ZMID5202AE1R [IDT]

Inductive Position Sensor IC;
ZMID5202AE1R
型号: ZMID5202AE1R
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Inductive Position Sensor IC

传感器 换能器
文件: 总30页 (文件大小:987K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZMID5201/-02/-03  
Inductive Position Sensor IC  
Features  
Datasheet  
Description  
The ZMID5201, ZMID5202, and ZMID5203 ICs are a family of  
inductive position sensors, used for absolute rotary and linear  
motion sensing in automotive, industrial, medical, and consumer  
applications.  
.
.
.
.
.
.
.
Position sensing based on inductive principle  
Cost effective, no magnet required  
Immune to magnetic stray fields; no shielding required  
Suitable for harsh environments and extreme temperatures  
Only three wires (ground, supply, output)  
The ZMID520x uses the physical principles of induction in a wire  
loop and eddy currents to detect the position of an electrically  
conducting target that is sliding or rotating above a set of coils,  
consisting of one transmitter coil and two receiver coils.  
Nonvolatile user memory; programming through output pin  
Single IC supports on-axis and off-axis rotation, linear motion,  
and arc motion sensing  
The three coils are typically printed as copper traces on a printed  
circuit board (PCB). They are arranged such that the transmitter  
coil induces a secondary voltage in the receiver coils that  
depends on the position of the metallic target above the coils.  
.
.
.
.
.
High resolution, even for small angle ranges  
High accuracy: ≤ 0.2% full scale  
9-point user linearization  
A signal representative of the target’s position over the coils is  
obtained by demodulating and processing the secondary voltages  
from the receiver coils. The target can be any kind of metal, such  
as aluminum, steel or a PCB with a printed copper layer.  
Rotation sensing up to a full turn of 360º  
Overvoltage and reverse-polarity protection:  
-14V to +18V maximum, depending on product  
.
.
.
.
.
ESD and short-circuit protection  
The ZMID5201/-02-/03 ICs are fully qualified to the automotive  
standard AEC-Q 100, grade 0 from -40°C up to 150°C ambient  
temperature.  
Power or ground loss detection  
Facilitates redundant design requirements  
Programmable non-linearity correction  
Three versions with different output interfaces are available:  
Adaptive gain control supporting a wide range of coil designs  
and target displacement  
.
.
.
ZMID5201: Analog output  
ZMID5202: PWM digital output  
ZMID5203: SENT digital output  
.
Suitable for implementation in safety-related systems  
compliant to ISO26262 up to ASIL-B  
Available Support  
.
Evaluation Kit  
Documentation  
Application Circuit  
.
10  
7
4
VDDT  
VDDE  
SOUT  
Physical Characteristics  
CVT  
+5V  
OUT  
GND  
CVE  
.
.
.
Wide operation temperature: -40 C to +150°C  
Supply voltage: 4.5V to 5.5V  
9
EP  
Tx  
CT  
8
Small 14-TSSOP package  
EN  
6
5
3
VSSE  
VDDA  
VDDD  
14  
13  
12  
11  
Typical Applications  
R1P  
R1N  
R2P  
Rx  
(cos)  
.
.
.
Rotary position sensors up to 360°; e.g. steering angle  
sensors, potentiometer replacement  
CVA  
CVD  
Small-angle sensors or arc-motion sensors; e.g. pedal,  
vehicle level, or valve sensors  
2
1
Rx  
TEST_ENA  
TEST_D  
(sin)  
Linear motion sensors; e.g. linear-actuator position sensors,  
fluid-level sensors  
R2N  
© 2017 Integrated Device Technology, Inc.  
1
April 28, 2017  
ZMID5201/-02/-03 Datasheet  
ZMID5201/-02/-03 Block Diagram  
VDDA VDDD VDDT  
ZMID520x Family  
VDDE  
Power  
Management  
One-Wire  
Interface  
(OWI)  
VSSE  
ZMID5201  
Analog Interface  
R1P  
Rx  
Cosine  
ZMID5202  
PWM Interface  
R1N  
Digital  
Signal  
Processing  
Protection  
SOUT  
ADC  
Analog Front-End  
ZMID5203  
SENT Interface  
R2P  
Rx  
R2N  
Sine  
EP  
EN  
Tx  
TEST_ENA  
TEST_D  
Oscillator  
EEPROM  
CT  
Test  
Control  
CT1  
(opt.)  
CT2  
(opt.)  
Diagnosis  
Note: If CT1 and CT2 are  
used, CT is not used.  
Ordering Information  
Orderable Part  
ZMID5201AE1R  
ZMID5201AE1T  
ZMID5202AE1R  
ZMID5202AE1T  
ZMID5203AE1R  
ZMID5203AE1T  
ZMID5201-EVK  
ZMID5202-EVK  
ZMID5203-EVK  
Description and Package  
MSL Rating  
Shipping Packaging  
Tape and Reel  
Tube  
Temperature  
-40° to +150°C  
-40° to +150°C  
-40° to +150°C  
-40° to +150°C  
-40° to +150°C  
-40° to +150°C  
ZMID5201; Analog Output; 14-TSSOP  
ZMID5201; Analog Output; 14-TSSOP  
ZMID5202; PWM Output; 14-TSSOP  
ZMID5202; PWM Output; 14-TSSOP  
ZMID5203; SENT Output; 14-TSSOP  
ZMID5203; SENT Output; 14-TSSOP  
1
1
1
1
1
1
Tape and Reel  
Tube  
Tape and Reel  
Tube  
ZMID5201 Evaluation Kit: ZMID Communication Board, ZMID5201 Demo Board with printed sensor coil, cable  
ZMID5202 Evaluation Kit: ZMID Communication Board, ZMID5202 Demo Board with printed sensor coil, cable  
ZMID5203 Evaluation Kit: ZMID Communication Board, ZMID5203 Demo Board with printed sensor coil, cable  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
www.IDT.com/go/support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
www.IDT.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as “IDT”) reserve the ri ght to modify the products and/or specifications described herein at any time,  
without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are determined in an independe nt state and are not guaranteed to perform the same  
way when installed in customer products. The information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitabi lity  
of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not  
convey any license under intellectual property rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be  
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the  
property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of  
Integrated Device Technology, Inc. All rights reserved.  
© 2017 Integrated Device Technology, Inc.  
2
April 28, 2017  
ZMID5201/-02/-03 Datasheet  
Contents  
1. Pin Assignments...........................................................................................................................................................................................5  
2. Pin Descriptions............................................................................................................................................................................................5  
3. Absolute Maximum Ratings..........................................................................................................................................................................6  
4. Operating Conditions....................................................................................................................................................................................7  
5. Electrical Characteristics ..............................................................................................................................................................................7  
6. Circuit Description ........................................................................................................................................................................................9  
6.1 Overview............................................................................................................................................................................................9  
6.2 Block Diagram..................................................................................................................................................................................10  
7. Redundant Connection...............................................................................................................................................................................11  
8. Protection and Diagnostics.........................................................................................................................................................................12  
8.1 I/O Protection...................................................................................................................................................................................12  
8.2 Diagnostics ......................................................................................................................................................................................12  
8.3 Automotive Safety Integrity Level (ASIL) .........................................................................................................................................12  
9. ZMID5201 Inductive Sensor with Analog Output........................................................................................................................................13  
10. ZMID5202 Inductive Sensor with PWM Output ..........................................................................................................................................15  
11. ZMID5203 Inductive Sensor with SENT Output .........................................................................................................................................18  
11.1 SENT Protocol .................................................................................................................................................................................19  
12. Programming Options.................................................................................................................................................................................22  
13. Operation at High Rotation Speeds............................................................................................................................................................23  
14. Interpolation, Linearity Error Correction......................................................................................................................................................24  
15. Application Examples .................................................................................................................................................................................25  
16. Package Drawing 14-TSSOP.....................................................................................................................................................................27  
17. Recommended Land Pattern......................................................................................................................................................................28  
18. Marking Diagram ........................................................................................................................................................................................29  
19. Ordering Information...................................................................................................................................................................................29  
20. Revision History..........................................................................................................................................................................................30  
List of Figures  
Figure 1. Pin Assignments for 14-TSSOP Package Top View ........................................................................................................................5  
Figure 2. Coil Design for a Linear Motion Sensor...............................................................................................................................................9  
Figure 3. Block Diagram ...................................................................................................................................................................................10  
Figure 4. Application Diagram, Dual Redundant Sensor with Shared Transmit Coil........................................................................................11  
Figure 5. External Components for ZMID5201 Analog Interface with Pull-Down Resistor...............................................................................13  
Figure 6. External Components for ZMID5201 Analog Interface with Pull-up Resistor ....................................................................................13  
Figure 7. Example of ZMID5201 Analog Output Transfer Function and Programming Options.......................................................................14  
Figure 8. External Components for ZMID5202 PWM Interface with Pull-Up Resistor......................................................................................15  
Figure 9. PWM Signal Range ...........................................................................................................................................................................16  
© 2017 Integrated Device Technology, Inc.  
3
April 28, 2017  
ZMID5201/-02/-03 Datasheet  
Figure 10. Example of PWM Output Signal........................................................................................................................................................17  
Figure 11. Example of ZMID5202 PWM Output Transfer Function and Programming Options .........................................................................17  
Figure 12. External Components for ZMID5203 SENT Interface, Option A........................................................................................................18  
Figure 13. External Components for ZMID5203 SENT Interface, Option B........................................................................................................18  
Figure 14. External Components for ZMID5203 SENT Interface, Option C .......................................................................................................18  
Figure 15. SENT Nibble Output for Value = 15DEC..............................................................................................................................................20  
Figure 16. SENT Frame......................................................................................................................................................................................20  
Figure 17. Example of ZMID5203 Output Transfer Function and Programming Options...................................................................................21  
Figure 18. Relationship between Resolution and Rotational Speed...................................................................................................................23  
Figure 19. Example Setup: Linear Motion ..........................................................................................................................................................25  
Figure 20. Example Setup: Arc Motion...............................................................................................................................................................25  
Figure 21. Example Setup: End-of-Shaft Rotation, On-Axis, 1 × 360...............................................................................................................25  
Figure 22. Example Setup: Side-Shaft Rotation, Off-Axis, 1 × 360...................................................................................................................25  
Figure 23. Example Setup: Side-Shaft Rotation, Off-Axis, 2 × 180...................................................................................................................26  
Figure 24. Example Setup: Side-Shaft Rotation, Off-Axis, 6 × 60.....................................................................................................................26  
Figure 25. 14-TSSOP Package Outline Drawing................................................................................................................................................27  
Figure 26. 14-TSSOP Recommended PCB Land Pattern..................................................................................................................................28  
List of Tables  
Table 1. Pin Descriptions...................................................................................................................................................................................5  
Table 2. Absolute Maximum Ratings.................................................................................................................................................................6  
Table 3. Operating Conditions...........................................................................................................................................................................7  
Table 4. ZMID5201/-02/-03 Electrical Characteristics.......................................................................................................................................7  
Table 5. Coil Specifications ...............................................................................................................................................................................8  
Table 6. ZMID5201 Analog Output Buffer Characteristics...............................................................................................................................13  
Table 7. ZMID5202 PWM Output Buffer Characteristics.................................................................................................................................15  
Table 8. ZMID5203 SENT Output Buffer Characteristics ................................................................................................................................19  
Table 9. SENT Nibble Output for Value = 0DEC................................................................................................................................................19  
Table 10. SENT Tick Length .............................................................................................................................................................................20  
Table 11. Programming Options Overview........................................................................................................................................................22  
Table 12. Maximum Output Data Rate..............................................................................................................................................................23  
Table 13. Resolution at Different Rotation Speeds ...........................................................................................................................................24  
Table 14. Linearity Correction Points ................................................................................................................................................................24  
Table 15. Examples of Resolution Differences Depending on Product.............................................................................................................26  
© 2017 Integrated Device Technology, Inc.  
4
April 28, 2017  
ZMID5201/-02/-03 Datasheet  
1. Pin Assignments  
The ZMID5201/-02/-03 ICs are available in a 14-TSSOP RoHS package.  
Figure 1. Pin Assignments for 14-TSSOP Package Top View  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
TEST_D  
TEST_ENA  
VDDD  
R1P  
R1N  
R2P  
R2N  
VDDT  
EP  
SOUT  
VDDA  
VSSE  
8
VDDE  
EN  
2. Pin Descriptions  
Table 1.  
Pin Descriptions  
Number  
Name  
TEST_D  
TEST_ENA  
VDDD  
Type  
Description  
Factory test pin; must be left unconnected.  
Factory test pin. Connect to the VSSE pin.  
1
2
3
Input/output  
Input/output  
Supply  
Internal regulated digital supply voltage. Connect capacitor CVD = 100nF from the VDDD  
pin to the VSSE pin, no other load.  
Analog output:  
ZMID5201 only  
Analog output (also referred to as AOUT for the ZMID5201). Refer to section 9,  
Figure 5, and Figure 6 for external connections.  
PWM digital output: PWM digital output (also referred to as PWM OUT for the ZMID5202). Refer to  
section 10 and Figure 11 for external connections.  
ZMID5202 only  
4
5
SOUT  
VDDA  
SENT digital output: SENT output (also referred to as SENT OUT for the ZMID5203). Refer to section 11,  
Figure 12, Figure 13, and Figure 14 for external connections.  
ZMID5203 only  
Digital input/output: Digital One-Wire Interface (OWI) used during programming.  
programming only  
Supply  
Internal regulated analog supply voltage. Connect CVA = 100nF from the VDDA pin to  
the VSSE pin; no other load.  
6
7
VSSE  
VDDE  
Ground  
Supply  
Common ground connection.  
External supply voltage. Connect the VDDE pin to CVE = 100nF capacitor in parallel with  
a 1pF to 10pF capacitor connected to the VSSE pin.  
8
9
EN  
EP  
Connect the transmitter coil between EP and EN. Resonant frequency is adjusted with a  
parallel capacitor CT between EP and EN (see application diagram on page 1) or capa-  
citors CT1 from EN to VSSE and CT2 from EP to VSSE (see block diagram on page 2).  
Analog output  
© 2017 Integrated Device Technology, Inc.  
5
April 28, 2017  
 
