1EDF5673K [INFINEON]

GaN EiceDRIVER™IC具有出色的稳健性和效能,非常适合驱动GaN HEMT;
1EDF5673K
型号: 1EDF5673K
厂家: Infineon    Infineon
描述:

GaN EiceDRIVER™IC具有出色的稳健性和效能,非常适合驱动GaN HEMT

驱动
文件: 总39页 (文件大小:1448K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
GaN EiceDRIVER™ product family  
Single-channel functional and reinforced isolated gate-drive ICs for  
high-voltage enhancement-mode GaN HEMTs  
Features  
Dedicated gate driver ICs for high-voltage GaN power switches (CoolGaN™, GIT technology based products)  
low driving impedance (on-resistance 0.85 source, 0.35 sink)  
resistor programmable gate current (typ. 10 mA) in steady “on” state  
programmable negative gate voltage to completely avoid spurious turn-on  
Single output supply voltage (typ. 8 V, floating)  
Switching behavior independent of duty-cycle (2 "off" voltage levels)  
Differential concept to ensure negative gate drive voltage under any condition  
Fast input-to-output propagation (37 ns) with excellent stability (+7/-6 ns)  
Galvanic input-to-output isolation based on coreless transformer (CT) technology  
Common mode transient immunity (CMTI) > 200 V/ns  
3 package versions  
1EDF5673K: 13-pin LGA (5 x 5 mm, PG-TFLGA-13-1) for functional isolation (1.5 kV)  
1EDF5673F: 16-pin P-DSO (150 mil, PG-DSO-16-11) for functional isolation (1.5 kV)  
1EDS5663H: 16-pin P-DSO (300 mil, PG-DSO-16-30) for reinforced isolation  
Fully qualified according to JEDEC for Industrial Applications  
Description  
CoolGaN™ and similar GaN switches require a continuous gate current of a few mA in their "on" state. Besides,  
due to low threshold voltage and extremely fast switching transients, a negative "off" voltage level may be  
needed. The widely used RC-coupled gate driver fulfils these requirements, however it suffers from a duty-cycle  
dependence of switching dynamics and the lack of negative gate drive in specific situations.  
Infineon's GaN EiceDRIVER™ solves these issues with very low effort. The two output stages shown below enable  
a zero “off" level to eliminate any duty-cycle dependence. In addition, the differential topology is able to provide  
negative gate drive without the need for a negative supply voltage. However, it requires a floating supply voltage  
not compatible with bootstrapping.  
GaN EiceDRIVER™  
Controller  
VDD > 3.5V  
RVDDI  
VDDS  
VDDI  
SLDO  
PWM  
UVLOin  
Ishunt  
UVLOoutS  
VDD  
CT  
VDD  
Rtr  
CC  
VDDO  
CVDDO  
SLDO  
RX  
TX  
S1  
S2  
RSS  
OUTS  
GNDS  
Control  
Logic  
PWM  
Control  
Logic  
CVDDI  
GNDI  
CoolGaN™  
VDDG  
D
UVLOoutG  
IGx60Rxx  
DISABLE  
GPIOx  
GND  
TX  
RX  
S3  
S4  
OUTG  
GNDG  
G
Control  
Logic  
TNEG  
Rt1  
delay  
t1  
SS  
S
GNDI  
Final datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
Rev. 2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Potential applications  
Server, telecom and industrial SMPS  
Adapter and charger power supply  
Isolation and safety approval  
1EDS5663H with reinforced isolation: certification by VDE, UL according to  
DIN V VDE V 0884-10 (2006-12) with VIOTM = 8 kVpk, VIOSM = 6.25 kVpk (tested at 10 kVpk)  
UL 1577 (Ed. 5) with VISO = 5.7 kVRMS  
EN 62368-1  
1EDF5673K and 1EDF5673F with functional isolation: production test with 1.5 kV for 10 ms  
Product versions  
In accordance with the isolation classification for primary and secondary side control, GaN EiceDRIVER™ is  
available in different package versions  
Table 1  
GaN EiceDRIVER™ product family overview  
Part  
number  
Package  
Source/sink  
output  
resistance  
Input-to-output isolation  
Isolation class Rating Surge testing Safety  
certification  
1EDF5673K LGA-13  
5 x 5 mm  
0.85 Ω / 0.35 Ω functional  
0.85 Ω / 0.35 Ω functional  
V
IO = 1.5 kVDC  
n.a  
n.a  
n.a  
n.a  
1EDF5673F DSO-16  
150 mil  
VIO= 1.5 kVDC  
1EDS5663H DSO-16  
300 mil  
0.85 Ω / 0.35 Ω reinforced  
VIOTM = 8 kVpk  
(VDE0 884-10)  
VIOSM >10 kVpk VDE 0884-10 1)  
(safe)  
(IEC60065)  
UL 1577  
V
ISO = 5.7 kVRMS  
EN 62368-1  
(UL 1577)  
1) tested according to VDE0884-10 specifications with certification no longer available due to standard expiration  
Final datasheet  
2
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Table of Contents  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
1
2
Pin configuration and description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Background and system description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
3.1  
3.2  
3.3  
3.3.1  
3.3.2  
3.3.3  
3.4  
3.5  
3.6  
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Isolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Input supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Output supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Driver outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
CT communication and data transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Signal timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
3.7  
4
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
4.1  
4.2  
4.3  
4.4  
5
6
Timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
7
7.1  
7.1.1  
7.1.2  
7.2  
Isolation specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Functional isolation specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Functional isolation in PG-TFLGA-13-1 package (1EDF5673K) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Functional isolation in NB PG-DSO-16-11 package (1EDF5673F) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Reinforced isolation in WB PG-DSO-16-30 package (1EDS5663H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Safety-limiting values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
7.3  
8
Application circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
8.1  
Dimensioning guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
9
Layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
10  
Package outline dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Package PG-TFLGA-13-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Package PG-DSO-16-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Package PG-DSO-16-30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
10.1  
10.2  
10.3  
11  
12  
Device numbers and markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Final datasheet  
3
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Pin configuration and description  
1
Pin configuration and description  
DSO-16  
LGA-13 (5 x 5 mm)  
1
2
3
4
5
6
7
8
PWM  
N.C.  
VDDS  
OUTS  
GNDS  
N.C.  
16  
15  
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
13  
12  
11  
GNDI  
PWM  
VDDS  
OUTS  
GNDS  
narrow-body  
(150 mil)  
1EDF5673F  
VDDI  
N.C.  
GNDI  
SLDO  
DISABLE  
TNEG  
VDDI  
1EDF5673K  
DISABLE  
TNEG  
N.C.  
wide-body  
(300 mil)  
1EDS5663H  
10  
VDDG  
OUTG  
GNDG  
VDDG  
OUTG  
GNDG  
9
8
N.C.  
SLDO  
Figure 1  
Table 2  
Pin configuration for DSO-16 and LGA-13 packages, top view  
Pin description  
Pin DSO Pin LGA Symbol Description  
1
2
PWM  
Input signal (default state Low)  
Controls switching sequence at OUTG and OUTS  
2
3
4
5
3
7
1
5
N.C.  
Do not connect  
VDDI  
GNDI  
Input supply voltage (+3.3 V)  
Input GND  
DISABLE Input signal (defaut state Low)  
Logic High is equivalent to a low state at PWM input  
6
6
TNEG  
Resistor programmable input to control the duration t1 of negative "off" level  
(Figure 4);  
t1 = Rt1 * 10.8 pF with Rt1 ranges from 3 kΩ to 45 kΩ, typical value of Rt1 is 18 kΩ  
7
8
7
4
N.C.  
Not connected  
SLDO  
N.C. or connected to VDDI: applied voltage (3.3 V) directly used as input supply  
voltage  
Connected to GNDI: Internal shunt regulator activated (VDD > 3.5 V)  
9
8
GNDG  
OUTG  
VDDG  
N.C.  
Ground for OUTG  
10  
11  
12  
13  
14  
9
Output connectd to GaN gate  
Positive supply voltage for gate connected output stage  
Not connected  
10  
-
-
N.C.  
Not connected  
11  
GNDS  
Ground for OUTS (has to be connected with GNDG)  
Final datasheet  
4
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Pin configuration and description  
Table 2  
Pin description  
Pin DSO Pin LGA Symbol Description  
15  
16  
12  
13  
OUTS  
VDDS  
Output connected to GaN source  
Positive supply voltage for source connected output stage (has to be connected  
with VDDG)  
Final datasheet  
5
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Background and system description  
2
Background and system description  
Although gallium nitride high electron mobility transistors (GaN HEMTs) with ohmic pGaN gate like Infineon’s  
