2EDR7259X [INFINEON]

The EiceDRIVER™ 2EDR7259X is a reinforced isolated gate driver IC for control over the mandatory safe isolation barrier in SMPS. The strong 5 A/9 A source/sink dual-channel gate driver comes with a very high 150 V/ns CMTI (common mode transient immunity) for robust operation with CoolGaN™ GIT HEMTs and high-power switching noise environment.;
2EDR7259X
型号: 2EDR7259X
厂家: Infineon    Infineon
描述:

The EiceDRIVER™ 2EDR7259X is a reinforced isolated gate driver IC for control over the mandatory safe isolation barrier in SMPS. The strong 5 A/9 A source/sink dual-channel gate driver comes with a very high 150 V/ns CMTI (common mode transient immunity) for robust operation with CoolGaN™ GIT HEMTs and high-power switching noise environment.

驱动
文件: 总34页 (文件大小:4376K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X is a family of dual-channel isolated gate driver ICs, designed  
to drive Si and SiC MOSFETs and GaN HEMTs power switches. All products are available in a DSO package with  
8 mm input-to-output creepage and provide reinforced isolation by means of on-chip coreless transformer (CT)  
technology. 2EDRx259X and 2EDRx258X variants in a 14-pin DSO package offer increased channel-to-channel  
creepage. They are suited for use in applications with higher bus voltage or higher pollution degree and,  
in general, can ease PCB routing. All versions offer optional shoot-through protection (STP) and dead-time  
control (DTC) functionality. This allows the operation as dual-channel low-side, dual-channel high-side or  
half-bridge gate driver with a configurable dead-time. With excellent common-mode transient immunity (CMTI),  
low part-to-part skew and fast signal propagation, the products are best suited for use in fast-switching power  
conversion systems.  
Features  
Table 1  
Portfolio  
2-channel isolated gate driver for Si and SiC  
MOSFETs and GaN HEMTs power switches  
Part number UVLO EN/DIS Package  
Fast input-to-output propagation (38 ns) with  
excellent stability (+9/-5 ns)  
2EDR8259H  
2EDR7259X  
2EDR8259X  
2EDR9259X  
2EDR8258X  
2EDR6258X  
2EDR9258X  
8 V  
DIS  
DIS  
DIS  
DIS  
EN  
DSO16-300mil  
DSO14-300mil  
DSO14-300mil  
DSO14-300mil  
DSO14-300mil  
DSO14-300mil  
DSO14-300mil  
4 V  
Strong output stage: 5 A/9 A source/ sink  
Fast output clamping for VDDA/B < UVLO  
Fast UVLO recovery time (< 2 μs)  
8 V  
15 V  
8 V  
Four VDDA/B UVLO options: 4 V, 8 V, 12 V, 15 V  
CMTI > 150 V/ns  
12 V  
15 V  
EN  
Available in 16/14-pin 300 mil DSO package  
EN  
Isolation and safety certificates  
Potential applications  
UL1577 with VISO = 5700 VRMS (certification n.  
E311313)  
VDE0884-11 with VIOTM = 8000 Vpk, VIORM = 1767 Vpk  
VIOSM = 6875 Vpk (certification n. 40052310)  
IEC 60747-17 (certification n. 40055138)  
IEC62368-1 (certification n. 40052310, appendix  
500Z1)  
Server, telecom SMPS  
EV Off-board chargers  
Low-voltage drives and power tools  
Solar micro inverter, solar optimizer  
Industrial power supply (SMPS, Residential UPS)  
,
Product validation  
Fully qualified for industrial applications  
HV BUS  
1
2
3
4
5
14  
13  
PWM1  
INA  
VDDA  
OUTA  
GNDA  
Floating  
Gate Driver  
ChA  
PWM2  
VDD  
INB  
VDDI  
GNDI  
DIS  
12  
functional  
Ch-Ch  
Logic  
input  
isolation  
GPIOx  
6
11  
10  
Floating  
Gate Driver  
ChB  
DTC  
N.C.  
