ZADCS1022VIS14T [IDT]

ADC, Successive Approximation, 10-Bit, 1 Func, 2 Channel, Serial Access, PDSO14;
ZADCS1022VIS14T
型号: ZADCS1022VIS14T
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

ADC, Successive Approximation, 10-Bit, 1 Func, 2 Channel, Serial Access, PDSO14

光电二极管 转换器
文件: 总26页 (文件大小:545K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Data Sheet  
Rev. 2.0 / October 2011  
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
Brief Description  
Benefits  
The ZMDI ZADCS1082/ZADCS1042/ZADCS1022  
are 10-Bit low power analog-to-digital (A/D)  
converters with up to 250ksps conversion rate.  
The converter is based on successive-  
approximation-register architecture.  
Scalable system solutions possible due to  
upward/downward compatibility within the family  
( 8, 10, 12 bit resolution, 2, 4, 8 channels)  
Accurate measurements  
Long battery life cycles due to low power  
All converters have an 8-channel input multiplexer  
and a high-bandwidth a track/hold circuit. All  
analog inputs are software configurable as eight /  
four/two single ended or four/two/one differential  
analog input channels as well as for unipolar or  
bipolar output coding.  
consumption  
Synchronous sampling with several ZADCS  
parts in parallel  
Available Support  
ZADCS1282 Kit  
The ZADCS1082/ ZADCS1042/ ZADCS1022  
operate from a single +2.7V to +5.25V supply.  
The synchronous four wire serial interface  
connects directly to a microcontroller using one of  
the standards like SPI™, QSPI™, and Microwire™  
without external components.  
The ZADCS1082/ZADCS1042/ZADCS1022 use  
either the external serial-interface clock or an  
internally generated clock to perform successive-  
approximation analog-to-digital conversions. The  
internal clock mode can be used to run  
synchronous conversions on several ZMDI ADCs  
in parallel.  
The “V” versions ZADCS1082V/ZADCS1042V/  
ZADCS1022V are equipped with a high accurate  
internal 2.5V reference with an additional external  
±1.5% voltage adjustment range.  
The device provides a hard-wired shut-down pin  
(nSHDN) and software-selectable power-down  
modes to automatically shut down the IC at the  
end of a conversion. Accessing the serial interface  
automatically powers up the ZADCS1082/  
ZADCS1042/ZADCS1022. A quick turn-on time  
allows the device to be shut down between  
measurements.  
- Evaluation Kit for ZMDI ZADCS10x2 Family  
based on ZADCS1282 device  
- Standalone and PC based operation modus  
- USB 2.0 (1.1) compatible  
- User Interface for PC operated modus  
- Graphical oscilloscope appl. and FFT analyzer  
Physical Characteristics  
ADC resolution............................ 10 Bit  
Conversion rate........................... 250 ksps  
Power supply rate ....................... 2.7V to 5.25V  
INL............................................... ±0.4 LSB max.  
DNL............................................. ±0.4 LSB max.  
SINAD......................................... >61 dB  
Standby (idle) current.................. <0.5 µA  
Current consumption @ 200 ksps, 3V supply  
- with internal reference .............. < 1.2 mA  
- without internal reference ......... < 0.9 mA  
Temperature range ..................... -25°C to +85°C  
14 / 16 / 20-Pin SSOP package  
Features  
10-Bit resolution SAR ADC  
2/4/8 channel single or 1/2/4 channel diff. inputs  
Software configurable uni- or bipolar output code  
SPI™/QSPI™, Microwire™ compatible serial  
interface  
No missing codes  
Low power consumption  
Internal 2.5V reference (only “V” version -  
ZADCS1082V/ ZADCS1042V/ZADCS1022V)  
Software programmable power down mode  
Single-Supply Operation +2.5V to +5.25V  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.  
The information furnished in this publication is PRELIMINARY and subject to changes without notice.  
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
Typical Applications  
ZADCS1082 Block Diagram  
Embedded control & real time appl.  
Industrial control & process control  
applications  
CH0  
CH1  
SAR  
CH2  
8-Channel  
Analog  
Input  
Multiplexer  
Comparator  
Motion control applications  
Three phase motor control  
CH3  
CH4  
IN  
IN  
+
-
CH5  
CH6  
CH7  
nCS  
+
-
Serial  
Interface  
and  
Control  
State  
DAC  
Power generation (Solar,  
Windmills, etc.)  
SCLK  
DIN  
with inherent  
T&H  
DOUT  
SSTRB  
nSHDN  
Data Acquisition  
COM  
Machine  
x 2.00  
Portable Data Logging  
Battery-Powered Systems  
Automotive  
+1.25V  
Reference  
Internal  
3.2 MHz  
Oscillator  
VDD  
REFADJ  
VREF  
DGND  
AGND  
Available in ZADCS1082V / ZADCS1042V / ZADCS1022V  
Ordering Information  
Order Code  
ZADCS1082VIS20T  
ZADCS1082IS20T  
ZADCS1042VIS16T  
ZADCS1042IS16T  
ZADCS1022VIS14T  
ZADCS1022IS14T  
10  
10  
10  
10  
10  
10  
8
8
4
4
2
2
250  
250  
250  
250  
250  
250  
-25°C to +85°C  
--  
--  
--  
± 0,4 LSB  
± 0,4 LSB  
± 0,4 LSB  
± 0,4 LSB  
± 0,4 LSB  
± 0,4 LSB  
± 0,4 LSB  
± 0,4 LSB  
± 0,4 LSB  
± 0,4 LSB  
± 0,4 LSB  
± 0,4 LSB  
20  
20  
16  
16  
14  
14  
SSOP  
Tube  
Tube  
Tube  
Tube  
Tube  
Tube  
-25°C to +85°C  
-25°C to +85°C  
-25°C to +85°C  
-25°C to +85°C  
-25°C to +85°C  
SSOP  
SSOP  
SSOP  
SSOP  
SSOP  
Sales and Further Information  
www.zmdi.com  
adc@zmdi.com  
Zentrum Mikroelektronik  
Dresden AG  
Grenzstrasse 28  
01109 Dresden  
ZMD America, Inc.  
8413 Excelsior Drive  
Suite 200  
Madison, WI 53717  
USA  
Zentrum Mikroelektronik  
Dresden AG, Japan Office  
2nd Floor, Shinbashi Tokyu Bldg.  
4-21-3, Shinbashi, Minato-ku  
Tokyo, 105-0004  
ZMD FAR EAST, Ltd.  
3F, No. 51, Sec. 2,  
Keelung Road  
11052 Taipei  
Taiwan  
Germany  
Japan  
Phone +49 (0)351.8822.7232  
Phone +1 (608) 829-1987  
Phone +81.3.6895.7410  
Phone +886 2 2377 8189  
Fax  
+49 (0)351.8822.87232  
Fax  
+1 (631) 549-2882  
Fax  
+81.3.6895.7301  
Fax  
+886 2 2377 8199  
DISCLAIMER: This information applies to a product under development. Its characteristics and specifications are PRELIMINARY and subject to change without notice. Zentrum  
Mikroelektronik Dresden AG (ZMD AG) assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The information furnished hereby is believed to be  
true and accurate. However, under no circumstances shall ZMD AG be liable to any customer, licensee, or any other third party for any special, indirect, incidental, or consequential  
damages of any kind or nature whatsoever arising out of or in any way related to the furnishing, performance, or use of this technical data. ZMD AG hereby expressly disclaims any  
liability of ZMD AG to any customer, licensee or any other third party, and any such customer, licensee and any other third party hereby waives any liability of ZMD AG for any  
damages in connection with or arising out of the furnishing, performance or use of this technical data, whether based on contract, warranty, tort (including negligence), strict liability, or  
otherwise.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without the prior written consent of the copyright owner.  
The information furnished in this publication is PRELIMINARY and subject to changes without notice.  
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
Contents  
1
General Device Specification ..............................................................................................................................7  
1.1. Absolute Maximum Ratings (Non Operating)...............................................................................................7  
1.2. Package Pin Assignment ZADCS1082 / ZADCS1082V ..............................................................................8  
1.3. Package Pin Assignment ZADCS1042 / ZADCS1042V ..............................................................................9  
1.4. Package Pin Assignment ZADCS1022 / ZADCS1022V ............................................................................10  
1.5. Electrical Characteristics ............................................................................................................................11  
1.5.1. General Parameters.............................................................................................................................11  
1.5.2. Specific Parameters of ZADCS10x2V versions (with Internal Reference) ..........................................12  
1.5.3. Specific Parameters of basic ZADCS10x2 versions (without Internal Reference) ..............................13  
1.5.4. Digital Pin Parameters .........................................................................................................................13  
1.6. Typical Operating Characteristics...............................................................................................................14  
Detailed Description ..........................................................................................................................................15  
2
2.1. General Operation......................................................................................................................................15  
2.2. Analog Input................................................................................................................................................16  
2.3. Internal & External Reference ....................................................................................................................18  
2.4. Digital Interface...........................................................................................................................................18  
2.5. Power Dissipation.......................................................................................................................................22  
3
4
Layout................................................................................................................................................................24  
Package Drawing ..............................................................................................................................................25  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
4 of 26  
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
List of Figures  
Figure 1 Package Pin Assignment for ZADCS1082 & ZADCS1082V........................................................................8  
Figure 2 Package Pin Assignment for ZADCS1042 & ZADCS1042V........................................................................9  
Figure 3 Package Pin Assignment for ZADCS1022 & ZADCS1022V......................................................................10  
Figure 4: Basic application schematic for ZADCS1082V .........................................................................................15  
Figure 5: Basic application schematic for ZADCS1082............................................................................................15  
Figure 6: Input voltage range in unipolar mode........................................................................................................16  
Figure 7: Input voltage range for bipolar mode ........................................................................................................16  
Figure 8: Block diagram of input multiplexer ............................................................................................................17  
Figure 9: Equivalent input circuit during sampling....................................................................................................17  
Figure 10: Reference Adjust Circuit..........................................................................................................................18  
Figure 11: 24-Clock External Clock Mode Timing (fSCLK 3.3MHz).........................................................................19  
Figure 12: Internal Clock Mode Timing with interleaved Control Byte transmission ................................................19  
Figure 13: 16-Clock External Clock Mode Conversion.............................................................................................20  
Figure 14: 13-Clock External Clock Mode Conversion.............................................................................................20  
Figure 15 Detailed Timing Diagram..........................................................................................................................21  
Figure 16: Unipolar Transfer Function......................................................................................................................22  
Figure 17: Bipolar Transfer Function........................................................................................................................22  
Figure 18: Supply Current versus Sampling Rate....................................................................................................24  
Figure 19: Optimal Power-Supply Grounding System..............................................................................................24  
Figure 20: Package Outline Dimensions ..................................................................................................................25  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
5 of 26  
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
List of Tables  
Table 1: Absolute Maximum Ratings..........................................................................................................................7  
Table 2: Pin list ZADCS1082 / ZADCS1082V............................................................................................................8  
Table 3: Pin list ZADCS1042 / ZADCS1042V............................................................................................................9  
Table 4: Pin list ZADCS1022 / ZADCS1022V..........................................................................................................10  
Table 5: Channel selection in Single Ended Mode...................................................................................................15  
Table 6: Channel selection in Differential Mode.......................................................................................................15  
Table 7 Control Byte Format ....................................................................................................................................19  
Table 8: Timing Characterisitics (VDD = +2.7V to + 5.25V; OP = OPmin OPmax) ...............................................21  
Table 9: Package Dimensions for ZADC1082 devices (mm)...................................................................................25  
Table 10: Package Dimensions for ZADC1042 devices (mm).................................................................................25  
Table 11: Package Dimensions for ZADC1022 devices (mm).................................................................................25  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
6 of 26  
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
1
General Device Specification  
1.1. Absolute Maximum Ratings (Non Operating)  
Symbol  
Parameter  
Min  
Max  
Unit Note  
VDD-GND  
VDD to AGND, DGND  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
6
V
VAGND-DGND  
AGND to DGND  
0.3  
V
CH0 – CH7, COM to AGND, DGND  
VREF, VREFADJ to AGND  
Digital Inputs to DGND  
Digital Outputs to DGND  
Digital Output Sink Current  
VDD+0.3  
VDD+0.3  
6
V
V
V
VDD+0.3  
25  
V
mA  
Iin  
Input current into any pin except supply pins (Latch-Up)  
Electrostatic discharge – Human Body Model (HBM)  
Maximum Junction Temperature  
Operating Temperature Range  
Storage temperature  
-100  
100  
mA  
1
VHBM  
JCT  
OP  
STG  
lead  
H
2000  
V
+150°  
+85  
°C  
-25  
-65  
+150  
°C  
Lead Temperature 100%Sn  
JEDEC-J-STD-20C 260  
°C  
2
Humidity non-condensing  
Ptot  
Rthj  
Total power dissipation  
250  
100  
mW  
K/W  
Thermal resistance of Package  
SSOP20 / 5.3mm  
Table 1: Absolute Maximum Ratings  
1
HBM: C = 100pF charged to VHBM with resistor R = 1.5kin series, valid for all pins  
Level 4 according to JEDEC-020A is guaranteed  
2
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
7 of 26  
 