600 V CoolGaN™ power switches are robust enhancement-mode ("normally-on") devices, they differ significantly  
from MOSFETs. The gate module is not isolated from the channel, but behaves like a diode with a forward voltage  
VF of 3 to 4 V. Equivalent circuit and typical gate input characteristic are given in Figure 2. In the steady "on" state  
a continuous gate current is required to achieve stable operating conditions. The switch is "normally-off", but the  
threshold voltage Vth is rather low (~ +1 V). This is why in certain applications a negative gate voltage -VN, typically  
in the range of several volts, is required to safely keep the switch "off" (Figure 2b).  
Figure 2  
Equivalent circuit (a) and gate input characteristics (b) of typical normally-off GaN HEMT  
Obviously the transistor in Figure 2 cannot be driven like a conventional MOSFET due to the need for a steady-  
state "on" current Iss and a negative "off" voltage -VN. While an Iss of a few mA is sufficient, fast switching transients  
require gate charging currents Ion and Ioff in the 1 A range. To avoid a dedicated driver with 2 separate "on" paths  
and bipolar supply voltage, the solution depicted in Figure 3 is usually chosen, combining a standard gate driver  
with a passive RC circuit to achieve the intended behavior. The high-current paths containing the small gate  
resistors Ron and Roff, respectively, are connected to the gate via a coupling capacitance CC. CC is chosen to have  
no significant effect on the dynamic gate currents Ion and Ioff. In parallel to the high-current charging path the  
much larger resistor Rss forms a direct gate connection to continuously deliver the small steady-state gate  
current, Iss. In addition, CC can be used to generate a negative gate voltage. Obviously, in the "on"-state CC is  
charged to the difference of driver supply VDDO and diode voltage VF. When switching to the "off" state, this charge  
is redistributed between CC and CGS and causes an initial negative VGS of value  
(2.1)  
∙ (ꢃꢃꢄ − ꢀ ) − ꢆꢇꢈꢉ  
= −  
+ ꢂꢇꢊ  
with QGeq denoting an equivalent application-specific gate charge, i.e. QGeq ~ QGS for hard-switching and QGeq ~ QGS  
+ QGD for soft-switching transitions. VN can thus be controlled by proper choice of VDDO and CC. During the "off"  
state the negative VGS decreases, as CC is discharged via Rss. The associated time constant cannot be chosen  
independently, but is related to the steady-state current and is typically in the 1 µs range. The negative gate  
voltage at the end of the "off" phase (VNf in Figure 3b) thus depends on the "off" duration. It lowers the effective  
driver voltage for the following switching "on" event, resulting in a dependence of switching dynamics on  
frequency and duty cycle as one drawback of this approach.  
Final datasheet  
6
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Background and system description  
Gatedrive  
Iss  
GaNswitch  
D
Rss  
VGS  
VDDO  
Ion  
CGD  
G
CDS  
VF  
CC  
S1  
Ron  
Ioff  
on  
off  
+
Roff  
S2  
0
-VN  
t
CGS  
VDDO  
-VNf  
S
a)  
b)  
Figure 3  
Equivalent circuit of GaN switch with RC gate drive (a) and gate-to-source voltage VGS (b)  
A second problem might happen if two switches are used alternately in a half-bridge configuration. In normal  
operation always one of the switches is "on", and before switching on the other one, it has to be switched off,  
thereby generating the negative gate voltage VN. The usually short period with both switches "off" (dead time td)  
does not cause a significant increase of VGS. If, however, there is by any reason a longer period with both switches  
in "off" state (e.g. during system start-up, burst mode operation etc.), both coupling capacitors (CC) will be  
discharged. Thus, for the first switching pulse after such an extended non-switching period no negative voltage  
is available. This could lead to increased transistor stress or even instabilities due to spurious turn-on effects in  
half-bridge topologies.  
To solve the problems described above, a shape of VGS like the one in Figure 4b) would be required rather than  
the one in Figure 4a) which results from the simple RC circuit. As explained, a negative VGS might be needed for  
safe "off" states during the switching transients, but it should be as low as possible. Due to the lack of a physical  
body diode any negative VGS adds to the voltage drop of a GaN transistor in reverse polarity (diode operation)  
thereby increasing the conduction losses during dead time. Thus in the idealized waveform of Figure 4b) VGS is  
switched to the minimum required VN for a constant time t1 longer than the system dead time td. After that VGS is  
switched back to zero to ensure identical conditions for the next switch "on" event and to minimize losses from  
diode operation. If, however, an "off" state lasts for a time t2 significantly longer than a normal switching period  
1/fsw (e.g. several µs), VGS should be switched again to -VN to avoid the described "first pulse" problem.  
t2 >> 1/fsw  
PWM  
VGS  
a)  
-VN  
t1 > td  
VGS  
b)  
-VN  
VGS  
c)  
-VN  
-VDDO  
Figure 4  
VGS voltage waveforms with RC circuit (a), improved (b) and proposed shape (c)  
Final datasheet  
7
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Background and system description  
The conceptual goal of the GaN EiceDRIVER™ is to provide the gate voltage of Figure 4b) or a functional  
equivalent without significantly increasing driving complexity. This is achieved by slightly modifying the gate  
drive waveform as depicted in Figure 4c). The "off" level after a long deadtime need not be the optimized  
negative voltage -VN, it could also be the more negative level -VDDO. As these "first pulse" situations happen very  
rarely compared with regular switching cycles, the resulting higher reverse voltage drop has negligible effect on  
switching losses.  
Although going from the 3-level signal of Figure 4b) to the 4 levels of Figure 4c) seems to increase complexity at  
first sight, this is finally not true. Waveform c) can be realized in a very convenient way, if VN is generated by the  
RC network as described above. Then the differential driver concept of Figure 5a) with switch control signals as  
given in Figure 5b) is able to fulfil all discussed requirements with lowest effort: a single supply voltage, 4  
switches and 4 connection pins are sufficient.  
As mentioned, utilizing -VDDO instead of -VN only during extended "off"-phases has no impact on switching losses.  
However, care has to be taken when switching on again, because CC is fully charged to VDDO in this "first pulse"  
situation and no current flow is possible via the capacitive path. With the standard switching-on scheme  
(open S1 / close S2) the transient current thus would be limited to the small steady-state current. To achieve a  
faster turn-on, CGS will be discharged prior to the "on"-transient by switching on S3 for a short time t3 before  
initiating the actual "on"-transient via S1 and S2. A t3-duration of typically 20 ns is sufficient.  
Rss  
Rtr  
t2 >> 1/fsw  
PWM  
on  
off  
CC  
S1  
S2  
+
S3  
S1  
t3  
VDDO  
S3  
S4  
t1  
Roff  
S4  
S2  
VGS  
-VN  
-VDDO  
a)  
b)  
Figure 5  
GaN EiceDRIVER™ concept (a) and switch control signals (b)  
In the topology of Figure 5a) a single resistor Rtr is responsible for setting the maximum transient charging and  
discharging current. This is often acceptable. If it is not, an additional resistor Roff with series diode in parallel with  
Rtr can be used to realize different impedances for "on" and "off" transients, respectively. All relevant driving  
parameters are thus easily programmable by choosing VDDO, Rss, Rtr, Roff and CC according to Equation (2.1) and  
the relations  
(2.2)  
ꢃꢃꢄ − ꢀ  
ꢃꢃꢄ  
ꢀ + ꢁ  
ꢓℎ  
ꢌꢌ =  
,
ꢎꢏ ,ꢐꢑꢒ  
=
,
ꢎꢕꢕ ,ꢐꢑꢒ =  
ꢌꢌ  
ꢓꢔ + ꢍꢎꢕꢕ  
ꢎꢕꢕ  
Final datasheet  
8
Rev.2.4  
2021-11-09  
GaN EiceDRIVER™ product family  
GaN gate driver  
Functional description  
3
Functional description  
3.1  
Block diagram  
A simplified functional block diagram of the GaN EiceDRIVER™ is given in Figure 6. The 4 output transistors are  
placed on 2 separate dies. Isolation between input and outputs is achieved by means of two coreless transformer  
structures (CT) situated on the input die.  
UVLOin  
UVLOoutS  
VDDI  
SLDO  
PWM  
VDDS  
OUTS  
Ishunt  
SLDO  
RX  
TX  
S1  
S2  
Control  
Logic  
GNDS  
VDDG  
Control Logic  
GNDI  
UVLOoutG  
DISABLE  
TNEG  
TX  
RX  
S3  
S4  
Control  
Logic  
GNDI  
OUTG  
GNDG  
Delay t1  
GNDI  
Figure 6  
Block diagram  