VDDB  
7
8
OUTB  
GNDB  
9
VDDI  
reinforced in-out  
isolation  
Figure 1  
Application diagram  
Datasheet  
www.infineon.com  
Please read the sections "Important notice" and "Warnings" at the end of this document  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
Table of contents  
Table of contents  
Table of contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1
Pin configuration and description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
2
Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Power supply and Undervoltage Lockout (UVLO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Input supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Output supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Input stage - INA, INB, DISABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Shoot-through protection and configurable dead-time - STP/DTC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Gate driver outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Fast active output clamping in UVLO conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
CT communication and input to output data transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1  
2.2  
2.2.1  
2.2.2  
2.3  
2.4  
2.5  
2.6  
2.7  
3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
Operating range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Isolation specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
3.1  
3.2  
3.3  
3.4  
3.5  
4
5
Timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Typical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6
Package outline dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Device numbers and markings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Package DSO16-300mil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Package DSO14-300mil . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
6.1  
6.2  
6.3  
7
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Datasheet  
2
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
1 Pin configuration and description  
1
Pin configuration and description  
INA  
INB  
VDDA  
OUTA  
GNDA  
N.C.  
INA  
INB  
VDDA  
OUTA  
GNDA  
INA  
INB  
VDDA  
OUTA  
GNDA  
1
2
3
4
5
6
7
16  
15  
14  
13  
12  
11  
1
2
3
4
5
6
7
14  
13  
12  
1
2
3
4
5
6
7
14  
13  
12  
VDDI  
GNDI  
VDDI  
GNDI  
VDDI  
GNDI  
2EDRx259X  
2EDR8259H  
2EDRx258X  
DIS  
N.C.  
DIS  
EN  
STP/DTC  
VDDB  
OUTB  
GNDB  
STP/DTC  
VDDB  
OUTB  
GNDB  
STP/DTC  
VDDB  
OUTB  
GNDB  
11  
11  
N.C.  
N.C.  
N.C.  
10  
9
10  
9
10  
9
VDDI  
8
VDDI  
8
VDDI  
8
Figure 2  
Table 2  
Pin configuration (top side view)  
Pin description  
Pin  
Pin  
Symbol Description  
16-pin  
14-pin  
1
2
1
2
INA  
INB  
Input signal channel A  
Logic input with TTL compatible thresholds and internal pull-down resistor  
Input signal channel B  
Logic input with TTL compatible thresholds and internal pull-down resistor  
3,8  
4
3,8  
4
VDDI  
Input-side supply voltage (operating range: 3 V to 17 V)  
GNDI  
Ground primary-side  
5
5
DIS/ EN  
Disable input channel A and B (active high)  
If DIS is low or lef open, OUTA/OUTB are controlled by INA/INB  
DIS high causes OUTA/OUTB low  
ENABLE input channel A and B (active high)  
If EN is high, OUTA/OUTB are controlled by INA/INB  
EN low or lef open causes OUTA/OUTB low  
6
6
STP/DTC Shoot-through Protection (STP) and Dead-Time Control (DTC)  
If STP/DTC is high or lef open, OUTA and OUTB can overlap (SPT and DTC  
disabled).  
If STP/DTC is connected to GNDI with a resistance RDTC, OUTA and OUTB  
cannot overlap and a “safe dead-time” can be configured: tdt [ns] = 10  
x RDTC [kΩ]  
If STP/DTC is connected to GNDI, OUTA and OUTB cannot overlap (STP only  
enabled)  
Connecting capacitors to the DTC pin must be avoided.  
7,12,13  
7
N.C.  
No internal connection  
9
9
GNDB  
OUTB  
Ground secondary-side channel B  
10  
10  
Output secondary-side channel B  
Low-impedance output with source and sink capability  
11  
14  
11  
12  
VDDB  
GNDA  
Supply secondary-side channel B (operating range: UVLO to 20 V)  
Ground secondary-side channel A  
(table continues...)  
Datasheet  
3
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
1 Pin configuration and description  
Table 2  
(continued) Pin description  
Symbol Description  
Pin  
Pin  
16-pin  
14-pin  
15  
13  
OUTA  
Output secondary-side channel A  
Low-impedance output with source and sink capability  
16  
14  
VDDA  
Supply secondary-side channel A (operating range: UVLO to 20 V)  
For package drawing details see Chapter 6.  
Datasheet  
4
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
2 Functional description  
2
Functional description  
2.1  
Block diagram  
A simplified functional block diagram for EiceDRIVER2EDR8259H, 2EDRx259X is given in Figure 3.  
