1EDN9550B [INFINEON]

1-channel non-isolated gate-driver IC family with truly differential inputs;
1EDN9550B
型号: 1EDN9550B
厂家: Infineon    Infineon
描述:

1-channel non-isolated gate-driver IC family with truly differential inputs

文件: 总31页 (文件大小:1295K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
Description  
EiceDRIVER1EDNx550 is part of the TDI family of single-channel high-  
side and low-side gate driver ICs. The TDI family has a fully differential  
input circuitry. The truly differential inputs (TDI) provide excellent  
common-mode robustness (CMR) and eliminates the risk of false  
triggering. The small package footprints enable versatile layout in  
both low-side and high-side driving.  
SOT23-6  
TSNP-6  
Product features  
Topologies  
Very large common-mode input voltage  
range (CMR static) up to ±200 V, configurable  
with common mode resistors  
Separate low impedance source (4 A) and  
sink (8 A) outputs  
45 ns propagation delay (-7/+10 ns accuracy)  
Four UVLO options: 4 V, 8 V, 12 V and 15 V  
SOT23-6 or TSNP-6 small packages  
Fully qualified according to JEDEC for  
industrial grade applications  
4-pin Kelvin-source MOSFETs in boost PFCs  
Low-side driving with high PCB parasitic inductance  
High-side driving in switched tank converters  
High and low-side driving in half and full-bridges  
Driving SJ and SiC MOSFETs, GaN HEMTs  
Switches requiring negative drive voltage  
Applications  
Server, telecom and industrial SMPS  
DC-DC converters and bricks  
Power tools, motor control  
Table 1  
Product portfolio  
Part number Package UVLO ON/OFF Output current Max. CMR static 1)  
Max. CMR dynamic 1)  
1EDN7550U PG-TSNP-6  
4.2 V / 3.9 V  
1EDN7550B  
1EDN8550B  
1EDN6550B  
1EDN9550B  
8.0 V / 7.0 V  
12.2 V / 11.5 V  
14.9 V / 14.4 V  
-8 A / +4 A  
±200 V  
± 400 V  
PG-  
SOT23-6  
Driving Kelvin source MOSFET  
Driving medium voltage half-bridge  
VBUS  
EiceDRIVER™  
1EDNx550  
Dboot  
VDD  
SGND  
Rboot  
D
Rin-HS  
4-pin  
MOSFET  
IN-  
OUT_SNK  
EiceDRIVER™  
1EDNx550  
VDD  
SGND  
RgOFF_HS  
RgON_HS  
Controller  
GND OUT_SRC  
ZVDD  
Controller  
G
Rin+HS  
RIN-  
D
S
IN+  
VDD  
GND  
IN-  
GND OUT_SRC  
IN+  
VDD  
OUT_SNK  
RgOFF  
RgON  
PWM1  
Cboot  
SGND  
DVRin  
G
Vphase  
PWM_Out  
EiceDRIVER™  
1EDNx550  
RIN+  
PWM2  
GND  
RVDD  
CVDD  
vLS  
LS  
D
S
Rin-LS  
SS  
IN-  
OUT_SNK  
S
RgOFF_LS  
RgON_LS  
SGND  
GND OUT_SRC  
PGND  
G
Rin+LS  
IN+  
VDD  
CVDD  
PGND  
Figure 1  
EiceDRIVER1EDNx550 driving Kelvin-source MOSFET and half-bridge power stages  
1
CMR static and dynamic for the application depends on input resistors. Please see Chapter 6.1  
Datasheet  
www.infineon.com  
Please read the Important Notice and Warnings at the end of this document  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
Table of contents  
Table of contents  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1
2
Pin configuration and description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Truly differential input (TDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Common-mode input range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Driver outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Supply voltage and undervoltage lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1  
3.1.1  
3.2  
3.3  
4
Electrical characteristics and parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
4.1  
4.2  
4.3  
4.4  
4.5  
5
Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
6
Application and implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Input resistor dimensioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Half-bridge driving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Switches with Kelvin-source connection (4-pin packages) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Applications with significant parasitic PCB-inductances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Switches with bipolar gate drive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.1  
6.2  
6.3  
6.4  
6.5  
7
Layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
8
Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Device numbers and markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
PG-SOT23-6 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
PG-TSNP-6 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
8.1  
8.2  
8.3  
9
List of abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Datasheet  
2
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
1 Pin configuration and description  
1
Pin configuration and description  
The pin configuration for both SOT23-6 and TSNP-6 package is illustrated in Figure 2 and a description is given  
in Table 2 . For functional details, please read Chapter 3.  
SOT23-6  
TSNP-6  
IN-  
OUT_SNK  
1
2
3
6
5
4
OUT_SNK  
OUT_SRC  
VDD  
IN-  
1
2
6
5
4
GND  
GND OUT_SRC  
IN+  
3
VDD  
IN+  
Figure 2  
Table 2  
Pin configuration SOT23-6 and TSNP-6 6-pin packages (top view)  
Pin description  
Pin number Pin name  
Description  
1
2
3
4
5
6
IN-  
Negative input  
connected to controller PWM or ground via input resistor (see Chapter 6)  
GND  
Ground  
negative gate drive voltage ("off" state voltage)  
IN+  
Positive input  
connected to controller PWM or ground via input resistor (see Chapter 6)  