3.2  
Isolation  
The GaN EiceDRIVER™ is available in three package versions in accordance with different classes of input-to-  
output isolation voltage requirements  
1EDF5673K in LGA-13 5 x 5 mm package for functional isolation (1.5 kV)  
1EDF5673F in DSO-16 narrow-body (150 mil) package for functional isolation (1.5 kV)  
1EDS5663H in DSO-16 wide-body (300 mil) package for reinforced isolation  
In SMPS functional isolation is typical for high-voltage systems that are controlled from their primary side,  
whereas high-voltage switches controlled from the secondary side require safe isolation.  
The safe isolation version 1EDS5663H is tested according to VDE0884-10 standards as specified in Table 15 to  
Table 18. As the CT forming this barrier is placed on the input die, a true "fail-safe" isolation is achieved, i.e. even  
in case of a destruction of the power switch the driver input remains safely isolated from the output.  
Final datasheet  
9
Rev.2.4  
2021-11-09  
GaN EiceDRIVER™ product family  
GaN gate driver  
Functional description  
3.3  
Power supply  
Due to the isolation between input and output side, two power domains with independent power management  
are required. Undervoltage Lockout (UVLO) functions for both input and output supplies ensure a defined start-  
up and robust functionality under all operating conditions.  
3.3.1  
Input supply voltage  
The input die is supplied via VDDI with a nominal voltage of 3.3 V. Power consumption to some extent depends  
on switching frequency, as the input signal is converted into a train of repetitive current pulses to drive the  
coreless transformer. Due to the chosen robust encoding scheme the average repetition rate of these pulses and  
thus the average supply current depends on the switching frequency fsw. However, for fsw < 500 kHz this effect is  
very small.  
The input side can also be operated with supply voltages higher than 3.3 V. Then a shunt LDO voltage regulator  
(SLDO) is enabled by connecting pin SLDO to GND. The SLDO regulates the current through an external resistor  
RVDDI connected between the external supply voltage VDD and pin VDDI as depicted in the typical application  
circuit on Page 1 to generate the required voltage drop. For proper operation it has to be ensured that the current  
through RVDDI always exceeds the maximum supply current IVDDI,max of the input chip. RVDDI thus has to fulfil  
(3.1)  
ꢃꢃ − 3.3ꢀ  
ꢀꢃꢃꢋ  
<
ꢀꢃꢃꢋ ,ꢐꢑꢒ  
Then Ishunt, the excess current through RVDDI, can be controlled by the SLDO to regulate VDDI to a constant 3.3 V. A  
typical choice for VDD = 5 V could be RVDDI = 470 , resulting in sufficient margin between resistor current and  
maximum average operating current. As usual, the dynamic peak current is provided by a blocking cap (10 to 22  
nF) between VDDI and GNDI.  
3.3.2  
Output supply voltage  
Both output dies and the respective output switches are supplied by a common voltage of typically 8 V between  
pins VDDS/G and GNDS/G. A ceramic bypass capacitance in the 20 to 100 nF range has to be placed close to the  
supply pins. The output supply must be floating with respect to the input supply system. This is not only required  
by the Kelvin source connection of the GaN switch (results in inductive voltage peaks between input and output  
ground during switching transient), but also by the differential driving concept as explained in Chapter 2.  
Again the minimum operating supply voltage is set by an undervoltage lockout function (UVLOout), operating  
independently of the input UVLO function.  
3.3.3  
Power dissipation  
The main power components associated with gate drive are the following: as usual, a first small part (< 20 mW) is  
due to the internal driver supply currents IVDDI and IVDDO; they slightly depend on switching frequency via the CT  
encoding scheme (see Typical characteristics in Chapter 6). The second component results from charging the  
gate capacitance and is in the same range due to the low gate charge of GaN switches.  
However, there are 2 more GaN-specific power components. The continuous gate current any CoolGaN™ switch  
requires in the steady on-state causes some tens of mW to be dissipated. And, as a consequence of the differential  
driving concept, additional power is dissipated during longer non-switching periods; this is associated with the  
application of VDDO as negative gate-to-source voltage, because VDDO is then loaded directly with Rss (see  
Figure 5). In burst-mode operation the power depends on the burst/pause ratio and is typically also only a few  
tens of mW. During extended stand-by modes, however, powering down the VDDO supply could save about  
Final datasheet  
10  
Rev.2.4  
2021-11-09  
GaN EiceDRIVER™ product family  
GaN gate driver  
Functional description  
100 mW. It should also be pointed out that the internal gate/source clamp implemented in CoolGaN™ is  
connected in parallel with Rss in this state. To avoid any significant additional current and power dissipation, VDDO  
should be strictly limited to a maximum of 12 V.  
As a summary, the total gate-drive power always stays in the 50 to 150 mW range and is thus sufficiently small to  
not cause any critical on-chip temperature increase.  
3.4  
Driver outputs  
The rail-to-rail driver output stage realized with complementary MOS transistors is able to provide a typical 4 A  
sourcing and 8 A sinking current. Although these current levels are neither needed nor reached when driving  
GaN HEMTs (due to their low gate charge of only a few nC), the low on-resistance coming together with high  
driving current is nevertheless beneficial. With an Ron of 0.85 for the sourcing pMOS and 0.35 for the sinking  
nMOS transistor the driver can be considered as a nearly ideal switch. The gate drive parameters can thus be  
determined easily and accurately by the external components as described in Chapter 2. The p-channel sourcing  
transistor enables real rail-to-rail behavior without suffering from the voltage drop unavoidably associated with  
nMOS source follower stages.  
3.5  
Undervoltage Lockout (UVLO)  
The Undervoltage Lockout function ensures that the outputs can be switched only, if both input and output  
supply voltages exceed the corresponding UVLO threshold voltages. Thus it can be guaranteed, that the switch  
transistors are not operated, if the driving voltage is too low for complete and fast switching on, thereby avoiding  
excessive power dissipation.  
The UVLO levels for the output supply are set to a typical "on" value of 4.5 and 5.5 V (with 0.3 V hysteresis) for  
OUTG and OUTS, respectively, whereas UVLOin for VDDI is set to 2.85 V with 0.15 V hysteresis. The different UVLO  
levels for OUTG and OUTS help to safely avoid any erroneous turn-on of the GaN switch despite the low GaN  
threshold voltage. Special attention has been paid to cover all possible operating conditions, like start-up or  
arbitrary supply voltage situations:  
if VDDI drops below UVLOin, a "switch-to-low" command is sent to output OUTG, whereas OUTS is switched to  
"high"; this corresponds to the final state in extended "off" periods with VGS = -VDDO  
for VDD lower than the output UVLO levels, an effective clamping concept has been realized by means of 100 kΩ  
resistors connecting the outputs OUTS and OUTG to the respective gates of the sourcing pMOS transistors in  
the output stage  
As a result, safe operation of the GaN switch can be guaranteed under any circumstances.  
3.6  
CT communication and data transmission  
A coreless transformer (CT) based communication module is used for PWM signal transfer between input and  
outputs. A proven high-resolution pulse repetition scheme in the transmitter combined with a watchdog time-  
out at the receiver side enables recovery from communication fails and ensures safe system shut-down in failure  
cases.  
Besides, the repetition scheme is also used to signal a "first pulse" situation (Figure 5). If an "off"-state lasts  
longer than 32 µs, the repetition rate of the CT pulses is reduced to a value that causes the watchdog on the  
output chip to wake up and initiate a change in the "off" state acc. to Figure 5 (switch S3 to "off" and S4 to "on"  
state).  
3.7  
Signal timing  
From the above, the extended "off"-phase t2 defining a "first pulse" situation, is fixed at a typical value of 32 µs.  
The other important timing parameter t1, i.e. the duration of the negative "off"-voltage, can be programmed by  
Final datasheet  
11  
Rev.2.4  
2021-11-09  
