCO8  
VCO12  
VCO16  
VCO24  
VCO4  
VCO6  
VCO8  
VCO12  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Table 4. Output Divider Bank B (NB)  
VCO_SEL  
FSEL_B1  
FSEL_B0  
QB[0:3]  
VCO8  
VCO12  
VCO16  
VCO20  
VCO4  
VCO6  
VCO8  
VCO10  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Table 5. Output Divider Bank C (NC)  
VCO_SEL  
FSEL_C1  
FSEL_C0  
QC[0:3]  
VCO4  
VCO8  
VCO12  
VCO16  
VCO2  
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
MPC9772 REVISION 7 JANUARY 8, 2013  
4
©2013 Integrated Device Technology, Inc.  
MPC9772 Data Sheet  
3.3V 1:12 LVCMOS PLL CLOCK GENERATOR  
Table 5. Output Divider Bank C (NC)  
VCO_SEL  
FSEL_C1  
FSEL_C0  
QC[0:3]  
VCO4  
VCO6  
VCO8  
1
1
1
0
1
1
1
0
1
Table 6. Output Divider PLL Feedback (M)  
VCO_SEL  
FSEL_FB2  
FSEL_FB1  
FSEL_FB0  
QFB  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
VCO8  
VCO12  
VCO16  
VCO20  
VCO16  
VCO24  
VCO32  
VCO40  
VCO4  
VCO6  
VCO8  
VCO10  
VCO8  
VCO12  
VCO16  
VCO20  
Table 7. General Specifications  
Symbol  
VTT  
Characteristics  
Min  
Typ  
Max  
Unit  
V
Condition  
Output Termination Voltage  
ESD Protection (Machine Model)  
ESD Protection (Human Body Model)  
Latch-Up Immunity  
VCC 2  
MM  
200  
2000  
200  
V
HBM  
LU  
V
mA  
pF  
pF  
CPD  
CIN  
Power Dissipation Capacitance  
Input Capacitance  
12  
Per output  
Inputs  
4.0  
Table 8. Absolute Maximum Ratings(1)  
Symbol  
VCC  
VIN  
Characteristics  
Min  
–0.3  
–0.3  
–0.3  
Max  
Unit  
Condition  
Supply Voltage  
3.9  
VCC+0.3  
VCC+0.3  
20  
V
V
DC Input Voltage  
DC Output Voltage  
DC Input Current  
DC Output Current  
Storage Temperature  
VOUT  
IIN  
IOUT  
TS  
V
mA  
mA  
C  
50  
–65  
125  
1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these  
conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated  
conditions is not implied.  
MPC9772 REVISION 7 JANUARY 8, 2013  
5
©2013 Integrated Device Technology, Inc.  
MPC9772 Data Sheet  
3.3V 1:12 LVCMOS PLL CLOCK GENERATOR  
Table 9. DC Characteristics (VCC = 3.3 V ± 5%, TA = -40° to 85°C)  
Symbol  
VCC_PLL  
VIH  
Characteristics  
PLL Supply Voltage  
Min  
3.0  
2.0  
Typ  
Max  
VCC  
Unit  
V
Condition  
LVCMOS  
Input High Voltage  
Input Low Voltage  
Output High Voltage  
Output Low Voltage  
VCC + 0.3  
0.8  
V
LVCMOS  
VIL  
V
LVCMOS  
VOH  
2.4  
V
IOH = –24 mA(1)  
VOL  
0.55  
0.30  
V
V
IOL = 24 mA  
I
OL = 12 mA  
ZOUT  
IIN  
Output Impedance  
Input Current(2)  
14 – 17  
3.0  
200  
A  
VIN = VCC or  
GND  
ICC_PLL  
ICCQ  
Maximum PLL Supply Current  
5.0  
15  
mA  
mA  
VCC_PLL Pin  
All VCC Pins  
Maximum Quiescent Supply Current  
1. The MPC9772 is capable of driving 50 transmission lines on the incident edge. Each output drives one 50 parallel terminated  
transmission line to a termination voltage of VTT. Alternatively, the device drives up to two 50 series terminated transmission lines.  
2. Inputs have pull-down resistors affecting the input current.  
Table 10. AC Characteristics (VCC = 3.3 V ± 5%, TA = –40° to +85°C)(1), (2), continued on next page  
Max  
Unit  
Condition  
Symbol  
Characteristics  
Min  
Typ  
TA = 0°C TA = –40°C  
to +70°C to +85°C  
fREF  
Input reference frequency  
4 feedback  
6 feedback  
8 feedback  
10 feedback  
12 feedback  
16 feedback  
20 feedback  
24 feedback  
32 feedback  
40 feedback  
50.0  
33.3  
25.0  
20.0  
16.6  
12.5  
10.0  
8.33  
6.25  
5.00  
120.0  
80.0  
60.0  
48.0  
40.0  
30.0  
24.0  
20.0  
15.0  
12.0  
115.00  
76.67  
57.50  
46.00  
38.33  
28.75  
23.00  
19.16  
14.37  
11.50  
MHz PLL locked  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Input reference frequency in PLL bypass mode(3)  
VCO frequency range(4)  
250  
480  
250  
460  
MHz PLL bypass  
fVCO  
fXTAL  
fMAX  
200  
10  
MHz  
MHz  
Crystal interface frequency range(4)  
25  
Output Frequency  
2 output  
4 output  
6 output  
8 output  
10 output  
12 output  
16 output  
20 output  
24 output  
100.0  
50.0  
33.3  
25.0  
20.0  
16.6  
12.5  
10.0  
8.33  
240.0  
120.0  
80.0  
60.0  
48.0  
40.0  
30.0  
24.0  
20.0  
230.00  
115.00  
76.67  
57.50  
46.00  
38.33  
28.75  
23.00  
19.16  
MHz PLL locked  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fSTOP_CLK Serial interface clock frequency  