 
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
1.2. Package Pin Assignment ZADCS1082 / ZADCS1082V  
Package  
Name  
Direction Type  
Description  
pin number  
1
nCS  
IN  
IN  
CMOS Digital  
Active Low Chip Select  
Serial Data Input  
2
DIN  
CMOS Digital  
SUPPLY  
SUPPLY  
Analog  
3
DGND  
AGND  
VREF  
COM  
CH0  
Digital Ground  
4
Analog Ground  
5
I/O  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
IN  
I/O  
Reference Buffer Output / External Reference Input  
Ground reference for analog inputs in single ended mode  
Analog Input Channel 0  
Analog Input Channel 1  
Analog Input Channel 4  
Analog Input Channel 5  
Analog Input Channel 7  
Analog Input Channel 6  
Analog Input Channel 3  
Analog Input Channel 2  
Input to Reference Buffer Amplifier  
Positive Supply  
6
Analog  
7
Analog  
8
CH1  
Analog  
9
CH4  
Analog  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
CH5  
Analog  
CH7  
Analog  
CH6  
Analog  
CH3  
Analog  
CH2  
Analog  
REFADJ  
VDD  
Analog  
SUPPLY  
CMOS Digital  
CMOS Digital  
CMOS Digital  
CMOS Digital  
nSHDN  
DOUT  
SSTRB  
SCLK  
IN  
Active Low Shutdown  
OUT  
OUT  
IN  
Serial Data Output  
Serial Strobe Output  
Serial Clock Input  
Table 2: Pin list ZADCS1082 / ZADCS1082V  
nCS  
DIN  
SCLK  
SSTRB  
DOUT  
nSHDN  
VDD  
DGND  
AGND  
VREF  
COM  
CH0  
REFADJ on ZADCS1082V,  
No connect on ZADCS1082  
CH2  
CH3  
CH6  
CH7  
CH1  
CH4  
CH5  
Figure 1 Package Pin Assignment for ZADCS1082 & ZADCS1082V  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
8 of 26  
 