GaN EiceDRIVER™ product family  
GaN gate driver  
Functional description  
a resistor Rt1 connected from TNEG to GNDI according to t1 = Rt1 * 10.8 pF. As the main idea is to keep the switch  
in a safe "off" state during the switching transient, t1 must be longer than the system dead time td, i.e. the  
maximum time both switches in a half-bridge are in "off" state. The upper limit for t1 obviously is the minimum  
"off"-period; within these limits (td < t1 < toff,min), the actual t1 value is completely uncritical without any effect on  
switching dynamics.  
The above condition refers to systems with a fixed dead-time (complementary high-side and low-side control  
signals). In topologies with non-complementary signals (TCM PFC, active clamp flyback converter, burst mode  
operation) it cannot always be fulfilled. Then a limited number of "first pulse" situations may occur. However, as  
this typicallly happens in resonant topologies at low current values, the safe operating area of the switch is  
usually not exceeded.  
Final datasheet  
12  
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Electrical characteristics  
4
Electrical characteristics  
4.1  
Absolute maximum ratings  
The absolute maximum ratings are listed in Table 3. Stresses beyond these values may cause permanent damage  
to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
Table 3  
Absolute maximum ratings  
Symbol  
Parameter  
Values  
Unit Note or Test Condition  
Min.  
-0.3  
-0.3  
-0.3  
-5  
Typ.  
Max.  
1)  
Voltage at pin VDDI  
VDDI  
VDDO  
VIN  
4.0  
V
Output supply voltage  
22  
V
V
V
V
Voltage at pins PWM and  
DISABLE  
17  
< 50 ns for transient 2)  
Voltage at pins TNEG and SLDO VTNEG  
-0.3  
VDDI + 0.3  
VSLDO  
Voltage at pins OUTS, OUTG  
VOUTS/G  
-0.3  
-2  
VDDO + 0.3 V  
DDO + 1.5 V  
V
< 200 ns 2)  
< 500 ns 2)  
Reverse current peak at pins  
OUTS, OUTG  
ISRC_rev  
ISNK_rev  
CMTI  
-5  
5
Apk  
Apk  
Non-destructive Common  
Mode Transient Immunity  
400  
V/ns outputs with respect to  
input  
Junction temperature  
Storage temperature  
Soldering temperature  
ESD capability  
TJ  
-40  
-65  
150  
150  
260  
0.5  
°C  
°C  
°C  
kV  
TSTG  
TSOL  
reflow/wave soldering 3)  
VESD_CDM  
Charged Device Model  
(CDM) 4)  
ESD capability  
VESD_HBM  
2
kV  
Human Body Model  
(HBM) 5)  
1) if the SLDO is activated (SLDO pin connected to GNDI), the input-side supply voltage does not correspond to VDDI and can  
be higher  
2) parameter verified by design, not tested in production  
3) according to JESD22A111  
4) according to ANSI/ESDA/JEDEC JS-002  
5) according to ANSI/ESDA/JEDEC JS-001  
Final datasheet  
13  
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Electrical characteristics  
4.2  
Thermal characteristics  
Table 4  
Thermal characteristics at TA= 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Min.  
Max.  
PG-TFLGA-13-1 package  
Thermal resistance junction-  
ambient 1)  
RthJA25  
RthJC25  
112  
44  
K/W  
K/W  
Thermal resistance junction-case  
(top) 2)  
Thermal resistance junction-board 3) RthJB25  
66  
K/W  
K/W  
Characterization parameter  
junction-top 4)  
ΨthJT25  
7.7  
Characterization parameter  
junction-board 4)  
ΨthJB25  
5.6  
K/W  
PG-DSO-16-30 package  
Thermal resistance junction-  
ambient 1)  
RthJA25  
RthJC25  
59  
32  
K/W  
K/W  
Thermal resistance junction-case  
(top) 2)  
Thermal resistance junction-board 3) RthJB25  
33  
K/W  
K/W  
Characterization parameter  
junction-top 4)  
ΨthJT25  
8.9  
Characterization parameter  
junction-board 4)  
ΨthJB25  
7.7  
K/W  
PG-DSO-16-11 package  
Thermal resistance junction-  
ambient 1)  
RthJA25  
RthJC25  
51  
25  
K/W  
K/W  
Thermal resistance junction-case  
(top) 2)  
Thermal resistance junction-board 3) RthJB25  
36  
K/W  
K/W  
Characterization parameter  
junction-top 4)  
ΨthJT25  
4.4  
Characterization parameter  
ΨthJB25  
5.4  
K/W  
junction-board 4)  
1) obtained by simulating a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in  
JESD51-2a.  
2) obtained by simulating a cold plate test on the package top. No specific JEDEC standard test exists, but a close  
description can be found in the ANSI SEMI standard G30-88.  
3) obtained by simulating an environment with a ring cold plate fixture to control the PCB temperature, as described in  
JESD51-8.  
4) estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining  
Rth, using a procedure described in JESD51-2a (sections 6 and 7).  
Final datasheet  
14  
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Electrical characteristics  
4.3  
Operating range  
Table 5  
Operating range  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Min.  
3
Typ.  
Max.  
3.5  
202)  
1)  
Voltage at pin VDDI  
VDDI  
8
V
Output supply voltage  
VDDI blocking capacitance  
VDDO  
CVDDI  
6.5  
V
Min. defined by UVLO  
22  
nF  
SLDO active  
(connected to GNDI)  
Resistor defining t1  
Rt1  
VIN  
3
0
18  
45  
kΩ  
Logic input voltage at pins  
PWM and DISABLE  
6.5  
V
Voltage at pins SLDO  
Junction temperature  
Ambient temperature  
VSLDO  
TJ  
0
3.5  
1503)  
125  
V
-40  
°C  
TA  
-40  
°C  
1) if the SLDO is activated (SLDO pin connected to GNDI), the input-side supply voltage does not correspond to VDDI and can  
be higher  
2) for CoolGaN™ HEMTs VDDO < 12 V is recommended  
3) continuous operation above 125°C may reduce lifetime  
4.4  
Electrical characteristics  
Unless otherwise noted, min./max. values of characteristics are the lower and upper limits, respectively. They are  
valid within the full operating range. Typical values are given at TJ = 25°C with VDDI = 3.3 V and VDDO = 8 V  
Table 6  
Power supply  
Parameter  
Symbol  
Values  
Typ.  
1.5  
Unit Note or  
Test Condition  
Min.  
Max.  
VDDI quiescent current  
VDDO quiescent current  
IVDDIqu  
mA  
mA  
no switching  
no switching  
IVDDOqu  
1.3  
Table 7  
Static output characteristics  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or  
Test Condition  
Min.  
Max.  
High level (sourcing) output  
resistance  
Ron_SRC  
0.42  
0.85  
1.6  
ISRC = 50 mA  
1)  
Peak sourcing output current ISRC_pk  
4
A
Low level (sinking) output  
resistance  
Ron_SNK  
0.18  
0.35  
0.75  
ISNK = 50 mA  
2)  
Peak sinking output current  
ISNK_pk  
-8  
A
1) actively limited to approx. 5.2 Apk, not subject to production test - verified by design / characterization  
2) actively limited to approx. -10.2 Apk, not subject to production test - verified by design / characterization  
Final datasheet  
15  
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Electrical characteristics  
Table 8  
Dynamic characteristics, TJ,max = 125°C (see Figure 7 and Figure 8)  
Parameter  
Symbol  
Values  
Typ.  
37  
Unit Note or Test Condition  
Min.  
Max.  
PWM to OUTS propagation  
delay  
tPDonS  
31  
44  
ns  
load between OUTS and  
GNDS  
tPDoffS  
tPDonG  
tPDoffG  
41  
tPDoffS + t1  
37  
CLS = 1.8 nF  
PWM to OUTG propagation  
delay  
ns  
ns  
load between OUTG and  
GNDG  
ZLG = 1.8 nF // 20 Ω  
31  
44  
DISABLE to OUTS propagation tPD_DISon  
100  
121)  
ns  
ns  
CLS = 1.8 nF  
delay  
tPD_DISoff  
Rise time OUTS / OUTG  
trise  
6.5  
CLS = CLG = 1.8 nF,  
10% to 90%  
Fall time OUTS  
tfall  
tPW  
4.5  
18  
81)  
ns  
ns  
CLS = 1.8 nF, 90% to 10%  
Minimum input pulse width  
that changes output state  
Duration of negative gate “off” t1  
voltage  
194  
321)  
201)  
ns  
µs  
ns  
Rt1 = 18 kΩ  
Minimum “off” time before  
entering “first pulse” mode  
t2  
t3  
Discharging time in “first  
pulse” mode  
1) verified by design, not tested in production  
Table 9  
Undervoltage Lockout  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Min.  
Max.  
Undervoltage Lockout input  
(UVLOin) turn on threshold  
UVLOin  
2.75  
2.85  
2.95  
V
V
Undervoltage Lockout (UVLOin) UVLOin-  
turn off threshold  
2.7  
UVLOin threshold hysteresis  
UVLOin  
0.1  
4.7  
5.4  
0.15  
5.0  
0.2  
5.3  
6.2  
V
V
V
V
V
V
V
Undervoltage Lockout outputs UVLOoutG  
(UVLOoutG/S) turn on threshold  
UVLOoutS  
5.8  
UVLOout turn off thresholds  
UVLOout threshold hysteresis  
UVLOoutG-  
UVLOoutS-  
UVLOoutG  
UVLOoutS  
4.5  
5.2  
0.3  
0.4  
0.45  
0.6  
0.6  
0.8  
Final datasheet  
16  
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Electrical characteristics  
Table 10  
Logic inputs PWM and DISABLE  
Symbol  
Parameter  
Values  
Typ.  
2.0  
Unit Note or  
Test Condition  
Min.  
Max.  
Input voltage threshold for  
transition LH  
VINL  
VINH  
1.7  
2.3  
V
independent of VDDI  
Input voltage threshold for  
