ZSPM9010ZA1R [IDT]

Ultra-Compact, High-Performance DrMOS Device;
ZSPM9010ZA1R
型号: ZSPM9010ZA1R
厂家: INTEGRATED DEVICE TECHNOLOGY    INTEGRATED DEVICE TECHNOLOGY
描述:

Ultra-Compact, High-Performance DrMOS Device

服务器主板节能技术
文件: 总29页 (文件大小:851K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ZSPM9010  
Ultra-Compact, High-Performance  
DrMOS Device  
Datasheet  
Brief Description  
Features  
The ZSPM9010 DrMOS is a fully optimized, ultra-  
compact, integrated MOSFET plus driver power  
stage solution for high-current, high-frequency, syn-  
chronous buck DC-DC applications. The ZSPM9010  
incorporates a driver IC, two power MOSFETs, and  
a bootstrap Schottky diode in a thermally enhanced,  
ultra-compact PQFN40 package (6mmx6mm).  
Based on the Intel® 4.0 DrMOS standard  
High-current handling: up to 50A  
High-performance copper-clip package  
Tri-state 3.3V PWM input driver  
Skip Mode (low-side gate turn-off) input (SMOD#)  
Warning flag for over-temperature conditions  
Driver output disable function (DISB# pin)  
With an integrated approach, the ZSPM9010’s com-  
plete switching power stage is optimized for driver  
and MOSFET dynamic performance, system induc-  
tance, and power MOSFET RDS(ON). It uses innova-  
tive high-performance MOSFET technology, which  
dramatically reduces switch ringing, eliminating the  
snubber circuit in most buck converter applications.  
Internal pull-up and pull-down for SMOD# and  
DISB# inputs, respectively  
Integrated Schottky diode technology in the  
low-side MOSFET  
Integrated bootstrap Schottky diode  
Adaptive gate drive timing for shoot-through  
protection  
An innovative driver IC with reduced dead times and  
propagation delays further enhances performance. A  
thermal warning function (THWN) warns of potential  
over-temperature situations. The ZSPM9010 also  
incorporates features such as Skip Mode (SMOD)  
for improved light-load efficiency with a tri-state 3.3V  
pulse-width modulation (PWM) input for compatibility  
with a wide range of PWM controllers.  
Under-voltage lockout (UVLO)  
Optimized for switching frequencies up to 1MHz  
Available Support  
ZSPM8010-KIT: Open-Loop Evaluation Board for  
ZSPM9010  
The ZSPM9010 DrMOS is compatible with IDT’s  
ZSPM1000, a leading-edge configurable digital  
power-management system controller for non-  
isolated point-of-load (POL) supplies.  
Physical Characteristics  
Operation temperature: -40°C to +125°C  
VIN: 3V to 15V (typical 12V)  
IOUT: 40A (average), 50A (maximum)  
Low-profile SMD package: 6mmx6mm PQFN40  
IDT green packaging and RoHS compliant  
Benefits  
Fully optimized system efficiency: >93% peak  
Clean switching waveforms with minimal ringing  
72% space-saving compared to conventional  
discrete solutions  
Typical Application  
Optimized for use with IDT’s ZSPM1000 true  
digital PWM controller  
© 2016 Integrated Device Technology, Inc.  
1
January 25, 2016  
ZSPM9010  
Ultra-Compact, High-Performance  
DrMOS Device  
Datasheet  
ZSPM9010 Block Diagram  
VDRV  
BOOT  
VIN  
DBoot  
UVLO  
10µA  
VCIN  
(Q1)  
HS Power  
MOSFET  
GH  
GH  
Logic  
Level Shift  
DISB#  
GH  
30k  
Typical Applications  
VCIN  
PHASE  
Telecom switches  
Servers and storage  
Desktop computers  
Workstations  
RUP_PWM  
Dead Time  
Control  
Input  
Tri-State  
Logic  
PWM  
VSWH  
RDN_PWM  
VDRV  
(Q2)  
LS Power  
MOSFET  
GL  
30k  
GL  
Logic  
High-performance  
gaming motherboards  
THWN#  
VCIN  
GL  
Temp  
Sense  
Base stations  
Network routers  
Industrial applications  
10µA  
CGND  
SMOD#  
PGND  
Ordering Information  
Product Sales Code Description  
Package  
Reel  
ZSPM9010ZA1R  
ZSPM8010-KIT  
ZSPM9010 Lead-Free PQFN40 — Temperature range: -40°C to +125°C  
Open-Loop Evaluation Board for ZSPM9010  
Kit  
Corporate Headquarters  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
Sales  
Tech Support  
www.IDT.com/go/support  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
www.IDT.com  
DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance  
specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The  
information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an  
implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property  
rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be  
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property  
of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated Device  
Technology, Inc. All rights reserved  
© 2016 Integrated Device Technology, Inc.  
2
January 25, 2016  
ZSPM9010 Datasheet  
Contents  
1
IC Characteristics ............................................................................................................................................. 5  
1.1. Absolute Maximum Ratings....................................................................................................................... 5  
1.2. Recommended Operating Conditions ....................................................................................................... 6  
1.3. Electrical Parameters ................................................................................................................................ 6  
1.4. Typical Performance Characteristics......................................................................................................... 9  
Functional Description.................................................................................................................................... 14  
2.1. VDRV and Disable (DISB#)..................................................................................................................... 15  
2.2. Thermal Warning Flag (THWN#)............................................................................................................. 16  
2.3. Tri-State PWM Input................................................................................................................................ 16  
2.4. Adaptive Gate Drive Circuit ..................................................................................................................... 18  
2.5. Skip Mode (SMOD#) ............................................................................................................................... 18  
2.6. PWM........................................................................................................................................................ 20  
Application Design.......................................................................................................................................... 21  
3.1. Supply Capacitor Selection ..................................................................................................................... 21  
3.2. Bootstrap Circuit ...................................................................................................................................... 21  
3.3. VCIN Filter ............................................................................................................................................... 21  
3.4. Power Loss and Efficiency Testing Procedures...................................................................................... 22  
Pin Configuration and Package...................................................................................................................... 24  
4.1. Available Packages ................................................................................................................................. 24  
4.2. Pin Description......................................................................................................................................... 25  
4.3. Package Dimensions............................................................................................................................... 26  
Circuit Board Layout Considerations.............................................................................................................. 27  
Ordering Information ...................................................................................................................................... 28  
Related Documents........................................................................................................................................ 29  
Document Revision History............................................................................................................................ 29  
2
3
4
5
6
7
8
List of Figures  
Figure 1.1 Safe Operating Area........................................................................................................................... 9  
Figure 1.2 Module Power Loss vs. Output Current.............................................................................................. 9  
Figure 1.3 Power Loss vs. Switching Frequency................................................................................................. 9  
Figure 1.4 Power Loss vs. Input Voltage ............................................................................................................. 9  
Figure 1.5 Power Loss vs. Driver Supply Voltage ............................................................................................. 10  
Figure 1.6 Power Loss vs. Output Voltage ........................................................................................................ 10  
Figure 1.7 Power Loss vs. Output Inductance................................................................................................... 10  
Figure 1.8 Driver Supply Current vs. Frequency ............................................................................................... 10  
Figure 1.9 Driver Supply Current vs. Driver Supply Voltage............................................................................. 11  
© 2016 Integrated Device Technology, Inc.  
3
January 25, 2016  
ZSPM9010 Datasheet  
Figure 1.10 Driver Supply Current vs. Output Current......................................................................................... 11  
Figure 1.11 PWM Thresholds vs. Driver Supply Voltage..................................................................................... 11  
Figure 1.12 PWM Thresholds vs. Temperature................................................................................................... 11  
Figure 1.13 SMOD# Thresholds vs. Driver Supply Voltage................................................................................ 12  
Figure 1.14 SMOD# Thresholds vs. Temperature............................................................................................... 12  
Figure 1.15 SMOD# Pull-Up Current vs. Temperature........................................................................................ 12  
Figure 1.16 Disable Thresholds vs. Driver Supply Voltage ................................................................................. 12  
Figure 1.17 Disable Thresholds vs. Temperature................................................................................................ 13  
Figure 1.18 Disable Pull-Down Current vs. Temperature.................................................................................... 13  
Figure 2.1 Typical Application Circuit with PWM Control................................................................................... 14  
Figure 2.2 ZSPM9010 Block Diagram ............................................................................................................... 15  
Figure 2.3 Thermal Warning Flag (THWN) Operation....................................................................................... 16  
Figure 2.4 PWM and Tri-State Timing Diagram................................................................................................. 17  
Figure 2.5 SMOD# Timing Diagram................................................................................................................... 19  
Figure 2.6 PWM Timing ..................................................................................................................................... 20  
Figure 3.1 Power Loss Measurement Block Diagram ....................................................................................... 21  
Figure 3.2 VCIN Filter Block Diagram.................................................................................................................. 22  
Figure 4.1 Pin-out PQFN40 Package ................................................................................................................ 24  
Figure 4.2 PQFN40 Physical Dimensions and Recommended Footprint..........................................................26  
Figure 5.1 PCB Layout Example........................................................................................................................ 28  
List of Tables  
Table 2.1  
Table 2.2  
UVLO and Disable Logic .................................................................................................................. 15  
SMOD# Logic.................................................................................................................................... 19  
© 2016 Integrated Device Technology, Inc.  
4
January 25, 2016  
ZSPM9010 Datasheet  
1
IC Characteristics  
1.1. Absolute Maximum Ratings  
The absolute maximum ratings are stress ratings only. The device might not function or be operable above the  
recommended operating conditions. Stresses exceeding the absolute maximum ratings might also damage the  
device. In addition, extended exposure to stresses above the recommended operating conditions might affect  
device reliability. IDT does not recommend designing to the “Absolute Maximum Ratings.”  
PARAMETER  
SYMBOL  
CONDITIONS  
MIN  
MAX  
UNITS  
Maximum Voltage to CGND –  
VCIN, VDRV, DISB#, PWM, SMOD#,  
GL, THWN# pins  
-0.3  
6.0  
V
Maximum Voltage to PGND or CGND –  
VIN pin  
-0.3  
-0.3  
-0.3  
-0.3  
-8.0  
25.0  
6.0  
V
V
V
V
Maximum Voltage to VSWH or PHASE –  
BOOT, GH pins  
Maximum Voltage to CGND –  
BOOT, PHASE, GH pins  
25.0  
25.0  
Maximum Voltage to CGND or PGND –  
VSWH pin  
DC only  
< 20ns  
Maximum Voltage to PGND – VSWH pin  
Maximum Voltage to VDRV – BOOT pin  
Maximum Sink Current – THWN# pin  
25.0  
22.0  
7.0  
V
V
-0.1  
mA  
ITHWN#  
fSW=300kHz, VIN=12V,  
VOUT=1.0V  
50  
45  
3.5  
A
Maximum Average Output Current 1)  
IOUT(AV)  
fSW=1MHz, VIN=12V,  
VOUT=1.0V  
A
°C/W  
°C  
Junction-to-PCB Thermal Resistance  
Ambient Temperature Range  
Maximum Junction Temperature  
Storage Temperature Range  
θJPCB  
TAMB  
TjMAX  
TSTOR  
-40  
+125  
+150  
+150  
°C  
-55  
°C  
Human Body Model, JESD22-  
A114  
2000  
V
Electrostatic Discharge Protection  
ESD  
Charged Device Model,  
JESD22-C101  
1000  
V
1)  
IOUT(AV) is rated using a DrMOS Evaluation Board, TAMB = 25°C, natural convection cooling. This rating is limited by the peak  
DrMOS temperature, TjMAX = 150°C, and varies depending on operating conditions, PCB layout, and PCB board to ambient  
thermal resistance.  
© 2016 Integrated Device Technology, Inc.  
5
January 25, 2016  
 