VDD  
Supply voltage  
positive gate drive voltage ("on" state voltage)  
OUT_SRC  
OUT_SNK  
Driver output source  
low-impedance switch to VDD (4 A/0.85 Ω)  
Driver output sink  
low-impedance switch to GND (8 A/0.35 Ω)  
Datasheet  
3
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
2 Block diagram  
2
Block diagram  
A simplified functional block diagram of EiceDRIVER1EDNx550 is given in Figure 3.  
UVLO  
VDD  
IN+  
OUT_SRC  
OUT_SNK  
Differential  
Schmitt  
Trigger  
Diff. Amp.  
+ LPF  
Logic  
IN-  
GND  
Figure 3  
Simplified block diagram of EiceDRIVER1EDNx550  
Datasheet  
4
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
3 Functional description  
3
Functional description  
EiceDRIVER1EDNx550 is a family of high-side and low-side non-isolated gate drivers whose application ranges  
into fields usually reserved for isolated and level shiꢀer drivers, resulting in significant cost benefits. This is  
made possible by the unique truly differential input (TDI) stage concept. The TDI input stage allows controlling  
the driver even if a common-mode voltage is present on the input differential pair. Common-mode voltages up  
to ±200 V DC and ±400 V AC peak between ground reference (GND) and driver inputs (IN-, IN+) are possible.  
EiceDRIVER1EDNx550 is suited for any application with unwanted voltage shiꢀs between driver and system  
ground and in high-side driving within the allowed static common-mode range (±200 V max., see Chapter 6.1).  
Switches requiring a bipolar driving voltage can be operated easily as well, taking advantage of the common  
mode voltage handling capability of the TDI.  
3.1  
Truly differential input (TDI)  
Figure 4 depicts the signal path from the controller’s PWM output to the logic gate driver signal input as  
implemented in 1EDNx550.  
Controller  
PWM  
1EDNx550  
VS  
Rin1  
2kW  
0
IN+  
15pF  
15pF  
1kW  
1kW  
Cp1  
Cp2  
12 MHz  
2nd order  
Lowpass  
Differential  
Schmitt  
Trigger  
Pulse  
Extender  
Av = 4.5  
DVRin  
DVRin / k  
IN-  
SGND  
Rin2  
2kW  
GND  
k = (Rin [kW] + 3) / 3  
Figure 4  
Functional principle of the EiceDRIVER1EDNx550 with truly differential inputs (TDI)  
The two input resistors Rin1 and Rin2 are mandatory for correct operation of EiceDRIVER1EDNx550 since this  
gate driver IC cannot be used as a standard low-side driver with IN- directly connected to GND pin. The PWM  
pin of the controller shall be connected to IN+ pin of EiceDRIVER1EDNx550 through resistor Rin1, while the  
SGND pin of the controller (or PWM in case of half-bridge configurations) shall be connected to IN- pin through  
resistor Rin2. The two resistors Rin1 and Rin2, together with the 2 kΩ and 1 kΩ resistors inside the driver, allow  
to implement a high common-mode rejection ratio (CMRR) differential amplifier that functionally decouples the  
controller outputs from ground of the gate driver.  
Rin1 and Rin2 input resistors shall be chosen as a function of the maximum ΔVRin and the required static  
common-mode voltage between the driver ground and the controller ground, according to Table 16.  
As an example, for maximum ΔVRin = 3.3 V, Rin1 and Rin2 should be 33 kΩ, resulting in a static divider ratio of  
k = 12 at the driver inputs, as per the following voltage divider formula:  
k = (Rin [kΩ] + 3)/3  
(1)  
(2)  
For ΔVRin other than 3.3 V, Rin1 and Rin2 must fulfill the relation:  
Rin1 = Rin2 = (10.9 * VS − 3) [kΩ]  
Datasheet  
5
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
3 Functional description  
where VS is the high voltage level of the PWM signal, usually equal to the controller supply voltage. A lookup  
table is also available in Table 16 as a guide for selecting the value, form factor and tolerance of resistors Rin1  
and Rin2  
.
The input signal is then amplified by a factor of 4.5 from the high-CMRR amplifier and filtered by a 2nd  
order low-pass filter. Considering also the passive differential RC filter in front of the high-CMRR amplifier, the  
overall input signal experiences 3rd order filtering with a corner frequency at 12 MHz. The suppression of high  
frequencies is important to dampen ringing at 100 MHz and above in fast-switching power systems and also  
makes the driver robust against any mismatch of Cp1 and Cp2 input parasitic capacitance (50 to 100 fF range).  
The filtered signal is then applied to the differential Schmitt-Trigger that feeds a pulse extender. The pulse  
extender avoids the transfer of PWM signals shorter than 25 ns to the output stage, improving noise immunity.  
Overall typical input-to-output propagation delay is 45 ns. A propagation delay accuracy of +10/-7 ns is  
achieved.  
3.1.1  
Common-mode input range  
Due to the passive low-pass filtering at the input side, the CMR (common-mode robustness, i.e. the maximum  
allowed voltage difference between controller outputs PWM/SGND and driver reference GND) can be split  
into CMR static and CMR dynamic parameters, depending on the common-mode voltage frequency content.  
Provided a certain input resistor and controller voltage configuration, the CMR static describes the capability of  
the driver to withstand DC voltages, while the CMR dynamic describes the capability of the driver to withstand  