transition HL  
1.2  
V
independent of VDDI  
Input voltage hysteresis  
Input pull down resistor  
VIN  
0.4  
0.8  
1.2  
V
RIN  
150  
kΩ  
Final datasheet  
17  
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Timing diagrams  
5
Timing diagrams  
Figure 7 depicts rise, fall and delay times as observed at the capacitively loaded outputs OUTS and OUTG, resp.  
As OUTG is not actively switched to low, a resistor in parallel with the load capacitance has to be used for testing.  
In addition to the signal propagation delay tPDon, the rising edge of OUTG is delayed by a time t1 defining the  
duration of negative VGS  
.
PWM  
VINH  
VINL  
90%  
10%  
90%  
tPDoffS  
tPDoffG  
10%  
OUTS  
OUTG  
tPDonS  
tfall  
trise  
90%  
10%  
10%  
t1  
trise  
Figure 7  
Propagation delay, rise and fall time  
Figure 8 illustrates a complete switching sequence of the four switches forming the two output stages of  
GaN EiceDRIVER™ (delay, rise and fall times not shown). The sequence in the left part of Figure 8 corresponds to  
the normal switching operation, whereas in the right part the "first pulse" situation is depicted. This situation is  
assumed to happen whenever there is no switching action for an extended period t2. Clearly t2 must be  
significantly longer than a regular switching period. A typical duration of 32 µs has been chosen, as GaN switches  
usually operate at switching frequencies significantly above 50 kHz (switching period below 20 µs).  
normal operation  
“first pulse“  
off  
on  
t2 >> 1/fsw  
PWM  
on  
off  
S1  
S2  
t1  
t3  
S3  
S4  
VGS  
-VN  
-VDDO  
Figure 8  
Input signal, output switch sequence and resulting VGS for normal operation and  
"first pulse" situation  
Final datasheet  
18  
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Typical characteristics  
6
Typical characteristics  
VDD= 8 V, VDDI = 3.3 V, TA = 25°C, no load (unless otherwise noted)  
2.0  
1.8  
1.6  
1.4  
1.2  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0
50kHz  
1MHz  
3MHz  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TJ[°C]  
TJ[°C]  
Typical VDDI current vs.  
temperature and frequency  
Typical VDDI quiescent current  
vs. temperature  
Figure 9  
Supply current VDDI  
2.0  
1.6  
1.2  
0.8  
14  
50kHz  
1MHz  
3MHz  
12  
10  
8
6
4
2
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TJ [°C]  
TJ [°C]  
Typical VDDO quiescent current  
vs. temperature  
Typical VDDO current vs.  
temperature and frequency, no load  
Figure 10 Supply current VDDO  
Final datasheet  
19  
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Typical characteristics  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0,4  
0.2  
0
16  
Ron_src  
Ron_snk  
Duty Cycle 50%,  
CC = 2nF, VDDO = 8V  
14  
12  
10  
8
6
4
2
0
0
200  
400  
600  
800  
1000  
-50  
0
50  
TJ [°C]  
100  
150  
switching frequency [kHz]  
Typical VDDO current with 70 mΩ  
CoolGaN switch vs. switching frequency  
Typical output resistance vs.  
temperature  
Figure 11 Supply current VDDO (with load) and output resistance  
2.5  
UVLO on  
UVLO off  
ON threshold  
OFF threshold  
2.9  
2.0  
1.5  
2.7  
1.0  
2.5  
0.5  
-50  
0
50  
TJ [°C]  
100  
150  
-50  
0
50  
TJ [°C]  
100  
150  
Typical input voltage thresholds  
vs. temperature  
Typical undervoltage lockout threshold  
DDI vs. temperature  
V
Figure 12 Logic input thresholds and VDDI UVLO  
Final datasheet  
20  
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Typical characteristics  
6.0  
6.0  
5.5  
5.0  
4.5  
UVLO OUTG  
UVLO OUTG-  
5.5  
5.0  
4.5  
UVLO OUTS  
UVLO OUTS-  
-50  
0
50  
TJ [°C]  
100  
150  
-50  
0
50  
100  
150  
TJ [°C]  
Typical Undervoltage Lockout threshold  
OUTG vs. temperature  
Typical Undervoltage Lockout threshold  
OUTS vs. temperature  
Figure 13 Output UVLO  
8
7
6
5
4
3
50  
45  
40  
35  
30  
25  
trise  
tfall  
VDD = 8V  
Cload = 1.8nF  
-50  
0
50  
TJ [°C]  
100  
150  
-50  
0
50  
TJ [°C]  
100  
150  
Typical propagation delays  
PDonS and tPDoffG vs. temperature  
Typical rise and fall time vs. temperature  
t
Figure 14 Propagation delay and rise / fall time  
Final datasheet  
21  
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Typical characteristics  
500  
400  
300  
200  
100  
0
0
10  
20  
30  
40  
50  
Rt1 [kΩ]  
Typical negative "off" voltage duration t1 vs Rt1  
Figure 15 Typical negative "off" voltage duration t1 vs. Rt1  
300  
250  
200  
150  
100  
50  
2500  
2000  
1500  
1000  
500  
0
0
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
TJ [°C]  
TJ [°C]  
Thermal derating for safety-related  
limiting current  
Thermal derating for safety-related  
limiting power  
Figure 16 Thermal derating curves  
Final datasheet  
22  
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Isolation specifications  
7
Isolation specifications  
The following tables summarize the package-specific isolation characteristics and test methods. For reinforced  
isolation, the regulatory tests described in the component and system standards are applied; functional isolation  
is guaranteed by the specified in-house test methods.  
As soon as the regulatory certificates are available, the reference and / or documents will become available for  
public download on the Infineon website.  
As finally creepage and clearance distances are influenced by PCB layout, it is the customer's responsibility to  
verify the respective requirements on system level.  
7.1  
Functional isolation specifications  
7.1.1  
Functional isolation in PG-TFLGA-13-1 package (1EDF5673K)  
Table 11  
Functional isolation input-to-output (PG-TFLGA-13-1)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Functional isolation test  
voltage  
VIO  
1500  
VDC  
impulse test >10 ms,  
production tested  
Maximum isolation working  
voltage  
VIOWM  
CLR  
460  
VRMS  
mm  
according to IEC 60664-1  
(PD 2; MG II)  
Package clearance  
3.4  
shortest distance over  
air, from any input pin to  
any output pin  
Package creepage  
CPG  
3.4  
mm  
shortest distance over  
surface, from any input  
pin to any output pin  
Common Mode Transient  
Immunity  
CMTI  
200  
V/ns  
according to VDE V0884-  
10, static and dynamic  
test  
Capacitance input-to-output CIO  
2
pF  
Resistance input-to-output  
RIO  
>1000  
MΩ  
Final datasheet  
23  
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Isolation specifications  
Table 12  
Package characteristics (PG-TFLGA-13-1)  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit Note or Test Condition  
Max.  
Comparative tracking Index of CTI  
package mold  
400  
600  
V
according to DIN EN  
60112 (VDE 0303-11)  
Material group  
II  
according to IEC 60112  
7.1.2  
Functional isolation in NB PG-DSO-16-11 package (1EDF5673F)  
Table 13  
Functional isolation input-to-output (NB PG-DSO-16-11)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Functional isolation test  
voltage  
VIO  
1500  
VDC  
impulse test > 10 ms,  
sample tested  
Maximum isolation working  
voltage  
VIOWM  
CLR  
510  
VRMS  
mm  
according to IEC 60664-1  
(PD2; MG II)1)  
Package clearance  
4.0  
shortest distance over air,  
from any input pin to any  
output pin  
Package creepage  
CPG  
4.0  
mm  
shortest distance over  
surface, from any input  
pin to any output pin  
Common Mode Transient  
Immunity  
CMTI  
200  
V/ns according to VDE V0884-  
10, static and dynamic  
test  
Capacitance input-to-output1) CIO  
Resistance input-to-output1) RIO  
2
pF  
>1000  
MΩ  
1) verified by design, not tested in production  
Table 14  
Package characteristics (NB PG-DSO-16-11)  
Symbol Values  
Parameter  
Unit Note or Test Condition  
Min.  
Typ.  
Max.  
Comparative tracking Index of CTI  
package mold  
400  
600  
V
according to DIN EN 60112  
(VDE 0303-11)  
Material group  
II  
according to IEC 60112  
Final datasheet  
24  
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Isolation specifications  
7.2  
Reinforced isolation in WB PG-DSO-16-30 package (1EDS5663H)  
Table 15  
Input-to-output isolation specification according to VDE0884-10 (WB PG-DSO-16-30 )  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Maximum transient isolation VIOTM  
voltage  
8000  
Vpk  
qualification for t = 60 s;  
production test with  
V
IOTM_test = VIOTM * 1.2 for t =1 s  
Maximum repetitive peak  
isolation voltage  
VIORM  
1420  
Vpk  
Time Dependent Dielectric  
Breakdown test method  
Maximum isolation working VIOWM  
voltage  
1420  
1000  
4500  
VDC  
VRMS  
Vpk  
Partial discharge voltage  
VPD  
production test for t=1s,  