 
 
ZSPM9010 Datasheet  
1.2. Recommended Operating Conditions  
The “Recommended Operating Conditions” table defines the conditions for actual device operation. Recom-  
mended operating conditions are specified to ensure optimal performance to the datasheet specifications. IDT  
does not recommend exceeding them or designing to the “Absolute Maximum Ratings.”  
PARAMETER  
SYMBOL  
VCIN  
CONDITIONS  
MIN  
4.5  
4.5  
3.0  
TYP  
5.0  
MAX  
5.5  
UNITS  
Control Circuit Supply Voltage  
Gate Drive Circuit Supply Voltage  
Output Stage Supply Voltage  
V
V
V
VDRV  
5.0  
5.5  
VIN  
12.0  
15.0  
1.3. Electrical Parameters  
Typical values are VIN = 12V, VDRV = 12V, and TAMB = +25°C unless otherwise noted.  
PARAMETER  
Basic Operation  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Quiescent Current  
IQ  
IQ=IVCIN+ VDRV  
I
, PWM=LOW or  
2
mA  
HIGH or float  
Under-Voltage Lock-Out  
UVLO Threshold  
UVLO  
VCIN rising  
2.9  
3.1  
0.4  
3.3  
V
V
UVLO Hysteresis  
PWM Input  
UVLO_Hyst  
Pull-Up Impedance  
Pull-Down Impedance  
RUP_PWM  
(VCIN = VDRV = 5V ±10%)  
26  
kΩ  
kΩ  
V
RDN_PWM (VCIN = VDRV = 5V ±10%)  
12  
(VCIN = VDRV = 5V ±10%)  
VIH_PWM  
1.88  
2.00  
1.84  
1.94  
0.70  
0.75  
0.62  
0.66  
2.25  
2.25  
2.20  
2.20  
0.95  
0.95  
0.85  
0.85  
160  
1.60  
1.60  
2.61  
2.50  
2.56  
2.46  
1.19  
1.15  
1.13  
1.09  
200  
PWM High-Level Voltage  
(VCIN = VDRV = 5V ±5%)  
V
(VCIN = VDRV = 5V ±10%)  
VTRI_HI  
V
Tri-state Upper Threshold  
Tri-state Lower Threshold  
(VCIN = VDRV = 5V ±5%)  
V
VTRI_LO  
(VCIN = VDRV = 5V ±10%)  
(VCIN = VDRV = 5V ±5%)  
(VCIN = VDRV = 5V ±10%)  
(VCIN = VDRV = 5V ±5%)  
V
V
V
PWM Low-Level Voltage  
VIL_PWM  
V
Tri-state Shutoff Time  
Tri-state Open Voltage  
tD_HOLD-OFF  
ns  
V
VHiZ_PWM (VCIN = VDRV = 5V ±10%)  
(VCIN = VDRV = 5V ±5%)  
1.40  
1.45  
1.90  
1.80  
V
© 2016 Integrated Device Technology, Inc.  
6
January 25, 2016  
 