ZMID5201/-02/-03 Datasheet  
Number  
10  
Name  
VDDT  
R2N  
Type  
Description  
Supply  
Internal supply voltage for transmitter amplifier. Connect to CVT = 100nF to VSSE.  
11  
Analog input  
Analog input  
Connect receiver coil 2 between the R2N and R2P pins.  
12  
R2P  
13  
R1N  
Connect receiver coil 1 between the R1N and R1P pins.  
14  
R1P  
3. Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. Stresses greater than those listed below can cause permanent damage to the device.  
Functional operation of the ZMID5201/-02/-03 at absolute maximum ratings is not implied. Exposure to absolute maximum rating conditions  
could affect device reliability.  
Table 2.  
Absolute Maximum Ratings  
Symbol  
Parameter  
Conditions  
Minimum Maximum Units  
VVDDE  
External supply voltage  
-18  
-14  
18  
14  
V
V
For negative voltage, external  
current must be limited to 10mA  
ZMID5201 analog output voltage on the  
AOUT pin[a]  
VOUT_ANA  
Without external current limitation  
-0.3  
-14  
14  
18  
V
V
For negative voltage, external  
current must be limited to 10mA  
ZMID5202 PWM output voltage on the  
PWM OUT pin[a]  
VOUT_PWM  
Without external current limitation  
-0.3  
-14  
18  
18  
V
V
For negative voltage, external  
current must be limited to 10mA  
ZMID5203 SENT output voltage on the  
SENT OUT pin[a]  
VOUT_SENT  
Without external current limitation  
-0.3  
-0.3  
18  
V
V
VOSC_COIL  
VR1P  
Oscillator coil pins: EP, EN  
Receiver coil pin: R1P  
5.5  
VR1N  
Receiver coil pin: R1N  
-0.3  
3.6  
V
VR2P  
Receiver coil pin: R2P  
VR2N  
Receiver coil pin: R2N  
VTEST_ENA  
VTEST_D  
VVDDA  
VVDDD  
VVDDT  
Test pin: TEST_ENA  
-0.3  
-0.3  
5.5  
3.6  
V
V
Test pin: TEST_D  
Regulated supply voltage pin: VDDA  
Regulated supply voltage pin: VDDD  
Regulated supply voltage pin: VDDT  
-0.3  
3.6  
V
[a] The SOUT pin is referred to as the AOUT pin for the ZMID5201; PWM OUT for the ZMID5202; and SENT OUT for the ZMID5203.  
© 2017 Integrated Device Technology, Inc.  
6
April 28, 2017  
 
