ZLED7015 [IDT]

1.0MHz Boost Converter;
ZLED7015
型号: ZLED7015
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

1.0MHz Boost Converter

文件: 总22页 (文件大小:522K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZLED7015  
1.0MHz Boost Converter  
with Internal 35V Switch  
Datasheet  
Brief Description  
Features  
Integrated 35V power switch  
Wide input range: 6VDC to 30VDC  
Over-temperature protection  
The ZLED7015, one of our ZLED family of LED  
control ICs, is a constant current boost converter  
with an internal high-power 35V switch. It is opti-  
mal for driving multiple white LEDs connected in  
series so that the LED current is uniform for better  
brightness and color control. It can also drive  
devices that require a constant voltage and is  
capable of operating efficiently with voltage  
supplies ranging from 6VDC to 30VDC. It is ideal  
for diverse lighting applications requiring low sup-  
ply voltages such as SELV applications. Typically,  
smaller, less expensive external components can  
be used since the ZLED7015 switches at 1.0MHz  
(typical).  
Over-voltage (open LED string) protection adjusted  
via external resistor divider  
Under-voltage lockout ensures reliable circuit  
operation  
Control of output current during start-up via internal  
“soft-start”  
Switching frequency: 1.0MHz  
Single pin on/off or brightness control via PWM,  
microcontroller, or DC voltage control signal input  
MSOP-10 package  
The ZLED7015 output current is adjustable via an  
external current sense resistor RS connected from  
the FB pin to ground.  
Benefits  
High efficiency: up to 95% efficiency  
Few small, low-profile components needed for  
operation  
The ZLED7015 improves efficiency and minimizes  
power losses in the current setting resistor RS by  
use of an internal 0.3V feedback reference vol-  
tage.  
Small form-factor package  
Available Support  
Dimming can be controlled using a pulse-width  
modulation (PWM) waveform or a DC voltage  
applied to the FB pin.  
Evaluation Kit  
Physical Characteristics  
The ZLED7015 provides a “soft-start” function to  
prevent excessive in-rush current on start-up and  
ensures a controlled rise of the output voltage.  
Operating temperature: -40°C to 85°C  
RoHS-compliant  
Over-voltage protection is adjustable via external  
resistors R1 and R2.  
ZLED7015 Typical Application Circuit  
VIN = 6 to 30 VDC  
VOUT  
L1  
D1  
REN  
R1  
CIN  
LED  
String  
C2  
EN  
LX  
RVDD  
C1  
VDD  
OVP  
R2  
COVP  
COUT  
FB  
VP  
CVDD  
ZLED7015  
AGND  
PGND  
CVP  
RS  
© 2016 Integrated Device Technology, Inc.  
1
April 20, 2016  
 