NC  
7
1
UVLO  
16  
15  
VDDA  
INA  
VDDI  
VDDA  
RX  
TX  
OUTA  
GNDA  
Active  
Clamping  
3,8  
5
UVLO  
14  
11  
Dead  
Time  
Control  
Channel to Channel Isolation  
DISABLE  
UVLO  
VDDB  
INB  
2
6
VDDB  
10  
9
RX  
TX  
OUTB  
GNDB  
STP/DTC  
Active  
Clamping  
4
GNDI  
Figure 3  
Block diagram  
2.2  
Power supply and Undervoltage Lockout (UVLO)  
Due to the input-to-output and channel-to-channel isolation, three power domains with independent power  
management are required. Undervoltage Lockout (UVLO) functions for both input and output supplies ensure a  
defined startup and robust functionality under all operating conditions.  
2.2.1  
Input supply voltage  
The input die is powered via VDDI and supports a wide supply voltage range from 3 V to 17 V. A ceramic  
bypass capacitor must be placed between VDDI and GNDI in close proximity to the device; a minimum bypass  
capacitance of 100 nF is recommended.  
Power consumption to some extent, depends on switching frequency, as the input signal is converted into a  
train of repetitive current pulses to drive the coreless transformer. Due to the chosen robust encoding scheme  
the average repetition rate of these pulses and thus the average supply current depends on the switching  
frequency, fsw. However, for fsw < 500 kHz this effect is very small.  
The Undervoltage Lockout function for the input supply VDDI ensures that, as long as VDDI is below UVLO (e.g. in  
startup), no data is transferred to the output side and the gate driver output is held low (safety Lock-down at  
startup). When VDDI exceeds the UVLO level, the PWM input signal is transferred to the output side. If the output  
side is ready (not in UVLO condition), the output reacts according to the logic input.  
2.2.2  
Output supply voltage  
The two output dies are powered via two independent supply voltages VDDA and VDDB (up to 20 V).  
Two ceramic bypass capacitors must be placed between VDDA and GNDA and between VDDB and GNDB in close  
proximity to the device. A minimum capacitance of 20 x Ciss (MOSFET input capacitance) is recommended to  
ensure an acceptable ripple (5% of VDDO) on the supply pin.  
The minimum supply voltage is set by the Undervoltage Lockout (UVLO) function. The gate driver output  
can be switched only if the output supply voltage (VDDA, VDDB) exceeds the output-side UVLO. Thus, it can be  
guaranteed that the switch transistor is not operated if the driving voltage is too low to achieve a complete  
and fast transition to the "on" state. Low driving voltage, in fact, could cause the power MOSFET to enter its  
saturation (ohmic) region with potentially destructive power dissipation; the output UVLO ensures that the  
Datasheet  
5
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
2 Functional description  
switch transistor always stays within its Safe Operating Area (SOA). Versions with 4 V, 8 V, 12 V and 15 V UVLO  
thresholds for the output supply are currently available. Table 3 shows the recommended UVLO levels for  
different Infineon power switch families.  
Table 3  
Recommended UVLO levels for typical use-cases  
Inputs  
Examples of part number  
Recommended driver  
Logic level OptiMOS™  
BSC010N04LS6, BSZ070N08LS5, ..  
2EDR7259 (4 V UVLO)  
Normal level OptiMOSBSC040N10NS5, BSZ084N08NS5, ..  
2EDR825x (8 V UVLO)  
CoolMOS™  
IPP60R099C7, IPB60R600P6, ..  
2EDR825x (8 V UVLO)  
650 V CoolSiC™  
650 V CoolGaN™  
IMZA65R027M1H, IMW65R107M1H, ..  
IGOT60R070D1, IGLD60R070D1, ..  
2EDR6258/ 2EDR925x (12/15 V UVLO)  
2EDR7259 (4 V UVLO for unipolar driving)  
2EDR825x (8 V UVLO for bipolar driving)  
2.3  
Input stage - INA, INB, DISABLE  
The inputs INA and INB control two independent PWM channels. The input signal is transferred non-inverted to  
the corresponding gate driver outputs OUTA and OUTB. All inputs are compatible with LV-TTL threshold levels  
and provide a hysteresis of typically 0.8 V. The hysteresis is independent of the supply voltage VDDI  
.