ZMID5201/-02/-03 Datasheet  
4. Operating Conditions  
Conditions: VDDE = 5V ±10%, TA = -40°C to +150°C.  
Table 3.  
Operating Conditions  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
TA  
Ambient temperature  
-40  
150  
ºC  
TJ  
Junction temperature  
-40  
-50  
175  
150  
140  
5.5  
ºC  
ºC  
TSTOR  
RTHJA  
VVDDE  
Storage temperature  
Thermal resistance junction to ambient  
Supply voltage  
ºC/W  
V
4.5  
±4  
±3  
±2  
5
Pins VSS, VCC  
Pin SOUT[ a]  
All other pins  
kV  
Electrostatic discharge,  
HBM 100pF/1.5kΩ  
ESD  
kV  
kV  
[a] The SOUT pin is referred to as the AOUT pin for the ZMID5201; PWM OUT for the ZMID5202; and SENT OUT for the ZMID5203.  
5. Electrical Characteristics  
The following electrical specifications are valid for the operating conditions as specified in Table 3: (TA = -40°C to 150°C).  
Table 4.  
ZMID5201/-02/-03 Electrical Characteristics  
Symbol  
VVDDE_TH_H  
Parameter  
Conditions  
Minimum Typical Maximum Units  
VDDE switch ON threshold  
The device is activated when VDDE  
increases above this threshold  
4.4  
V
VVDDE_TH_L  
VDDE switch OFF threshold The device is deactivated when  
VDDE decreases below this threshold  
4
V
VVDDE_HYST  
VVDDE_OVH  
VDDE hysteresis  
0.1  
V
V
Over-voltage detection high  
The device is deactivated after VDDE  
increases above this voltage  
7
VVDDE_OVL  
VVDDT  
Over-voltage detection low  
The device is activated after VDDE  
decreases below this voltage  
5.6  
2.4  
5
V
V
Regulated coil driver supply  
output voltage  
Internally regulated, programmable  
3.6  
Without coils. no load  
9
mA  
mA  
ICC  
Current consumption  
With coils, no load; depending on  
programmable Tx coil current  
12  
20  
© 2017 Integrated Device Technology, Inc.  
7
April 28, 2017  
 
 
ZMID5201/-02/-03 Datasheet  
Symbol  
Angle Calculation  
tSAMPLE  
Parameter  
Conditions  
Minimum Typical Maximum Units  
Data acquisition time  
Output update rate  
CORDIC resolution  
45  
50  
16  
55  
10  
µs  
kHz  
bits  
tREFRESH  
Analog output  
RESCORDIC  
Performance  
INL  
Internal; over 360° electrical  
Accuracy[a]  
See note.[a]  
0.2  
% FS  
[a] The achievable accuracy depends on proper coil and target design. Nonlinearity errors in the calculated position might be further improved by  
9-point linearization.  
Table 5.  
Coil Specifications  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
L
Excitation coil inductance  
For Tx coil as shown in block  
diagram in Figure 3  
1.5  
30  
µH  
Q
Quality factor  
For Tx coil as shown in block  
diagram in Figure 3  
10  
Q = ωL/R, f = 2.2MHz  
fOSC  
VTX_P  
VRX  
Excitation frequency  
LC oscillator  
2.2  
50  
3.5  
5.6  
7200  
360  
MHz  
mVpp  
mVpp  
Excitation coil amplitude  
Receive coil amplitude  
Peak voltage, pins EP vs. EN  
Input signal full range  
© 2017 Integrated Device Technology, Inc.  
8
April 28, 2017  
 
ZMID5201/-02/-03 Datasheet  
6. Circuit Description  
6.1 Overview  
The ZMID5201/-02/-03 ICs are inductive position sensors for use in automotive, industrial, medical and consumer applications. They operate  
on the principle of induction in a wire loop and eddy currents. The sensing element is a set of coils that are directly connected to the IC. The  
coils consist of one transmit coil and two receive coils. The transmit coil and a capacitor form an LC oscillator that is directly driven by the IC.  
It generates a magnetic field within the transmit coil area that is picked up by the receiver coils.  
The voltage generated by the receiver coils depends on the position of the target in the sense that areas shielded by the target generate a  
weaker secondary voltage compared to areas that are not shaded by the target.  
The two receive coils are arranged so that the secondary voltages are relatively phase shifted by electrical 90°, thereby generating a  
response curve (receive coil output voltages versus position) that resembles a sine and cosine waveform over the range of target travel. By  
having a sine and cosine shaped response, a ratiometric measurement is possible, which greatly improves the robustness of the system  
because the output signal will remain stable, even if the gap between coils and target is varied.  
Figure 2 shows an example of a linear motion sensor with one transmit coil (Tx loop) and two receive coils (Sin loop and Cos loop). The  
arrows in the receive coils indicate the direction of the induced current relative to each other. The direction of the current either clockwise (cw)  
or counterclockwise (ccw) determines the polarity of the voltage generated in each loop (RxCos, RxSin).  
Figure 2. Coil Design for a Linear Motion Sensor  
Cos loop 1  
(cw)  
Cos loop 2  
(ccw)  
Tx loop  
RxCos  
Tx  
RxSin  
Metallic Target  
Sin loop 2  
(ccw)  
Sin loop 3  
(cw)  
Sin loop 1  
(cw)  
© 2017 Integrated Device Technology, Inc.  
9
April 28, 2017  
 