partial discharge QPD < 5 pC  
Maximum surge isolation  
voltage  
VIOSM  
CLR  
CPG  
6250  
Vpk  
VIOSM_test = 1.6 x VIOSM >10 kVpk;  
sample tested 1)  
Package clearance  
I
8.0  
8.0  
mm  
mm  
from any input pin to any  
output pin  
Package creepage  
from any input pin to any  
output pin  
Overvoltage category per  
IEC 60664-1 table F.1  
IV  
rated mains voltage  
150 VRMS  
I
I
III  
II  
300 VRMS  
600 VRMS  
Capacitance input-to-output CIO  
Resistance input-to-output RIO  
2
>1000  
pF  
MΩ  
Common Mode Transient  
Immunity  
CMTI  
200  
V/ns input to output static and  
dynamic; sample test  
1) surge pulse tests applied according to IEC60065-10.1 (Ed 8.0 2014), 61000-4-5, 60060-1 waveforms (1.2 µs slope, 50 µs  
decay)  
Table 16  
Reinforced isolation package characteristics (WB PG-DSO-16-30)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Comparative Tracking Index CTI  
of package mold  
400  
600  
V
according to DIN EN 60112  
(VDE 0303-11)  
Material group  
II  
2
according to IEC 60112  
Pollution degree  
Climatic category  
40/125/  
21  
Final datasheet  
25  
Rev.2.4  
2021-11-09  
1EDF5673K, 1EDF5673F, 1EDS5663H  
GaN gate driver  
Isolation specifications  
Table 17  
Reinforced input-to-output isolation according to UL1577 Ed 5 (WB PG-DSO-16-30)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Withstand isolation  
voltage  
VISO  
5700  
VRMS  
VISO= 5700 VRMS for t = 60 s  
(qualification);  
V
ISO_test > 1.2 x VISO = 6840 V for t = 1 s  
7.3  
Safety-limiting values  
Table 18  
Reinforced isolation safety-limiting values as outlined in VDE-0884-10 (WB PG-DSO-16-30)  
Parameter  
Side  
Values  
Unit  
Note or Test Condition  
Min.  
Typ.  
Max.  
Safety supply power Input  
20.0  
mW  
RthJA = 59 K/W1),  
TA = 25°C,  
TJ = 150°C  
Output  
Total  
2100 mW  
2120 mW  
Safety supply current Output  
265  
mA  
R
V
thJA = 59 K/W1),  
DDO = 8 V,  
TA= 25°C, TJ = 150°C  
Safety temperature  
Ts  
150  
°C  
Ts = TJ,max  
1) Calculated with the Rth of WB-DSO-16-30 package (see Table 4)  
According to VDE0884-10 and UL1577, safety-limiting values define the operating conditions under which the  
isolation barrier can be guaranteed to stay unaffected. This corresponds with the maximum allowed junction  
temperature, as temperature-induced failures might cause significant overheating and eventually damage the  
isolation barrier.  
Final datasheet  
26  
Rev.2.4  
2021-11-09  
GaN EiceDRIVER™ product family  
GaN gate driver  
Application circuit  
8
Application circuit  
Note: The following information is given as a hint for the implementation of the device only and shall not be regarded  
as a description or warranty of a certain functionality, condition or quality of the device.  
Figure 17 depicts a typical application for CoolGaN™ switches in a so-called "totem-pole" PFC. It consists of a  
70 mΩ GaN half-bridge controlled by two GaN EiceDRIVERs; the diode functions indicated in the power path are  
usually realized with low-RDSON MOSFETs operating as synchronous rectifiers. 2.5 kW of power can be handled at  
very high efficiency (above 99%).  
The topology in Figure 17 differs from standard PFCs mainly by the fact that both GaN transistors are used  
alternately in switch and diode operation mode, depending on the polarity of the input voltage. This eliminates  
the need for rectifying the input voltage and therefore avoids a significant loss contributor. Such a topology  
cannot be realized with MOS-switches due to their inherent body diode and the associated large recovery charge.  
Further details can be found in application note: www.infineon.com/driving-coolgan  
VDDS  
VDDI  
PWM  
+400V  
Vout  
UVLOin  
UVLOoutS  
CT  
D
S
SD  
10  
RX  
TX  
S1  
S2  
560  
G
SLDO  
2
Control  
Logic  
3.3n  
OUTS  
HS  
SS  
Control  
Logic  
GNDS  
VDDG  
GNDI  
IGT60R070  
VDD  
3.3V  
UVLOoutG  
22n  
VDDOhs  
8V  
100n  
TX  
RX  
S3  
S4  
Control  
Logic  
TNEG  
18k  
delay  
t1  
OUTG  
GNDG  
Vin  
AC  
GNDI  
VDDS  
VDDI  
PWM  
UVLOin  
UVLOoutS  
CT  
D
S
SD  
2
10  
RX  
TX  
S1  
S2  
560  
G
SLDO  
Control  
Logic  
OUTS  
3.3n  
LS  
SS  
Control  
Logic  
GNDS  
VDDG  
GNDI  
IGT60R070  
UVLOoutG  
VDDOls  
8V  
100n  
TX  
RX  
S3  
S4  
Control  
Logic  
TNEG  
delay  
t1  
OUTG  
GNDG  
18k  
GNDI  
Figure 17 Typical application circuit for 2.5 kW GaN "totem-pole" PFC  
Final datasheet  
27  
Rev.2.4  
2021-11-09  
GaN EiceDRIVER™ product family  
GaN gate driver  
Application circuit  
8.1  
Dimensioning guidelines  
Due to low output impedance, high current limits and fast transients, the driver output stages can be regarded to  
behave like ideal switches. Thus half-bridge switching dynamics are exclusively and predictably controlled by the  
passive external components in the gate loop, allowing an easy adaptation to different applications and switch  
sizes.  
As a first step in dimensioning these components the intended initial negative gate voltage -VN has to be defined.  
The correlation between VN, VDDO and CC as given in Equation (2.1) is graphically depicted in Figure 18 for a hard-  
switched 70 mΩ CoolGaN™ transistor.  
0
IGT60R070  
QGeq =3 nC  
-1  
Ciss =0.4 nF  
-2  
-3  
-4  
-5  
-6  
-7  
VF = 3 V  
VDDO=8  
VDDO=9  
VDDO=10  
0
1
2
3
4
5
CC [nF]  
Figure 18 -VN as a function of VDDO and CC for hard-switched 70 mΩ CoolGaN™  
A typical choice for -VN could be -4 V for hard-switched and -2 V for soft-switched applications, respectively.  
Additionally, due to the low GaN threshold voltage, even under worst-case conditions -VN should never be  
allowed to become positive. This requirement defines the minimum coupling capacitance CCmin. Under typical  
conditions CCmin then in fact generates a VN of about 2 V, and thus this capacitance value can be recommended to  
be used in soft-switching topologies. Beside CCmin, Table 19 also summarizes recommended values for CChs, the  
coupling capacitance in hard-switching topologies, and resistor Rss for different CoolGaN™ switches (currently 70  
and 190 mΩ ).  
Table 19 Recommended values of CCmin, CChs and Rss  
IGx60R070x (70 mΩ)  
IGx60R190x (190 mΩ)  
VDDO [V]  
CCmin [nF]  
1.8  
CChs [nF]  
3.3  
Rss [kΩ]  
0.56  
CCmin [nF]  
CChs [nF]  
Rss [kΩ]  
1.2  
8
1
1.8  
1
10  
1.2  
1.8  
0.82  
0.8  
1.8  
The application circuit of Figure 17 uses different gate resistors for the "on" and "off" gate loops by introducing  
resistor Roff and (Schottky-)diode SD. The values of Rtr and Roff define the respective peak gate currents and thus  
switching times according to Equation (2.2). Due to the basic trade-off between switching time and inductive  
voltage overshoot, parasitic power and gate loop inductances have a strong influence on the optimum values of  
the gate resistors. For a 70 mΩ CoolGaN™ switch they are typically in the 5 to 20 Ω range for Rtr, whereas 2 to 5 Ω  
are a reasonable choice for Roff.  
Final datasheet  
28  
Rev.2.4  
2021-11-09  
GaN EiceDRIVER™ product family  
GaN gate driver  
Layout guidelines  
9
Layout guidelines  
For any fast-switching power system the PCB layout is crucial to achieve optimum performance. Among the many  
existing rules, recommendations, guidelines, tips and tricks, the following are of highest importance:  
minimize power loop inductance, the most critical limitation of switching speed due to the unavoidable  
voltage overshoots generated by fast current commutation  
use low-ESR decoupling capacitances for the driver supply voltages and place them as close as possible to the  
driver (in the layout proposals below the output capacitance has been split and connected to both supply  
pins)  
strictly avoid any additional coupling capacitance between input and output pins due to PCB layout (see  
Chapter 3.7)  
Respective layout proposals for the immediate driver surroundings are given in Figure 19, Figure 20 and  
Figure 21 for the different available package types.  
ꢉꢊꢂꢋ  
ꢉꢊꢂꢑ&ꢉ  
$ꢂꢂꢑ  
ꢓ%#ꢑ  
ꢉꢊꢂꢑ  
ꢉꢊꢂꢋ  
ꢌꢍꢎ  
ꢑꢘꢙꢚ'"  
ꢉꢕꢗ"  
ꢌꢍꢎ  
ꢉꢊꢂꢋ  
ꢑꢒꢂꢓ  
ꢊꢏꢐꢏ  
ꢑꢒꢂꢓ  
ꢂ ꢔꢕ!ꢖ"  
#ꢊꢁꢉ  
$ꢂꢂꢋ  
ꢂ ꢔꢕ!ꢖ"  
ꢉꢊꢂꢋ  
$ꢂꢂꢉ  
ꢓ%#ꢉ  
ꢉꢊꢂꢉ  
(#ꢀ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢈ  
(#(  
($ꢂꢂꢋ  
ꢑꢂ  
Figure 19 Layout recommendation for PG-TFLGA-13-1 package  
Final datasheet  
29  
Rev.2.4  
2021-11-09  
GaN EiceDRIVER™ product family  
GaN gate driver  
Layout guidelines  
ꢀꢁ  
ꢀꢁꢈꢔꢀ  
ꢇꢒꢂꢂ  
ꢃꢄꢅ  
ꢂꢂ  
ꢃꢄꢅ  
ꢁꢆꢇꢆ  
ꢊꢓꢑꢈ  
ꢈꢖꢗꢘꢙꢐ  
ꢚꢒꢂꢂ  
ꢂꢂ  
ꢂꢂ ꢀꢁ  
ꢀꢁ  
ꢁꢆꢇꢆ  
ꢇꢒꢂꢂ  
ꢋꢌꢍꢎꢏꢐ  
ꢋꢌꢍꢎꢏꢐ ꢁꢆꢇꢆ  
ꢑꢁ ꢂꢂ  
ꢇꢒꢂꢂ  
ꢀꢍꢕꢐ  
ꢚꢑ  
ꢁꢆꢇꢆ  
ꢊꢓꢑꢀ  
ꢈꢉ  
ꢈꢉ ꢀꢁ  
ꢀꢁꢂꢃꢄꢅꢆꢇꢃ  
ꢚꢑꢚ  
 