 
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
1.3. Package Pin Assignment ZADCS1042 / ZADCS1042V  
Package  
Name  
Direction Type  
Description  
pin number  
1
nCS  
IN  
IN  
CMOS Digital  
Active Low Chip Select  
Serial Data Input  
2
DIN  
CMOS Digital  
SUPPLY  
SUPPLY  
Analog  
3
DGND  
AGND  
VREF  
COM  
CH0  
Digital Ground  
4
Analog Ground  
5
I/O  
IN  
IN  
IN  
IN  
IN  
I/O  
Reference Buffer Output / External Reference Input  
Ground reference for analog inputs in single ended mode  
Analog Input Channel 0  
Analog Input Channel 1  
Analog Input Channel 3  
Analog Input Channel 2  
Input to Reference Buffer Amplifier  
Positive Supply  
6
Analog  
7
Analog  
8
CH1  
Analog  
9
CH3  
Analog  
10  
11  
12  
13  
14  
15  
16  
CH2  
Analog  
REFADJ  
VDD  
Analog  
SUPPLY  
CMOS Digital  
CMOS Digital  
CMOS Digital  
CMOS Digital  
nSHDN  
DOUT  
SSTRB  
SCLK  
IN  
Active Low Shutdown  
OUT  
OUT  
IN  
Serial Data Output  
Serial Strobe Output  
Serial Clock Input  
Table 3: Pin list ZADCS1042 / ZADCS1042V  
nCS  
DIN  
SCLK  
SSTRB  
DOUT  
nSHDN  
VDD  
DGND  
AGND  
VREF  
COM  
CH0  
REFADJ on ZADCS1042V,  
No connect on ZADCS1042  
CH2  
CH3  
CH1  
Figure 2 Package Pin Assignment for ZADCS1042 & ZADCS1042V  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
9 of 26  
 
 
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
1.4. Package Pin Assignment ZADCS1022 / ZADCS1022V  
Package  
Name  
Direction Type  
Description  
pin number  
1
nCS  
IN  
IN  
CMOS Digital  
Active Low Chip Select  
Serial Data Input  
2
DIN  
CMOS Digital  
SUPPLY  
3
DGND  
AGND  
VREF  
COM  
Digital Ground  
4
SUPPLY  
Analog Ground  
5
I/O  
IN  
Analog  
Reference Buffer Output / External Reference Input  
Ground reference for analog inputs in single ended mode  
Analog Input Channel 0  
Analog Input Channel 1  
Input to Reference Buffer Amplifier  
Positive Supply  
6
Analog  
7
CH0  
IN  
Analog  
8
CH1  
IN  
Analog  
9
REFADJ  
VDD  
I/O  
Analog  
10  
11  
12  
13  
14  
SUPPLY  
nSHDN  
DOUT  
SSTRB  
SCLK  
IN  
CMOS Digital  
CMOS Digital  
CMOS Digital  
CMOS Digital  
Active Low Shutdown  
OUT  
OUT  
IN  
Serial Data Output  
Serial Strobe Output  
Serial Clock Input  
Table 4: Pin list ZADCS1022 / ZADCS1022V  
nCS  
DIN  
SCLK  
SSTRB  
DOUT  
nSHDN  
VDD  
DGND  
AGND  
VREF  
COM  
CH0  
REFADJ on ZADCS1022V,  
No connect on ZADCS1022  
CH1  
Figure 3 Package Pin Assignment for ZADCS1022 & ZADCS1022V  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
10 of 26  
 
 
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
1.5. Electrical Characteristics  
1.5.1. General Parameters  
(VDD = +2.7V to + 5.25V; fSCLK = 3.3MHz (50% duty cycle); 13 clocks/conversion cycle (250 ksps); VREF = 2.500V applied to VREF pin; OP = OPmin  
OPmax  
)
Parameter  
DC Accuracy  
Resolution  
Symbol Conditions  
Min  
Typ  
10  
Max  
Unit  
Bits  
LSB  
Bits  
LSB  
ZADCS1082 / ZADCS1082V  
Relative Accuracy  
INL  
ZADCS1042 / ZADCS1042V  
ZADCS1022 / ZADCS1022V  
0.4  
0.4  
No Missing Codes  
Differential Nonlinearity  
NMC  
DNL  
10  
ZADCS1082 / ZADCS1082V  
ZADCS1042 / ZADCS1042V  
ZADCS1022 / ZADCS1022V  
Offset Error  
LSB  
LSB  
0.5  
0.5  
0.25  
2.0  
2.0  
Gain Error  
Gain Temperature Coefficient  
ppm/°C  
Dynamic Specifications (10kHz sine-wave input, 0V to 2.500Vpp, 250ksps, 3.3MHz external clock)  
Signal-to-Noise + Distortion Ratio SINAD  
61  
dB  
Total Harmonic Distortion  
Spurious-Free Dynamic Range  
Small-Signal Bandwidth  
Conversion Rate  
THD  
Up to the 5th harmonic  
-3dB roll off  
-72  
dB  
SFDR  
74  
dB  
3.8  
MHz  
Sampling Time  
(= Track/Hold Acquisition Time)  
Ext. Clock = 3.3MHz, 2.5 clocks/  
acquisition  
tACQ  
0.758  
µs  
µs  
Ext. Clock = 3.3MHz, 10 clocks/  
conversion  
3.03  
3.50  
Conversion Time  
tCONV  
Int. Clock = 3.3MHz +/- 12% tolerance 2.75  
µs  
Aperture Delay  
30  
ns  
Aperture Jitter  
< 50  
ps  
External Clock Frequency  
Internal Clock Frequency  
0.1  
3.3  
MHz  
MHz  
2.81  
3.3  
3.58  
Analog Inputs  
Unipolar, COM = 0V  
0 to VREF  
VREF / 2  
16  
Input Voltage Range, Single-  
Ended and Differential  
V
Bipolar, COM = VREF/2  
Input Capacitance  
pF  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
11 of 26  
 