ZLED7015  
1.0MHz Boost Converter  
with Internal 35V Switch  
Datasheet  
ZLED7015 Block Diagram  
6 to 30 VDC  
VIN  
L1  
D1  
RVDD  
ZLED7015  
9
2
LDO  
REN  
C2  
VP  
VDD  
CVDD  
CIN  
C1  
COUT  
Bias & Reference  
Bandgap  
CVP  
7
10  
FB  
R
+
LX  
R1  
RS  
VREF  
n LED  
S
Q
Oscillator  
Ramp Gen  
COVP  
R2  
Slope Compensation  
4
Shutdown  
RS  
EN  
Current Sense  
OVP  
Over-Voltage  
Protection  
Thermal  
Protection  
Current  
Limit  
6
1
3, 5  
PGND  
AGND  
Typical Applications  
Low-Voltage Retro-fit Lighting  
MR16 Lights  
Architectural/Building Lighting  
Replacement Tubes  
LED Backlighting  
SELV Lighting  
Signage and Outdoor Lighting  
General Purpose Low-Voltage Industrial and Consumer Applications  
Ordering Information  
Product Sales Code  
Description  
Package  
ZLED7015ZI1R  
ZLED7015 – 1.0MHz Boost Converter with Internal 35V Switch  
ZLED7015-E1 Evaluation Board, 1 ZLED-PCB10, and 5 ZLED7015 ICs  
MSOP-10 (Tape & Reel)  
Kit  
ZLED7015KIT-E1  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
www.IDT.com/go/support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
www.IDT.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance  
specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The  
information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an  
implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property  
rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be  
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the  
property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated  
Device Technology, Inc. All rights reserved.  
© 2016 Integrated Device Technology, Inc.  
2
April 20, 2016  
ZLED7015 Datasheet  
Contents  
1
IC Characteristics.......................................................................................................................................................... 5  
1.1  
Absolute Maximum Ratings ................................................................................................................................... 5  
Operating Conditions............................................................................................................................................. 5  
Electrical Parameters............................................................................................................................................. 6  
Typical Operating Characteristics.......................................................................................................................... 7  
Characteristic Waveforms.................................................................................................................................... 10  
1.2  
1.3  
1.4  
1.5  
2
Circuit Description....................................................................................................................................................... 12  
2.1  
2.2  
2.2.1  
EN Pin, VP Pin, and Soft-Start Function.............................................................................................................. 12  
Output Current Control......................................................................................................................................... 12  
Output Current and RS.................................................................................................................................. 12  
Dimming via External DC Voltage Control.................................................................................................... 13  
Dimming via PWM Control............................................................................................................................ 14  
Microcontroller LED Control.......................................................................................................................... 15  
Constant Voltage Application........................................................................................................................ 15  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
3
4
Application Circuit Design ........................................................................................................................................... 17  
3.1  
External Component – RS .................................................................................................................................... 17  
External Component – Inductor L1....................................................................................................................... 17  
External Components – Input Decoupling Capacitors C1 and CIN........................................................................ 17  
External Component –Output Capacitors C2 and COUT........................................................................................ 17  
External Component – Diode D1.......................................................................................................................... 17  
Additional External Components.......................................................................................................................... 17  
3.2  
3.3  
3.4  
3.5  
3.6  
Operating Conditions................................................................................................................................................... 18  
4.1  
Under-Voltage Lockout........................................................................................................................................ 18  
Over-Voltage Threshold and Open-Circuit Protection.......................................................................................... 18  
Over-Temperature Protection .............................................................................................................................. 18  
4.2  
4.3  
5
6
7
ESD/Latch-Up-Protection............................................................................................................................................ 19  
Pin Configuration and Package................................................................................................................................... 19  
Layout Requirements.................................................................................................................................................. 21  
7.1  
General Considerations and Ground Traces ....................................................................................................... 21  
Layout Considerations for C1, CIN, C2 and COUT................................................................................................... 21  
Layout Considerations for the EN Pin.................................................................................................................. 21  
Layout Considerations for the LX Pin, L1 External Coil, and D1 Diode................................................................. 21  
Layout Considerations for the External Current Sense Resistor (RS) .................................................................. 21  
Layout Considerations for CVP and CVDD.............................................................................................................. 21  
Layout Considerations for the Thermal Pad......................................................................................................... 21  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
8
9
Glossary of Terms....................................................................................................................................................... 22  
Ordering Information ................................................................................................................................................... 22  
10 Document Revision History......................................................................................................................................... 22  
© 2016 Integrated Device Technology, Inc.  
3
April 20, 2016  
ZLED7015 Datasheet  
List of Figures  
Figure 1.1  
Figure 1.2  
Figure 1.3  
Figure 1.4  
Figure 1.5  
Figure 1.6  
Figure 1.7  
Figure 1.8  
Figure 1.9  
IOUT vs. VIN with RS = 0.42Ω............................................................................................................................ 7  
IOUT vs. VIN with RS = 0.88Ω............................................................................................................................ 7  
IOUT vs. VOUT with RS = 0.42Ω......................................................................................................................... 7  
IOUT vs. VOUT with RS = 0.88Ω......................................................................................................................... 7  
Efficiency vs. VIN with RS = 0.42Ω .................................................................................................................. 8  
Efficiency vs. VIN with RS = 0.88Ω .................................................................................................................. 8  
Efficiency vs. VOUT with RS = 0.42Ω................................................................................................................ 9  
Efficiency vs. VOUT with RS = 0.88Ω................................................................................................................ 9  
VFB Reverence Voltage vs. VIN ....................................................................................................................... 9  
Figure 1.10 IOUT vs. PWM Duty Cycle................................................................................................................................ 9  
Figure 1.11 VOUT, VIN, and IL1 during Soft Start................................................................................................................ 10  
Figure 1.12 VOUT, VLX, and IOUT during Typical Operation................................................................................................ 11  
Figure 1.13 VOUT, VLX, and IL1 when Over-Voltage Protection (OVP) Threshold is Exceeded......................................... 11  
Figure 2.1  
Figure 2.2  
Figure 2.3  
Figure 2.4  
Figure 6.1  
Figure 6.2  
Typical Application Circuit ............................................................................................................................ 13  
Example Circuit for Controlling Output Current via an External DC Control Voltage.................................... 13  
Example Circuit for Controlling Output Current via a PWM Control Signal................................................... 14  
Example Circuit for Constant Voltage Source Applications.......................................................................... 16  
ZLED7015 Pin Configuration—MSOP-10 Package...................................................................................... 19  
MSOP-10 Package Dimensions for the ZLED7015...................................................................................... 20  
List of Tables  
Table 1.1  
Table 1.2  
Table 1.3  
Table 6.1  
Absolute Maximum Ratings............................................................................................................................ 5  
Operating Conditions...................................................................................................................................... 5  
Electrical Parameters ..................................................................................................................................... 6  
Pin Description MSOP-10............................................................................................................................. 19  
© 2016 Integrated Device Technology, Inc.  
4
April 20, 2016  
ZLED7015 Datasheet  
1
IC Characteristics  
Note: Exceeding the maximum ratings given in this section could cause operation failure and/or cause permanent  
damage to the ZLED7015. Exposure to these conditions for extended periods may affect device reliability.  
1.1  
Absolute Maximum Ratings  
Table 1.1  
No.  
Absolute Maximum Ratings  
PARAMETER  
SYMBOL  
VDD  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1.1.1  
Supply voltage on VDD pin  
(also see specification  
1.2.2)  
-0.3  
40.0  
V
1.1.2  
1.1.3  
1.1.4  
LX pin output voltage  
All other pins  
VLX  
-0.3  
-0.3  
40.0  
6.0  
V
V
ESD Performance  
Human Body Model  
High voltage pins:  
1, 4, 5, 9, and 10  
±2.5  
kV  
Low voltage pins:  
2, 3, 6, 7, and 8  
±4  
kV  
1.1.5  
1.1.6  
1.1.7  
1.1.8  
Junction temperature  
Storage temperature  
Tj MAX  
TST  
-40  
-65  
150  
150  
260  
60  
°C  
°C  
Lead soldering temperature  
10 seconds maximum  
°C  
Junction-to-ambient  
thermal resistance  
RθJA  
°C/W  
1.2  
Operating Conditions  
Table 1.2  
No.  
Operating Conditions  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
1.2.1  
Operating temperature  
TOP  
-40  
+85  
°C  
Supply voltage on VDD pin  
(also see absolute maxi-  
mum specification 1.1.1)  
1.2.2  
VDD  
6
30  
V
© 2016 Integrated Device Technology, Inc.  
5
April 20, 2016  
 