tPW,MIN Input Reference Pulse Width(5)  
20  
MHz  
ns  
2.0  
tR, tF  
CCLKx Input Rise/Fall Time(6)  
1.0  
ns  
0.8 to 2.0 V  
MPC9772 REVISION 7 JANUARY 8, 2013  
6
©2013 Integrated Device Technology, Inc.  
MPC9772 Data Sheet  
3.3V 1:12 LVCMOS PLL CLOCK GENERATOR  
Table 10. AC Characteristics (VCC = 3.3 V ± 5%, TA = –40° to +85°C)(1), (2), continued on next page  
Max  
Unit  
Condition  
Symbol  
Characteristics  
Min  
Typ  
TA = 0°C TA = –40°C  
to +70°C to +85°C  
t()  
Propagation Delay (static phase offset)(7)  
PLL locked  
CCLK to FB_IN  
6.25 MHz < fREF < 65.0 MHz  
65.0 MHz < fREF < 125 MHz  
REF=50 MHz and feedback=8  
–3  
–4  
–166  
+3  
+4  
+166  
ps  
f
tSK(O)  
Output-to-output Skew(8)  
within QA outputs  
within QB outputs  
within QC outputs  
all outputs  
100  
100  
100  
250  
ps  
ps  
ps  
ps  
DC  
Output Duty Cycle(9)  
Output Rise/Fall Time  
(T2) – 200  
T 2  
(T2) + 200  
ps  
ns  
ns  
ns  
ps  
ps  
tR, tF  
0.1  
1.0  
8
0.55 to 2.4 V  
tPLZ, HZ Output Disable Time  
tPZL, LZ  
tJIT(CC)  
Output Enable Time  
8
Cycle-to-cycle Jitter(10)  
150  
200  
150  
tJIT(PER) Period Jitter(11)  
tJIT()  
I/O Phase Jitter RMS (1 )(12)  
4 feedback  
6 feedback  
8 feedback  
10 feedback  
12 feedback  
16 feedback  
20 feedback  
24 feedback  
32 feedback  
40 feedback  
11  
86  
13  
88  
16  
19  
21  
22  
27  
30  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
(VCO=400 MHz)  
BW  
PLL closed loop bandwidth(13)  
4 feedback  
6 feedback  
8 feedback  
10 feedback  
12 feedback  
16 feedback  
20 feedback  
24 feedback  
32 feedback  
40 feedback  
1.20 – 3.50  
0.70 – 2.50  
0.50 – 1.80  
0.45 – 1.20  
0.30 – 1.00  
0.25 – 0.70  
0.20 – 0.55  
0.17 – 0.40  
0.12 – 0.30  
0.11 – 0.28  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
tLOCK  
Maximum PLL Lock Time  
10  
ms  
1. AC characteristics apply for parallel output termination of 50 to VTT  
2. In bypass mode, the MPC9772 divides the input reference clock.  
.
3. The input reference frequency must match the VCO lock range divided by the total feedback divider ratio: fREF= fVCO (M Þ VCO_SEL).  
4. The crystal frequency range must both meet the interface frequency range and VCO lock range divided by the feedback divider ratio:  
f
XTAL(min, max) = fVCO(min, max) (M VCO_SEL) and 10 MHz fXTAL 25 MHz.  
5. Calculation of reference duty cycle limits: DCREF,MIN = tPW,MIN fREF 100% and DCREF,MAX = 100% – DCREF, MIN  
.
6. The MPC9772 will operate with input rise/fall times up to 3.0 ns, but the A.C. characteristics, specifically t(), tPW,MIN, DC and fMAX can only  
be guaranteed if tR, tF are within the specified range.  
7. Static phase offset depends on the reference frequency. t() [s] = t() [] (fREF 360).  
8. Excluding QSYNC output. See application section for part-to-part skew calculation.  
9. Output duty cycle is DC = (0.5 200 ps fOUT) 100%. E.g. the DC range at fOUT = 100 MHz is 48% < DC < 52%. T = output period.  
10. Cycle jitter is valid for all outputs in the same divider configuration. See Applications Information section for more details.  
11. Period jitter is valid for all outputs in the same divider configuration. See Applications Information section for more details.  
12. I/O jitter is valid for a VCO frequency of 400 MHz. See Applications Information section for I/O jitter vs. VCO frequency.  
13. –3 dB point of PLL transfer characteristics.  
MPC9772 REVISION 7 JANUARY 8, 2013  
7
©2013 Integrated Device Technology, Inc.  
MPC9772 Data Sheet  
3.3V 1:12 LVCMOS PLL CLOCK GENERATOR  
APPLICATIONS INFORMATION  
MPC9772 Configurations  
the specified frequency range. This divider is controlled by  
the VCO_SEL pin. VCO_SEL effectively extends the usable  
input frequency range while it has no effect on the output to  
reference frequency ratio.  
The output frequency for each bank can be derived from  
the VCO frequency and output divider:  
Configuring the MPC9772 amounts to properly configuring  
the internal dividers to produce the desired output  
frequencies. The output frequency can be represented by  
this formula:  
fOUT = fREF M N  
fQA[0:3] = fVCO (VCO_SEL NA)  
fQB[0:3] = fVCO (VCO_SEL NB)  
fQC[0:3] = fVCO (VCO_SEL NC)  
fOUT  
fREF  
VCO_SEL  
PLL  
N  
Table 11. MPC9772 Divider  
M  
Divider  
Function  
VCO_SEL  