AC voltages due to overshoots or ringing.  
The CMR capabilities strongly depend on input resistors Rin1 and Rin2. The value and accuracy of resistors must  
allow to meet the maximum device voltage ratings at IN+/IN- pins while their form factor shall be chosen to  
meet power dissipation and creepage requirements.  
In more detail, CMR static is limited by the operating voltage at the input pins IN+/IN- (+6 V/-7 V) to allow input  
stage to work in linear mode. CMR dynamic is limited by the absolute maximum ratings (+10 V/-10 V) on the  
same pins. As an example, if 33 kΩ, 0.1% tolerance, 0603 form factor resistors and 3.3 V controller supply voltage  
are used, this translates into a static CMR range of + 72/- 84 V. Under the same conditions, the maximum input  
voltage ratings at pins IN+/IN- of ±10 V results in a dynamic CMR range of ±150 V.  
In case of 127 kΩ, 0.1% tolerance, 1206 form factor resistors and 12 V maximum PWM voltage, the maximum  
CMR static is ± 200 V and the maximum CMR dynamic is ± 400 V.  
In case of different PWM voltages and input resistor configurations, please refer the lookup table in Chapter 6.1.  
The lookup table helps to select the proper resistor parameters (value, form factor, tolerance) depending on  
the needed CMR parameters and PWM voltage, or to check the maximum allowed CMR depending on the PWM  
output voltage and input resistors.  
Please be aware that a perfectly symmetric layout of the input signal path is mandatory to reach the full CMR  
ranges mentioned above. Any parasitic imbalance in the signal path converts a common-mode signal into a  
differential signal, resulting in reduced CMR performances. Layout recommendations can be found in Chapter 7.  
3.2  
Driver outputs  
The rail-to-rail driver output stage made with complementary MOS transistors can provide a typical 4 A sourcing  
and 8 A sinking current.  
The low on-resistance associated with high driving current is particularly beneficial for fast switching of low  
RdsON MOSFETs. With a RON of 0.85 Ω for the sourcing pMOS and 0.35 Ω for the sinking nMOS transistor, the  
driver can be considered to behave as an ideal switch.  
The p-channel sourcing transistor allows real rail-to-rail behavior without suffering from the voltage drop that is  
common for n-channel output stages.  
In case of unconnected inputs, the driver output is actively clamped to the “low” level (GND).  
Datasheet  
6
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
3 Functional description  
3.3  
Supply voltage and undervoltage lockout (UVLO)  
The undervoltage lockout function ensures that the output can be switched only if the supply voltage VDD  
exceeds the UVLO threshold voltage. Thus, this feature can ensure that the power switch is not operated with  
low driving voltage, achieving a complete and fast transition to the "on" state and avoiding excessive power  
dissipation.  
Table 3  
Logic table  
ΔVRin  
x
L 3)  
H 5)  
UVLO  
active 2)  
inactive 4)  
inactive 4)  
OUT_SRC  
high impedance  
high impedance  
H
OUT_SNK  
L
L
high impedance  
EiceDRIVER1EDNx550 is available in two different packages; the SOT23-6 version offers four UVLO threshold  
levels to support switches with a broad range of gate source voltages:  
1EDN7550 with a typical UVLO threshold of 4.2 V (0.3 V hysteresis)  
1EDN8550 with a typical UVLO threshold of 8 V (1 V hysteresis)  
1EDN6550 with a typical UVLO threshold of 12.2 V (0.7 V hysteresis)  
1EDN9550 with a typical UVLO threshold of 14.9 V (0.5 V hysteresis)  
In addition, the maximum VDD of 20 V makes this driver family well-suited for a broad variety of power switch  
types such as OptiMOSCoolMOS, CoolGaNand CoolSiC.  
2
VDD < UVLOoff  
ΔVRin < ΔVRinL  
VDD > UVLOon  
ΔVRin > ΔVRinH  
3
4
5
Datasheet  
7
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
4 Electrical characteristics and parameters  
4
Electrical characteristics and parameters  
Note:  
The absolute maximum ratings are listed in Table 4 . Stresses beyond these values may cause  
permanent damage to the device. Exposure to absolute maximum rating conditions for extended  
periods may affect device reliability.  
4.1  
Absolute maximum ratings  
Table 4  
Absolute maximum ratings  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
-0.3  
Max.  
Supply voltage  
VDD  
VIN  
22  
10  
V
Voltage between VDD to  
GND  
Voltage at pins IN+ and IN-  
Voltage at pin OUT_SRC  
-10  
V
V
VOUT_SRC -24  
0.3  
OUT = low; referred to  
VDD pin, DC  
-24  
VOUT_SNK -0.3  
-2  
2
V
V
V
A
A
OUT = low; referred to  
VDD pin < 200 ns  
Voltage at pin OUT_SNK  
24  
24  
OUT = high; referred to  
GND pin, DC  
OUT = high, referred to  
GND pin < 200 ns  
Peak reverse current at  
OUT_SNK  
ISNK_rev  
ISRC_rev  
-5  
< 500 ns  
Peak reverse current at  
OUT_SRC  
5
< 500 ns  
Junction temperature  
Storage temperature  
ESD capability  
TJ  
-40  
-55  
150  
150  
2
°C  
°C  
kV  
TS  
VESD_HBM  
Human Body Model  
(HBM)6)  
ESD capability  
VESD_CDM  
1
kV  
Charged Device Model  
(CDM)7)  
6
According to ANSI/ESDA/JEDEC JS-001 (discharging 100 pF capacitor through 1.5 kΩ resistor)  
According to ANSI/ESDA/JEDEC JS-002  
7
Datasheet  
8
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