The PWM inputs are internally pulled down to a logic low voltage level (GNDI). In case the PWM-controller  
signals have an undefined state during the power-up sequence, the gate driver outputs are forced to the  
"off"-state (low).  
If the DIS/EN input is at high/low state, this unconditionally drives both channel outputs to low state regardless  
of the state of INA or INB.  
Table 4 and Table 5 shows the INA, INB, DIS/EN driver logic in case of sufficiently high supply voltage. Otherwise  
the outputs of the driver are determined by the Undervoltage Lockout (UVLO) and Output Active Clamping  
functionalities as shown in Table 8.  
Table 4  
Logic table in case of sufficient bias power - INA, INB, DIS  
Inputs  
INA  
DIS  
Supplies  
VDDI  
VDDA  
Outputs  
Note  
INB  
,
,
OUTA OUTB  
VDDB  
L
L
L or lef open  
L or lef open  
L or lef open  
> UVLOVDDx,on  
(active)  
L
L
H
L
L
L
L
H
H
H
H
L
H
DTC/STP pin tied to VDDI or lef open  
DTC/STP pin tied to GNDI via RDTC  
Input pins internally pulled down  
Lef  
open open  
Lef  
L or lef open  
L
x
x
H
L
L
Outputs disabled via DIS high  
Datasheet  
6
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
2 Functional description  
Table 5  
Logic table in case of sufficient bias power - INA, INB, EN  
Inputs  
INA  
EN  
Supplies  
VDDI  
VDDA  
Outputs  
Note  
INB  
,
,
OUTA OUTB  
VDDB  
L
L
H
H
H
> UVLOVDDx,on  
(active)  
L
L
H
L
L
L
L
H
H
H
H
L
H
DTC/STP pin tied to VDDI or lef open  
DTC/STP pin tied to GNDI via RDTC  
Input pins internally pulled down  
Lef  
open open  
Lef  
H
L
x
x
L or lef open  
L
L
Outputs disabled via EN low  
Datasheet  
7
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
2 Functional description  
2.4  
Shoot-through protection and configurable dead-time - STP/DTC  
The shoot-through protection pulls down the outputs OUTA and OUTB when both input signals INA, INB are at  
high state. Its activation is recommended when the driver is used as half-bridge driver to prevent dangerous  
shoot-through due to unwanted overlap of INA and INB. A dead-time can be ensured and configured via pin  
STP/DTC as shown in Table 6.  
Table 6  
STP/DTC logic table  
Conditions on the STP/DTC pin  
Shoot-through  
protection  
Configurable dead-time  
Tied to VDDI or lef open  
Disabled  
Enabled  
Disabled  
Connected to GNDI via resistor RDTC  
Enabled with tdt [ns] = 10 x RDTC  
[kΩ]; allowed RDTC range is 1kΩ to  
100kΩ  
Connected to GNDI  
Enabled  
Disabled  
The driver dead-time logic is triggered during the falling edge of an input and delays the rising transition of the  
other input. The delay is only assigned if the driver configured dead-time is longer than the inputs signals’ own  
dead-time.  
The dead-time can be configured by changing the current fed into the STP/DTC pin via an external resistance  
according to the formula: tdt [ns] = 10 x RDTC [kΩ]. It is recommended to use resistors with 1% accuracy in the  
1 kΩ to 100 kΩ range. Connecting capacitors to the DTC pin must be avoided.  
INA  
INB  
tdt  
tdt  
tdt  
OUTA  
tdt  
tdt  
tdt  
OUTB  
A
B
D
F
C
E
Figure 4  
Table 7  
Logic for STP/DTC pin connected to GNDI via resistance RDTC  
Logic for STP/DTC pin connected to GNDI via resistance RDTC  
Condition  
STP/DTC logic  
A, B  
The driver logic assigns the configured dead-time since it is longer than the input  
signals’ dead-time  
C, D  
E, F  
The driver logic does not assign the configured dead-time since it is shorter than  
the input signals’ dead-time  
The shoot-through protection pulls down the outputs OUTA, OUTB until one of the  
outputs goes low. At this point, afer the configured driver dead-time, the other  
output is allowed to go high  
Datasheet  
8
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
2 Functional description  
2.5  
Gate driver outputs  
The rail-to-rail output stage realized with complementary MOS transistors is able to provide a typical 5 A  
sourcing and 9 A sinking peak current. The low on-resistance coming together with high driving current is  
particularly beneficial for fast switching of very large MOSFETs. With a Ron of 1 Ω for the sourcing pMOS and  
0.5 Ω for the sinking nMOS transistor the driver can in most applications be considered as a nearly ideal  
switch. The p-channel sourcing transistor enables real rail-to-rail behavior without suffering from the voltage  
drop unavoidably associated with nMOS source follower stages.  