Values  
4, 6, 8, 10, 12, 16  
8, 12, 16, 20, 24, 32, 40  
4, 6, 8, 12  
M
PLL feedback  
FSEL_FB[0:3]  
1  
2  
1  
2  
where fREF is the reference frequency of the selected input  
clock source (CCLKO, CCLK1 or XTAL interface), M is the  
PLL feedback divider and N is a output divider. The PLL  
feedback divider is configured by the FSEL_FB[2:0] and the  
output dividers are individually configured for each output  
bank by the FSEL_A[1:0], FSEL_B[1:0] and FSEL_C[1:0]  
inputs.  
The reference frequency fREF and the selection of the  
feedback-divider M is limited by the specified VCO frequency  
range. fREF and M must be configured to match the VCO  
frequency range of 200 to 480 MHz in order to achieve stable  
PLL operation:  
NA  
NB  
NC  
Bank A Output  
Divider  
FSEL_A[0:1]  
8, 12, 16, 24  
Bank B Output  
Divider  
FSEL_B[0:1]  
1  
2  
4, 6, 8, 10  
8, 12, 16, 20  
Bank C Output  
Divider  
FSEL_C[0:1]  
1  
2  
2, 4, 6, 8  
4, 8, 12, 16  
fVCO,MIN (fREF VCO_SEL M) fVCO,MAX  
Table 11 shows the various PLL feedback and output  
dividers and Figure 3 and Figure 4 display example  
configurations for the MPC9772:  
The PLL post-divider VCO_SEL is either a divide-by-one  
or a divide-by-two and can be used to situate the VCO into  
MPC9772 REVISION 7 JANUARY 8, 2013  
8
©2013 Integrated Device Technology, Inc.  
MPC9772 Data Sheet  
3.3V 1:12 LVCMOS PLL CLOCK GENERATOR  
CCLK0  
CCLK0  
QA[3:0]  
QB[3:0]  
QC[3:0]  
QFB  
QA[3:0]  
QB[3:0]  
QC[3:0]  
QFB  
33.3 MHz  
100 MHz  
62.5 MHz  
62.5 MHz  
fref = 33.3 MHz  
fref = 25 MHz  
CCLK1  
CCLK1  
CCLK_SEL  
CCLK_SEL  
1
VCO_SEL  
FB_IN  
1
VCO_SEL  
FB_IN  
FSEL_A[1:0]  
FSEL_B[1:0]  
00 FSEL_C[1:0]  
FSEL_A[1:0]  
FSEL_B[1:0]  
00 FSEL_C[1:0]  
11  
00  
200 MHz  
00  
00  
125 MHz  
101 FSEL_FB[2:0]  
011 FSEL_FB[2:0]  
MPC9772  
33.3 MHz (Feedback)  
MPC9772  
25 MHz (Feedback)  
MPC9772 example configuration (feedback of QFB = 33.3 MHz, MPC9772 example configuration (feedback of QFB = 25 MHz,  
fVCO=400 MHz, VCO_SEL=1, M=12, NA=12, NB=4, NC=2). fVCO=250 MHz, VCO_SEL=1, M=10, NA=4, NB=4, NC=2).  
TA = 0°C to +70°C TA = –40°C to +85°C  
Frequency Range  
Input  
TA = 0°C to +70°C TA = –40°C to +85°C  
Frequency Range  
Input  
16.6 – 40 MHz  
16.6 – 40 MHz  
50 – 120 MHz  
100 – 240 MHz  
16.6 – 38.33 MHz  
16.6 – 38.33 MHz  
50 – 115 MHz  
20 – 48 MHz  
50 – 120 MHz  
50 – 120 MHz  
100 – 240 MHz  
20 – 46 MHz  
50 – 115 MHz  
50 – 115 MHz  
100 – 230 MHz  
QA Outputs  
QA Outputs  
QC Outputs  
QA Outputs  
QA Outputs  
QC Outputs  
100 – 230 MHz  
Figure 3. Example Configuration  
Figure 4. Example Configuration  
MPC9772 Individual Output Disable  
(Clock Stop) Circuitry  
user may programmably enable an output clock by writing  
logic ‘1’ to the respective enable bit. The clock stop logic  
enables or disables clock outputs during the time when the  
output would be in normally in logic low state, eliminating the  
possibility of short or ‘runt’ clock pulses.  
The user can write to the serial input register through the  
STOP_DATA input by supplying a logic ‘0’ start bit followed  
serially by 12 NRZ disable/enable bits. The period of each  
STOP_DATA bit equals the period of the free—running  
STOP_CLK signal. The STOP_DATA serial transmission  
should be timed so the MPC9772 can sample each  
STOP_DATA bit with the rising edge of the free—running  
STOP_CLK signal. (See Figure 5.)  
The individual clock stop (output enable) control of the  
MPC9772 allows designers, under software control, to  
implement power management into the clock distribution  
design. A simple serial interface and a clock stop control logic  
provides a mechanism through which the MPC9772 clock  
outputs can be individually stopped in the logic ‘0’ state: The  
clock stop mechanism allows serial loading of a 12-bit serial  
input register. This register contains one programmable clock  
stop bit for 12 of the 14 output clocks. The QC0 and QFB  
outputs cannot be stopped (disabled) with the serial port.  
The user can program an output clock to stop (disable) by  
writing logic ‘0’ to the respective stop enable bit. Likewise, the  
STOP_CLK  
START QA0  
QA1  
QA2  
QA3  
QB0  
QB1  
QB2  
QB3  
QC1  
QC2  
QC3 QSYNC  
STOP_DATA  
Figure 5. Clock Stop Circuit Programming  
SYNC Output Description  