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
1.5.2. Specific Parameters of ZADCS10x2V versions (with Internal Reference)  
(VDD = +2.7V to + 5.25V; fSCLK = 3.3MHz (50% duty cycle); 13 clocks/conversion cycle (250 ksps); OP = OPmin OPmax  
)
Parameter  
Symbol Conditions  
TA = + 25°C  
Min  
Typ  
Max  
Unit  
Internal Reference at VREF  
VREF Output Voltage  
2.480 2.500 2.520  
30  
V
VREF Short-Circuit Current  
VREF Temperature Coefficient  
Load Regulation  
mA  
ppm/°C  
mV  
µF  
± 30  
0.35  
± 50  
0 to 0.2mA output load  
Capacitive Bypass at VREF  
Capacitive Bypass at REFADJ  
REFADJ Adjustment Range  
4.7  
0.047  
µF  
%
1.5  
External Reference at VREF (internal buffer disabled by V(REFADJ) = VDD)  
VDD +  
50mV  
VREF Input Voltage Range  
1.0  
V
VREF Input Current  
VREF = 2.5V  
180  
14  
215  
µA  
k  
µA  
VREF Input Resistance  
Shutdown VREF Input Current  
11.5  
0.1  
VDD-  
0.5  
REFADJ Buffer Disable Threshold  
V
External Reference at VREF_ADJ  
Reference Buffer Gain  
2.00  
VREF_ADJ Input Current  
±80  
0.1  
µA  
µA  
Full Power Down  
VREFADJ Input Current  
Full Power-Down mode  
Power Requirements  
Positive Supply Voltage  
Positive Supply Current  
VDD  
2.7  
5.25  
1.0  
1.4  
300  
4.0  
1.3  
1.6  
300  
4.0  
V
Operating Mode ext. VREF  
0.85  
1.3  
mA  
mA  
Operating Mode int. VREF  
Fast Power-Down  
IDD  
IDD  
VDD=3.6V  
VDD=5.2V  
ZADCS1082VI  
ZADCS1042VI  
ZADCS1022VI  
250  
0.5  
µA  
Full Power-Down  
Positive Supply Current  
Operating Mode ext. VREF  
Operating Mode int. VREF  
Fast Power-Down  
1.00  
1.40  
250  
0.5  
mA  
mA  
ZADCS1082VI  
ZADCS1042VI  
ZADCS1022VI  
µA  
Full Power-Down  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
12 of 26  
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
1.5.3. Specific Parameters of basic ZADCS10x2 versions (without Internal Reference)  
(VDD = +2.7V to + 5.25V; fSCLK = 3.3MHz (50% duty cycle); 13 clocks/conversion cycle (250 ksps); OP = OPmin OPmax  
)
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Unit  
V
External Reference at VREF  
VDD +  
50mV  
VREF Input Voltage Range  
1.0  
VREF Input Current  
VREF = 2.5V  
180  
14  
215  
µA  
k  
µA  
µF  
VREF Input Resistance  
11.5  
4.7  
Shutdown VREF Input Current  
Capacitive Bypass at VREF  
0.1  
Power Requirements  
Positive Supply Voltage  
VDD  
2.7  
5.25  
1.0  
V
Positive Supply Current  
ZADCS1082I  
ZADCS1042I  
Operating Mode  
Full Power-Down  
Operating Mode  
Full Power-Down  
0.85  
0.5  
IDD  
IDD  
VDD = 3.6V  
µA  
4.0  
1.3  
4.0  
ZADCS1022I  
Positive Supply Current  
ZADCS1082I  
ZADCS1042I  
1.00  
0.5  
VDD = 5.25V  
µA  
ZADCS1022I  
1.5.4. Digital Pin Parameters  
(VDD = +2.7V to + 5.25V; fSCLK = 3.3MHz (50% duty cycle); 13 clocks/conversion cycle (250 ksps); OP = OPmin OPmax  
)
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Unit  
Digital Inputs (DIN, SCLK, CS, nSHDN)  
VDD = 2.7V  
VDD = 5.25V  
VDD = 2.7V  
VDD = 5.25V  
1.9  
3.3  
V
V
V
V
V
Logic High Level  
Logic Low Level  
VIH  
VIL  
0.7  
1.4  
Hysteresis  
VHyst  
IIN  
0.7  
Input Leakage  
Input Capacitance  
VIN = 0V or VDD  
± 0.1  
5
± 1.0  
µA  
pF  
CIN  
Digital Outptus (DOUT, SSTRB)  
VDD = 2.7V  
VDD = 5.25V  
VDD = 2.7V  
VDD = 5.25V  
3.5  
5.5  
4
8.5  
mA  
mA  
mA  
mA  
µA  
Output High Current  
IOH  
VOH= VDD – 0.5V  
VOL= 0.4V  
10.8  
11.5  
15.3  
± 1.0  
Output Low Voltage  
IOL  
6.4  
Three-State Leakage Current  
ILeak  
nCS = VDD  
nCS = VDD  
± 0.1  
5
Three-State Output Capacitance  
COUT  
pF  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
13 of 26  
 
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
1.6. Typical Operating Characteristics  
Integral Nonlinearity vs. Code  
Differential Nonlinearity vs. Code  
1
0.8  
0.6  
0.4  
0.2  
0
1
0.8  
0.6  
0.4  
0.2  
0
-0.2  
-0.4  
-0.6  
-0.8  
-1  
-0.2  
-0.4  
-0.6  
-0.8  
-1  
0
128  
256  
384  
512  
640  
768  
896 1024  
0
128  
256  
384  
512  
640  
768  
896 1024  
Code  
Code  
IDDstatic vs. Temperature  
ZADCS12x2V, internal reference active, at VDD = 3.3V  
IDD vs. VDD  
700  
1500  
1350  
1200  
1050  
900  
750  
600  
450  
300  
150  
0
IDDactive (converting)  
650  
600  
550  
500  
IDDstatic  
External VREF  
Internal VREF  
4.8  
-40  
-20  
0
20  
40  
60  
80  
100  
2.7  
3.4  
4.1  
5.5  
VDD (V)  
Temperatur (°C)  
IDDactive (converting) vs. Temperature  
ZADCS12x2V, internal reference active, at VDD = 3.3V  
VREF vs. Temperature  
1050  
1000  
950  
2.501  
2.500  
2.499  
2.498  
900  
-25  
0
25  
50  
75  
-40  
-20  
0
20  
40  
60  
80  
100  
Temperature (°C)  
Temperatur (°C)  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
14 of 26  
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
2
Detailed Description  
2.1. General Operation  
The ZADCS10x2 family is a set of classic successive approximation register (SAR) type converters. The  
architecture is based on a capacitive charge redistribution DAC merged with a resistor string DAC building a  
hybrid converter with excellent monotonicity and DNL properties. The Sample & Hold function is inherent to  
the capacitive DAC. This avoids additional active components in the signal path that could distort the input  
signal or introduce errors.  
All devices in the ZADCS10x2 family build on the same converter core and differ only in the number of input  
channels and the availability of an internal reference voltage generator. The ZADCS10x2V versions are  
equipped with a highly accurate internal 1.25V bandgap reference which is available at the VREFADJ pin. The  
bandgap voltage is further amplified by an internal buffer amplifier to 2.50V that is available at pin VREF. All  
other versions come without the internal reference and the internal buffer amplifier. They require an external  
reference supplied at VREF, with the benefit of considerably lower power consumption.  
A basic application schematic for ZADC1082V is shown in Figure 4, for ZADCS1082 in Figure 5.  
ZADCS1082V can also be operated with an external reference, if VREFADJ is tied to VDD.  
µC  
µC  
ZADCS1082V  
ZADCS1082  
+2.7V to 5.25V  
+2.7V to 5.25V  
nCS  
SCLK  
SSTRB  
DOUT  
nSHDN  
VDD  
nCS  
SCLK  
SSTRB  
DOUT  
nSHDN  
VDD  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
DIN  
DIN  
DGND  
AGND  
VREF  
COM  
CH0  
DGND  
AGND  
VREF  
COM  
CH0  
3
3
4
4
4.7µF  
4.7µF  
5
5
47nF  
0.1µF  
10µF  
0.1µF  
10µF  
VREFADJ  
CH2  
n.c.  
6
6
CH2  
7
7
CH1  
CH3  
CH1  
CH3  
8
8
CH4  
CH6  
CH4  
CH6  
9
9
CH5  
CH7  
CH5  
CH7  
10  
10  
Single-ended or differential  
analog inputs, 0V … +2.5V  
Single-ended or differential  
analog inputs, 0V … +VREF  
Figure 4: Basic application schematic for ZADCS1082V  
Figure 5: Basic application schematic for ZADCS1082  
A2 A1 A0 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7 COM  
A2 A1 A0 CH0 CH1 CH2 CH3 CH4 CH5 CH6 CH7  
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
IN+  
IN-  
IN-  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
IN+ IN-  
IN+  
IN+ IN-  
IN- IN+  
IN+  
IN-  
IN+ IN-  
IN- IN+  
IN+  
IN-  
IN+ IN-  
IN- IN+  
IN+  
IN-  
IN- IN+  
IN+  
IN-  
IN+  
IN-  
IN+ IN-  
Table 5: Channel selection in Single Ended Mode  
Table 6: Channel selection in Differential Mode  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
Data Sheet  
15 of 26  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
October 12, 2011  
 