4 Electrical characteristics and parameters  
4.2  
Thermal characteristics  
Table 5  
Thermal characteristics SOT23-6 package  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test Condition  
Min.  
Max.  
Thermal resistance junction- RthJA25  
165.1  
K/W  
K/W  
K/W  
K/W  
K/W  
ambient 8)  
Thermal resistance junction- RthJC25  
79.9  
65.2  
14  
case (top) 9)  
Thermal resistance junction- RthJB25  
board 10)  
Characterization parameter ΨthJC25  
junction-case (top) 11)  
Characterization parameter ΨthJB25  
junction-board 12)  
51  
Table 6  
Thermal characteristics TSNP-6 package  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or Test Condition  
Min.  
Max.  
Thermal resistance junction- RthJA25  
141  
K/W  
K/W  
K/W  
K/W  
K/W  
ambient 8)  
Thermal resistance junction- RthJC25  
81  
36  
80  
36  
case (top) 9)  
Thermal resistance junction- RthJB25  
board 10)  
Characterization parameter ΨthJC25  
junction-case (top) 11)  
Characterization parameter ΨthJB25  
junction-board 12)  
8
Obtained in a simulation on a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment  
described in JESD51-2a  
Obtained by simulating a cold plate test on the package top. No specific JEDEC standard test exists, but a  
close description can be found in the ANSI SEMI standard G30-88  
Obtained by simulation in an environment with a ring cold plate fixture to control the PCB temperature, as  
described in JESD51-8  
Estimates the junction temperature of a device in a real system and is extracted from the simulation data  
for obtaining Rth, using a procedure described in JESD51-2a (sections 6 and 7)  
Estimates the junction temperature of a device in a real system and is extracted from the simulation data  
for obtaining Rth, using a procedure described in JESD51-2a (sections 6 and 7)  
9
10  
11  
12  
Datasheet  
9
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
4 Electrical characteristics and parameters  
4.3  
Operating range  
Table 7  
Operating range  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
4.5  
Max.  
Supply voltage  
VDD  
20  
6
V
Min defined by UVLO  
Voltage at pins IN+ and IN-  
Junction temperature  
VIN  
TJ  
-7  
V
13)  
-40  
150  
°C  
4.4  
Electrical characteristics  
Unless otherwise noted, min./max. values of characteristics are the lower and upper limits, respectively. They  
are valid within the full operating range. The supply voltage is VDD = 12 V unless otherwise specified. Typical  
values are given at TJ = 25°C  
Table 8  
Power supply  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
VDD quiescent current  
VDD quiescent current  
VDD quiescent current  
VDD quiescent current  
IVDDh  
IVDDh  
IVDDl  
IVDDl  
1.1  
mA  
mA  
mA  
mA  
OUT = high  
VDD = 12 V  
1.3  
0.9  
1.0  
OUT = high  
VDD = 18 V 14)  
OUT = low  
VDD = 12 V  
OUT = low  
VDD = 18 V 14)  
Table 9  
Undervoltage Lockout 1EDN7550x (Logic level MOSFET)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
3.9  
Max.  
4.5  
Undervoltage Lockout (UVLO) UVLOon  
turn on threshold  
4.2  
V
V
V
Undervoltage Lockout (UVLO) UVLOoff  
turn off threshold  
3.6  
3.9  
0.3  
UVLO threshold hysteresis  
UVLOhys 0.25  
0.35  
13  
Continuous operation above 125°C may reduce life time  
Parameter verified by design/characterization, not 100% tested in production  
14  
Datasheet  
10  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
4 Electrical characteristics and parameters  
Table 10  
Undervoltage Lockout 1EDN8550B (Standard MOSFET)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
7.4  
Max.  
8.6  
Undervoltage Lockout (UVLO) UVLOon  
turn on threshold  
8.0  
V
V
V
Undervoltage Lockout (UVLO) UVLOoff  
turn off threshold  
6.6  
7.0  
1.0  
UVLO threshold hysteresis  
UVLOhys 0.8  
1.2  
Table 11  
Undervoltage Lockout 1EDN6550B (12 V UVLO option)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
11.7  
Max.  
12.7  
Undervoltage Lockout (UVLO) UVLOon  
turn on threshold  
12.2  
V
V
V
Undervoltage Lockout (UVLO) UVLOoff  
turn off threshold  
11.0  
11.5  
0.7  
UVLO threshold hysteresis  
UVLOhys 0.5  
0.9  
Table 12  
Undervoltage Lockout 1EDN9550B (15 V UVLO option)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
14.4  
Max.  
15.4  
Undervoltage Lockout (UVLO) UVLOon  
turn on threshold  
14.9  
V
V
V
Undervoltage Lockout (UVLO) UVLOoff  
turn off threshold  
13.9  
14.4  
0.5  
UVLO threshold hysteresis  
UVLOhys 0.3  
0.7  
Table 13  
Inputs IN+, IN-  
Parameter  
Symbol  
Values  
Typ.  
1.7  
Unit Note or Test Condition  
Min.  
Max.  
Differential input voltage  
threshold for transition LH (at  
input resistor)  
VRinH  
V
Independent of VDD  
Rin1 = Rin2 = 33 kΩ 15)  
Differential input voltage  
threshold for transition HL (at  
input resistor)  
VRinL  
1.5  
36  
V
Independent of VDD  
Rin1 = Rin2 = 33 kΩ 15)  
Total input resistance on each Rin1, Rin2  
leg  
kΩ  
Rin1 = Rin2 = 33 kΩ 15)  
15  
see Figure 1  
Datasheet  
11  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
4 Electrical characteristics and parameters  
Table 14  
Static output characteristics  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
High-level (sourcing) output  
resistance  
Ron_SRC  
ISRC_pk  
0.85  
A
ISRC = 50 mA  
16)  
Sourcing output current  
4.0  
5.2  