ZMID5201/-02/-03 Datasheet  
6.2 Block Diagram  
Figure 3 shows the block diagram of the ZMID5201/-02/-03.  
Figure 3. Block Diagram  
VDDA VDDD VDDT  
ZMID520x Family  
VDDE  
Power  
Management  
One-Wire  
Interface  
(OWI)  
VSSE  
ZMID5201  
Analog Interface  
R1P  
Rx  
Cosine  
ZMID5202  
PWM Interface  
R1N  
Digital  
Signal  
Processing  
Protection  
SOUT  
ADC  
Analog Front-End  
Oscillator  
ZMID5203  
SENT Interface  
R2P  
R2N  
Rx  
Sine  
EP  
EN  
Tx  
TEST_ENA  
TEST_D  
EEPROM  
CT  
Test  
Control  
CT1  
(opt.)  
CT2  
(opt.)  
Diagnosis  
Note: If CT1 and CT2 are  
used, CT is not used.  
The main building blocks include the following:  
.
.
.
.
.
Power management: power-on-reset (POR) circuit, low drop-out (LDO) regulators for internal supplies  
Oscillator: generation of the transmit coil signal  
Analog front-end: demodulator and gain control for the receive signals  
Analog-to-digital converter (ADC): conversion into digital domain  
Digital signal processing: offset correction, conversion of sine and cosine signals into angle and magnitude, angle range adjustment,  
linearization, etc.  
.
.
.
EEPROM: nonvolatile storage of factory and user-programmable settings  
One-wire interface (OWI): programming of the chip through the output pin  
Interface options:  
Analog output for ZMID5201  
PWM output for ZMID5202  
SENT output for ZMID5203  
.
.
Protection: overvoltage, reverse polarity , short circuit protection  
Test control: factory testing; connect TEST_D and TEST_ENA pins as indicated in Table 1.  
© 2017 Integrated Device Technology, Inc.  
10  
April 28, 2017  
 
ZMID5201/-02/-03 Datasheet  
7. Redundant Connection  
In applications requiring extended safety, a redundant set-up is required. The ZMID5201/-02/-03 ICs also support this requirement by either  
having two identical but physically separated sensors or by interleaving the 2 2 receiving coils and using one shared transmitter coil.  
In Figure 4, two sensors share one common transmitter coil (Tx). Both sensors must share the same ground connection (GND) but could  
have separate positive supply connections (VDD1, VDD2). This setup is particularly useful for designs having limited coil space.  
In normal operation, both chips drive the transmitter coil (Tx) and calculate the target’s position through the receiving coil signals. If one chip  
fails to drive the transmitter coil, for example due to loss of supply, the host system can detect the failed part (loss of signal) while the second  
chip continues to drive the coil and maintains correct operation.  
Figure 4. Application Diagram, Dual Redundant Sensor with Shared Transmit Coil  
Sensor 1  
Sensor 2  
VDD2  
+5V  
VDD1  
7
4
10  
9
10  
9
7
4
VDDE  
SOUT  
VDDT  
EP  
VDDT  
EP  
VDDE  
SOUT  
CVT  
CVT  
+5V  
OUT1  
GND  
CVE  
CVE  
CT1  
CT2  
Tx  
OUT2  
8
8
EN  
EN  
6
5
3
6
5
3
VSSE  
VDDA  
VDDD  
VSSE  
VDDA  
VDDD  
14  
13  
12  
11  
14  
13  
12  
11  
R1P  
R1N  
R2P  
R1P  
R1N  
R2P  
Rx1  
Rx3  
(cos)  
(cos)  
CVA  
CVD  
CVA  
CVD  
2
1
2
1
Rx2  
(sin)  
Rx4  
(sin)  
TEST_ENA  
TEST_D  
TEST_ENA  
TEST_D  
R2N  
R2N  
.
© 2017 Integrated Device Technology, Inc.  
11  
April 28, 2017  
 
ZMID5201/-02/-03 Datasheet  
8. Protection and Diagnostics  
8.1 I/O Protection  
In order to meet the automotive requirements for overvoltage and reverse-polarity protection on both the output and power supply pins, the  
ZMID5201/-02/-03 ICs include several protection and diagnosis features:  
1. Detection of broken power line, interrupted output signal, and broken ground connection on the receiving side  
2. Protection against short circuit of output pin to VSSE, output pin to VDDE, and supply VDDE to VSSE  
3. Overvoltage protection on supply pin VDDE  
4. Overvoltage protection on output pin  
5. Reverse-polarity protection on supply pin VDDE to VSSE  
6. Reverse-polarity protection on output pin to VSSE  
7. Reverse-polarity protection on output pin to VDDE  
8.2 Diagnostics  
The ZMID5201/-02/-03 monitors a number of features to accommodate ISO26262 diagnostic requirements. The monitored diagnostic  
features include the following:  
1. Supply voltage too low or too high  
2. Rx sine coil: open, short, short to ground, or short to Rx cosine coil  
3. Rx sine coil: amplitude error or offset error  
4. Rx cosine coil: open, short, short to ground, or short to Rx sine coil  
5. Rx cosine coil: amplitude error or offset error  
6. Tx coil: amplitude too low or open  
7. Tx coil: frequency out of range  
8. LC oscillator failure  
9. CORDIC magnitude too high or too low  
10. Missing target  
11. Internal EEPROM failure  
12. ADC signal processing overflow  
8.3 Automotive Safety Integrity Level (ASIL)  
The ZMID5201/-02/-03 products are safety-related, intermediate hardware parts supporting up to ASIL-B in regard to random failures, and, as  
such, they have been qualified according to ISO 26262:2012 Part 8, Clause 13 (Table 6). Integration of ZMID5201/-02/-03 products into  
safety-related applications requires a safety analysis performed by customers.  
© 2017 Integrated Device Technology, Inc.  
12  
April 28, 2017  
ZMID5201/-02/-03 Datasheet  
9. ZMID5201 Inductive Sensor with Analog Output  
Typical interface circuits for the ZMID5201 are shown in Figure 5 and Figure 6.  
Note: The pull-up or pull-down resistors are not mandatory for normal operation. However they are recommended for proper detection of  
broken ground or broken supply wires at the receiving side.  
Note: RF, CF = optional low pass filter. Values depend on user’s application.  
Figure 5. External Components for ZMID5201 Analog Interface with Pull-Down Resistor  
Wiring  
ZMID5201: Sensor with Analog Interface  
Analog Signal Receiver  
5V supply  
+5V  
+5V  
IN  
7
VDDE  
CVE  
RF  
OUT  
4
AOUT  
ZMID5201  
MCU  
CF  
RPD,A  
CANA  
GND  
GND  
6
VSSE  
Figure 6. External Components for ZMID5201 Analog Interface with Pull-up Resistor  
Wiring  
ZMID5201: Sensor with Analog Interface  
Analog Signal Receiver  
5V supply  
+5V  
+5V  
IN  
7
VDDE  
CVE  
RPU,A  
RF  
OUT  
4
AOUT  
ZMID5201  
MCU  
CANA  
CF  
GND  
GND  
6
VSSE  
Table 6.  
ZMID5201 Analog Output Buffer Characteristics  
Note: Refer to the VDDE pin description in Table 1 for the value of CVE.  
Symbol  
Out_err  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
mV  
Analog output error  
Offset and nonlinearity error  
-6  
6
Step_large  
Output response, large step  
Step=4.5V, CANA=10nF,  
160  
μs  
RPD,A=5kΩ, 10% to 90%  
CANA  
RESANA  
RPU,A  
Output capacitor for analog  
Analog output resolution  
Output pull-up resistor  
0.47  
10  
3
27  
nF  
bits  
kΩ  
kΩ  
4.7  
4.7  
10  
10  
RPD,A  
Output pull down resistor  
3
© 2017 Integrated Device Technology, Inc.  
13  
April 28, 2017  
 