 
ZSPM9010 Datasheet  
PARAMETER  
DISB# Input  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
High-Level Input Voltage  
Low-Level Input Voltage  
Pull-Down Current  
VIH_DISB#  
VIL_DISB#  
IPLD  
2
V
V
0.8  
10  
25  
µA  
ns  
Propagation Delay DISB#, GL  
Transition from HIGH to LOW  
tPD_DISBL  
PWM=GND,  
LSE=1  
Propagation Delay DISB#, GL  
Transition from LOW to HIGH  
tPD_DISBH  
PWM=GND,  
LSE=1  
25  
ns  
SMOD# Input  
High-Level Input Voltage  
Low-Level Input Voltage  
Pull-Up Current  
VIH_SMOD#  
VIL_SMOD#  
IPLU  
2
V
V
0.8  
10  
10  
µA  
ns  
Propagation Delay SMOD#, GL  
Transition from HIGH to LOW  
tPD_SLGLL  
PWM=GND,  
DISB#=1  
Propagation Delay SMOD#, GL  
Transition from LOW to HIGH  
tPD_SHGLH PWM=GND,  
DISB#=1  
10  
ns  
Thermal Warning Flag  
Activation Temperature  
Reset Temperature  
TACT  
TRST  
150  
135  
30  
°C  
°C  
Ω
Pull-Down Resistance  
250ns Timeout Circuit  
RTHWN  
IPLD=5mA  
Timeout Delay Between GH  
Transition from HIGH to LOW  
and GL Transition from LOW to  
HIGH  
tD_TIMEOUT SW=0V  
250  
ns  
© 2016 Integrated Device Technology, Inc.  
7
January 25, 2016  
ZSPM9010 Datasheet  
PARAMETER  
High-Side Driver  
SYMBOL  
CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
Output Impedance, Sourcing  
Output Impedance, Sinking  
Rise Time for GH=10% to 90%  
Fall Time for GH=90% to 10%  
RSOURCE_GH Source Current=100mA  
RSINK_GH Sink Current=100mA  
tR_GH  
1
0.8  
6
Ω
Ω
ns  
ns  
ns  
tF_GH  
5
LS to HS Deadband Time: GL  
going LOW to GH going HIGH,  
1V GL to 10 % GH  
tD_DEADON  
10  
PWM LOW Propagation Delay:  
PWM going LOW to GH going  
LOW, VIL_PWM to 90% GH  
tPD_PLGHL  
16  
30  
30  
ns  
ns  
PWM HIGH Propagation Delay  
with SMOD# Held LOW:  
tPD_PHGHH SMOD# = LOW  
PWM going HIGH to GH going  
HIGH, VIH_PWM to 10% GH  
Propagation Delay Exiting  
Tri-state: PWM (from Tri-state)  
going HIGH to GH going HIGH,  
VIH_PWM to 10% GH  
tPD_TSGHH  
30  
ns  
Low-Side Driver  
Output Impedance, Sourcing  
Output Impedance, Sinking  
Rise Time for GL = 10% to 90%  
Fall Time for GL = 90% to 10%  
RSOURCE_GL Source Current=100mA  
1
Ω
Ω
RSINK_GL  
tR_GL  
Sink Current=100mA  
0.5  
20  
13  
12  
ns  
ns  
ns  
tF_GL  
HS to LS Deadband Time:  
SW going LOW to GL going  
HIGH, 2.2V SW to 10% GL  
tD_DEADOFF  
PWM-HIGH Propagation Delay:  
PWM going HIGH to GL going  
LOW, VIH_PWM to 90% GL  
tPD_PHGLL  
9
25  
ns  
ns  
Propagation Delay Exiting  
Tri-state: PWM (from Tri-state)  
going LOW to GL going HIGH,  
VIL_PWM to 10% GL  
tPD_TSGLH  
20  
Boot Diode  
Forward-Voltage Drop  
Breakdown Voltage  
VF  
VR  
IF=10mA  
IR=1mA  
0.35  
V
V
22  
© 2016 Integrated Device Technology, Inc.  
8
January 25, 2016  
ZSPM9010 Datasheet  
1.4. Typical Performance Characteristics  
Test conditions: VIN=12V, VOUT=1.0V, VCIN=5V, VDRV=5V, LOUT=320nH, TAMB=25°C, and natural convection cool-  
ing, unless otherwise specified.  
Figure 1.1  
Safe Operating Area  
Figure 1.2  
Module Power Loss vs. Output Current  
Figure 1.4  
Power Loss vs. Input Voltage  
Figure 1.3  
Power Loss vs. Switching Frequency  
© 2016 Integrated Device Technology, Inc.  
9
January 25, 2016  
 
 
 
 
 
ZSPM9010 Datasheet  
Figure 1.5  
Power Loss vs. Driver Supply Voltage  
Figure 1.6  
Power Loss vs. Output Voltage  
1.10  
IOUT = 30A, fSW = 300kHz  
1.05  
1.00  
0.95  
0.90  
4.50  
4.75  
5.00  
5.25  
5.50  
Driver Supply Voltage, VDRV and VCIN (V)  
Figure 1.7  
1.06  
Power Loss vs. Output Inductance  
Figure 1.8  
Driver Supply Current vs. Frequency  
50  
45  
40  
35  
30  
25  
20  
15  
10  
IOUT = 30A, fSW = 300kHz  
IOUT = 0A  
1.05  
1.04  
1.03  
1.02  
1.01  
1.00  
0.99  
0.98  
5
200  
300  
400  
500  
600  
700  
800  
900  
1000  
225  
275  
325  
375  
425  
Output Inductance, LOUT (nH)  
Module Switching Frequency, fSW (kHz)  
© 2016 Integrated Device Technology, Inc.  
10  
January 25, 2016  
 