 
 
 
 
 
 
ZLED7015 Datasheet  
1.3  
Electrical Parameters  
Test conditions for the following specifications are Tamb = 25°C (typical) and VDD = 12V, unless otherwise noted.  
Production testing of the ZLED7015 is performed at 25°C unless otherwise stated. Functional operation of the  
ZLED7015 and specified parameters at other temperatures are guaranteed by design, characterization, and  
process control.  
Table 1.3  
Electrical Parameters  
No.  
PARAMETER  
SYMBOL  
CONDITIONS  
Continuous switching  
Quiescent: no switching  
MIN  
TYP  
2
MAX  
UNIT  
mA  
1.3.1  
1.3.2  
Supply current  
IDD  
1.1  
mA  
Shutdown: no switching;  
VEN=0V  
Shutdown current  
ISD  
15  
µA  
1.3.3  
1.3.4  
1.3.5  
LX switching frequency  
Maximum duty cycle  
fOCS  
DLX  
1
MHz  
%
90  
EN pin ON threshold voltage  
VENon  
Rising VEN  
Falling VEN  
1.4  
V
EN pin OFF threshold  
voltage  
1.3.6  
1.3.7  
1.3.8  
1.3.9  
VENoff  
VFB  
RDSon  
ISWlimit  
ISWleak  
VP  
0.4  
0.315  
1.2  
V
V
Ω
A
Internal feedback reference  
voltage  
0.285  
0.3  
0.8  
2.1  
Integrated switch ON  
resistance  
Integrated switch current  
limit  
Duty cycle = 90%  
1.8  
4.5  
2.4  
Integrated switch leakage  
current  
1.3.10  
1.3.11  
1.3.12  
1.3.13  
1.3.14  
1.3.15  
1.3.16  
VLX = 40V  
1
µA  
V
Internal regulator  
6V<VDD<30V, CVP=10μF  
5.0  
150  
50  
5.5  
Over-temperature protection  
(OTP) threshold  
TOTP  
°C  
°C  
V
OTP threshold hysteresis  
TOTP_HYS  
VUVLO  
VUVLO_HYS  
VOVP_TH  
Under-voltage lock-out  
threshold (UVLO)  
Falling VDD  
2.9  
100  
0.9  
UVLO hysteresis  
mV  
V
Internal over-voltage  
threshold reference voltage  
Over-voltage protection  
threshold hysteresis  
1.3.17  
VOVP_TH_HYS  
10  
mV  
© 2016 Integrated Device Technology, Inc.  
6
April 20, 2016  
 
 
 
 
 
 
ZLED7015 Datasheet  
1.4  
Typical Operating Characteristics  
The curves are valid for the typical application circuit and Tamb = 25°C unless otherwise noted.  
Figure 1.1  
IOUT vs. VIN with RS = 0.42Ω  
Figure 1.2  
IOUT vs. VIN with RS = 0.88Ω  
730  
360  
355  
350  
345  
340  
335  
720  
710  
700  
690  
680  
VOUT=30V,RS=0.88,L1=10µH  
VOUT=30V,RS=0.42,L1=10µH  
330  
670  
18  
10  
15  
20  
25  
30  
20  
22  
24  
26  
28  
VIN (V)  
VIN (V)  
Figure 1.3  
IOUT vs. VOUT with RS = 0.42Ω  
Figure 1.4  
IOUT vs. VOUT with RS = 0.88Ω  
730  
360  
720  
710  
700  
690  
680  
355  
350  
345  
340  
335  
VIN=12V,RS=0.88,L1=10µH  
VIN=24V,RS=0.42,L1=10µH  
330  
670  
25  
12  
15  
18  
21  
24  
27  
30  
26  
27  
28  
29  
30  
VOUT (V)  
VOUT (V)  
© 2016 Integrated Device Technology, Inc.  
7
April 20, 2016  
 