 
ZMID5201/-02/-03 Datasheet  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
%VDDE  
%VDDE  
%VDDE  
%VDDE  
%VDDE  
mA  
Normal operating range  
Limits are programmable  
5
95  
Diag_high_ana Diagnostic high for analog  
96  
Diag_low_ana  
VCL_L  
Diagnostic low for analog  
Clamping level , low [a]  
Clamping level, high [a]  
Output node short current  
4
Programmable in 1% steps  
Programmable in 1% steps  
Short to VDDE or VSSE  
5
68  
95  
50  
VCL_H  
32  
Current_limit  
[a] Low clamping level must be programmed lower than the VCL_H high clamping level.  
For the ZMID5201, the 100% position range is mapped to a voltage range from 250mV to 4750mV. The stepping rate of the clamping  
parameters is 1% so that the analog voltage stepping rate is 47.5 mV/%. The diagnostic low level is ≤ 200mV and the diagnostic high level is  
≥ 4800mV.  
Note that the minimum and maximum output positions can be mapped to the mechanical range of the application by programming the zero  
angle offset, slope programming (linear vs. sawtooth), and clamping level register settings (refer to section 12 and Figure 7). For example, for  
a pedal sensor with ratiometric analog output (ZMID5201), having 20° mechanical degrees of movement range and clamping levels of 5%  
and 95%, the output value 0.25V (5% of VDDE) represents 0° mechanical degrees and the output value 4.75V (95% of VDDE) represents 20°  
mechanical degrees. Note that the slope can be programmed to either rising (as shown in Figure 7) or falling with increasing electrical angle.  
Figure 7. Example of ZMID5201 Analog Output Transfer Function and Programming Options  
Note: The following figure illustrates an example of 5% and 95% clamping levels and a rising slope setting.  
Output Voltage (%VDDE  
)
100%  
95%  
1023DEC  
Sawtooth  
Linear Sensor  
Programming Option  
Programming Option  
68%  
32%  
Slope  
5%  
0
Position  
0°  
Zero Angle  
360°  
Movement Range (Programmable 90° to 360° electrical)  
© 2017 Integrated Device Technology, Inc.  
14  
April 28, 2017  
 
 
ZMID5201/-02/-03 Datasheet  
10. ZMID5202 Inductive Sensor with PWM Output  
The typical interface circuit for the ZMID5202 is shown in Figure 8.  
Note: RF, CF = optional low pass filter. Values depend on user’s application.  
Figure 8. External Components for ZMID5202 PWM Interface with Pull-Up Resistor  
Wiring  
ZMID5202: Sensor with PWM Interface  
Digital Signal Receiver  
VPullup  
+5V  
+5V  
IN  
7
VDDE  
CVE  
RPU,PWM  
RF  
OUT  
4
6
PWM  
OUT  
ZMID5202  
MCU  
CPWM  
CF  
GND  
GND  
VSSE  
Table 7.  
ZMID5202 PWM Output Buffer Characteristics  
Note: Refer to VDDE pin in Table 1 for the value of CVE.  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
fPWM  
PWM output frequency  
User programmable  
Typical - 7%  
0.125  
0.25  
0.50  
0.75  
1.00  
1.25  
1.50  
2.00  
Typical + 7%  
kHz  
tPWM_FALL  
PWM fall time  
CPWM =4.7nF, RPU,PWM=1kΩ,  
VPullup=5V, 2 correction bits  
2.45  
10  
4.55  
μs  
RESPWM  
VPullup  
PWM resolution  
bits  
V
PWM output voltage  
(pull-up)  
16  
10  
VOL_PWM  
VOH_PWM  
RPU,PWM  
PWM output LOW level  
PWM output HIGH level  
Pullup resistor for PWM  
VPullup=5V to VPullup=16V  
VPullup=5V to VPullup=16V  
VPullup=5V  
%VPullup  
%VPullup  
kΩ  
90  
1
10  
10  
20  
95  
VPullup=16V  
3
CPWM  
Output capacitor for PWM  
Normal operating range  
1
4.7  
nF  
Limits are programmable  
5
% duty  
cycle  
© 2017 Integrated Device Technology, Inc.  
15  
April 28, 2017  
 
ZMID5201/-02/-03 Datasheet  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
Diag_high_PWM Diagnostic high for PWM  
96  
97.5  
% duty  
cycle  
Diag_low_PWM Diagnostic low for PWM  
2.5  
4
% duty  
cycle  
DCL_L  
DCL_H  
Clamping level , low [a]  
Clamping level, high [a]  
Programmable in 1% steps  
Programmable in 1% steps  
5
68  
95  
% duty  
cycle  
32  
% duty  
cycle  
[a] Low clamping level must be programmed lower than the DCL_H high clamping level.  
The 100% position range is mapped to a duty cycle of 5% to 95%. A clamping step of 1% is mapped to a duty cycle change of 0.9%. The  
diagnostic low level is mapped to a 2.5% (typical) duty cycle; the diagnostic high level is mapped to a 97.5% (typical) duty cycle.  
Figure 9. PWM Signal Range  
Normal Operating Range  
PWM Duty Cycle  
[%]  
1
4 5  
32  
Clamping Level, Low  
68  
95 96 99  
Clamping Level, High  
The graph in Figure 10 shows examples of different PWM signals with 5%, 50%, and 95% duty cycle, representing the minimum, 50%, and  
maximum output values.  
Note that the minimum and maximum output positions can be mapped to the mechanical range of the application by programming the zero  
angle offset, slope programming (linear or sawtooth), and clamping level (minimum/maximum duty cycle) register settings (see section 12 and  
Figure 11). For example, for a pedal sensor with PWM output (ZMID5202), having 20° mechanical degrees of movement range and clamping  
levels of 5% and 95%, the output value 0 represents 0° mechanical degrees and the output value 1023DEC represents 20° mechanical  
degrees. Note that the slope can be programmed to either rising (as shown in Figure 11) or falling with increasing electrical angle.  
© 2017 Integrated Device Technology, Inc.  
16  
April 28, 2017  
 