 
 
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
2.2. Analog Input  
The analog input to the converter is fully differential. Both converter input signals IN+ and IN(see Functional  
Block diagram at front page) get sampled during the acquisition period enabling the converter to be used in  
fully differential applications where both signals can vary over time.  
The ZADCS10x2 family converters do not require that the negative input signal be kept constant within  
± 0.5LSB during the entire conversion as is commonly required by converters featuring pseudo differential  
operation only.  
The input signals can be applied single ended, referenced to the COM pin, or differential, using pairs of the  
input channels. The desired configuration is selectable for every conversion via the Control-Byte received on  
DIN pin of the digital interface (see further description below)  
A block diagram of the input multiplexer is shown in Figure 8. Table 5 and Table 6 show the relationship of the  
Control-Byte bits A2, A1, A0 and SGL/DIF to the configuration of the analog multiplexer. The entire table  
applies only to ZADCS1082 devices. For ZADCS1042 devices bit A1 is don’t care, for ZADCS1022 devices  
A1 and A0 are don’t care.  
Both input signals IN+ and INare generally allowed to swing between –0.2V and VDD+0.2V. However,  
depending on the selected conversion mode – uniploar or bipolar – certain input voltage relations can limit the  
output code range of the converter.  
In unipolar mode the voltage at IN+ must exceed the voltage at INto obtain codes unequal to 0x00. The  
entire 8 bit transfer characteristic is then covered by IN+ if IN+ ranges from INto (IN+Vref). Any voltage on  
IN+>(IN+Vref) results in code 0xFF. Code 0xFF is not reached, if (IN+Vref) > VDD + 0.2V because the input  
voltage is clamped at VDD + 0.2V by ESD protection devices.  
VIN+  
VCM  
1.5*VREF  
VREF  
0xFF  
¾
VREF  
Code Range  
VCM Range  
0.5*VREF  
¼ VREF  
0V  
0x00  
0V  
VDD-VREF VIN-  
-VREF/2  
0V  
+VREF/2  
VDIFF  
Figure 6: Input voltage range in unipolar mode  
Figure 7: Input voltage range for bipolar mode  
The voltage at INcan range from -0.2V … ½ VREF without limiting the Code Range, assuming the fore  
mentioned VDD condition is true. See also Figure 6 for input voltage ranges in unipolar conversion mode.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
16 of 26  
 
 
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
In bipolar mode, IN+ can range from (IN- Vref/2) to  
(IN+Vref/2) keeping the converter out of code  
saturation. For instance, if INis set to a constant DC  
voltage of Vref/2, then IN+ can vary from 0V to VREF to  
cover the entire code range. Lower or higher voltages of  
IN+ keep the output code at the minimum or maximum  
code value.  
Shown configuration  
A2 … A0 = 0x000  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
Figure 7 shows the input voltage ranges in bipolar mode  
when INis set to a constant DC voltage.  
IN+  
As explained before, converters out of the ZADCS10x2  
family can also be used to convert fully differential input  
signals that change around a common mode input  
voltage.  
Converter  
IN-  
The bipolar mode is best used for such purposes since  
it allows the input signals to be positive or negative in  
relation to each other.  
The common mode level of a differential input signal is  
calculated VCM = (V(IN+)+ V(IN)) / 2. To avoid code  
clipping or over steering of the converter, the common  
mode level can change from ¼ VREF … ¾ VREF. Within  
this range the peak to peak amplitude of the differential  
input signal can be ± VREF/2.  
COM  
The average input current on the analog inputs depends  
on the conversion rate. The signal source must be  
capable of charging the internal sampling capacitors  
(typically 16pF on each input of the converter: IN+ and  
IN) within the acquisition time tACQ to the required  
accuracy. The equivalent input circuit in sampling mode  
is shown in Figure 9.  
SGL/DIF = HIGH  
See Table 5 & Table 6  
for Coding Schemes  
Figure 8: Block diagram of input multiplexer  
The following equation provides a rough hand calculation for a source impedance RS that is required to settle  
out a DC input signal referenced to AGND with 8 bit accuracy in a given acquisition time  
tACQ  
RS   
RSW  
7CIN  
For example, if fSCLK = 3.3MHz, the acquisition  
time is tACQ = 758ns. Thus the output impedance  
of the signal source RS must be less than  
CHOLD+  
16pF  
RSW  
CH0  
CH1  
CH2  
CH3  
CH4  
CH5  
CH6  
CH7  
IN+  
CIN  
4pF  
3kΩ  
758ns  
RS   
3k2.41kΩ  
AGND  
720pF  
VDC  
CHOLD-  
RSW  
If the output impedance of the source is higher  
than the calculated maximum RS the acquisition  
time must be extended by reducing fSCLK to  
ensure 8 bit accuracy. Another option is to add a  
capacitor of > 20nF to the individual input.  
Although this limits the bandwidth of the input  
signal because an RC low pass filter is build  
together with the source impedance, it may be  
COM  
IN-  
Channel  
Multiplexer  
CIN  
4pF  
16pF  
3kΩ  
AGND  
Figure 9: Equivalent input circuit during sampling  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
Data Sheet  
17 of 26  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
October 12, 2011  
 