 
 
 
 
ZLED7015 Datasheet  
Figure 1.5  
Efficiency vs. VIN with RS = 0.42Ω  
Figure 1.6  
Efficiency vs. VIN with RS = 0.88Ω  
100  
100  
90  
80  
70  
60  
90  
80  
70  
60  
VOUT=30V,RS=0.88,L1=10µH  
VOUT=30V,RS=0.42,L1=10µH  
50  
50  
18  
10  
15  
20  
25  
30  
20  
22  
24  
26  
28  
VIN (V)  
VIN (V)  
© 2016 Integrated Device Technology, Inc.  
8
April 20, 2016  
 
 
ZLED7015 Datasheet  
Figure 1.7  
Efficiency vs. VOUT with RS = 0.42Ω  
Figure 1.8  
Efficiency vs. VOUT with RS = 0.88Ω  
100  
100  
90  
80  
70  
60  
90  
80  
70  
60  
VIN=12V,RS=0.88,L=10µH  
VIN=24V,RS=0.42,L=10µH  
50  
12  
50  
25  
15  
18  
21  
24  
27  
30  
26  
27  
28  
29  
30  
VOUT (V)  
VOUT (V)  
Figure 1.9  
VFB Reverence Voltage vs. VIN  
Figure 1.10  
IOUT vs. PWM Duty Cycle  
320  
(For details of PWM dimming, see section 2.2.3.)  
400  
310  
300  
290  
280  
270  
260  
350  
300  
250  
200  
150  
100  
50  
500Hz  
10KHz  
250  
6
10  
14  
18  
VIN (V)  
22  
26  
30  
0
0
20  
40  
60  
80  
100  
120  
PWM Duty Cycle (%)  
© 2016 Integrated Device Technology, Inc.  
9
April 20, 2016  
 
 
 
 
ZLED7015 Datasheet  
1.5  
Characteristic Waveforms  
Figure 1.11 VOUT, VIN, and IL1 during Soft Start  
VOUT  
10V/Div  
VIN  
10V/Div  
IL1  
Inductor  
Current  
1A/Div  
VIN = 12VDC, RS = 0.88Ω, L1 = 10µH, VOUT = 28V  
© 2016 Integrated Device Technology, Inc.  
10  
April 20, 2016  
 
 
ZLED7015 Datasheet  
Figure 1.12 VOUT, VLX, and IOUT during Typical Operation  
VOUT  
20V/Div  
VLX  
20V/Div  
IOUT  
20mA/Div  
VIN = 12VDC, RS = 0.88Ω, L1 = 10µH, VOUT = 28V  
2μs/Div  
Figure 1.13 VOUT, VLX, and IL1 when Over-Voltage Protection (OVP) Threshold is Exceeded  
VOUT  
20V/Div  
VLX  
20V/Div  
IL1  
500mA/Div  
VIN = 12VDC, RS = 0.88Ω, L1 = 10µH, VOUT = 28V, VOVP = 33V  
© 2016 Integrated Device Technology, Inc.  
11  
April 20, 2016  
 
 
ZLED7015 Datasheet  
2
Circuit Description  
The ZLED7015 is a constant-current boost converter that can also function as a constant voltage driver for LED  
applications. The boost converter topology features an internal 35V power switch and feedback circuit to control  
the output to the LED string. Optimal performance is achieved by operating in continuous conduction mode within  
the application’s load current range; i.e., the current through inductor L1 is always above 0A. The output current is  
set by an external resistor and the device supports DC linear or PWM dimming. Additional device features include  
selectable open-load/over-voltage protection, over-temperature protection, under-voltage lockout, and an  
automatic soft-start function to minimize the inrush current during startup.  
2.1  
EN Pin, VP Pin, and Soft-Start Function  
The EN pin can be used to enable or disable the ZLED7015. When the voltage on the EN pin rises above the ON  
threshold voltage VENon specified in Table 1.3, the ZLED7015 begins its “soft-start.” When the voltage at EN falls  
below the OFF threshold voltage VENoff, the ZLED7015 shuts down. There is a hysteresis between VENon and VENoff  
to prevent intermittent operation.  
The ZLED7015’s internal “soft-start” function ensures a smooth device start-up by preventing excessive in-rush  
current and providing a controlled rise in the output current. When the soft-start function is initiated, the internal  
circuitry clamps the internal switch current threshold to zero during a 1millisecond delay. The soft-start function  
then gradually increases the internal switch current threshold over a 4-5 msec period. See Figure 1.11 for an  
illustration of typical waveforms during start-up.  
Important: The EN pin requires termination. If the EN pin is not used to control operation, connect it to the  
positive power supply through a 100kΩ resistor. Do not allow the EN pin to float.  
The VP pin is connected to the ZLED7015’s internal power regulator and requires an external bypass capacitor,  
CVP, to ensure correct device operation.  
2.2  
Output Current Control  
The LED current is determined by the voltage across the external sense resistor RS, which is fed back to the input  
FB. Internally, this is compared with the internal feedback reference voltage, VFB (see typical application shown on  
page 2), and the duty cycle of the internal power switch is adjusted to reduce or increase the output current IOUT  
.
Selection of RS is discussed in section 2.2.1, and other external components are discussed in section 3. Dimming  
can be controlled by superimposing a DC or filtered pulse-width modulated (PWM) signal on the feedback voltage  
from RS. Refer to sections 2.2.2 and 2.2.3, respectively, for more details.  
2.2.1  
Output Current and RS  
The ZLED7015 continually adjusts the output current, IOUT, in order to maintain the voltage level at the FB pin  
equal to the internal feedback reference voltage, VFB. Equation (1) shows the basic relationship between IOUT, VFB,  
and RS for the basic application shown in Figure 2.1.  
VFB 0.3V  
IOUT  
=
=
RS  
RS  
(1)  
Where  
IOUT = Average output current through the LED(s) in amperes  
VFB = Internal feedback reference voltage (see Table 1.3, parameter 1.3.7)  
© 2016 Integrated Device Technology, Inc.  
12  
April 20, 2016  
 