coincident rising edges of the QA and QC outputs. The  
duration and the placement of the pulse is dependent QA and  
QC output frequencies: the QSYNC pulse width is equal to  
the period of the higher of the QA and QC output frequencies.  
Figure 6 shows various waveforms for the QSYNC output.  
The QSYNC output is defined for all possible combinations of  
the bank A and bank C outputs.  
The MPC9772 has a system synchronization pulse output  
QSYNC. In configurations with the output frequency  
relationships are not integer multiples of each other QSYNC  
provides a signal for system synchronization purposes. The  
MPC9772 monitors the relationship between the A bank and  
the B bank of outputs. The QSYNC output is asserted (logic  
low) one period in duration and one period prior to the  
MPC9772 REVISION 7 JANUARY 8, 2013  
9
©2013 Integrated Device Technology, Inc.  
MPC9772 Data Sheet  
3.3V 1:12 LVCMOS PLL CLOCK GENERATOR  
fVCO  
1:1 Mode  
2:1 Mode  
3:1 Mode  
3:2 Mode  
4:1 Mode  
4:3 Mode  
6:1 Mode  
QA  
QC  
QSYNC  
QA  
QC  
QSYNC  
QC(2)  
QA(6)  
QSYNC  
QA(4)  
QC(6)  
QSYNC  
QC(2)  
QA(8)  
QSYNC  
QA(6)  
QC(8)  
QSYNC  
QA(12)  
QC(2)  
QSYNC  
Figure 6. QSYNC Timing Diagram  
MPC9772 REVISION 7 JANUARY 8, 2013  
10  
©2013 Integrated Device Technology, Inc.  
MPC9772 Data Sheet  
3.3V 1:12 LVCMOS PLL CLOCK GENERATOR  
Power Supply Filtering  
this section should be adequate to eliminate power supply  
noise related problems in most designs.  
The MPC9772 is a mixed analog/digital product. Its analog  
circuitry is naturally susceptible to random noise, especially if  
this noise is seen on the power supply pins. Random noise  
on the VCC_PLL power supply impacts the device  
Using the MPC9772 in Zero-Delay Applications  
Nested clock trees are typical applications for the  
MPC9772. Designs using the MPC9772 as LVCMOS PLL  
fanout buffer with zero insertion delay will show significantly  
lower clock skew than clock distributions developed from  
CMOS fanout buffers. The external feedback option of the  
MPC9772 clock driver allows for its use as a zero delay  
buffer. The PLL aligns the feedback clock output edge with  
the clock input reference edge resulting a near zero delay  
through the device (the propagation delay through the device  
is virtually eliminated). The maximum insertion delay of the  
device in zero-delay applications is measured between the  
reference clock input and any output. This effective delay  
consists of the static phase offset, I/O jitter (phase or  
long-term jitter), feedback path delay and the  
characteristics, for instance I/O jitter. The MPC9772 provides  
separate power supplies for the output buffers (VCC) and the  
phase-locked loop (VCC_PLL) of the device. The purpose of  
this design technique is to isolate the high switching noise  
digital outputs from the relatively sensitive internal analog  
phase-locked loop. In a digital system environment where it  
is more difficult to minimize noise on the power supplies a  
second level of isolation may be required. The simple but  
effective form of isolation is a power supply filter on the  
VCCA_PLL pin for the MPC9772. Figure 7 illustrates a typical  
power supply filter scheme. The MPC9772 frequency and  
phase stability is most susceptible to noise with spectral  
content in the 100 kHz to 20 MHz range. Therefore the filter  
should be designed to target this range. The key parameter  
that needs to be met in the final filter design is the DC voltage  
drop across the series filter resistor RF. From the data sheet  
the ICC_PLL current (the current sourced through the VCC_PLL  
pin) is typically 3 mA (5 mA maximum), assuming that a  
minimum of 3.0 V must be maintained on the VCC_PLL pin.  
The resistor RF shown in Figure 7 must have a resistance of  
5-10 to meet the voltage drop criteria.  
output-to-output skew error relative to the feedback output.  
Calculation of Part-to-Part Skew  
The MPC9772 zero delay buffer supports applications  
where critical clock signal timing can be maintained across  
several devices. If the reference clock inputs of two or more  
MPC9772 are connected together, the maximum overall  
timing uncertainty from the common CCLKx input to any  
output is:  