In case of floating inputs or insufficient supply voltage not exceeding the UVLO thresholds, the driver outputs  
are actively clamped to the "low" level (GNDA, GNDB).  
2.6  
Fast active output clamping in UVLO conditions  
The Undervoltage Lockout (UVLO) ensures that the gate driver output is not operated if the supplies are below  
the UVLO thresholds. However, this is not sufficient to guarantee that the output of the driver is kept low.  
Transients or noise in the power stage may pull-up the output node of the driver and the gate voltage causing  
an unwanted turn-on of the switch; this is particularly critical in system using bootstrapping since, during  
start-up, the supply of the high-side channel is delayed, while the low-side MOSFET is already switching. In  
resonant topologies (as LLC), the half-bridge switching node may be pulled up afer the turn-off of the low-side  
switch. When the low-side MOSFET is turned on again, the high-side gate voltage increase induced by dV/dt  
event cannot be clamped by the driver RDSON,sink if the bootstrap supply is not yet available.  
With a fast output clamping circuit in the output stage, the driver ensures safe operation against output  
induced overshoots in all UVLO situations. This structure allows fast reaction and effective clamping of the  
output pins (OUTA, OUTB). The exact reaction time depends on the output supply (VDDA, VDDB) and on the  
output voltage levels; however, already for very low supply levels (~1 V), the active output clamp is able to react  
in some tens of ns.  
Undervoltage Lockout together with the output active clamping ensures that the outputs are actively held low  
in case of insufficient supply voltages.  
Table 8  
Logic table in case of insufficient bias power - INA, INB, DISABLE  
Inputs  
DIS  
Supplies  
Outputs  
INA INB  
VDD  
VDDA  
VDDB  
OUTA  
OUTB  
x
x
x
x
x
x
x
x
x
< UVLOVDDI,on  
> UVLOVDDI,on  
> UVLOVDDI,on  
x
x
L
L
L
L
L
< UVLOVDDI,on  
> UVLOVDDI,on  
< UVLOVDDI,on  
< UVLOVDDI,on  
Follows  
INA  
x
x
x
> UVLOVDDI,on  
< UVLOVDDI,on  
> UVLOVDDI,on  
L
Follows  
INB  
2.7  
CT communication and input to output data transmission  
A coreless transformer (CT) based communication module is used for PWM signal transfer between input  
and output. A proven high-resolution pulse repetition scheme in the transmitter combined with a watchdog  
timeout at the receiver side enables recovery from communication fails and ensures safe system shut-down in  
failure cases.  
Datasheet  
9
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
3 Electrical characteristics  
3
Electrical characteristics  
The absolute maximum ratings are listed in Table 9. Stresses beyond these values may cause permanent  
damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability.  
3.1  
Absolute maximum ratings  
Table 9  
Parameter  
Absolute maximum ratings  
Symbol  
Min.  
Values  
Typ.  
Unit Note or condition  
Max.  