 
 
 
 
ZSPM9010 Datasheet  
Figure 1.10 Driver Supply Current vs. Output  
Current  
Figure 1.9  
Driver Supply Current vs. Driver  
Supply Voltage  
.
17  
IOUT = 0A, fSW = 300kHz  
16  
15  
14  
13  
12  
4.50  
4.75  
5.00  
5.25  
5.50  
Driver Supply Voltage, VDRV and VCIN (V)  
Figure 1.11 PWM Thresholds vs. Driver Supply  
Voltage  
Figure 1.12 PWM Thresholds vs. Temperature  
3.0  
VCIN = 5V  
3.0  
TA = 25°C  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
VIH_PWM  
VTRI_HI  
2.5  
VIH_PWM  
2.0  
VTRI_HI  
VHiZ_PWM  
1.5  
1.0  
0.5  
0.0  
VTRI_LO  
VTRI_LO  
VIL_PWM  
VIL_PWM  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Driver IC Junction Temperature, TJ (oC)  
4.50  
4.75  
5.00  
5.25  
5.50  
Driver Supply Voltage, VCIN (V)  
© 2016 Integrated Device Technology, Inc.  
11  
January 25, 2016  
 
 
 
ZSPM9010 Datasheet  
Figure 1.13 SMOD# Thresholds vs. Driver  
Figure 1.14 SMOD# Thresholds vs. Temperature  
Supply Voltage  
2.0  
1.9  
1.8  
1.7  
1.6  
1.5  
1.4  
1.3  
2.2  
VCIN = 5V  
TA = 25°C  
2.0  
1.8  
1.6  
1.4  
1.2  
VIH_SMOD  
VIH_SMOD  
VIL_SMOD  
VIL_SMOD  
4.50  
4.75  
5.00  
5.25  
5.50  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Driver IC Junction Temperature (oC)  
Driver Supply Voltage, VCIN (V)  
Figure 1.16 Disable Thresholds vs. Driver  
Supply Voltage  
Figure 1.15 SMOD# Pull-Up Current vs.  
Temperature  
2.00  
VCIN = 5V  
-9.0  
VCIN = 5V  
1.90  
-9.5  
-10.0  
-10.5  
-11.0  
-11.5  
-12.0  
1.80  
VIH_DISB  
1.70  
1.60  
VIL_DISB  
1.50  
1.40  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
-50  
-25  
0
25  
50  
75  
100  
125  
150  
Driver IC Junction Temperature, TJ (°C)  
Driver IC Junction Temperature, TJ (oC)  
© 2016 Integrated Device Technology, Inc.  
12  
January 25, 2016  
 
 
 
 
ZSPM9010 Datasheet  
Figure 1.17 Disable Thresholds vs. Temperature  
Figure 1.18 Disable Pull-Down Current vs.  
Temperature  
2.1  
TA = 25oC  
2.0  
VIH_DISB  
1.9  
1.8  
1.7  
VIL_DISB  
1.6  
1.5  
1.4  
1.3  
4.50  
4.75  
5.00  
5.25  
5.50  
Driver Supply Voltage, VCIN (V)  
© 2016 Integrated Device Technology, Inc.  
13  
January 25, 2016  
 
 
ZSPM9010 Datasheet  
2
Functional Description  
The ZSPM9010 is a driver-plus-FET module optimized for the synchronous buck converter topology. A single  
PWM input signal is all that is required to properly drive the high-side and the low-side MOSFETs. It is capable of  
driving speeds up to 1MHz.  
Figure 2.1  
Typical Application Circuit with PWM Control  
Open Drain Output  
THWN#  
VIN  
VIN =3V to 15V  
CVIN  
TEMP  
SENSE  
V5V= 4.5V to 5.5V  
DBoot  
VDRV  
VCIN  
CGND  
BOOT  
CVDRV  
RBOOT  
(Q1)  
HDRV  
HS Power  
MOSFET  
CBOOT  
LOUT  
VOUT  
PHASE  
VSWH  
PWM  
SMOD#  
DISB#  
COUT  
ZSPM9010  
PWM  
CONTROL  
CONTROL  
VCIN  
Enabled  
OFF  
(Q2)  
LS Power  
MOSFET  
LDRV  
Disabled  
ON  
CGND  
PGND  
© 2016 Integrated Device Technology, Inc.  
14  
January 25, 2016  
 
 
ZSPM9010 Datasheet  
Figure 2.2  
ZSPM9010 Block Diagram  
VDRV  
BOOT  
VIN  
DBoot  
UVLO  
VCIN  
(Q1)  
HS Power  
MOSFET  
GH  
GH  
Logic  
Level Shift  
DISB#  
GH  
10µA  
30k  
VCIN  
PHASE  
RUP_PWM  
Dead Time  
Control  
Input  
Tri-State  
Logic  
PWM  
VSWH  
RDN_PWM  
VDRV  
(Q2)  
LS Power  
MOSFET  
GL  
30k  
GL  
Logic  
THWN#  
VCIN  
GL  
Temp  
Sense  
10µA  
CGND  
SMOD#  
PGND  
2.1. VDRV and Disable (DISB#)  
The VCIN pin is monitored by an under-voltage lockout (UVLO) circuit. When VCIN rises above ~3.1V, the driver is  
enabled. When VCIN falls below ~2.7V, the driver is disabled (GH, GL= 0; see Figure 2.2 and section 4.2). The  
driver can also be disabled by pulling the DISB# pin LOW (DISB# < VIL_DISB), which holds both GL and GH LOW  
regardless of the PWM input state. The driver can be enabled by raising the DISB# pin voltage HIGH (DISB# >  
V
IH_DISB).  
Table 2.1  
Note: DISB# internal pull-down current source is 10µA (typical).  
UVLO and Disable Logic  
UVLO  
DISB#  
Driver State  
0
1
1
1
X
0
Disabled (GH=0, GL=0)  
Disabled (GH=0, GL=0)  
Enabled (see Table 2.2 )  
Disabled (GH=0, GL=0)  
1
Open  
© 2016 Integrated Device Technology, Inc.  
15  
January 25, 2016  
 
 
 