 
 
 
 
ZLED7015 Datasheet  
Figure 2.1  
Typical Application Circuit  
VIN = 6 to 30 VDC  
VOUT  
L1  
D1  
REN  
R1  
R2  
CIN  
LED  
String  
C2  
EN  
LX  
RVDD  
C1  
VDD  
OVP  
COVP  
COUT  
FB  
VP  
CVDD  
ZLED7015  
AGND  
PGND  
CVP  
RS  
2.2.2  
Dimming via External DC Voltage Control  
The LED output current can be set below the nominal average value defined on section 2.2.1 by using an external  
DC voltage control signal superimposed on the FB pin as shown in the example circuit in Figure 2.2. As the DC  
control signal, VDC, increases, the current through R3 increases with a subsequent increase in the voltage at the  
FB pin. This causes the ZLED7015 to compensate by reducing the output current through the LED string.  
Consequently, the output current is inversely proportional to the DC control voltage.  
Note: It is important to ensure that the LED output voltage VOUT remains higher than the input voltage VIN in  
dimming applications.  
Figure 2.2  
Example Circuit for Controlling Output Current via an External DC Control Voltage  
VIN = 6 to 30 VDC VOUT  
L1  
D1  
REN  
R1  
R2  
CIN  
LED  
String  
C2  
RVDD  
EN  
VDD  
LX  
C1  
OVP  
COVP  
COUT  
FB  
VP  
R3  
CVDD  
ZLED7015  
PGND  
AGND  
CVP  
RS  
R4  
DC Control Signal VDC = 0 to 5V  
© 2016 Integrated Device Technology, Inc.  
13  
April 20, 2016  
 
 
 
ZLED7015 Datasheet  
The output current controlled by the DC voltage on FB can be calculated using equation (2):  
R3 ×  
(
VDC VFB  
R4  
)
VFB −  
(2)  
IOUT  
=
RS  
Where  
OUT = Output current through the LED(s) with a DC control voltage  
I
VFB = Internal feedback reference voltage (Table 1.3, parameter 1.3.7)  
VDC = External DC control voltage  
2.2.3  
Dimming via PWM Control  
An external pulse-width modulated (PWM) signal input can be used to control the LED output current by driving  
the output current to a value below the nominal average value defined in section 2.2.1. A microcontroller can be  
used to generate the PWM signal. See Figure 2.3 for an example circuit. The PWM signal is superimposed on the  
feedback voltage from RS at the FB pin via the input filter R5/C3 and R4, which produces a DC voltage with a  
ripple. This method of controlling dimming is similar to the external DC voltage control described in section 2.2.2.  
The duty cycle of the PWM signal regulates the filtered DC voltage level, which inversely controls the LED output  
current level. When the duty cycle is at 100%, the output current is at the minimum. With a 0% duty cycle, the  
output current is at the maximum.  
Recommendation: With a PWM signal of 0 to 5V, use an R3 value of 10kΩ and a PWM frequency of >2kHz to  
minimize the filtered PWM voltage ripple.  
Note: It is important to ensure that the LED output voltage VOUT remains higher than the input voltage VIN in  
dimming applications.  
Figure 2.3  
Example Circuit for Controlling Output Current via a PWM Control Signal  
VIN = 6 to 30 VDC  
L1  
D1  
REN  
R1  
CIN  
LED  
String  
C2  
EN  
LX  
RVDD  
C1  
VDD  
OVP  
R2  
COVP  
COUT  
FB  
VP  
R3  
CVDD  
ZLED7015  
PGND  
AGND  
CVP  
RS  
R4  
C3  
R5  
5V  
0V  
Microcontroller PMW Signal  
© 2016 Integrated Device Technology, Inc.  
14  
April 20, 2016  
 
 
 