VDD = 12 V  
16)  
Sourcing output current  
ISRC_pk  
A
VDD = 18 V  
Low-level (sinking) output  
resistance  
Ron_SNK  
ISNK_pk  
0.35  
-8.0  
A
ISNK = 50 mA  
17)  
Sinking output current  
VDD = 12 V  
17)  
Sinking output current  
ISNK_pk  
-9.4  
A
VDD = 18 V  
Table 15  
Dynamic characteristics  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or Test Condition  
Min.  
Max.  
Input-to-output propagation tPDon  
38  
38  
45  
55  
55  
15  
ns  
ns  
ns  
CL = 200 pF  
delay turn-on  
Input-to-output propagation tPDoff  
delay turn-off  
45  
CL = 200 pF  
18)  
Rise time  
Fall time  
Rise time  
trise  
tfall  
trise  
6.5  
4.5  
1
CL = 1.8 nF  
18)  
15  
5
ns  
ns  
CL = 1.8 nF  
18)  
CL = 200 pF  
18)  
Fall Time  
tfall  
tPW  
1
5
ns  
ns  
CL = 200 pF  
18)  
Minimum input pulse width  
that changes output state  
25  
CL = 1.8 nF  
For an illustration of the dynamic characteristics see Figure 6 and Figure 7  
Figure 5 gives the circuit used for parameter testing  
16  
Actively limited to approx. 5.2 Apk; not subject to production test - verified by design/characterization  
Actively limited to approx. -10.4 Apk; not subject to production test - verified by design/characterization  
Parameter verified by design, not 100% tested in production  
17  
18  
Datasheet  
12  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
4 Electrical characteristics and parameters  
EiceDRIVER™  
1EDNx550  
VDD  
33k  
IN-  
OUT_SNK  
SGND  
33k  
DVRin  
GND OUT_SRC  
VDD  
IN+  
CVDD  
CL  
Figure 5  
Test circuit  
4.5  
Timing diagram  
Figure 6 depicts rise, fall and delay times as given in the Chapter 4.  
1.7  
1.5  
IN+ - IN-  
50%  
90%  
10%  
OUTx  
tPDoff  
tPDon  
trise  
tfall  
Figure 6  
Propagation delay, rise and fall time  
Figure 7 illustrates the undervoltage lockout function.  
UVLOon  
UVLOoff  
VDD  
OUTx  
Figure 7  
UVLO behavior (output state high)  
Datasheet  
13  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
5 Typical characteristics  
5
Typical characteristics  
1.  
Undervoltage lockout threshold (1EDN7550) 2.  
vs temperature  
Undervoltage lockout threshold (1EDN8550)  
vs temperature  
4.5  
8.8  
UVLO on  
UVLO off  
UVLO on  
UVLO off  
8.4  
8.0  
7.6  
7.2  
6.8  
6.4  
4.3  
4.1  
3.9  
3.7  
-50  
0
50  
100  
150  
-50  
0
50  
100  
150  
T [°C]  
j
T [ °C]  
j
3.  
Undervoltage lockout threshold (1EDN6550) 4.  
vs temperature  
Undervoltage lockout threshold (1EDN9550)  
vs temperature  
Datasheet  
14  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
5 Typical characteristics  
5.  
Differential input voltage threshold vs  
temperature  
6.  
Typical quiescent current vs temperature  
2.5  
ON threshold  
OFF threshold  
2.3  
2.1  
1.9  
1.7  
1.5  
1.3  
1.1  
VDD=12V  
Vin=3.3V  
-50  
0
50  
100  
150  
T [°C]  
j
7.  
Typical quiescent current vs supply voltage 8.  
Total operating current consumption with  
capacitive load vs frequency  
50  
1.6  
VDD 4.5V  
VDD 12V  
VDD 20V  
OUT High  
OUT Low  
Duty Cycle 50%  
CL = 1.8nF  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
40  
30  
20  
10  
0
0
200  
400  
600  
800  
1000  
0
5
10  
15  
20  
25  
Frequency [kHz]  
VDD [V]  
Datasheet  
15  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
5 Typical characteristics  
9.  
Typical propagation delay vs temperature  
10. Typical rise and fall time vs temperature  
Datasheet  
16  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
6 Application and implementation  
6
Application and implementation  
Note:  
The following information is given as an example for the implementation of the device only and shall  
not be regarded as a description or warranty of a certain functionality, condition or quality of the  
device  
6.1  
Input resistor dimensioning  
Table 16 is a lookup table that shows the required input resistor configuration for Rin1 and Rin2 (values, form  
factor and accuracy) depending on the controller PWM output voltage and the required ground shiꢀ robustness  
(static and dynamic CMR). It can be also used to check the maximum allowed CMR, given a certain resistor and  
controller configuration.  
Table 16  
Input resistor configuration lookup table  
Input resistor configuration  
Ground shiꢀ robustness  
CMR static 20)  
CMR dynamic  
-30 V/+30 V ±150 V  
Controller PWM  
output voltage  
Value  
Tolerance  
1%  
Form factor19)  
2.5 V  
3.3 V  
5 V  
24 kΩ  
≥0402  
0.1%  
1%  
≥0603  
-54 V/+63 V  
-40 V/+40 V  
±150 V  
±150 V  
±150 V  
±150 V  
±200 V  
±200 V  
±400 V  
±400 V  
±200 V  
±400 V  
±400 V  
33 kΩ  
51 kΩ  
≥0402  
0.1%  
1%  
≥0603  
-72 V/+84 V  
≥0603  
-60 V/+60 V  
0.1%  
1%  
≥0805  
-108 V/+126 V  
-140 V/+140 V  
-140 V/+140 V  
-200 V/+200 V  
-150V/+150 V  
-175 V/+175 V  
-200 V/+200 V  
12 V  
127 kΩ  
≥0805  
1%  
≥1206  
0.1%  
1%  
≥1206  
15 V  
160 kΩ  
≥0805  
1%  
≥1206  
0.1%  
≥1206  
Note:  
For further information please see the Application Note of EiceDRIVER 1EDNx550 single channel with  
truly differential inputs found in reference [1]  
6.2  
Half-bridge driving  
The EiceDRIVER1EDNx550 is designed to drive low-side MOSFETs in applications with AC ground-shiꢀ between  
the controller IC and the driver. However, its properties also make it suitable for use in half-bridge or full-bridge  