ZSPM9010 Datasheet  
2.2. Thermal Warning Flag (THWN#)  
The ZSPM9010 provides a thermal warning flag (THWN#) to indicate over-temperature conditions. The thermal  
warning flag uses an open-drain output that pulls to CGND when the activation temperature (150°C) is reached.  
The THWN# output returns to the high-impedance state once the temperature falls to the reset temperature  
(135°C). For use, the THWN# output requires a pull-up resistor, which can be connected to VCIN. Note that  
THWN# does NOT disable the DrMOS module.  
Figure 2.3  
Thermal Warning Flag (THWN) Operation  
Reset  
Activation  
Temperature Temperature  
High  
Normal  
Operation  
Thermal  
Warning  
Low  
135°C  
150°C  
TJ_driverIC  
2.3. Tri-State PWM Input  
The ZSPM9010 incorporates a tri-state 3.3V PWM input gate drive design. The tri-state gate drive has both logic  
HIGH level and LOW level, along with a tri-state shutdown voltage window. When the PWM input signal enters and  
remains within the tri-state voltage window for a defined hold-off time (tD_HOLD-OFF), both GL and GH are pulled  
LOW. This feature enables the gate drive to shut down both high and low side MOSFETs using only one control  
signal. For example, this can be used for phase shedding in multi-phase voltage regulators.  
When exiting a valid tri-state condition, the ZSPM9010 follows the PWM input command. If the PWM input goes  
from tri-state to LOW, the low-side MOSFET is turned on. If the PWM input goes from tri-state to HIGH, the high-  
side MOSFET is turned on, as illustrated in Figure 2.4. The ZSPM9010’s design allows for short propagation  
delays when exiting the tri-state window (see section 1.3).  
© 2016 Integrated Device Technology, Inc.  
16  
January 25, 2016  
 
 
 
ZSPM9010 Datasheet  
Figure 2.4  
PWM and Tri-State Timing Diagram  
V
IH_PWM  
V IH_PWM  
V
IH_PWM  
V
V
IH_PWM  
TRI_HI  
V
TRI_HI  
tHOLD-OFF  
VIL_PWM  
V
V
TRI_LO  
IL_PWM  
tR_GH  
t
GH  
_
tF  
PWM  
90%  
10%  
GH  
to  
SWH  
V
VIN  
DCM  
CCM  
DCM  
V
OUT  
2.2V  
VSWH  
GL  
t
R_GL  
t
F_GL  
90%  
1.0V  
90%  
10%  
1
0%  
t
PD_PHGLL  
t
PD_PLGHL  
t
PD_TSGHH  
t
HOLD-OFF  
t
PD_TSGHH  
t
HOLD-OFF  
t
PD_TSGLH  
t
D_DEADON  
t
D_DEADOFF  
Exit  
Enter  
Tri-state Tri-state  
Exit  
Enter  
Exit  
Enter  
Tri-state  
Tri-state  
Tri-state  
Tri-state  
Notes:  
tPD_xxx  
tD_xxx  
= Propagation delay from external signal (PWM, SMOD#, etc.) to IC generated signal; example: tPD_PHGLL = PWM going HIGH to LS VGS (GL) going LOW  
= Delay from IC generated signal to IC generated signal; example: tD_DEADON = LS VGS LOW to HS VGS HIGH  
PWM  
Exiting Tri-state  
tPD_PHGLL = PWM rise to LS VGS fall, VIH_PWM to 90% LS VGS  
tPD_TSGHH  
tPD_TSGLH  
= PWM tri-state to HIGH to HS VGS rise, VIH_PWM to 10% HS VGS  
= PWM tri-state to LOW to LS VGS rise, VIL_PWM to 10% LS VGS  
tPD_PLGHL = PWM fall to HS VGS fall, VIL_PWM to 90% HS VGS  
tPD_PHGHH = PWM rise to HS VGS rise, VIH_PWM to 10% HS VGS (assumes SMOD held Low)  
SMOD (See Figure 2.5)  
Dead Times  
tPD_SLGLL = SMOD fall to LS VGS fall, 90% to 90% LS VGS  
tPD_SHGLH = SMOD rise to LS VGS rise, 10% to 10% LS VGS  
tD_DEADON = LS VGS fall to HS VGS rise, LS-comp trip value to 10% HS VGS  
tD_DEADOFF = VSWH fall to LS VGS rise, SW-comp trip value to 10% LS VGS  
© 2016 Integrated Device Technology, Inc.  
17  
January 25, 2016  
 
ZSPM9010 Datasheet  
2.4. Adaptive Gate Drive Circuit  
The low-side driver (GL) is designed to drive a ground-referenced low RDS(ON) N-channel MOSFET. The bias for  
GL is internally connected between VDRV and CGND. When the driver is enabled, the driver's output is 180° out  
of phase with the PWM input. When the driver is disabled (DISB#=0V), GL is held LOW.  
The high-side driver is designed to drive a floating N-channel MOSFET. The bias voltage for the high-side driver  
is developed by a bootstrap supply circuit consisting of the internal Schottky diode and external bootstrap  
capacitor (CBOOT). During startup, the VSWH pin is held at PGND, allowing CBOOT (see section 3.2) to charge to  
VDRV through the internal diode. When the PWM input goes HIGH, GH begins to charge the gate of Q1, the high-  
side MOSFET. During this transition, the charge is removed from CBOOT and delivered to the gate of Q1. As Q1  
turns on, VSWH rises to VIN, forcing the BOOT pin to VIN + VBOOT, which provides sufficient VGS enhancement for  
Q1.  
To complete the switching cycle, Q1 is turned off by pulling GH to VSWH. CBOOT is then recharged to VDRV when  
VSWH falls to PGND. The GH output is in-phase with the PWM input. The high-side gate is held LOW when the  
driver is disabled or the PWM signal is held within the tri-state window for longer than the tri-state hold-off time,  
tD_HOLD-OFF  
.
The driver IC design ensures minimum MOSFET dead time while eliminating potential shoot-through (cross-  
conduction) currents. It senses the state of the MOSFETs and adjusts the gate drive adaptively to prevent  
simultaneous conduction. Figure 2.4 provides the relevant timing waveforms. To prevent overlap during the LOW-  
to-HIGH switching transition (Q2 off to Q1 on), the adaptive circuitry monitors the voltage at the GL pin. When the  
PWM signal goes HIGH, Q2 begins to turn off after a propagation delay (tPD_PHGLL). Once the GL pin is discharged  
below ~1V, Q1 begins to turn on after adaptive delay tD_DEADON  
.
To prevent overlap during the HIGH-to-LOW transition (Q1 off to Q2 on), the adaptive circuitry monitors the  
voltage at the VSWH pin. When the PWM signal goes LOW, Q1 begins to turn off after a propagation delay  
(tPD_PLGHL). Once the VSWH pin falls below approx. 2.2V, Q2 begins to turn on after adaptive delay tD_DEADOFF  
.
VGS(Q1) is also monitored. When VGS(Q1) is discharged below approx. 1.2V, a secondary adaptive delay is initiated  
that results in Q2 being driven on after tD_TIMEOUT, regardless of VSWH state. This function is implemented to  
ensure CBOOT is recharged each switching cycle in the event that the VSWH voltage does not fall below the 2.2V  
adaptive threshold. Secondary delay tD_TIMEOUT is longer than tD_DEADOFF  
.
2.5. Skip Mode (SMOD#)  
The SMOD function allows higher converter efficiency under light-load conditions. During SMOD, the low-side  
FET gate signal is disabled (held LOW), preventing discharging of the output capacitors as the filter inductor  
current attempts reverse current flow – also known as Diode Emulation Mode.  
When the SMOD# pin is pulled HIGH, the synchronous buck converter works in Synchronous Mode. This mode  
allows gating on the low-side FET. When the SMOD# pin is pulled LOW, the low-side FET is gated off. See the  
timing diagram in Figure 2.5. If the SMOD# pin is connected to the PWM controller, the controller can actively  
enable or disable SMOD when the controller detects light-load operation.  
© 2016 Integrated Device Technology, Inc.  
18  
January 25, 2016  
 