ZLED7015 Datasheet  
The output current controlled by the PWM voltage on FB can be calculated using equation (3):  
R3 ×  
(
VPWM × DPWM VFB  
)
VFB −  
(3)  
R + R5  
4
IOUT  
=
R
S
Where  
OUT = Output current through the LED(s) with a PWM control voltage  
I
VFB = Internal feedback reference voltage (see Table 1.3, parameter 1.3.7)  
VPWM = External PWM control voltage  
DPWM = Duty cycle of the PWM control signal  
2.2.4  
Microcontroller LED Control  
A microcontroller can control the LED output current by providing a PWM control signal to the FB pin as described  
in section 2.2.3.  
Depending on the application, the microcontroller can also be used to control the shutdown circuitry via the EN  
pin (see section 2.1) providing a fast and smooth transition to shutdown.  
2.2.5  
Constant Voltage Application  
In addition to functioning as a constant-current boost converter for driving an LED string, the ZLED7015 can be  
configured as a constant-voltage boost converter for other applications. Figure 2.4 demonstrates a typical circuit  
for this application.  
The output voltage controlled by the values of R3 and RS can be calculated using equation (4):  
(R + R )  
3
S
(4)  
VOUT =VFB ×  
R
S
Where  
VOUT = Output voltage to the load  
VFB = Internal feedback reference voltage (Table 1.3, parameter 1.3.7)  
© 2016 Integrated Device Technology, Inc.  
15  
April 20, 2016  
 
 
 
ZLED7015 Datasheet  
Figure 2.4  
Example Circuit for Constant Voltage Source Applications  
VIN = 6 to 30 VDC  
L1  
D1  
REN  
R1  
R3  
CIN  
C2  
EN  
LX  
FB  
RVDD  
Load  
C1  
VDD  
OVP  
VP  
COUT  
CVDD  
ZLED7015  
PGND AGND  
RS  
CVP  
R2  
COVP  
© 2016 Integrated Device Technology, Inc.  
16  
April 20, 2016  
 
ZLED7015 Datasheet  
3
Application Circuit Design  
The following sections cover selection of the external components shown in the typical application on page 1.  
3.1  
External Component – RS  
Recommendation: Use precision resistors (±1% or better tolerance) for the RS resistor to ensure accurate control  
of the LED current.  
See section 2.2.1 for the equation for selecting the value of RS, which sets the nominal current output.  
3.2  
External Component – Inductor L1  
Designing the circuit so that the current through inductor L1 is always above 0V (i.e., continuous mode) typically  
gives the best performance due to improved load regulation and reduced output ripple. Select an inductor that has  
a saturation current and a current rating greater than the mean input current.  
The inductor value selection requires trade-offs between unwanted ripple current and parasitic effects. A larger  
value inductor reduces inductor ripple current, resulting in less output ripple voltage; however, higher values also  
increase parasitic resistance, which can degrade performance. For most applications, a 10µH inductor with a  
saturation current >2.5A is adequate. See section 7.4 for layout restrictions.  
3.3  
External Components – Input Decoupling Capacitors C1 and CIN  
The input capacitors C1 and CIN minimize the input voltage noise and ripple. Recommendation: use a 22µF or  
larger low-ESR electrolytic capacitor for CIN in parallel with a 1µF ceramic capacitor rated at greater than the input  
voltage plus a safety margin for C1.  
3.4  
External Component –Output Capacitors C2 and COUT  
The output capacitors C2 and COUT minimize the output voltage ripple. Recommendation: use a 22µF or larger  
low-ESR electrolytic capacitor for COUT in parallel with a 1µF ceramic capacitor rated at greater than the output  
voltage plus a safety margin for C2.  
3.5  
External Component – Diode D1  
For the diode D1, select a high-speed, low-capacitance Schottky diode with low reverse leakage at the maximum  
operating voltage and temperature to ensure maximum efficiency and performance.  
Important: Choose diodes with a continuous current rating higher than the maximum output load current and a  
peak current rating above the peak coil current. When operating above 85°C, the reverse leakage of the diode  
must be addressed because it can cause excessive power dissipation in the diode, especially when the output  
voltage is relatively high. Its reverse breakdown voltage must be greater than the over-voltage protection level  
VOVP (see section 4.2).  
Note: Silicon diodes have higher forward voltage and higher voltage overshoot before they start conducting, which  
can increase the peak voltage on the LX output. Ensure that the total voltage appearing on the LX pin, including  
supply ripple, is within the specified range (see Table 1.1).  
3.6  
Additional External Components  
For the VDD input, connect resistor RVDD to the positive power supply and connect ceramic capacitor CVDD to  
ground. Recommendations: use 1µF for CVDD; use 300Ω for RVDD with input voltages 8V, use 50Ω for RVDD with  
input voltages < 8V.  
For the VP pin, connect a 10µF ceramic bypass capacitor to ground (CVP).  
If the EN pin is not used, connect a 100kΩ resistor to the positive power supply (REN). Do not allow the EN pin to  
float.  
© 2016 Integrated Device Technology, Inc.  
17  
April 20, 2016  
 
 
 
 
 
 
 