configurations, as shown in Figure 8. The EiceDRIVER1EDNx550 can effectively drive high-side devices,  
replacing level-shiꢀ gate driver ICs in half and full-bridge topologies.  
In the half-bridge structure in Figure 8, when the high-side switch is conducting, a DC offset equal to VBUS occurs  
between the ground of the high-side driver (i.e. the phase node) and the controller ground. The differential  
19  
Please check PWM signal duty cycle and resistor power rating  
Driver ground to system ground  
20  
Datasheet  
17  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
6 Application and implementation  
behavior of the EiceDRIVER1EDNx550 enables to handle the floating voltage at the switching node up to the  
CMR static level stated in Table 16 (e.g. up to 84 V for 3.3 V PWM outputs and 33 kΩ ±0.1% input resistors in  
0603 form factor). Common applications are buck converters, full-bridge converters, synchronous rectifiers and  
motor drive stages.  
VDD  
EiceDRIVER™  
1EDNx550  
Dboot  
Rboot  
VBus  
SGND  
D
S
Rin-HS  
IN-  
OUT_SNK  
OUT_SRC  
VDD  
PGND  
RgOFF_HS  
RgON_HS  
GND  
IN+  
Controller  
G
Rin+HS  
PWM1  
Cboot  
Vphase  
EiceDRIVER™  
1EDNx550  
PWM2  
GND  
RVDD  
D
S
Rin-LS  
IN-  
OUT_SNK  
OUT_SRC  
VDD  
RgOFF_HS  
RgON_HS  
SGND  
GND  
IN+  
G
Rin+LS  
CVDD  
PGND  
Figure 8  
EiceDRIVER1EDNx550 in half-bridge applications  
6.3  
Switches with Kelvin-source connection (4-pin packages)  
The 4-pin configuration depicted in Figure 9 is a very effective measure to improve the switching performance  
of transistors in packages with high source inductance LS as is typical for the widely used TO packages. Although  
the Kelvin-source connection SS solves the problem of the largely increased switching losses due to LS, it is  
evident that the gate driver reference potential moves by an inductive voltage drop, VLS with respect to the  
system ground, SGND. In fast-switching applications at high current, VLS can reach 100 V and above. This is the  
reason 4-pin systems so far either used isolated drivers or external filters with relatively low corner frequency  
that add significant signal delay. The EiceDRIVER1EDNx550 is effective in this use case and provides an  
optimum solution.  
Figure 9 also indicates that the usually SGND-related VDD cannot be used directly as the driver supply. But  
due to the high frequency of VLS (> 100 MHz), a filter composed of impedance ZVDD together with the bypass  
capacitor CVDD is well suited to generate a sufficiently stable driver supply. ZVDD can be either a resistor (e.g. 22 Ω  
with a typical CVDD of 1 µF) or a proper ferrite bead.  
Datasheet  
18  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
6 Application and implementation  
MOSFET  
EiceDRIVER™  
1EDNx550  
VDD  
Controller  
ZVDD  
Rgoff  
D
Rin1  
SGND  
IN- OUT_SNK  
GND OUT_SRC  
GND  
SGND  
G
Rgon  
CVDD  
DVRin  
VDD  
IN+  
PWM_Out  
Rin2  
SS  
vLS  
LS  
S
PGND  
Figure 9  
EiceDRIVER1EDNx550 driving a Kelvin-source 4 pin MOSFET  
6.4  
Applications with significant parasitic PCB-inductances  
In fast switching power systems the parasitic inductance associated with any electrical connection may cause  
significant inductive voltage drops, particularly if the PCB-layout cannot be optimized or if the controller and  
the power stage are located on two different PCBs.  
In such situations, the high robustness of EiceDRIVER1EDNx550 against switching noise and ground shiꢀs is  
extremely valuable and allows good performances even in systems with poor PCB layouts.  
Figure 10 indicates the most relevant parasitic PCB-inductances and how the EiceDRIVER1EDNx550 can be  
configured in this application.  
MOSFET  
EiceDRIVER™  
1EDNx550  
VDD  
Controller  
ZVDD  
Rgoff  
D
Rin1  
SGND  
IN-  
OUT_SNK  
GND  
G
GND OUT_SRC  
DVRin  
Rgon  
VDD  
IN+  
PWM_Out  
S
Rin2  
CVDD  
Lpar2  
Lpar3  
Lpar1  
SGND  
Figure 10  
EiceDRIVER1EDNx550 in applications with significant PCB inductances  
Datasheet  
19  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
6 Application and implementation  
6.5  
Switches with bipolar gate drive  
Although most power switches operate at zero “off” gate to source voltage, a negative Vgs could be required  
for some devices by specifications or to prevent induced turn-on in case of fast voltage transients or charge  
injection on the gate node. Consequently, a bipolar supply voltage rail can be required for the gate driver to  
ensure proper MOSFETs, SiC, and GaN driving.  
EiceDRIVER1EDNx550 can easily drive power switches requiring bipolar Vgs voltage: Figure 11 shows a layout-  
effective method to create two supplies out of a single one through a biased Zener diode. In this simple  
configuration, the bias voltage VB defines the positive Vgs driving voltage, while the negative Vgs driving voltage  
is given by the voltage difference VB - VDD  
.
EiceDRIVER™  
1EDNx550  
MOSFET  
Controller  
VDD  
D
Rin1  
RgON  
SGND  
IN-  
OUT_SNK  
SGND  
GND OUT_SRC  
G
RgOFF  
DVRin  
PWM_Out  
S
IN+  
VDD  
Rin2  
Cs1  
Cs2  
VB  
PGND  
Rs  
VSS  
Figure 11  
Bipolar gate drive for 3-pin MOSFET  
Datasheet  
20  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
7 Layout guidelines  