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
useful for certain applications.  
The small-signal bandwidth of the input tracking circuitry is 3.8MHz. Hence it is possible to digitize high-speed  
transient events and periodic signals with frequencies exceeding the ADC’s sampling rate. This allows the  
application of certain under-sampling techniques like down conversion of modulated high frequency signals.  
Be aware that under-sampling techniques still require a bandwidth limitation of the input signal to less than the  
Nyquist frequency of the converter to avoid aliasing effects. Also, the output impedance of the input source  
must be very low to achieve the mentioned small signal bandwidth in the overall system.  
2.3. Internal & External Reference  
ZADCS10x2V family members are equipped with a highly accurate internal 2.5V reference voltage source.  
The voltage is generated from a trimmed 1.25V bandgap with an internal buffer that is set to a gain of 2.00.  
The bandgap voltage is supplied at VREFADJ with an output impedance of 20k. An external capacitor of  
47nF at VREFADJ is useful to further decrease noise on the internal reference.  
The VREFADJ pin also provides an opportunity to externally adjust the bandgap voltage in a limited range  
(see Figure 10) as well as the possibility to overdrive the internal bandgap with an external 1.25V reference.  
The internal bandgap reference and the VREF buffer can be shut down completely by setting VREFADJ to  
VDD. This reduces power consumption of the ZADCS10x2V devices and allows the supply of an external  
reference at VREF.  
Basic ZADCS10x2 devices do not contain the internal bandgap  
or the VREF buffer. An external reference must be supplied all  
VDD = +2.7V … +5.25V  
the time at VREF.  
The value of the reference voltage at VREF sets the input range  
of the converter and the analog voltage weight of each digital  
ZADCS10x2V  
code. The size of the LSB (least significant bit) is equal to the  
value of VREF (reference to AGND) divided by 1024. For  
example at a reference voltage of 2.500V, the voltage level of a  
LSB is equal to 9.766mV.  
510kΩ  
VREFADJ  
47nF  
The average current consumption at VREF depends on the value  
of VREF and the sampling frequency. Two effects contribute to  
Figure 10: Reference Adjust Circuit  
the current at VREF, a resistive connection from VREF to AGND  
and charge currents that result from the switching and recharging of the capacitor array (CDAC) during  
sampling and conversion. For an external reference of 2.5V the input current at VREF is approximately  
100µA.  
2.4. Digital Interface  
All devices out of the ZADCS10x2 family are controlled by a 4-wire serial interface that is compatible to SPI™,  
QSPI™ and MICROWIRE™ devices without external logic. Any conversion is started by sending a control  
byte into DIN while nCS is low. A typical sequence is shown in Figure 11.  
The control byte defines the input channel(s), unipolar or bipolar operation and output coding, single-ended or  
differential input configuration, external or internal conversion clock and the kind of power down that is  
activated after the completion of a conversion. A detailed description of the control bits can be obtained from  
Figure 11. As it can also be seen in Figure 11 the acquisition of the input signal occurs at the end of the  
control byte for 2.5 clock cycles. Outside this range, the Track & Hold is in hold mode.  
The conversion process is started, with the falling clock edge (SCLK) of the eighth bit in the control byte. It  
takes twelve clock cycles to complete the conversion and one additional cycle to shift out the last bit of the  
conversion result. During the remaining seven clock cycles the output is filled with zeros in 24-Clock  
Conversion Mode. Depending on what clock mode was selected, either the external SPI clock or an internal  
clock is used to drive the successive approximation. Figure 12 shows the Timing for Internal Clock Mode.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
18 of 26  
 
 
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
nCS  
tACQ  
1
8
1
8
1
8
SCLK  
DIN  
S
A2 A1 A0 UNI/ SGL/ PD1 PD0  
BIP DIF  
(Start)  
Idle  
Acquire  
Conversion  
Idle  
SSTRB  
DOUT  
Zero filled  
B9 B8 B7 B6 B5 B4 B3  
(MSB)  
B2  
B1 B0  
(LSB)  
Figure 11: 24-Clock External Clock Mode Timing (fSCLK 3.3MHz)  
nCS  
1
8
1
8
1
8
SCLK  
DIN  
S
A2 A1 A0 UNI/ SGL/ PD1 PD0  
BIP DIF  
S
A2 A1 A0 UNI/ SGL/ PD1 PD0  
BIP DIF  
(Start)  
Idle  
Acquire  
Conversion  
Result Output  
Acquire  
SSTRB  
DOUT  
tCONV  
Zero filled  
B9 B8 B7 B6 B5 B4 B3  
B2  
B1 B0  
(LSB)  
(MSB)  
Figure 12: Internal Clock Mode Timing with interleaved Control Byte transmission  
BIT  
Name  
Description  
7
START  
The Start Bit is defined by the first logic ‘1’ after nCS goes low.  
(MSB)  
6
5
4
A2  
A1  
A0  
Channel Select Bits. Along with SGL/DIF these bits control the setting of the input multiplexer.  
For further details on the decoding see also Table 5 and Table 6.  
3
UNI/BIP  
Output Code Bit. The value of the bit determines conversion mode and output code format.  
‘1’  
‘0’  
=
=
unipolar - straight binary coding  
bipolar - two’s complement coding  
2
SGL/DIF  
Single-Ended / Differential Select Bit. Along with the Channel Select Bits A2 .. A0 this bit  
controls the setting of the input multiplexer  
‘1’  
‘0’  
=
=
single ended - all channels CH0 … CH7 measured referenced to COM  
differential - the voltage between two channels is measured  
1
PD1  
Power Down and Clock Mode Select Bits  
0 (LSB) PD0  
PD1  
PD0  
Mode  
0
0
1
1
0
1
0
1
Full Power-Down  
Fast Power-Down  
Internal clock mode  
External clock mode  
Table 7 Control Byte Format  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
19 of 26  
 
 
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
nCS  
1
8
1
8
1
8
1
SCLK  
DIN  
S
A2 A1 A0 UNI/ SGL/ PD1 PD0  
BIP DIF  
S
A2 A1 A0 UNI/ SGL/ PD1 PD0  
BIP DIF  
(Start)  
Idle  
Acquire  
Conversion  
Idle  
Acquire  
SSTRB  
DOUT  
Zero filled  
B9 B8 B7 B6 B5 B4 B3  
(MSB)  
B2  
B1 B0  
(LSB)  
B9 B8  
Figure 13: 16-Clock External Clock Mode Conversion  
nCS  
1
8
13  
1
13  
1
SCLK  
DIN  
S
A2 A1 A0 UNI/ SGL/ PD1 PD0  
BIP DIF  
S
A2 A1 A0 UNI/ SGL/ PD1 PD0  
BIP DIF  
S
A2 A1 A0  
Conversion  
(Start)  
Idle  
Acquire  
Conversion  
Acquire  
SSTRB  
DOUT  
Zero filled  
B9 B8 B7 B6 B5 B4 B3 B2 B1 B0  
B9 B8 B7 B6 B5 B4 B3 B2  
(MSB)  
(LSB)  
Figure 14: 13-Clock External Clock Mode Conversion  
Internal Clock Mode  
In Internal Clock Mode, the conversion starts at the falling clock edge of the eighth control bit just as in  
External Clock Mode. However, there are no further clock pulses required at SCLK to complete the  
conversion. The conversion clock is generated by an internal oscillator that runs at approximately 3.3MHz.  
While the conversion is running, the SSTRB signal is driven LOW. As soon as the conversion is complete,  
SSTRB is switched to HIGH, signalling that the conversion result can be read out on the serial interface. To  
shorten cycle times ZADCS10x2 family devices allow interleaving of the read out process with the  
transmission of a new control byte. Thus it is possible to read the conversion result and to start a new  
conversion with just two consecutive byte transfers, instead of thee bytes that would have to be send without  
the interleaving function. While the IC is performing a conversion in Internal Clock Mode, the Chip Select  
signal (nCS) may be tied HIGH allowing other devices to communicate on the bus. The output driver at DOUT  
is switched into a high impedance state while nCS is HIGH. The conversion time tCONV may vary in the  
specified limits depending on the actual VDD and temperature values.  
16-Clocks per Conversion  
Interleaving of the data read out process and transmission of a new Control Byte is also supported for  
External Clock Mode operation. Figure 13 shows the transmission timing for conversion runs using 16 clock  
cycles per run.  
13-Clocks per Conversion  
ZADCS10x2 family devices do also support a 13 clock cycle conversion mode (see Figure 14). This is the  
fastest conversion mode possible. In fact, the specified converter sampling rate of 250ksps will be reached in  
this mode, provided the clock frequency is set to 3.3MHz. Usually micro controllers do not support this kind of  
13 bit serial communication transfers. However, specifically designed digital state machines implemented in  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
20 of 26  
 