ZLED7015 Datasheet  
4
Operating Conditions  
4.1  
Under-Voltage Lockout  
The under-voltage lockout (UVLO) monitors the ZLED7015’s internal regulator output voltage, VP, to ensure  
correct operation of the internal circuitry. When the VP voltage is lower than the UVLO threshold VUVLO, the  
ZLED7015 disables the internal power switch. If the VP voltage reaches a level higher than the UVLO threshold  
plus UVLO hysteresis (VUVLO+VUVLO_HYS) the UVLO turns off and the internal power switch is re-enabled. See  
parameters 1.3.14 and 1.3.15 in section 1.3 for the UVLO threshold and hysteresis.  
4.2  
Over-Voltage Threshold and Open-Circuit Protection  
If the LED string becomes open or the FB pin is shorted to ground, the ZLED7015 would normally continually  
boost the output voltage to potentially damaging levels. To prevent this, the ZLED7015 includes an integrated  
over-voltage protection (OVP) mechanism. If the output voltage reaches the ZLED7015’s OVP threshold VOVP, the  
protection circuitry is triggered and the device automatically turns off the internal switch, stopping the boost  
function and protecting the device. Once the output voltage falls below the OVP threshold minus OVP threshold  
hysteresis (VOVP_TH-VOVP_TH_HYS), the device will enter soft-start mode.  
The OVP threshold VOVP for the ZLED7015 is selectable via the R1 and R2 resistor values determined by  
equation (5):  
(R + R2 )  
1
VOVP =VOVP_TH  
×
(5)  
R2  
Where  
VOVP = Over-voltage protection threshold  
VOVP_TH = Internal over-voltage threshold reference voltage (see Table 1.3, parameter 1.3.16)  
Important: Care must be taken to select proper R1 and R2 values to ensure proper functioning of the ZLED7015.  
See specification 1.3.16 in Table 1.3 for the over-voltage protection threshold voltage. Set VOVP 3V higher than  
the normal operation output voltage.  
Important: When setting VOVP, care must be taken to ensure VOUT cannot exceed 35V.  
Minimize noise coupling on the OVP pin, which could interfere with proper protection, by connecting a 10nF  
ceramic capacitor to GND from OVP (COVP).  
4.3  
Over-Temperature Protection  
The ZLED7015 features on-chip over-temperature protection. If its internal temperature exceeds the over-  
temperature protection (OTP) threshold, TOTP, due to high power dissipation and improper heat sinking, the  
internal power switch is disabled. Once the internal temperature has fallen below the OTP threshold minus the  
OTP threshold hysteresis (TOTP - TOTP_HYS), the ZLED7015 enters the soft-start mode (see section 2.1).  
Refer to Table 1.1 for the maximum package power dissipation specifications for the ZLED7015’s MSOP-10  
package.  
© 2016 Integrated Device Technology, Inc.  
18  
April 20, 2016  
 
 
 
 
 
ZLED7015 Datasheet  
5
ESD/Latch-Up-Protection  
All high voltage pins (1, 4, 5, 9, and 10) have an ESD protection of >± 2500V according to the Human Body Model  
(HBM). The ESD test follows the Human Body Model based on MIL 883-H, Method 3015.8  
All low voltage pins (2, 3, 6, 7, and 8) have an ESD protection of >± 4000V according to the Human Body Model  
(HBM). The ESD test follows the Human Body Model based on MIL 883-H, Method 3015.8  
All pins pass the latch-up test based on the JEDEC Standard No. 78B, December 2008.  
6
Pin Configuration and Package  
The ZLED7015 package is an MSOP-10, which has a thermal resistance (junction to ambient) of  
θJA = 60°C/W.  
R
Figure 6.1  
ZLED7015 Pin Configuration—MSOP-10 Package  
PGND  
VP  
LX  
VDD  
NC  
AGND  
EN  
FB  
AGND  
OVP  
Table 6.1  
Pin Name  
PGND  
Pin Description MSOP-10  
No.  
Description  
1
2
Power ground  
VP  
Internal 5V linear regulator output. VP is the power supply for the internal switch gate driver and the  
internal control circuitry. Use a 10µF ceramic bypass capacitor between VP and ground.  
AGND  
EN  
3
4
5
6
7
Analog (signal) ground.  
Enable control input. Important: Do not allow this pin to float.  
Analog (signal) ground.  
AGND  
OVP  
FB  
Over-voltage protection control input.  
Feedback voltage input. The nominal average output current is set by the value of RS connected from  
FB to GND – see section 2.2.1 for details. Important: Do not allow the FB pin to float.  
n.c.  
VDD  
LX  
8
9
No connection  
Supply voltage (6V to 30V)—see section 7 for layout considerations.  
10 Drain of the internal switch. Connect the power inductor between LX and the power supply. Connect the  
output rectifier D1 between LX and the output circuit. See section1.1 for output range specifications.  
Thermal  
Pad  
Connect to ground.  
© 2016 Integrated Device Technology, Inc.  
19  
April 20, 2016  
 
 
 