 
ZSPM9010 Datasheet  
Table 2.2  
SMOD# Logic  
Note: The SMOD feature is intended to have a low propagation delay between the SMOD signal and the low-side FET VGS response time to  
control diode emulation on a cycle-by-cycle basis.  
DISB#  
PWM  
SMOD#  
GH  
0
GL  
0
0
1
1
1
1
1
X
X
X
0
0
1
1
Tri-State  
0
0
0
1
0
1
0
0
1
0
0
1
1
0
Figure 2.5  
SMOD# Timing Diagram  
See Figure 2.4 for the definitions of the timing parameters.  
SMOD#  
VIH_SMOD  
VIL_SMOD  
VIH_PWM  
VIH_PWM  
VIL_PWM  
PWM  
90%  
GH  
to  
SW  
10%  
10%  
DCM  
VOUT  
CCM  
CCM  
2.2V  
SW  
GL  
90%  
2.2V  
10%  
10%  
tPD_PLGHL  
tPD_PHGLL  
tPD_PHGHH  
tPD_SHGLH  
tPD_SLGLL  
tD_DEADOFF  
tD_DEADON  
Delay from SMOD# going  
LOW to LS VGS LOW  
Delay from SMOD# going  
HIGH to LS VGS HIGH  
HS turn-on with SMOD# LOW  
© 2016 Integrated Device Technology, Inc.  
19  
January 25, 2016  
 
 
ZSPM9010 Datasheet  
2.6. PWM  
Figure 2.6  
PWM Timing  
V IH_PWM  
VIL_PWM  
PWM  
GL  
90%  
1.0V  
10%  
90%  
GH  
to  
SW  
1.2V  
10%  
tD_TIMEOUT  
250ns Timeout)  
(
2.2V  
SW  
tPD_PLGHL  
tPD_PHGLL  
tD_DEADOFF  
tD_DEADON  
© 2016 Integrated Device Technology, Inc.  
20  
January 25, 2016  
 
 
ZSPM9010 Datasheet  
3
Application Design  
3.1. Supply Capacitor Selection  
For the supply inputs (VDRV and VCIN), a local ceramic bypass capacitor is required to reduce noise and is used  
to supply the peak transient currents during gate drive switching action. Recommendation: use at least a 1µF  
capacitor with an X7R or X5R dielectric. Keep this capacitor close to the VCIN and VDRV pins and connect it to  
the CGND ground plane with vias.  
3.2. Bootstrap Circuit  
The bootstrap circuit uses a charge storage capacitor (CBOOT), as shown in Figure 3.1. A bootstrap capacitance of  
100nF X7R or X5R capacitor is typically adequate. A series bootstrap resistor may be needed for specific  
applications to improve switching noise immunity. The boot resistor may be required when operating near the  
maximum rated VIN and is effective at controlling the high-side MOSFET turn-on slew rate and VSWH overshoot.  
Typical RBOOT values from 0.5Ω to 2.0Ω are effective in reducing VSWH overshoot.  
3.3. VCIN Filter  
The VDRV pin provides power to the gate drive of the high-side and low-side power MOSFETs. In most cases,  
VDRV can be connected directly to VCIN, which supplies power to the logic circuitry of the gate driver. For additional  
noise immunity, an RC filter can be inserted between VDRV and VCIN. Recommendation: use a 10Ω resistor (RVCIN  
)
between VDRV and VCIN and a 1µF capacitor (CVCIN) from VCIN to CGND (see Figure 3.2).  
Figure 3.1  
Power Loss Measurement Block Diagram  
Open Drain Output  
VIN  
A
IIN  
THWN#  
VIN  
CVIN  
I5V  
V5V  
VDRV  
VCIN  
A
BOOT  
CVDRV  
RBOOT  
CBOOT  
ZSPM9010  
IOUT  
VOUT  
LOUT  
PWM  
SMOD#  
DISB#  
PWM Input  
A
PHASE  
VSWH  
OFF  
ON  
COUT  
DISB  
VSW  
v
PGND  
CGND  
© 2016 Integrated Device Technology, Inc.  
21  
January 25, 2016  
 
 
 
 
 
ZSPM9010 Datasheet  
Figure 3.2  
VCIN Filter Block Diagram  
Note: Blue lines indicate the optional recommended filter.  
Open Drain Output  
VIN  
A
IIN  
THWN#  
VIN  
CVIN  
I5V  
V5V  
VDRV  
A
BOOT  
RVCIN  
CVDRV  
RBOOT  
VCIN  
CVCIN  
CBOOT  
ZSPM9010  
IOUT  
VOUT  
LOUT  
PWM  
SMOD#  
DISB#  
PWM Input  
A
PHASE  
VSWH  
OFF  
ON  
COUT  
DISB  
VSW  
v
PGND  
CGND  
3.4. Power Loss and Efficiency Testing Procedures  
The circuit in Figure 3.1 has been used to measure power losses. The efficiency has been calculated based on  
the equations below.  
Power loss calculations:  
P
=
(
VIN IIN  
)
+
(
V5V I5V  
)
(1)  
(2)  
IN  
PSW  
=
(
VSW IOUT  
)
POUT  
=
(
VOUT IOUT  
)
(3)  
(4)  
(5)  
PLOSS_MODULE  
=
(
P PSW  
)
IN  
PLOSS_BOARD  
=
(
P POUT  
)
IN  
© 2016 Integrated Device Technology, Inc.  
22  
January 25, 2016  
 