ZMID5201/-02/-03 Datasheet  
Figure 10. Example of PWM Output Signal  
Vout  
5% duty cycle = 0000DEC  
50% duty cycle = 512DEC  
95% duty cycle =1023DEC  
VOH_PWM  
VOL_PWM  
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
time  
tPWM  
tPWM  
tPWM  
Figure 11. Example of ZMID5202 PWM Output Transfer Function and Programming Options  
Note: The following figure illustrates an example of 5% and 95% clamping levels and a rising slope setting.  
100%  
1023DEC  
95%  
Sawtooth  
Linear Sensor  
Programming Option  
Programming Option  
68%  
32%  
Slope  
5%  
0
Position  
0°  
360°  
Mechanical Movement Range  
Zero Angle  
© 2017 Integrated Device Technology, Inc.  
17  
April 28, 2017  
ZMID5201/-02/-03 Datasheet  
11. ZMID5203 Inductive Sensor with SENT Output  
Three options for the typical interface circuit for the ZMID5203 are shown in Figure 12, Figure 13, and Figure 14.  
Note: RF, CF and RP = optional low pass filter for the SENT interface. Values depend on user’s application.  
Figure 12. External Components for ZMID5203 SENT Interface, Option A  
Wiring  
ZMID5203: Sensor with SENT Interface  
Digital Signal Receiver  
5V supply  
+5V  
+5V  
IN  
7
VDDE  
RPU,SENT  
51kΩ  
CVE  
R01  
RS,SENT  
560Ω  
ZMID5203  
OUT  
4
SENT OUT  
MCU  
MCU  
MCU  
RF  
CSENT  
2.2nF  
C11  
C12  
RP  
CF  
GND  
GND  
6
VSSE  
Figure 13. External Components for ZMID5203 SENT Interface, Option B  
Wiring  
ZMID5203: Sensor with SENT Interface  
Digital Signal Receiver  
5V supply  
+5V  
+5V  
IN  
7
VDDE  
CVE  
R01  
RPU,SENT 10kΩ to 51kΩ  
ZMID5203  
RF  
OUT  
4
SENT OUT  
RS,SENT 560Ω  
CSENT  
C11  
C12  
CF  
RP  
GND  
GND  
2.2nF  
6
VSSE  
Figure 14. External Components for ZMID5203 SENT Interface, Option C  
Wiring  
ZMID5203: Sensor with SENT Interface  
Digital Signal Receiver  
5V supply  
+5V  
+5V  
IN  
7
VDDE  
CVE  
R01  
RPU,SENT 10kΩ  
RF  
ZMID5203  
OUT  
4
SENT OUT  
C11  
C12  
CSENT  
100pF  
CF  
RP  
GND  
GND  
6
VSSE  
© 2017 Integrated Device Technology, Inc.  
18  
April 28, 2017  
 
 
 
ZMID5201/-02/-03 Datasheet  
Table 8.  
ZMID5203 SENT Output Buffer Characteristics  
Note: Refer to VDDE pin in Table 1 for the value of CVE.  
Symbol  
Parameter  
Conditions  
Minimum  
Typical  
Maximum  
Units  
bits  
μs  
12  
6
RESSENT  
SENT output resolution  
tSTABLE_HIGH SENT HIGH stabilization time HIGH level at 3.8V  
0.5  
V
VOL  
VOH  
R01  
Output LOW level  
Output HIGH level  
4.1  
3.0  
V
120  
2.2  
Ω
SENT output pi (π) filter  
resistor  
For application circuits options  
A,B, and C  
nF  
C11  
SENT output pi (π) filter first  
capacitor  
For application circuits options A,  
B, and C  
3.36  
3.9  
3.67  
µs  
nF  
nF  
tTICK  
Clock tick time  
For application circuit option C  
SENT output pi (π) filter,  
second capacitor  
C12  
2.2  
For application circuits options A  
and B  
11.1 SENT Protocol  
The SENT (Single Edge Nibble Transmission) protocol conforms to SAE J2716, Revision 2. In addition, SENT Pause and CRC can be  
programmed according to SAE J2716, Revision 3.  
For transmitting a nibble with the 0 value, 12 clock ticks are required: a fixed LOW period of 5 ticks followed by a HIGH period of 7 ticks. One  
tick equals tTICK = 3.0µs to 3.67µs (see Table 8 ).  
Table 9.  
SENT Nibble Output for Value = 0DEC  
Vout  
5
7
5
VOH  
VOL  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29  
t (ticks)  
For transmitting a nibble with the value 15DEC (1111BIN, FHEX), 27 clock ticks are required: a fixed LOW period of 5 ticks followed by a HIGH  
period of 22 ticks. The total time for one nibble can be calculated as with the following equation:  
(
)
tNIBBLE = tTICK12 + x  
Where x = the nibble decimal value = 0 to 15.  
© 2017 Integrated Device Technology, Inc.  
19  
April 28, 2017  
 
ZMID5201/-02/-03 Datasheet  
Table 10. SENT Tick Length  
Decimal  
0
0
1
1
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
A
11  
B
12  
C
13  
D
14  
E
15  
F
Hexadecimal  
Number of ticks 12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
Figure 15. SENT Nibble Output for Value = 15DEC  
Vout  
5
22  
5
VOH  
VOL  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29  
t (ticks)  
Figure 16. SENT Frame  
The SENT protocol frame consists of a fixed-length synch pulse (LOW period of 5 ticks followed by a HIGH period of 51 ticks), followed by a  
status nibble, 6 data nibbles, and a CRC nibble. An optional pause pulse can be programmed to adjust the SENT frame to a fixed length of  
270 ticks.  
Data1  
MSN  
4-bit (#1)  
Data1  
MidN  
4-bit (#2)  
Data1  
LSN  
4-bit (#3)  
Data2  
MSN, ctr  
4-bit (#4)  
Data2  
LSN, ctr  
4-bit (#5)  
Data2  
inv MSN  
4-bit (#6)  
Vout  
Sync  
Status  
4-bit (#0)  
CRC  
4-bit (#7)  
Pause  
(optional)  
VOH  
VOL  
5
51  
5
7 to 10  
5
7 to 22  
5
7 to 22  
5
7 to 22  
5
7 to 22  
5
7 to 22  
5
7 to 22  
5
7 to 22  
5
var  
ticks  
152 to 260  
270  
Note that the status nibble has a maximum length of only 5 + 10 = 15 ticks since bits 2 and 3 are always zero:  
Status nibble:  
0000BIN = Normal operation  
0011BIN = Diagnostic state  
The SENT output frame format can be programmed in one of two options:  
1. 12-bit position data + 8-bit rolling counter (ctr in Figure 16) + inverted copy of Data1 MSN (nibble #1 in Figure 16) + cyclic redundancy  
check (CRC). In this option, the SENT frame length is between 152 and 260 ticks with a variable frame length and 270 ticks with a fixed  
frame length.  
2. 12-bit position data + “000” data + CRC. In this option, if the pause pulse is disabled, the SENT frame has the shortest possible length:  
less than 220 ticks.  
© 2017 Integrated Device Technology, Inc.  
20  
April 28, 2017  
 
ZMID5201/-02/-03 Datasheet  
Note that the minimum and maximum output positions can be mapped to the mechanical range of the application by programming the zero  
angle offset and slope register settings (see section 12 and Figure 17). For example for a pedal sensor with SENT output (ZMID5203) with 20°  
mechanical degrees of movement range, the output value 0 represents 0° mechanical degrees and the output value 4095DEC represents 20°  
mechanical degrees. Note that the slope can be programmed to either rising (as shown in Figure 17) or falling with increasing electrical angle.  
Figure 17. Example of ZMID5203 Output Transfer Function and Programming Options  
Note: The following figure illustrates an example using the rising slope setting.  
4095DEC  
Sawtooth  
Linear Sensor  
Programming Option  
Programming Option  
Slope  
0
Position  
0°  
360°  
Mechanical Movement Range  
Zero Angle  
© 2017 Integrated Device Technology, Inc.  
21  
April 28, 2017  
 