tSK(PP) = t() + tSK(O) + tPD, LINE(FB) + tJIT() CF  
RF = 5–10  
CF = 22 F  
RF  
This maximum timing uncertainty consist of 4 components:  
static phase offset, output skew, feedback board trace delay  
and I/O (phase) jitter:  
VCC_PLL  
MPC9772  
VCC  
CF  
10 nF  
VCC  
CCLKCommon  
tPD,LINE(FB)  
–t()  
33...100 nF  
QFBDevice 1  
Figure 7. VCC_PLL Power Supply Filter  
tJIT()  
The minimum values for RF and the filter capacitor CF are  
defined by the required filter characteristics: the RC filter  
should provide an attenuation greater than 40 dB for noise  
whose spectral content is above 100 kHz. In the example RC  
filter shown in Figure 7, the filter cut-off frequency is around  
4.5 kHz and the noise attenuation at 100 kHz is better than  
42 dB.  
Any QDevice 1  
+tSK(O)  
+t()  
QFBDevice2  
tJIT()  
As the noise frequency crosses the series resonant point  
of an individual capacitor its overall impedance begins to look  
inductive and thus increases with increasing frequency. The  
parallel capacitor combination shown ensures that a low  
impedance path to ground exists for frequencies well above  
the bandwidth of the PLL. Although the MPC9772 has  
several design features to minimize the susceptibility to  
power supply noise (isolated power and grounds and fully  
differential PLL) there still may be applications in which  
overall performance is being degraded due to system power  
supply noise. The power supply filter schemes discussed in  
Any QDevice 2  
+tSK(O)  
Max. skew  
tSK(PP)  
Figure 8. MPC9772 Maximum  
Device-to-Device Skew  
Due to the statistical nature of I/O jitter a RMS value (1 )  
is specified. I/O jitter numbers for other confidence factors  
MPC9772 REVISION 7 JANUARY 8, 2013  
11  
©2013 Integrated Device Technology, Inc.  
MPC9772 Data Sheet  
3.3V 1:12 LVCMOS PLL CLOCK GENERATOR  
(CF) can be derived from Table 12.  
Table 12. Confidence Factor CF  
Max. I/O Phase Jitter versus Frequency  
Parameter: PLL Feedback Divider FB  
120  
100  
80  
Probability of Clock Edge  
within the Distribution  
CF  
FB=6  
FB=24  
1  
2  
3  
4  
5  
6  
0.68268948  
60  
0.95449988  
40  
0.99730007  
FB=12  
20  
0
0.99993663  
0.99999943  
200  
250  
300  
350  
400  
450 480  
VCO Frequency [MHz]  
0.99999999  
Figure 10. MPC9772 I/O Jitter  
The feedback trace delay is determined by the board  
layout and can be used to fine-tune the effective delay  
through each device.  
Due to the frequency dependence of the static phase  
offset and I/O jitter, using Figure 9 to Figure 11 to predict a  
Max. I/O Phase Jitter versus Frequency  
Parameter: PLL Feedback Divider FB  
140  
120  
100  
80  
maximum I/O jitter and the specified t(parameter relative to  
FB=10  
FB=40  
the input reference frequency results in a precise timing  
performance analysis.  
In the following example calculation an I/O jitter confidence  
factor of 99.7% (3) is assumed, resulting in a worst case  
timing uncertainty from the common input reference clock to  
any output of –455 ps to +455 ps relative to CCLK (PLL  
feedback = 8, reference frequency = 50 MHz, VCO  
frequency = 400 MHz, I/O jitter = 13 ps rms max., static  
phase offset t() = 166 ps):  
60  
40  
FB=20  
20  
0
200  
480  
250  
300  
350  
400  
450  
VCO Frequency [MHz]  
Figure 11. MPC9772 I/O Jitter  
tSK(PP) = [-166ps...166ps] + [-250ps...250ps] +  
[(13ps @ –3)...(13ps @ 3)] + tPD, LINE(FB)  
tSK(PP) = [-455ps...455ps] + tPD, LINE(FB)  
Driving Transmission Lines  
The MPC9772 clock driver was designed to drive high  
speed signals in a terminated transmission line environment.  
To provide the optimum flexibility to the user the output  
drivers were designed to exhibit the lowest impedance  
possible. With an output impedance of less than 20 the  
drivers can drive either parallel or series terminated  
transmission lines. For more information on transmission  
lines the reader is referred to Freescale Semiconductor  
application note AN1091. In most high performance clock  
networks point-to-point distribution of signals is the method of  
choice. In a point-to-point scheme either series terminated or  
parallel terminated transmission lines can be used. The  
parallel technique terminates the signal at the end of the line  
with a 50 resistance to VCC2.  