 
ZSPM9010 Datasheet  
Efficiency calculations:  
PSW  
EFFMODULE = 100∗  
%
%
(6)  
(7)  
P
IN  
POUT  
EFFBOARD = 100∗  
P
IN  
© 2016 Integrated Device Technology, Inc.  
23  
January 25, 2016  
ZSPM9010 Datasheet  
4
Pin Configuration and Package  
4.1. Available Packages  
The ZSPM9010 is available in a 40-lead clip-bond PQFN package. The pin-out is shown in Figure 4.1. See  
Figure 4.2 for the mechanical drawing of the package.  
Figure 4.1  
Pin-out PQFN40 Package  
1
2
3
4
5
6
7
8
9
10  
10  
9
8
7
6
5
4
3
2
1
PWM  
VIN  
VIN  
VIN  
PWM  
DISB#  
THWN  
CGND  
GL  
VIN  
DISB#  
THWN  
CGND  
GL  
CGND  
41  
VIN  
42  
VIN  
42  
CGND  
41  
VIN  
VIN  
VIN  
VIN  
VSWH  
PGND  
PGND  
PGND  
PGND  
PGND  
VSWH  
PGND  
PGND  
PGND  
PGND  
PGND  
VSWH  
VSWH  
VSWH  
VSWH  
VSWH  
VSWH  
VSWH  
VSWH  
VSWH  
VSWH  
VSWH  
43  
VSWH  
43  
21 22 23 24 25 26 27 28 29 30  
30 29 28 27 26 25 24 23 22 21  
Top View  
Bottom View  
© 2016 Integrated Device Technology, Inc.  
24  
January 25, 2016  
 
 
 
ZSPM9010 Datasheet  
4.2. Pin Description  
Pin  
Name  
Description  
When SMOD#=HIGH, the low-side driver is the inverse of PWM input. When SMOD#=LOW,  
1
SMOD# the low-side driver is disabled. This pin has a 10µA internal pull-up current source. Do not add  
a noise filter capacitor.  
2
3
VCIN  
IC bias supply. A 1µF (minimum) ceramic capacitor is recommended from this pin to CGND.  
Power for gate driver. A 1µF (minimum) X5R/X7R ceramic capacitor from this pin to CGND is  
recommended. Place it as close as possible to this pin.  
VDRV  
Bootstrap supply input. Provides voltage supply to the high-side MOSFET driver. Connect a  
bootstrap capacitor from this pin to PHASE.  
4
BOOT  
5, 37, 41  
CGND  
GH  
IC ground. Ground return for driver IC.  
6
7
Gate high. For manufacturing test only. This pin must float: it must not be connected.  
PHASE Switch node pin for bootstrap capacitor routing; electrically shorted to VSWH pin.  
No connection. The pin is not electrically connected internally but can be connected to VIN for  
convenience.  
8
NC  
9 - 14, 42  
VIN  
Input power voltage (output stage supply voltage).  
Switch node. Provides return for high-side bootstrapped driver and acts as a sense point for  
the adaptive shoot-through protection.  
15, 29 - 35, 43  
VSWH  
16 – 28  
36  
PGND  
GL  
Power ground (output stage ground). Source pin of the low-side MOSFET.  
Gate low. For manufacturing test only. This pin must float. It must not be connected.  
Thermal warning flag, open collector output. When temperature exceeds the trip limit, the  
output is pulled LOW. THWN# does not disable the module.  
38  
THWN#  
Output disable. When LOW, this pin disables the power MOSFET switching (GH and GL are  
held LOW). This pin has a 10µA internal pull-down current source. Do not add a noise filter  
capacitor.  
39  
40  
DISB#  
PWM  
PWM signal input. This pin accepts a tri-state 3.3V PWM signal from the controller.  
© 2016 Integrated Device Technology, Inc.  
25  
January 25, 2016  
 
ZSPM9010 Datasheet  
4.3. Package Dimensions  
Figure 4.2  
PQFN40 Physical Dimensions and Recommended Footprint  
B
PIN#1  
0.10 C  
INDICATOR  
6.00  
2X  
5.80  
4.50  
A
30  
21  
31  
20  
11  
6.00  
2.50  
1.60  
0.40  
0.65  
0.25  
0.10 C  
40  
2X  
1
0.50 TYP  
10  
TOP VIEW  
0.60  
0.35  
SEE  
DETAIL 'A'  
0.15  
2.10  
2.10  
LAND PATTERN  
RECOMMENDATION  
FRONT VIEW  
4.40±0.10  
(2.20)  
0.10  
0.05  
C A B  
C
0.30  
0.40  
(40X)  
0.20  
31  
21  
30  
20  
0.50  
2.40±0.10  
(0.70)  
0.20  
PIN #1 INDICATOR  
0.50  
1.50±0.10  
40  
(40X)  
0.30  
11  
10  
1
0.40  
2.00±0.10  
0.50  
(0.20)  
2.00±0.10  
(0.20)  
NOTES: UNLESS OTHERWISE SPECIFIED  
BOTTOM VIEW  
A) DOES NOT FULLY CONFORM TO JEDEC  
REGISTRATION MO-220, DATED  
MAY/2005.  
B) ALL DIMENSIONS ARE IN MILLIMETERS.  
C) DIMENSIONS DO NOT INCLUDE BURRS  
OR MOLD FLASH. MOLD FLASH OR  
BURRS DOES NOT EXCEED 0.10MM.  
D) DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M-1994.  
1.10  
0.90  
0.10 C  
0.08 C  
0.30  
0.20  
0.05  
0.00  
E) DRAWING FILE NAME: PQFN40AREV2  
C
SEATING  
PLANE  
DETAIL 'A'  
SCALE: 2:1  
© 2016 Integrated Device Technology, Inc.  
26  
January 25, 2016  
 
 
ZSPM9010 Datasheet  
5
Circuit Board Layout Considerations  
Figure 5.1 provides an example of a proper layout for the ZSPM9010 and critical components. All of the high-  
current paths, such as the VIN, VSWH, VOUT, and GND copper traces, should be short and wide for low inductance  
and resistance. This technique achieves a more stable and evenly distributed current flow, along with enhanced  
heat radiation and system performance.  
The following guidelines are recommendations for the printed circuit board (PCB) designer:  
1. Input ceramic bypass capacitors must be placed close to the VIN and PGND pins. This helps reduce the high-  
current power loop inductance and the input current ripple induced by the power MOSFET switching  
operation.  
2. The VSWH copper trace serves two purposes. In addition to being the high-frequency current path from the  
DrMOS package to the output inductor, it also serves as a heat sink for the low-side MOSFET in the DrMOS  
package. The trace should be short and wide enough to present a low-impedance path for the high-  
frequency, high-current flow between the DrMOS and inductor to minimize losses and temperature rise. Note  
that the VSWH node is a high-voltage and high-frequency switching node with a high noise potential. Care  
should be taken to minimize coupling to adjacent traces. Since this copper trace also acts as a heat sink for  
the lower FET, the designer must balance using the largest area possible to improve DrMOS cooling with  
maintaining acceptable noise emission.  
3. Locate the output inductor close to the ZSPM9010 to minimize the power loss due to the VSWH copper trace.  
Care should also be taken so the inductor dissipation does not heat the DrMOS.  
4. The power MOSFETs used in the output stage are effective for minimizing ringing due to fast switching. In  
most cases, no VSWH snubber is required. If a snubber is used, it should be placed close to the VSWH and  
PGND pins. The resistor and capacitor must be the proper size for the power dissipation.  
5. VCIN, VDRV, and BOOT capacitors should be placed as close as possible to the respective pins to ensure  
clean and stable power. Routing width and length should be considered as well.  
6. Include a trace from PHASE to VSWH to improve the noise margin. Keep the trace as short as possible.  
7. The layout should include a placeholder to insert a small-value series boot resistor (RBOOT) between the boot  
capacitor (CBOOT) and DrMOS BOOT pin. The BOOT-to-VSWH loop size, including RBOOT and CBOOT, should  
be as small as possible. The boot resistor may be required when operating near the maximum rated VIN. The  
boot resistor is effective for controlling the high-side MOSFET turn-on slew rate and VSWH overshoot. RBOOT  
can improve the noise operating margin in synchronous buck designs that might have noise issues due to  
ground bounce or high positive and negative VSWH ringing. However, inserting a boot resistance lowers the  
DrMOS efficiency. Efficiency versus noise trade-offs must be considered. RBOOT values from 0.5Ω to 2.0Ω are  
typically effective in reducing VSWH overshoot.  
8. The VIN and PGND pins handle large current transients with frequency components greater than 100MHz. If  
possible, these pins should be connected directly to the VIN and board GND planes. Important: the use of  
thermal relief traces in series with these pins is discouraged since this adds inductance to the power path.  
Added inductance in series with the VIN or PGND pin degrades system noise immunity by increasing positive  
and negative VSWH ringing.  
9. Connect the CGND pad and PGND pins to the GND plane copper with multiple vias for stable grounding.  
Poor grounding can create a noise transient offset voltage level between CGND and PGND. This could lead  
to faulty operation of the gate driver and MOSFETs.  
© 2016 Integrated Device Technology, Inc.  
27  
January 25, 2016  
 