 
ZLED7015 Datasheet  
Figure 6.2  
MSOP-10 Package Dimensions for the ZLED7015  
Dimension (mm, except θ)  
Dimension (mm)  
Symbol  
Symbol  
Min  
0.82  
0.02  
0.75  
0.18  
0.09  
Max  
1.10  
0.15  
0.95  
0.28  
0.23  
Min  
2.90  
1.70  
Max  
3.10  
1.90  
D
A
A1  
A2  
b
D1  
e
0.50 BSC  
E
2.90  
4.75  
1.45  
0.40  
3.10  
5.05  
1.65  
0.80  
E1  
E2  
L
c
θ
0°  
6°  
© 2016 Integrated Device Technology, Inc.  
20  
April 20, 2016  
 
ZLED7015 Datasheet  
7
Layout Requirements  
Follow these layout guidelines to avoid circuit instability and EMI vulnerability, especially with high current or high  
switching frequency applications.  
Important: Route traces connecting the feedback network to the FB and OVP pin away from the L1 inductor, the  
D1 Schottky diode, and the LX pin. These traces should be as short as possible. Shield the FB pin and feedback  
network with a ground plane or trace to prevent noise coupling.  
7.1  
General Considerations and Ground Traces  
Make the ground traces as wide and short as possible. To prevent a signal ground shift, keep traces for the signal  
ground (pin 5) separate from traces for the power ground (pin 1). Connect the signal and power ground traces  
together at either the large ground plane or the negative terminal of CIN.  
Connect the grounds for other components to the signal ground.  
Use wide traces for connection of the high current loop.  
7.2  
Layout Considerations for C1, CIN, C2 and COUT  
Place C1, C2 and COUT as close as possible to the ZLED7015 to minimize ripple. The CIN input decoupling  
capacitor must be placed as close as possible to the VDD pin to minimize power supply noise, which can reduce  
efficiency.  
7.3  
Layout Considerations for the EN Pin  
Important: Do not allow the EN pin to float. It must be terminated if it is not used.  
7.4  
Layout Considerations for the LX Pin, L1 External Coil, and D1 Diode  
Minimize the length of circuit board traces connected to the LX pin because it is a fast switching output.  
Place L1 and D1 as close as possible to the LX pin using traces that are as short and wide as possible. Avoid  
routing other traces crossing or in parallel with this node to minimize the noise coupling into this circuit.  
7.5  
Layout Considerations for the External Current Sense Resistor (RS)  
Any trace resistance in series with RS must be taken into consideration when selecting its value. For the most  
accurate LED current control, use a trace that is as wide and short as possible for the RS connection to ground.  
Connect it to the signal ground (pin 5), not the power ground (pin 1).  
7.6  
Layout Considerations for CVP and CVDD  
For good filtering, connect CVP as close as possible to the VP pin and place CVDD as close as possible to the VDD  
pin.  
7.7  
Layout Considerations for the Thermal Pad  
To optimize heat dissipation, solder the thermal pad on the back of the MSOP-10 package to the large ground  
plan.  
© 2016 Integrated Device Technology, Inc.  
21  
April 20, 2016  
 
 
 
 
 
 
 
 
ZLED7015 Datasheet  
8
9
Glossary of Terms  
Term  
Definition  
LDO  
OTP  
OVP  
UVL  
Low Dropout Regulator  
Over-Temperature Protection  
Over-Voltage Protection  
Under-Voltage Lockout  
Ordering Information  
Product Sales Code  
Description  
ZLED7015 – 1MHz Boost Converter with Internal 35V Switch  
Package  
ZLED7015ZI1R  
MSOP-10 (Tape & Reel)  
ZLED7015KIT-E1  
ZLED7015-E1 Evaluation Board, 1 ZLED-PCB10, and 5 ZLED7015 ICs Kit  
10 Document Revision History  
Revision  
Date  
Description  
1.00  
December 20, 2011 First Issue.  
April 20, 2016  
Changed to IDT branding.  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
www.IDT.com/go/support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
www.IDT.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance  
specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The  
information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an  
implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property  
rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be  
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the  
property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated  
Device Technology, Inc. All rights reserved.  
© 2016 Integrated Device Technology, Inc.  
22  
April 20, 2016  
 
 
 

相关型号:

ZLED7015-ZI1R

1.0MHz Boost Converter with Internal 35V Switch
ETC

ZLED7015KIT-E1

1.0MHz Boost Converter
IDT

ZLED7015ZI1R

1.0MHz Boost Converter
IDT

ZLED7020

High Current 40V LED Driver with Internal Switch
IDT

ZLED7020-ZI1R

High Current 40V LED Driver with Internal Switch
ETC

ZLED7020KIT-D1

High Current 40V LED Driver with Internal Switch
ETC

ZLED7022

Low-Voltage Six-Channel LED Driver
IDT

ZLED7022-ZI1R

Interface Circuit
IDT

ZLED7022KIT-E1

Low-Voltage Six-Channel LED Driver
IDT

ZLED7022ZI1R

Low-Voltage Six-Channel LED Driver
IDT

ZLED7030

High Current 40V LED Driver with Switch Dimming
IDT

ZLED7030-ZI1R

High Current 40V LED Driver with Switch Dimming
ETC