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
Field Programmable Gate Arrays (FPGA) or Application Specific Integrated Circuits (ASIC) may use this  
operation mode.  
Digital Timing  
In general the clock frequency at SCLK may vary from 0.1MHz to 3.3MHz. Considering all telegram pauses or  
other interruptions of a continuous clock at SCLK, each conversion must be completed within 1.2ms from the  
falling clock edge of the eighth bit in the Control Byte. Otherwise the signal that was captured during  
sample/hold may drop to noticeable affect the conversion result. Further detailed timing information on the  
digital interface is provided in Table 8 and Figure 15.  
Parameter  
Symbol Conditions  
Min  
Typ  
Max  
Unit  
SCLK Periode  
tSCLK  
303.0  
ns  
SCLK Pulse Width High  
SCLK Pulse Width Low  
tSCLKhigh  
tSCLKlow  
tDinSetup  
tDinHold  
151.5  
151.5  
ns  
ns  
DIN to SCLK Setup  
DIN to SCLK Hold  
30  
10  
30  
ns  
ns  
ns  
nCS Fall to SCLK Setup  
tnCSSetup  
SCLK Fall to  
DOUT & SSTRB Hold  
tOutHold  
CLoad = 20pF  
CLoad = 20pF  
CLoad = 20pF  
CLoad = 20pF  
10  
ns  
ns  
ns  
SCLK Fall to  
DOUT & SSTRB Valid  
tOutValid  
tOutDisable  
tOutEnable  
tnCSHigh  
40  
60  
60  
nCS Rise to  
DOUT & SSTRB Disable  
10  
nCS Fall to  
DOUT & SSTRB Enable  
ns  
ns  
nCS Pulse Width High  
100  
Table 8: Timing Characterisitics (VDD = +2.7V to + 5.25V; OP = OPmin OPmax  
)
nCS  
tSCLKhigh  
tnCSSetup  
tSCL  
tSCLKlow  
tOutValid  
SCLK  
tDINsetup  
tDINhold  
DIN  
SSTRB  
DOUT  
tnCSHig  
tOutEnable  
tOutDisable  
tOutHold  
tOutEnable  
Figure 15 Detailed Timing Diagram  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
21 of 26  
 
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
Output Code Format  
ZADCS10x2 family devices do all support unipolar and bipolar operation modes. The digital output code is  
straight binary in unipolar mode. It ranges from 0x00 for an input voltage difference of 0V to 0xFF for an input  
voltage difference of VREF (Full Scale = FS). The first code transition (0x00 0x01) occurs at a voltage  
equivalent to ½ LSB, the last (0xFE 0xFF) at VREF-1.5 LSB. See also Figure 16 for details. In bipolar  
mode a two’s complement coding is applied. Code transitions occur again halfway between successive  
integer LSB values. The transfer function is shown in Figure 17.  
Output Code  
Output Code  
ZS = V(IN-)  
11 … 111  
+ FS = ½VREF +V(IN-)  
01 … 111  
01 … 110  
11 … 110  
- FS = -½VREF +V(IN-)  
VREF  
11 … 101  
1LSB =  
1024  
00 … 011  
00 … 001  
00 … 000  
11 … 111  
11 … 110  
11 … 101  
ZS = V(IN-)  
FS = VREF +V(IN-  
)
VREF  
1LSB =  
1024  
00 … 010  
00 … 001  
00 … 000  
10 … 001  
10 … 000  
0
1
2
3
FS  
-FS  
ZS  
+FS  
(ZS)  
FS-3/2 LSB  
+FS-3/2 LSB  
Input Voltage (LSB)  
Input Voltage (LSB)  
Figure 16: Unipolar Transfer Function  
Figure 17: Bipolar Transfer Function  
2.5. Power Dissipation  
The ZADCS10x2 family offers three different ways to save operating current between conversions. Two  
different software controlled power down modes can be activated to automatically shut-down the device after  
completion of a conversion. They differ in the amount of circuitry that is powered down.  
Software Power Down  
Full Power Down Mode shuts down the entire analog part of the IC, reducing the static IDD of the device to  
less than 0.5µA if no external clock is provided at SCLK. Fast Power Down mode is only useful with  
ZADCS10x2V devices if the internal voltage reference is used. During Fast Power-Down the bandgap and the  
VREFADJ output buffer are kept alive while all other internal analog circuitry is shut down. The benefit of Fast  
Power Down mode is a shorter turn on time of the reference compared to Full Power-Down Mode. This is  
basically due to the fact that the low pass which is formed at the VREFADJ output by the internal 20kΩ  
resistor and the external buffer capacitor of 47nF is not discharged in Fast Power-Down Mode. The settling  
time of the low pass at VREFADJ is about 7ms to reach 10 bit accuracy. The Fast Power Down mode omits  
this settling and reduces the turn on time to about 200µs. To wake up the IC out of either software power  
down mode, it is sufficient to send a Start Bit while nCS is LOW. Since micro controllers can commonly  
transfer full bytes per transaction only, a dummy conversion is usually carried out to wake the device.  
In all application cases where an external reference voltage is supplied (basic ZADCS10x2 and ZADCS10x2V  
with VREFADJ tied to VDD) there is no turn on time to be considered. The first conversion is already valid.  
Fast Power-Down and Full Power-Down Mode do not show any difference in this configuration.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
22 of 26  
 