ZSPM9010 Datasheet  
10. Ringing at the BOOT pin is most effectively controlled by close placement of the boot capacitor. Do not add a  
capacitor from BOOT to ground; this may lead to excess current flow through the BOOT diode.  
11. The SMOD# and DISB# pins have weak internal pull-up and pull-down current sources, respectively. Do NOT  
float these pins if avoidable. These pins should not have any noise filter capacitors.  
12. Use multiple vias on each copper area to interconnect top, inner, and bottom layers to help distribute current  
flow and heat conduction. Vias should be relatively large and of reasonably low inductance. Critical high-  
frequency components, such as RBOOT, CBOOT, the RC snubber, and the bypass capacitors should be located  
as close to the respective DrMOS module pins as possible on the top layer of the PCB. If this is not feasible,  
they should be connected from the backside through a network of low-inductance vias.  
Figure 5.1  
PCB Layout Example  
Top View  
Bottom View  
6
Ordering Information  
Product Sales Code Description  
Package  
Reel  
ZSPM9010ZA1R  
ZSPM8010-KIT  
ZSPM9010 Lead-Free PQFN40 — Temperature range: -40°C to +125°C  
Open-Loop Evaluation Board for ZSPM9010  
Kit  
© 2016 Integrated Device Technology, Inc.  
28  
January 25, 2016  
 
 
ZSPM9010 Datasheet  
7
Related Documents  
Document  
ZSPM8010-KIT User Guide  
Visit IDT’s website www.IDT.com or contact your nearest sales office for the latest version of these documents.  
8
Document Revision History  
Revision  
1.00  
Date  
Description  
February 6, 2012  
March 20, 2012  
First release  
1.01  
Update to timing diagram Figure 2.4.  
Update to block diagram.  
Minor edits to application illustration on page 2.  
Update for IDT contacts.  
1.02  
August 20, 2012  
Update of available support.  
Update of ordering information.  
Update of related documents.  
1.03  
1.04  
November 19, 2012 Minor edits and update for contact information.  
March 8, 2013  
Minor updates for cover and header imagery and contact information.  
Changed to IDT branding.  
January 25, 2016  
Corporate Headquarters  
Sales  
Tech Support  
www.IDT.com/go/support  
6024 Silver Creek Valley Road  
San Jose, CA 95138  
www.IDT.com  
1-800-345-7015 or 408-284-8200  
Fax: 408-284-2775  
www.IDT.com/go/sales  
DISCLAIMER Integrated Device Technology, Inc. (IDT) reserves the right to modify the products and/or specifications described herein at any time, without notice, at IDT's sole discretion. Performance  
specifications and operating parameters of the described products are determined in an independent state and are not guaranteed to perform the same way when installed in customer products. The  
information contained herein is provided without representation or warranty of any kind, whether express or implied, including, but not limited to, the suitability of IDT's products for any particular purpose, an  
implied warranty of merchantability, or non-infringement of the intellectual property rights of others. This document is presented only as a guide and does not convey any license under intellectual property  
rights of IDT or any third parties.  
IDT's products are not intended for use in applications involving extreme environmental conditions or in life support systems or similar devices where the failure or malfunction of an IDT product can be  
reasonably expected to significantly affect the health or safety of users. Anyone using an IDT product in such a manner does so at their own risk, absent an express, written agreement by IDT.  
Integrated Device Technology, IDT and the IDT logo are trademarks or registered trademarks of IDT and its subsidiaries in the United States and other countries. Other trademarks used herein are the property  
of IDT or their respective third party owners. For datasheet type definitions and a glossary of common terms, visit www.idt.com/go/glossary. All contents of this document are copyright of Integrated Device  
Technology, Inc. All rights reserved  
© 2016 Integrated Device Technology, Inc.  
29  
January 25, 2016  
 
 

相关型号:

ZSPM9015

Ultra-Compact, High-Performance, High-Frequency DrMOS Device
IDT

ZSPM9015ZI1R

Ultra-Compact, High-Performance, High-Frequency DrMOS Device
IDT

ZSPM9060

Ultra-Compact, High-Performance High-Frequency DrMOS Device
IDT

ZSPM9060ZA1R

Ultra-Compact, High-Performance High-Frequency DrMOS Device
IDT

ZSR

2.85 TO 12 VOLT FIXED POSITIVE LOCAL VOLTAGE REGULATOR
ZETEX

ZSR

ZSR SERIES 3.0 to 12 volt fixed positive local voltage regulator
DIODES

ZSR1000

2.85 TO 12 VOLT FIXED POSITIVE LOCAL VOLTAGE REGULATOR
ZETEX

ZSR1000C

2.85 TO 12 VOLT FIXED POSITIVE LOCAL VOLTAGE REGULATOR
ZETEX

ZSR1000CL

Fixed Positive Standard Regulator, 10VBIPolar, TO-92, 3 PIN
DIODES

ZSR1000CSTOB

Fixed Positive Standard Regulator, 10VBIPolar, TO-92, 3 PIN
DIODES

ZSR1000CSTZ

暂无描述
ZETEX

ZSR1000G

2.85 TO 12 VOLT FIXED POSITIVE LOCAL VOLTAGE REGULATOR
ZETEX