Max. I/O Phase Jitter versus Frequency  
Parameter: PLL Feedback Divider FB  
160  
140  
120  
FB=32  
100  
FB=16  
80  
FB=8  
60  
40  
20  
0
200  
FB=4  
250  
300  
350  
400  
450 480  
VCO Frequency [MHz]  
This technique draws a fairly high level of DC current and  
thus only a single terminated line can be driven by each  
output of the MPC9772 clock driver. For the series terminated  
case however there is no DC current draw, thus the outputs  
can drive multiple series terminated lines. Figure 12  
illustrates an output driving a single series terminated line  
versus two series terminated lines in parallel. When taken to  
its extreme the fanout of the MPC9772 clock driver is  
effectively doubled due to its capability to drive multiple lines.  
Figure 9. MPC9772 I/O Jitter  
MPC9772 REVISION 7 JANUARY 8, 2013  
12  
©2013 Integrated Device Technology, Inc.  
MPC9772 Data Sheet  
3.3V 1:12 LVCMOS PLL CLOCK GENERATOR  
towards the quiescent 3.0 V in steps separated by one round  
trip delay (in this case 4.0 ns).  
MPC9772  
Output  
Buffer  
3.0  
ZO = 50   
RS = 36   
OutA  
tD = 3.8956  
14  
In  
In  
OutA  
OutB  
tD = 3.9386  
2.5  
2.0  
1.5  
1.0  
0.5  
0
MPC9772  
Output  
Buffer  
In  
Z
O = 50   
RS = 36   
RS = 36   
OutB0  
OutB1  
14  
ZO = 50  
Figure 12. Single versus Dual Transmission Lines  
2
4
6
8
10  
12  
14  
Time (ns)  
The waveform plots in Figure 13 show the simulation  
results of an output driving a single line versus two lines. In  
both cases the drive capability of the MPC9772 output buffer  
is more than sufficient to drive 50 transmission lines on the  
incident edge. Note from the delay measurements in the  
simulations a delta of only 43 ps exists between the two  
differently loaded outputs. This suggests the dual line driving  
need not be used exclusively to maintain the tight  
output-to-output skew of the MPC9772. The output waveform  
in Figure 13 shows a step in the waveform, this step is  
caused by the impedance mismatch seen looking into the  
driver. The parallel combination of the 36 series resistor  
plus the output impedance does not match the parallel  
combination of the line impedances. The voltage wave  
launched down the two lines will equal:  
Figure 13. Single versus Dual Waveforms  
Since this step is well above the threshold region it will not  
cause any false clock triggering, however designers may be  
uncomfortable with unwanted reflections on the line. To better  
match the impedances when driving multiple lines the  
situation in Figure 14 should be used. In this case the series  
terminating resistors are reduced such that when the parallel  
combination is added to the output buffer impedance the line  
impedance is perfectly matched.  
MPC9772  
Output  
Buffer  
Z
O = 50   
RS = 22   
RS = 22   
VL = VS (Z0 (RS+R0 +Z0))  
Z0 = 50 || 50  
RS = 36 || 36   
R0 = 14  
14  
ZO = 50   
VL = 3.0 (25 (18+17+25)  
= 1.31 V  
14 + 22 || 22 = 50 || 50   
25 = 25   
At the load end the voltage will double, due to the near  
unity reflection coefficient, to 2.6 V. It will then increment  
Figure 14. Optimized Dual Line Termination  
MPC9772 DUT  
Pulse  
Generator  
Z = 50  
ZO = 50  
RT = 50  
ZO = 50  
RT = 50  
VTT  
VTT  
Figure 15. CCLK MPC9772 AC Test Reference  
MPC9772 REVISION 7 JANUARY 8, 2013  
13  
©2013 Integrated Device Technology, Inc.  
MPC9772 Data Sheet  
3.3V 1:12 LVCMOS PLL CLOCK GENERATOR  
VCC  
VCC2  
VCC  
GND  
CCLKx  
FB_IN  
VCC2  
VCC  
VCC2  
GND  
VCC  
VCC2  
GND  
tSK(O)  
GND  
t()  
The pin-to-pin skew is defined as the worst case difference in  
propagation delay between any similar delay path within a single  
device  
Figure 16. Output-to-Output Skew tSK(O)  
Figure 17. Propagation Delay (t(), Static Phase  
Offset) Test Reference  
VCC  
CCLKx  
VCC2  
GND  
tP  
FB_IN  
T0  
DC = tP/T0 x 100%  
TJIT() = |T0-T1mean|  
The deviation in t0 for a controlled edge with respect to a t0 mean in a  
random sample of cycles  
The time from the PLL controlled edge to the non controlled  
edge, divided by the time between PLL controlled edges,  
expressed as a percentage  
Figure 18. Output Duty Cycle (DC)  
Figure 19. I/O Jitter  
TJIT(CC) = |TN-TN+1  
|
TJIT(PER) = |TN-1/f0|  
TN  
TN+1  
T0  
The variation in cycle time of a signal between adjacent cycles, over a  