Figure 20 Layout recommendation for PG-DSO-16-11 package  
ꢊꢉꢌ  
ꢊꢉꢍꢑꢊ  
ꢐꢋꢂꢂꢛ  
ꢒꢓꢔ  
ꢂꢂꢌ  
ꢂꢂꢍ  
ꢁꢎꢈꢍ  
ꢊꢉꢍ  
ꢉꢏꢐꢏ  
ꢃꢄꢅ  
ꢁꢆꢇꢆ  
ꢍꢖꢗꢘꢙꢇ  
ꢚꢋꢂꢂꢌ  
ꢂꢂꢌ  
ꢀꢁ  
ꢂꢃꢄꢅꢆꢇ  
ꢈꢉꢊ  
ꢉꢏꢐꢏ  
ꢐꢋꢂꢂꢌ  
ꢂꢃꢄꢅꢆꢇ  
ꢉꢏꢐꢏ  
ꢂꢂꢊ  
ꢁꢎꢈꢊ  
ꢊꢉꢊ  
ꢐꢋꢂꢂꢜ  
ꢊꢄꢕꢇ  
ꢚꢈ  
ꢍꢀꢁ  
 ꢁ  
ꢀꢁꢂ ꢄꢅꢅ!"  
ꢚꢈꢚ  
ꢂꢀ  
Figure 21 Layout recommendation for PG-DSO-16-30 package  
Final datasheet  
30  
Rev.2.4  
2021-11-09  
GaN EiceDRIVER™ product family  
GaN gate driver  
Package outline dimensions  
10  
Package outline dimensions  
The following package versions are available.  
an area optimized 5 x 5 mm2 PG-TFLGA-13-1  
an NB PG-DSO-16-11 package with typ. 4 mm creepage input to output  
a WB PG-DSO-16-30 package with typ. 8 mm creepage input to output  
Note:  
For further information on package types, recommendation for board assembly, please go to  
https://www.infineon.com/packages  
10.1  
Package PG-TFLGA-13-1  
Figure 22 PG-TFLGA-13-1 outline  
Final datasheet  
31  
Rev.2.4  
2021-11-09  
GaN EiceDRIVER™ product family  
GaN gate driver  
Package outline dimensions  
Figure 23 PG-TFLGA-13-1 footprint  
Figure 24 PG-TFLGA-13-1 packaging  
Final datasheet  
32  
Rev.2.4  
2021-11-09  
GaN EiceDRIVER™ product family  
GaN gate driver  
Package outline dimensions  
10.2  
Package PG-DSO-16-11  
1)  
4-00..02  
1)  
10-00..02  
0.33+-00..0187  
x 45°  
D
0.64 0.25  
C
0.1 C 16x  
COPLANARITY  
SEATING  
6
0.2  
PLANE  
0.41+-00..0068  
0.25  
D C 16x  
BOTTOM VIEW  
16  
9
9
8
16  
1
1
8
1.27  
INDEX  
MARKING  
1) DOES NOT INCLUDE PLASTIC OR METAL PROTRUSION OF 0.25 MAX. PER SIDE  
ALL DIMENSIONS ARE IN UNITS MM  
THE DRAWING IS IN COMPLIANCE WITH ISO 128 & PROJECTION METHOD 1 [  
]
Figure 25 PG-DSO-16-11 outline  
Figure 26 PG-DSO-16-11 footprint  
Final datasheet  
33  
Rev.2.4  
2021-11-09  
GaN EiceDRIVER™ product family  
GaN gate driver  
Package outline dimensions  
3,1 ꢀ  
,1'(; 0$5.,1*  
ꢅꢆꢇ  
ꢁꢆꢇ  
ꢀꢆꢂ  
ꢈꢆꢉ  
$// ',0(16,216 $5( ,1 81,76 00  
7+( '5$:,1* ,6 ,1 &203/,$1&( :,7+ ,62 ꢀꢁꢂ ꢃ 352-(&7,21 0(7+2' ꢀ >  
@
Figure 27 PG-DSO-16-11 packaging  
10.3  
Package PG-DSO-16-30  
0.35 x 45°  
1)  
1)  
10.3  
7.5  
D
0.2 A-B C  
2x  
0.1  
2x  
0.7 0.2  
10.3  
C
0.1 C 16x  
COPLANARITY  
SEATING  
0.3 D C 16x  
TOP VIEW  
0.25  
PLANE  
2)  
0.4 0.08  
C A-B D 16x  
BOTTOM VIEW  
A
16  
9
9
16  
EJECTOR MARK  
(FLAT SHAPE)  
1
1
8
8
INDEXMARKING  
(BALL SHAPE)  
B
1.27  
1) DOES NOT INCLUDE PLASTIC OR METAL PROTRUSION OF 0.15 MAX. PER SIDE  
2) DOES NOT INCLUDE DAMBAR PROTRUSION OF 0.1 MAX.  
ALL DIMENSIONS ARE IN UNITS MM  
THE DRAWING IS IN COMPLIANCE WITH ISO 128 & PROJECTION METHOD 1 [  
]
Figure 28 PG-DSO-16-30 outline  
Final datasheet  
34  
Rev.2.4  
2021-11-09  
GaN EiceDRIVER™ product family  
GaN gate driver  
Package outline dimensions  
Figure 29 PG-DSO-16-30 footprint  
16  
4
0.3  
PIN 1  
INDEX MARKING  
10.8  
2.7  
3.2  
All dimensions are in units mm  
The drawing is in compliance with ISO 128-30, Projection Method 1 [  
]
Figure 30 PG-DSO-16-30 packaging  
Final datasheet  
35  
Rev.2.4  
2021-11-09  
GaN EiceDRIVER™ product family  
GaN gate driver  
Device numbers and markings  
11  
Device numbers and markings  
Table 20  
Device numbers and markings  
Part number  
1EDF5673K  
1EDF5673F  
1EDS5663H  
Package  
Orderable part number (OPN)  
Device marking  
1F5673B  
PG-TFLGA-13-1  
PG-DSO-16-11  
PG-DSO-16-30  
1EDF5673KXUMA1  
1EDF5673FXUMA1  
1EDS5663HXUMA1  
1F5673B  
1S5663B  
Final datasheet  
36  
Rev.2.4  
2021-11-09  
GaN EiceDRIVER™ product family  
GaN gate driver  
Revision History  
12  
Revision History  
Page or Item  
Subjects (major changes since previous revision)  
Rev. 2.4, 2021-11-09  
Front page, Table 1  
Front page, Table 1  
Table 1  
certification received for UL 1577  
certification received for EN 62368-1  
removed references to CSA and CQC (not anymore planned)  
removed reference to EN 60950-1 as it has been replaced by EN 62368-1  
Table 1  
Table 3, Table 5  
“Input supply voltage” “Voltage at pin VDDI” to highlight that the supply voltage  
can be higher if the SLDO is activated  
Chapter 8.1  
Figure 17  
the recommendation of adding a capacitance in parallel with the resistor Rt1 has  
been removed as per Figure 17  
the recommended position of Roff has been updated for stronger connection  
between MOSFET kelvin source and driver OUTS and improved gate noise  
clamping in OFF-state  
Rev. 2.3, 2020-10-22  
Isolation and safety  
approval  
corrected certificate names  
Table 1  
safety certification: added footnote and corrected certificate name  
Chapter 3.2  
Table 20  
updated package description  
updated  
Rev. 2.2, 2020-08-20  
Potential applications  
Table 1  
updated  
certification received for VDE0884-10  
update equation for Pin 6  
t1 change t1 = Rt1 * 10.8 pF  
updated description text  
CVDDI max typo repaired  
Table 2  
Table 2 and Chapter 3.7  
Chapter 3.7  
Table 5  
Table 5  
Voltage at pins TNEG and SLDO Voltage at pins SLDO and removed symbol for  
VTNEG  
Table 8  
t1 parameter condition change 18 kΩ  
Table 8  
t1 typ. value change 194  
Figure 7  
corrected typo  
Figure 15  
Figure 17  
Figure 18  
Table 19  
Table 20  
Rev. 2.10, 2019-02-11  
Page 1  
updated  
updated  
updated  
updated  
new “B” marking: change in t1 formula  
package diagrams update  
application diagram update  
Page 1  
Final datasheet  
37  
Rev.2.4  
2021-11-09  
GaN EiceDRIVER™ product family  
GaN gate driver  
Revision History  
Page or Item  
Figure 1 & Chapter 1  
Equation (2.1)  
Figure 5  
Subjects (major changes since previous revision)  
repaired typo in pin config diagram and chapter  
updated equation and relevant text  
added optional resistor and diode  
updated to include Roff  
Equation (2.2)  
Chapter 3.3.1  
Chapter 3.3.3  
Chapter 3.7  
Chapter 4.3  
Table 3  
added description of Ishunt  
added chapter to describe power dissipation  
added description of possibility to reduce shortening effect  
updated footnote (2)) about VDDO recommendation  
max. VDDI: 3.7 V 4.0 V  
Table 5  
TA max. value 85°C 125°C  
Figure 17  
updated components and dimensions  
added chapter on dimensioning guidelines  
format change  
Chapter 8.1  
Figure 21  
Chapter 10  
latest footprints, outlines and packaging  
Rev. 2.00, 2018-11-07  
Final datasheet created  
Initial version available  
Rev. 1.00, 2018-10-25  
Final datasheet  
38  
Rev.2.4  
2021-11-09  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2021-11-09  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2021 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
1EDF5673K, 1EDF5673F, 1EDS5663H  