7
Layout guidelines  
It is well-known that the layout of a fast-switching power system is a critical task with strong influence on the  
overall performance. This is why there exists a huge number of rules, recommendations, guidelines, tips and  
tricks that should help to finally end up with a proper system layout.  
EiceDRIVER1EDNx550 simplifies the design of the grounding network. Maximum performance and CMR  
capabilities provide a specific input resistor configuration and can be achieved by the following design rules:  
place input resistors Rin close to the driver and make layout of input signal path as symmetric and as  
compact as possible  
use a low-ESR decoupling capacitance for the VDD supply and place it as close as possible to the driver  
minimize power loop inductance as the most critical limitation of switching speed due to the resulting  
unavoidable voltage overshoots  
A layout recommendation for the input path of the SOT23-6 package version is given in Figure 12.  
RGOFF  
DRV_GND  
RIN1  
IN_N  
IN_P  
IN-  
GND  
IN+  
OUT_SNK  
OUT_SRC  
VDD  
OUT  
RGON  
CVDD  
RVDD  
RIN2  
VIN  
Figure 12  
Layout recommendation for SOT23-6 package  
As in the case of the TSNP-6 package routing in a single PCB layer is not possible, the layout can be changed  
according to Figure 13 . The chosen form factor of the input resistors (0603) allows to utilize the full dynamic  
common-mode input range of ±150 V.  
DRV_GND  
RGOFF  
RIN1  
IN_N  
IN_P  
1EDN7550U  
GND  
OUT_SRC  
OUT  
RGON  
CVDD  
RIN2  
VIN  
RVDD  
Figure 13  
Layout recommendation for TSNP-6 package with SMD resistor 0603  
Datasheet  
21  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
7 Layout guidelines  
For applications that do not require the maximum CMR an even more compact layout utilizing resistors of form  
factor 0402 is shown in Figure 14.  
RGOFF  
DRV_GND  
RIN1  
1EDN7550U  
IN_N  
IN_P  
OUT  
GND  
OUT_SRC  
RGON  
CVDD  
RIN2  
RVDD  
VIN  
Figure 14  
Layout recommendation for TSNP-6 package with SMD resistor 0402  
For further layout recommendations for TSNP-6, see Recommendations for Printed Circuit Board Assembly of  
Infineon TSLP/TSSLP/TSNP Packages [2].  
When conductive pollution could occur, please consider coating for PCB in order to prevent the leakage current  
over external resistor pair that might reduce its accuracy.  
Datasheet  
22  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
8 Package information  
8
Package information  
8.1  
Device numbers and markings  
Table 17  
Device numbers and markings  
Part number  
1EDN7550U  
1EDN7550B  
1EDN8550B  
1EDN6550B  
1EDN9550B  
Orderable part number (OPN)  
Device marking  
1EDN7550UXTSA1  
1EDN7550BXTSA1  
1EDN8550BXTSA1  
1EDN6550BXTSA1  
1EDN9550BXTSA1  
70  
70  
80  
60  
90  
8.2  
PG-SOT23-6 package  
1)  
1)  
2.9  
1.6  
0.15 C A-B  
2x  
0.15 C D 2x  
0.45±0.1  
2.8  
C
0.1 C  
COPLANARITY  
0.2 C  
6x  
SEATING  
D
PLANE  
0.4±0.1  
0.2  
C A B  
6x  
BOTTOM VIEW  
A
6
4
6
4
1
3
3
1
INDEX  
MARKING  
B
0.95  
1) DOES NOT INCLUDE PLASTIC OR METAL PROTRUSION OF 0.15 MAX. PER SIDE  
ALL DIMENSIONS ARE IN UNITS MM  
THE DRAWING IS IN COMPLIANCE WITH ISO 128 & PROJECTION METHOD 1 [  
]
Figure 15  
PG-SOT23-6 outline  
Datasheet  
23  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
8 Package information  
0.95  
0.5  
0.95  
0.5  
copper  
solder mask  
stencil apertures  
ALL DIMENSIONS ARE IN UNITS MM  
Figure 16  
PG-SOT23-6 footprint  
4
4
0.25  
PIN 1  
INDEX MARKING  
3.3  
1.55  
ALL DIMENSIONS ARE IN UNITS MM  
THE DRAWING IS IN COMPLIANCE WITH ISO 128 & PROJECTION METHOD 1 [  
]
Figure 17  
PG-SOT23-6 packaging  
Datasheet  
24  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
8 Package information  
Type code  
Pin 1 marking  
Date code (YW)  
Figure 18  
Package marking (PG-SOT23-6)  
Note:  
Date code digits Y and W in Table 18 and Table 19  
Table 18  
Year date code marking - digit "Y"  
Year  
2000  
2001  
2002  
2003  
2004  
2005  
2006  
2007  
2008  
2009  
Y
0
1
2
3
4
5
6
7
8
9
Year  
2010  
2011  
2012  
2013  
2014  
2015  
2016  
2017  
2018  
2019  
Y
0
1
2
3
4
5
6
7
8
9
Year  
2020  
2021  
2022  
2023  
2024  
2025  
2026  
2027  
2028  
2029  
Y
0
1
2
3
4
5
6
7
8
9
Table 19  
Week date code marking - digit "W"  
Week  
W
A
B
C
D
E
Week  
12  
W
N
P
Q
R
S
Week  
23  
W
4
5
6
7
a
b
c
Week  
W
h
j
Week  
45  
46  
47  
48  
49  
50  
51  
52  
W
v
x
1
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
2
13  
24  
3
14  
25  
k
l
y
z
4
15  
26  
5
16  
27  
n
p
q
r
8
9
2
3
6
F
17  
T
28  
7
G
H
J
18  
U
V
29  
8
19  
30  
d
e
f
9
20  
W
Y
31  
s
10  
11  
K
L
21  
32  
t
22  
Z
33  
g
u
Datasheet  
25  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
8 Package information  
8.3  
PG-TSNP-6 package  
1.1±0.05  
0.375±0.025  
0.3±0.05  
A
0.1 A  
6x  
3
2
1
4
5
6
INDEX MARKING  
(LASERED)  
0.6  
ALL DIMENSIONS ARE IN UNITS MM  
THE DRAWING IS IN COMPLIANCE WITH ISO 128 & PROJECTION METHOD 1 [  
]
Figure 19  
PG-TSNP-6 outline  
Optional solder mask dam  
0.35  
0.6  
0.6  
copper  
solder mask  
stencil apertures  
ALL DIMENSIONS ARE IN UNITS MM  
Figure 20  
PG-TSNP-6 footprint  
Datasheet  
26  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
8 Package information  