random sample of adjacent cycle pairs  
The deviation in cycle time of a signal with respect to the ideal period over a  
random sample of cycles  
Figure 20. Cycle-to-Cycle Jitter  
Figure 21. Period Jitter  
VCC=3.3 V  
2.4  
0.55  
tR  
tF  
Figure 22. Output Transition Time Test Reference  
MPC9772 REVISION 7 JANUARY 8, 2013  
14  
©2013 Integrated Device Technology, Inc.  
MPC9772 Data Sheet  
3.3V 1:12 LVCMOS PLL CLOCK GENERATOR  
4X  
52  
4X 13 TIPS  
0.20 (0.008) H L-M  
N
0.20 (0.008) T L-M N  
-X-  
X=L, M, N  
40  
C
1
39  
L
AB  
G
3X VIEWY  
-L-  
-M-  
B1  
AB  
B
V
VIEWY  
BASE METAL  
F
PLATING  
V1  
13  
27  
J
U
14  
26  
-N-  
D
M
A1  
S
S
0.13 (0.005)  
T
L-M  
N
S1  
SECTION AB-AB  
A
ROTATED 90˚ CLOCKWISE  
S
NOTES:  
1. CONTROLLING DIMENSIONS: MILLIMETER.  
2. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
3. DATUM PLANE -H- IS LOCATED AT BOTTOM OF  
LEAD AND IS COINCIDENT WITH THE LEAD  
WHERE THE LEAD EXITS THE PLASTIC BODY AT  
THE BOTTOM OF THE PARTING LINE.  
4. DATUMS -L-, -M- AND -N- TO BE DETERMINED  
AT DATUM PLANE -H-.  
4X θ2  
4X θ3  
C
0.10 (0.004) T  
-H-  
-T-  
SEATING  
PLANE  
5. DIMENSIONS S AND V TO BE DETERMINED AT  
SEATING PLANE -T-.  
6. DIMENSIONS A AND B DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.25 (0.010) PER SIDE. DIMENSIONS A AND B  
DO INCLUDE MOLD MISMATCH AND ARE  
DETERMINED AT DATUM PLANE -H-.  
VIEW AA  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. DAMBAR PROTRUSION SHALL  
NOT CAUSE THE LEAD WIDTH TO EXCEED 0.46  
(0.018). MINIMUM SPACE BETWEEN  
PROTRUSION AND ADJACENT LEAD OR  
PROTRUSTION 0.07 (0.003).  
S
0.05 (0.002)  
MILLIMETERS  
DIM MIN MAX MIN  
INCHES  
MAX  
0.394 BSC  
0.197 BSC  
0.394 BSC  
0.197 BSC  
W
2X R R1  
A
A1  
B
B1  
C
C1  
C2  
D
10.00 BSC  
5.00 BSC  
10.00 BSC  
5.00 BSC  
θ1  
0.25 (0.010)  
C2  
θ
---  
1.70  
0.20  
1.50  
0.40  
0.75  
0.35  
---  
0.067  
0.008  
0.059  
0.016  
0.030  
0.014  
GAGE PLANE  
0.05  
1.30  
0.20  
0.45  
0.22  
0.002  
0.051  
0.008  
0.018  
0.009  
K
E
E
F
C1  
G
J
K
R1  
S
0.65 BSC  
0.026 BSC  
0.07  
0.20  
0.20  
0.003  
0.008  
0.008  
Z
0.50 REF  
0.020 REF  
0.08  
0.003  
VIEW AA  
12.00 BSC  
6.00 BSC  
0.09 0.16  
0.472 BSC  
0.236 BSC  
0.004 0.006  
S1  
U
V
12.00 BSC  
6.00 BSC  
0.20 REF  
1.00 REF  
0.472 BSC  
0.236 BSC  
0.008 REF  
0.039 REF  
V1  
W
Z
θ
0˚  
0˚  
7˚  
---  
0˚  
0˚  
7˚  
---  
θ1  
θ2  
θ3  
12˚REF  
12˚REF  
12˚REF  
12˚REF  
CASE 848D-03  
ISSUE D  
52-LEAD LQFP PACKAGE  
MPC9772 REVISION 7 JANUARY 8, 2013  
15  
©2013 Integrated Device Technology, Inc.  
MPC9772 Data Sheet  
3.3V 1:12 LVCMOS PLL CLOCK GENERATOR  
Revision History Sheet  
Rev  
Table  
Page  
Description of Change  
Date  
7
1
NRND – Not Recommend for New Designs  
1/8/13  
MPC9772 REVISION 7 JANUARY 8, 2013  
16  
©2013 Integrated Device Technology, Inc.  
MPC9772 Data Sheet  
3.3V 1:12 LVCMOS PLL CLOCK GENERATOR  
We’ve Got Your Timing Solution  
6024 Silver Creek Valley Road Sales  
Technical Support  
800-345-7015 (inside USA)  
netcom@idt.com  
San Jose, California 95138  
+408-284-8200 (outside USA) +480-763-2056  
Fax: 408-284-2775  
www.IDT.com/go/contactIDT  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its subsidiaries reserve the right to modify the products and/or specifications described herein at any time and at IDT’s sole discretion. All information in this document,  
including descriptions of product features and performance, is subject to change without notice. Performance specifications and the operating parameters of the described products are determined in the independent state and are not  
guaranteed to perform the same way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the  
suitability of IDT’s products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any  
license under intellectual property rights of IDT or any third parties.  
IDT’s products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be reasonably expected to signifi-  
cantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are registered trademarks of IDT. Other trademarks and service marks used herein, including protected names, logos and designs, are the property of IDT or their respective third  
party owners.  
Copyright 2013. All rights reserved.  