相关型号:

1EDG

ULTRAFAST EFFICIENT GLASS PASSIVATED RECTIFIER VOLTAGE: 200 TO 600V CURRENT: 1.0A
GULFSEMI

1EDI05I12AF

Separate output variant for IGBT
INFINEON

1EDI05I12AH

1200 V单个高边栅极驱动器IC,具有电气隔离、短路箝位和独立的汇/源输出
INFINEON

1EDI10I12MH

1200V 单通道高边栅极驱动器 IC,带电气隔离、有源米勒箝和短路夹紧
INFINEON

1EDI2001AS

Single Channel Isolated Driver for Inverter Systems AD Step
INFINEON

1EDI2001AS_15

Single Channel Isolated Driver for Inverter Systems AD Step
INFINEON

1EDI2002AS

Single Channel Isolated Driver for Inverter Systems AD Step
INFINEON

1EDI2002ASXUMA2

Buffer/Inverter Based Peripheral Driver, PDSO36, DSO-36
INFINEON

1EDI2002AS_15

Single Channel Isolated Driver for Inverter Systems AD Step
INFINEON

1EDI20H12AH

1200 V galvanically isolated single-channel wide body gate driver IC family
INFINEON

1EDI20I12AF

Separate output variant for IGBT
INFINEON

1EDI20I12AH

1200 V galvanically isolated single-channel wide body gate driver IC family
INFINEON