ZMID5201/-02/-03 Datasheet  
12. Programming Options  
The ZMID520x family offers a variety of programming options. The IC is programmed through the output pin via a proprietary bi-directional  
one-wire interface (OWI). For programming, no additional wires or programming voltage is required, so the IC can be fully programmed in the  
field. Note: A full description of the IDT one-wire interface protocol and a detailed memory map are available on request. The main program-  
ming functions are described in Table 11.  
Table 11. Programming Options Overview  
Function  
Coil input  
Products  
Programming Option  
Notes  
All  
Reverse coil polarity (increasing or decreasing  
output relative to target movement)  
Invert coils to change the direction of  
the output values  
Input amplifier  
All  
Offset of sine and cosine channels  
Offset correction before CORDIC  
angle calculation  
Slope of transfer function  
Zero position  
All  
All  
Steepness of slope, rising/falling  
Zero angle  
Adjustment of angle range  
To match mechanical zero position  
with electrical zero position  
Linearization  
All  
9-point linearization  
To increase accuracy and compensate  
for imperfections in coil design  
Transmit coil  
Output mode  
All  
Coil driver current and amplitude  
Linear or sawtooth  
To optimize Tx oscillator  
All  
Single or multiple ramps  
ZMID5201  
ZMID5202  
ZMID5201  
ZMID5202  
ZMID5202  
ZMID5202  
ZMID5203  
ZMID5203  
Minimum, maximum output voltage  
Minimum, maximum PWM duty cycle  
Output voltage in diagnostic mode  
PWM duty cycle in diagnostic mode  
PWM output signal slew rate  
Define normal operating range  
Define normal operating range  
To indicate diagnostic alarm  
To indicate diagnostic alarm  
To optimize EMC performance  
Base frequency of PWM signal  
Implementation of CRC calculation  
Clamp low, clamp high  
Diagnostic levels  
PWM fall time  
PWM base frequency  
SENT CRC  
PWM frequency  
CRC according to SAE J2716, Rev.2 or Rev.3  
SENT Pause  
Optional pause setting according to SAE J2716,  
Revision 2 or Revision 3  
Revision 2: No pause pulse  
Revision 3: Fixed frame length + pause  
SENT Frame  
ZMID5203  
Type of data transmitted in SENT frame  
12-bit position data + 8-bit rolling  
counter + inverted copy of first data  
nibble + CRC (see Figure 16)  
12-bit position data + “000” data + CRC  
CORDIC magnitude upper and lower levels  
To trigger alarm if CORDIC magnitude  
is out of range  
Transmit coil frequency alarm  
Automatic gain control (AGC)  
Detects out of range Tx frequency  
Detects AGC out of range  
Diagnostics  
All  
EEPROM double error; shadow register parity error Internal memory errors  
R1 or R2 coil open or short  
Signal processing overflow  
Detect defective receiver coils  
Internal processing errors  
© 2017 Integrated Device Technology, Inc.  
22  
April 28, 2017  
 
ZMID5201/-02/-03 Datasheet  
13. Operation at High Rotation Speeds  
The ZMID520x ICs are primarily designed for low-speed or static operation due to their inherent interface types (analog ramp, PWM, SENT).  
There is no upper speed limit for using the ZMID520x in high speed applications; however, due to the maximum data rate at the various  
outputs, the resolution (on a rotary application: number of measurements per revolution) will be reduced with increasing speed.  
The maximum output data rates for the various versions are given in Table 12.  
Table 12. Maximum Output Data Rate  
Product  
ZMID5201  
ZMID5202  
ZMID5203  
Type of Output  
Analog ramp  
PWM  
Maximum Output Rate, Updates per Second  
Notes  
Linear analog ramp  
10000  
2000  
1235  
Programmable from 125Hz to 2000Hz  
270 ticks @ 3µS  
SENT  
With these maximum output data rates, the resolution versus rotation speed relationship is shown in the graph in Figure 18.  
Figure 18. Relationship between Resolution and Rotational Speed  
© 2017 Integrated Device Technology, Inc.  
23  
April 28, 2017  
 
 
ZMID5201/-02/-03 Datasheet  
For example, the number of readings per revolution at 10rpm and 1000 rpm are given in Table 13.  
Table 13. Resolution at Different Rotation Speeds  
Product  
ZMID5201  
ZMID5202  
ZMID5203  
Type of Output  
Analog ramp  
PWM  
Readings per Revolution at 10rpm  
1024 (10-bit)  
Readings per Revolution at 1000rpm  
600 (9.2-bit)  
120 (6.9-bit)  
74 (6.2-bit)  
1024 (10-bit)  
SENT  
4096 (12-bit)  
14. Interpolation, Linearity Error Correction  
A post-CORDIC linearity correction is available to correct nonlinearities and to further increase the overall accuracy of the system.  
The correction factors are applied by linear interpolation between 9 equidistant points over one phase (0 to 360°) with one of two options:  
.
.
Option 1: Starting at 0° with intervals of 45°  
Option 2: Same as option1 shifted by 22.5°, starting at 22.5° with intervals of 45°  
Table 14. Linearity Correction Points  
Point  
1
2
3
4
5
6
7
8
9
Option 1  
Option 2  
0°  
45°  
90°  
135°  
157.5°  
180°  
202.5°  
225°  
247.5°  
270°  
292.5°  
315°  
337.5°  
360°  
22.5°  
67.5°  
112.5°  
382.5° (22.5°)  
Note that in a rotating application, correction point 1 (0°) and point 9 (360°) coincide at the same angle. Therefore in such cases, it is useful to  
use the same correction values for both point 1 and point 9.  
In general, the correction points are applicable as follows:  
Correction point 1 is used for angles 0° ≤ α < 45° and optionally for 22.5° ≤ α < 67.5°.  
(…)  
Correction point 9 is used for angles 315° α < (360° = 0°) and optionally for 337.5° α < 22.5°.  
For each point, an offset can be applied. Angle values between two points are corrected by linear interpolation between the two linearization  
points.  
© 2017 Integrated Device Technology, Inc.  
24  
April 28, 2017  
 
ZMID5201/-02/-03 Datasheet  
15. Application Examples  
Typical coil and target arrangements are shown in Figure 19 to Figure 24: linear motion; arc motion; and on-axis (end of shaft) and off-axis  
(side shaft) rotary. Many other arrangements are also possible. In the figures, blue indicates the target and the dashed lines indicate range of  
travel. See Table 15 for resolution values.  
Note: The coils are shown in a simplified form. Detailed guidelines on coil design and programming options are available on request from IDT  
application support. Note that within each base configuration, the movement range can be further fine-trimmed by user programming.  
Examples:  
.
.
An angle sensor for 0 to 270° angle range would use a 360° base configuration (360°/1) and could then be trimmed to a maximum angle  
of 270° by user programming.  
An angle sensor for 0 to 110° angle range would use a 120° configuration (360°/3) and could then be trimmed to a maximum angle of  
110° by user programming.  
Figure 19. Example Setup: Linear Motion  
Figure 20. Example Setup: Arc Motion  
Figure 21. Example Setup: End-of-Shaft Rotation,  
Figure 22. Example Setup: Side-Shaft Rotation,  
On-Axis, 1 × 360  
Off-Axis, 1 × 360  
© 2017 Integrated Device Technology, Inc.  
25  
April 28, 2017  
 