相关型号:

MPC9772AE

TQFP-52, Tray
IDT

MPC9772AER2

240MHz, OTHER CLOCK GENERATOR, PQFP52, LQFP-52
MOTOROLA

MPC9772FA

240MHz, OTHER CLOCK GENERATOR, PQFP52, LQFP-52
MOTOROLA

MPC9772FA

Clock Generator, 230MHz, CMOS, PQFP52, LQFP-52
IDT

MPC9772FAR2

240MHz, OTHER CLOCK GENERATOR, PQFP52, LQFP-52
MOTOROLA

MPC9772FAR2

Clock Generator, 240MHz, CMOS, PQFP52, LQFP-52
IDT

MPC9773

3.3 V 1:12 LVCMOS PLL Clock Generator
FREESCALE

MPC9773AE

3.3 V 1:12 LVCMOS PLL Clock Generator
FREESCALE

MPC9773FA

3.3 V 1:12 LVCMOS PLL Clock Generator
FREESCALE

MPC9773FA

PLL BASED CLOCK DRIVER, 13 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP52, PLASTIC, LQFP-52
MOTOROLA

MPC9773FAR2

PLL Based Clock Driver, 9773 Series, 13 True Output(s), 0 Inverted Output(s), CMOS, PQFP52, PLASTIC, LQFP-52
IDT

MPC9773FAR2

PLL BASED CLOCK DRIVER, 13 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP52, PLASTIC, LQFP-52
MOTOROLA