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
Hardware Power Down  
The third power down mode is called Hardware Power-Down. It is initiated by pulling the nSHDN pin LOW. If  
this condition is true, the device will immediately shut down all circuitry just as in Full Power Down-Mode.  
The IC wakes up if nSHDN is tied HIGH. There is no internal pull-up that would allow nSHDN to float during  
normal operation. This ensures the lowest possible power consumption in power down mode.  
General Power Considerations  
Even without activating any power down mode, the devices out of the ZADCS10x2 family reduce their power  
consumption between conversions automatically. The comparator, which contributes a considerable amount  
to the overall current consumption of the device, is shut off as soon as a conversion is ended. It gets turned on  
at the start of the next acquisition period. This explains the difference between the IDDstatic and IDDactive  
measurements shown in chapter 1.6 Typical Operating Characteristics.  
The average current consumption of the device depends very much on the sampling frequency and the type  
of protocol used to communicate with the device.  
In order to achieve the lowest power consumption at low sampling frequencies, it is suggested to keep the  
conversion clock frequency at the maximum level of 3.3MHz and to power down the device between  
consecutive conversions. Figure 18 shows the characteristic current consumption of the ZADCS10x2 family  
with external reference supply versus Sampling Rate  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
23 of 26  
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
3
Layout  
To achieve optimum conversion performance care must be taken in design and layout of the application  
board. It is highly recommended to use printed circuit boards instead of wire wrap designs and to establish a  
single point star connection ground system towards AGND (see Figure 19).  
For optimal noise performance the star point should be located very close to the AGND pin of the converter.  
The ground return to the power supply should be as short as possible and low impedance.  
All other analog ground points of external circuitry that is related to the A/D converter as well as the DGND pin  
of the device should be connected to this ground point too. Any other digital ground system should be kept  
apart as far as possible and connect on the power supply point only.  
Analog and digital signal domains should also be separated as well as possible and analog input signals  
should be shielded by AGND ground planes from electromagnetic interferences. Four-layer PCB boards that  
allow smaller vertical distances between the ground plane and the shielded signals do generally show a better  
performance than two-layer boards.  
The sampling phase is the most critical portion of the overall conversion timing for signal distortion. If possible,  
the switching of any high power devices or nearby digital logic should be avoided during the sampling phase  
of the converter.  
Optional  
R = 10Ω  
Current consumption vs. Sample Rate  
External Clock Mode, External VREF, fSCLK = 3.3MHz  
VDD1  
(+2.7 … +5.25V)  
10000  
ZADCS10x2  
Family  
1000  
100  
10  
COM  
DGND  
Other  
Digital  
Circuitry  
DGND  
DVDD  
GND  
1
VDD2  
1
10  
100  
1000  
Sample Rate (ksps)  
Figure 18: Supply Current versus Sampling Rate  
Figure 19: Optimal Power-Supply Grounding System  
The fully differential internal architecture of the ZADCS10x2 family ensures very good suppression of power  
supply noise. Nevertheless, the SAR architecture is generally sensitive to glitches or sudden changes of the  
power supply that occur shortly before the latching of the comparator output. It is therefore recommended to  
bypass the power supply connection very close to the device with capacitors of 0.1µF (ceramic) and >1µF  
(electrolytic). In case of a noisy supply, an additional series resistor of 5 to 10 ohms can be used to low-pass  
filter the supply voltage. The reference voltage should always be bypassed with capacitors of 0.1µF (ceramic)  
and 4.7µF (electrolytic) as close as possible to the VREF pin. If VREF is provided by an external source, any  
series resistance in the VREF supply path can cause a gain error of the converter. During conversion, a DC  
current of about 100µA is drawn through the VREF pin that could cause a noticeable voltage drop across the  
resistance.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
24 of 26  
 
 
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
4
Package Drawing  
ZADCS1082 devices are delivered in a 20-pin SSOP-package that has the dimensions as shown in Figure 20  
and Table 9. ZADCS1042 and ZADCS1022 devices apply respective 16-pin and 14-pin SSOP-packages.  
Their dimensions are specified in Table 9 and Table 10.  
Figure 20: Package Outline Dimensions  
Symbol  
Nominal  
A
A1  
A2  
bP  
c
D
E
enom  
0.65  
HE  
7.80  
7.90  
LP  
Z
k
4°  
8°  
1.86 0.13 1.73 0.30 0.15 7.20 5.30  
Maximum 1.99 0.21 1.78 0.38 0.20 7.33 5.38  
Minimum 1.73 0.05 1.68 0.25 0.09 7.07 5.20  
Table 9: Package Dimensions for ZADC1082 devices (mm)  
0.74  
7.65 0.63  
0.25 0°  
Symbol  
A
A1  
A2  
bP  
c
D
E
enom  
HE  
LP  
Z
k
Nominal  
1.86 0.13 1.73 0.30 0.15 6.20 5.30  
7.80  
4°  
Maximum 1.99 0.21 1.78 0.38 0.20 6.07 5.38  
Minimum 1.73 0.05 1.68 0.25 0.09 6.33 5.20  
Table 10: Package Dimensions for ZADC1042 devices (mm)  
0.65 7.90  
7.65 0.63  
0.89  
10°  
0.25 0°  
Symbol  
A
A1  
A2  
bP  
c
D
E
enom  
HE  
LP  
Z
k
Nominal  
1.86 0.13 1.73 0.30 0.15 6.20 5.30  
7.80  
4°  
Maximum 1.99 0.21 1.78 0.38 0.20 6.33 5.38  
Minimum 1.73 0.05 1.68 0.25 0.09 6.07 5.20  
0.65 7.90  
7.65 0.63  
1.22  
10°  
0.25 0°  
Table 11: Package Dimensions for ZADC1022 devices (mm)  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
25 of 26  
 
 
 
 
 
ZADCS1082/1042/1022  
10-Bit, 250ksps, ADC Family  
Sales and Further Information  
www.zmdi.com  
adc@zmdi.com  
Zentrum Mikroelektronik  
ZMD America, Inc.  
8413 Excelsior Drive  
Suite 200  
Madison, WI 53717  
USA  
Zentrum Mikroelektronik  
ZMD FAR EAST, Ltd.  
3F, No. 51, Sec. 2,  
Keelung Road  
11052 Taipei  
Dresden AG  
Grenzstrasse 28  
01109 Dresden  
Germany  
Dresden AG, Japan Office  
2nd Floor, Shinbashi Tokyu Bldg.  
4-21-3, Shinbashi, Minato-ku  
Tokyo, 105-0004  
Taiwan  
Japan  
Phone +49 (0)351.8822.7232  
Phone +1 (608) 829-1987  
Phone +81.3.6895.7410  
Phone +886 2 2377 8189  
Fax  
+49 (0)351.8822.87232  
Fax  
+1 (631) 549-2882  
Fax  
+81.3.6895.7301  
Fax  
+886 2 2377 8199  
DISCLAIMER: This information applies to a product under development. Its characteristics and specifications are PRELIMINARY and subject to change without notice. Zentrum  
Mikroelektronik Dresden AG (ZMD AG) assumes no obligation regarding future manufacture unless otherwise agreed to in writing. The information furnished hereby is believed to be true  
and accurate. However, under no circumstances shall ZMD AG be liable to any customer, licensee, or any other third party for any special, indirect, incidental, or consequential damages  
of any kind or nature whatsoever arising out of or in any way related to the furnishing, performance, or use of this technical data. ZMD AG hereby expressly disclaims any liability of ZMD  
AG to any customer, licensee or any other third party, and any such customer, licensee and any other third party hereby waives any liability of ZMD AG for any damages in connection with  
or arising out of the furnishing, performance or use of this technical data, whether based on contract, warranty, tort (including negligence), strict liability, or otherwise.  
© 2011 Zentrum Mikroelektronik Dresden AG — Rev. 2.0  
Data Sheet  
October 12, 2011  
All rights reserved. The material contained herein may not be reproduced, adapted, merged, translated, stored, or used without  
the prior written consent of the copyright owner. The information furnished in this publication is PRELIMINARY and subject to  
changes without notice.  
26 of 26  

相关型号:

ZADCS1024NIS14T

A/D Converter,
IDT

ZADCS1024VIS14T

A/D Converter
IDT

ZADCS1042

10-Bit, 250ksps, Serial Output ADC Family
ZMD

ZADCS1042IS16T

10-Bit, 250ksps, ADC Family
ETC

ZADCS1042QS16T

ADC, Successive Approximation, PDSO16
IDT

ZADCS1042VIS16T

ADC, Successive Approximation, 10-Bit, 1 Func, 4 Channel, Serial Access, PDSO16
IDT

ZADCS1042VQS16T

ADC, Successive Approximation, PDSO16
IDT

ZADCS1044NIS16T

A/D Converter,
IDT

ZADCS1044VIS16T

A/D Converter
IDT

ZADCS1082

10-Bit, 250ksps, Serial Output ADC Family
ZMD

ZADCS1082IS20T

10-Bit, 250ksps, ADC Family
ETC

ZADCS1082QS20T

ADC, Successive Approximation, PDSO20
IDT