4
PIN 1  
INDEX MARKING  
4
0.5  
1.3  
ALL DIMENSIONS ARE IN UNITS MM  
THE DRAWING IS IN COMPLIANCE WITH ISO 128 & PROJECTION METHOD 1 [  
]
Figure 21  
PG-TSNP-6 packaging  
Pin 1 marking  
Date code (YW)  
Type code  
Figure 22  
Package marking (PG-TSNP-6)  
Note:  
Date code digits Y and W in Table 18 and Table 19  
Further information on packages: www.infineon.com/packages  
Datasheet  
27  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
9 List of abbreviations  
9
List of abbreviations  
Table 20  
List of abbreviations  
Acronym  
CMR  
CMRR  
ESD  
Description  
common-mode robustness  
common-mode rejection ratio  
electrostatic discharge  
equivalent series resistance  
ground  
ESR  
GND  
GaN  
LPF  
gallium nitride  
low pass filter  
OPN  
PCB  
orderable part number  
printed circuit board  
silicon carbide  
SiC  
SOT  
small outline transistor  
surface mount device  
truly differential input  
transistor outline  
SMD  
TDI  
TO  
TSNP  
UVLO  
thin small discrete package  
undervoltage lockout  
Datasheet  
28  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
References  
References  
[1]  
InfineonApplications of 1EDNx550 single-channel low-side EiceDRIVERwith truly differential inputs  
(Rev.1.1), 2019-08-07, [Infineon-ApplicationNote_EiceDRIVER_1EDN_TDI_1EDNx550]  
Infineon Recommendations for Printed Circuit Board Assembly of Infineon TSLP/TSSLP/TSNP Packages,  
June 2010, [Recommendations for printed circuit board assembly of Infineon TSLP/TSSLP/TSNP  
packages  
[2]  
Datasheet  
29  
Rev.2.3  
2021-11-12  
EiceDRIVER 1EDNx550  
Single-channel high-side and low-side gate driver with high-CMR TDI inputs  
Revision history  
Revision history  
Document  
version  
Date of  
release  
Description of changes  
Rev.2.3  
2021-11-12  
Specifications of 1EDN7550B, 1EDN8550B and 1EDN7550U not changed  
Added new product variants 1EDN6550B and 1EDN9550B  
Updated maximum CMR range to ±200 V static, ±400 V dynamic  
Editorial enhancement of layout and descriptions on front cover  
Editorial enhancement of Pin configuration Table 2  
Editorial enhancement of Functional description in Chapter 3  
Corrected typo ISNK_rev Table 4  
Added UVLOoff min. values for all product variants  
Corrected typos in Test circuit Figure 5  
Updated Figure: Typical propagation delay vs temperature in Chapter 5  
Editorial enhancement in Application and implementation Chapter 6  
Added Table 16 in Chapter 6.1  
Added Half-bridge driving in Chapter 6.2  
Editorial enhancement in Layout guidelines Chapter 7  
Chapter Device numbers and markings moved to Chapter 8.1  
Added list of abbreviations in Chapter 9  
Rev.2.2  
2019-12-19  
Added new product 1EDN7550U with package TSNP-6  
On front cover "Features", added reference to application note  
(Applications of 1EDNx550 single-channel lowside EiceDRIVERwith truly  
differential inputs.) for input PWM signal voltage levels other than 3.3 V  
Added Table 3, Logic table  
Corrected footnote in Table 4 VESD_HDM  
Updated Max. value in Table 4 VESD_CDM and added footnote  
Updated Thermal characteristics in Table 5 and added Table 6  
Updated Typ. values for Table 8 and added footnotes for Table 15  
Added Figure 5 for Test circuit  
Added layout recommendations for TSNP package Figure 13 and Figure 14  
Added package marking for SOT23 Figure 18 and code marking tables  
Table 18, Table 19  
Added package marking for TSNP Figure 22  
Added Chapter 8.1, Device numbers and markings  
Rev. 2.1  
2019-11-28  
Parameter split in Table 4 Voltage at pins OUT_SRC and OUT_SNK →  
Voltage at pin OUT_SRC and Voltage at pin OUT_SNK and specified min.  
and max.  
Corrected typo in Table 4 VESD_CDM  
To match pin configurations in Figure 2 update of Figure 1 as well as in  
Chapter 5 the Figure 9 to former Figure: 1EDNx550 as a high-side driver in  
former Chapter: High-side switches  
Updated diagram according to number of OUT pins → OUTx, Figure 7  
CLoad → CL for Fig 12 and Fig 14  
Updated to latest package diagrams, Chapter 8  
Rev. 2.0  
2018-05-14  
Final Datasheet created  
Datasheet  
30  
Rev.2.3  
2021-11-12  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2021-11-12  
Published by  
IMPORTANT NOTICE  
WARNINGS  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
Infineon Technologies AG  
81726 Munich, Germany  
©
2021 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-vbg1622805011331  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

1EDP

PC Board Mountable RFI Filters for General Purpose Applications
TE

1EDS20I12SV

1200 V单通道高边栅极驱动IC, UL认证,实现了转换驱动速率控制、DESAT、过流软关断和两级关断闭
INFINEON

1EDS5663H

GaN EiceDRIVER™IC具有出色的稳健性和效能,非常适合驱动GaN HEMT
INFINEON

1EDU20I12SV

1200 V单通道高边栅极驱动IC,获得UL认证,实现了电隔离、转换驱动速率控制、DESAT、过流软关断和两级关断闭
INFINEON

1EEA1

Cost Effective Compact REI Filter IEC Connector Package
TE

1EEA1_11

Cost-effective EMI Power Inlet Filter
TE

1EEA2

Cost Effective Compact REI Filter IEC Connector Package
TE

1EEA2

Cost-effective EMI Power Inlet Filter
MACOM

1EEAP

Cost Effective Compact REI Filter IEC Connector Package
TE

1EEB1

Cost Effective Compact REI Filter IEC Connector Package
TE

1EEB2

Cost Effective Compact REI Filter IEC Connector Package
TE

1EEBP

Cost Effective Compact REI Filter IEC Connector Package
TE