 
 
 
ZMID5201/-02/-03 Datasheet  
Figure 23. Example Setup: Side-Shaft Rotation,  
Figure 24. Example Setup: Side-Shaft Rotation,  
Off-Axis, 2 × 180  
Off-Axis, 6 × 60  
The different coil and target arrangements provide different ranges for the degrees measurement, which affects the measurement resolution  
(degrees per step). This varies depending on the ZMID520x product. Table 15 gives examples of resolution for various ranges of motion for  
each product.  
Table 15. Examples of Resolution Differences Depending on Product  
Resolution of Measurement  
ZMID5201/ZMID5202  
(1024 steps per phase)  
ZMID5203  
(4096 steps per phase)  
Range of Travel for Example Application  
Linear Position Sensing Range of Travel =  
Coil Length Minus Target Length  
(See the example in Figure 19)  
(Range of Travel)/1024  
(Range of Travel)/4096  
Arc Position Sensing Range of Travel =  
Coil Arc Angle Minus Target Angle (Width of Target)  
(See the example in Figure 20)  
(Range of Travel)/1024  
(Range of Travel)/4096  
1 360(See the examples in Figure 21 and Figure 22)  
2 180(See the example in Figure 23)  
0.35/Step  
0.18/Step  
0.059/Step  
0.088/Step  
0.044/Step  
0.015/Step  
6 60(See the example in Figure 24)  
© 2017 Integrated Device Technology, Inc.  
26  
April 28, 2017  
 
 
 
ZMID5201/-02/-03 Datasheet  
16. Package Drawing 14-TSSOP  
Figure 25. 14-TSSOP Package Outline Drawing  
© 2017 Integrated Device Technology, Inc.  
27  
April 28, 2017  
ZMID5201/-02/-03 Datasheet  
17. Recommended Land Pattern  
Figure 26. 14-TSSOP Recommended PCB Land Pattern  
© 2017 Integrated Device Technology, Inc.  
28  
April 28, 2017  
ZMID5201/-02/-03 Datasheet  
18. Marking Diagram  
Line 1: First four characters of part code (ZMID)  
Line 2: Next four characters of the part code (5201, 5202, or 5203) followed by  
A = Design revision  
E = Operation temperature range, extended automotive  
Line 3: “XXXXXX” = Lot number  
Line 4: “YYWW” = Manufacturing date:  
YY = last two digits of manufacturing year  
WW = manufacturing week  
ZMID  
520xAE  
XXXXXX  
YYWW  
19. Ordering Information  
Orderable Part Number  
ZMID5201AE1R  
ZMID5201AE1T  
ZMID5202AE1R  
ZMID5202AE1T  
ZMID5203AE1R  
ZMID5203AE1T  
ZMID5201-EVK  
Description and Package  
MSL Rating  
Shipping Packaging  
Tape and Reel  
Tube  
Temperature  
-40° to +150°C  
-40° to +150°C  
-40° to +150°C  
-40° to +150°C  
-40° to +150°C  
-40° to +150°C  
ZMID5201; Analog Output; 14-TSSOP  
ZMID5201; Analog Output; 14-TSSOP  
ZMID5202; PWM Output; 14-TSSOP  
ZMID5202; PWM Output; 14-TSSOP  
ZMID5203; SENT Output; 14-TSSOP  
ZMID5203; SENT Output; 14-TSSOP  
1
1
1
1
1
1
Tape and Reel  
Tube  
Tape and Reel  
Tube  
ZMID5201 Evaluation Kit: ZMID Communication Board, ZMID5201 Demo Board with printed sensor coil,  
micro-USB cable  
ZMID5202-EVK  
ZMID5203-EVK  
ZMID5202 Evaluation Kit: ZMID Communication Board, ZMID5202 Demo Board with printed sensor coil,  
micro-USB cable  
ZMID5203 Evaluation Kit: ZMID Communication Board, ZMID5203 Demo Board with printed sensor coil,  
micro-USB cable  
© 2017 Integrated Device Technology, Inc.  
29  
April 28, 2017  
ZMID5201/-02/-03 Datasheet  
20. Revision History  
Revision Date  
Description of Change  
April 28, 2017  
.
.
Correction for sine and cosine labels in the following figures: application circuit on page 1, the block  
diagram on page 2, Figure 3, and Figure 4.  
Minor edits.  
March 28, 2017  
.
.
.
Correction for Table 15 for step values.  
Addition of new images for Figure 19 to Figure 24.  
Correction of name of ZMID520x Reference Board to ZMID520x Demo Board in kit contents given in part  
order table.  
March 23, 2017  
Initial release.  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
www.IDT.com/go/support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
www.IDT.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) and its affiliated companies (herein referred to as “IDT”) reserve the right to modify the products and/or specifications described herein at any time,  
without notice, at IDT's sole discretion. Performance specifications and operating parameters of the described products are d etermined in an independent state and are not guaranteed to perform the same  
way when installed in customer products. The information contained herein is provided without representation or warranty of a ny kind, whether express or implied, including, but not limited to, the suitability  
of IDT's products for any particular purpose, an implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not  
convey any license under intellectual property rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be  
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own r isk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the  
property of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of  
Integrated Device Technology, Inc. All rights reserved.  
© 2017 Integrated Device Technology, Inc.  
30  
April 28, 2017  

相关型号:

ZMID5202AE1T

Inductive Position Sensor IC
IDT

ZMID5203-EVK

Inductive Position Sensor IC
IDT

ZMID5203AE1R

TSSOP-14, Reel
IDT

ZMID5203AE1T

Inductive Position Sensor IC
IDT

ZML-105-01-GD

10 CONTACT(S), MALE, STRAIGHT BOARD STACKING CONNECTOR, SOLDER, ROHS COMPLIANT
SAMTEC

ZML-105-01-SD

10 CONTACT(S), MALE, STRAIGHT BOARD STACKING CONNECTOR, SOLDER, ROHS COMPLIANT
SAMTEC

ZML-105-01-SM-S

Board Stacking Connector, 5 Contact(s), 1 Row(s), Male, Straight, Solder Terminal,
SAMTEC

ZML-105-01-TM-S

Board Stacking Connector, 5 Contact(s), 1 Row(s), Male, Straight, Solder Terminal,
SAMTEC

ZML-105-02-H-D

Board Stacking Connector, 10 Contact(s), 2 Row(s), Male, Straight, Solder Terminal,
SAMTEC

ZML-105-02-SM-D

Board Stacking Connector, 10 Contact(s), 2 Row(s), Male, Straight, Solder Terminal,
SAMTEC

ZML-105-02-T-D

Board Stacking Connector, 10 Contact(s), 2 Row(s), Male, Straight, 0.05 inch Pitch, Solder Terminal, Black Insulator, Receptacle,
SAMTEC

ZML-105-02-TS-D

Board Stacking Connector, 10 Contact(s), 2 Row(s), Male, Straight, Solder Terminal,
SAMTEC