Input supply voltage  
VDDI  
-0.3  
-0.3  
18  
22 1)  
V
V
Output supply voltage at  
pins VDDA, VDDB  
VDDA, VDDB  
Voltage at pins INA, INB,  
DIS/EN (DC)  
VIN  
VIN  
-0.3  
-5  
18  
V
V
Voltage at pins INA, INB,  
DIS/EN (transient)  
transient for 50 ns 3)  
2)  
Voltage at pin DTC  
VDTC  
VOUT  
VDDI + 0.3  
V
V
Voltage at pins OUTA,  
OUTB (DC)  
-0.3  
VDDA/B  
+
0.3  
Voltage at pins OUTA,  
OUTB (transient)  
VOUT  
-2  
-5  
VDDA/B  
1.5  
+
V
transient for 200 ns 3)  
Reverse current peak at  
pins OUTA, OUTB  
ISRC_rev  
ISNK_rev  
Apk transient for 500 ns 3)  
Apk transient for 500 ns 3)  
Reverse current peak at  
pins OUTA, OUTB  
5
Junction temperature  
Storage temperature  
Soldering temperature  
ESD capability  
TJ  
-40  
-65  
150  
150  
260  
0.5  
°C  
°C  
°C  
kV  
TSTG  
TSOL  
reflow 4)  
VESD_CDM  
Charged Device Model  
(CDM) 5)  
ESD capability  
VESD_HBM  
2
kV  
Human Body Model  
(HBM) 6)  
1)  
2)  
3)  
4)  
5)  
6)  
Maximum positive supply voltage already complies with derating guidelines.  
Minimum is given by internal regulation when DTC is operating (DTC pin connected to GND via resistance).  
Not subject to production test - verified by design/characterization.  
According to JEDEC-020E.  
According to ANSI/ESDA/JEDEC JS-002.  
According to ANSI/ESDA/JEDEC JS-001 (discharging 100 pF capacitor through 1.5 kΩ resistor).  
Datasheet  
10  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
3 Electrical characteristics  
3.2  
Thermal characteristics  
Thermal characteristics are obtained from simulation with 65 mW applied to the driver input-side and 200 mW  
applied to any output channel.  
Table 10  
Thermal characteristics at TA = 25°C  
Parameter  
Symbol  
Value  
1s0p 1)  
46  
Unit  
Note or  
condition  
2s2p 2)  
Thermal  
RthJC  
46  
K/W  
resistance  
junction-case  
(top) 3)  
Thermal  
RthJA25  
RthJA85  
107  
95  
69  
65  
K/W  
K/W  
resistance  
junction  
ambient 4)  
Thermal  
RthJB  
27  
10  
23  
K/W  
K/W  
K/W  
resistance  
junction board 5)  
Characterization  
parameter  
Ψ
11  
21  
thJT  
junction-top 6)  
Characterization  
parameter  
Ψ
thJB25  
junction-board 6)  
1) Two-layer board as specified in JESD51-3 JEDEC-standard: no copper planes and no thermal vias for cooling, "package-alone" parameters  
2) High-K board as specified in JESD51-7 JEDEC-standard: four-layers board with 2-oz inner layers copper planes and with no thermal vias for cooling  
3) Obtained by simulating a cold plate test on the package top. No specific JEDEC standard exists, but a close description can be found in the ANSI  
SEMI standard G30-88  
4) Obtained by simulating a JEDEC-standard, high-K board, as specified in JESD51-7, in an environment described in JESD51-2  
5) Obtained by simulating a JEDEC-standard high-K board, as specified in JESD51-7, in an environment described in JESD51-8 with a ring cold plate  
fixture to control the PCB temperature  
6) Estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining Rth, using a procedure  
described in JESD51-2a (sections 6 and 7)  
Datasheet  
11  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
3 Electrical characteristics  
3.3  
Operating range  
Operating range  
Symbol  
Table 11  
Parameter  
Values  
Typ.  
Unit Note or condition  
Min.  
Max.  
Input supply voltage at pin VDDI  
3
17  
V
V
V
V
V
Min. defined by UVLOVDDI  
4 V UVLO option  
VDDI  
Output supply voltage at  
pin VDDA and VDDB  
VDDA, VDDB  
4.5  
8.5  
20 1)  
20 1)  
20 1)  
20 1)  
Output supply voltage at  
pin VDDA and VDDB  
VDDA, VDDB  
VDDA, VDDB  
VDDA, VDDB  
8 V UVLO option  
Output supply voltage at  
pin VDDA and VDDB  
12.9  
15.6  
12 V UVLO option  
15 V UVLO option  
Output supply voltage at  
pin VDDA and VDDB  
Input voltage at pins INA, VIN  
INB, DIS/EN  
0
17  
V
V
2)  
Input voltage at pin DTC  
VDTC  
VDDI  
Junction temperature  
Ambient temperature  
TJ  
TA  
-40  
40  
150 3)  
125  
°C  
°C  
1)  
2)  
3)  
Maximum positive supply voltage already complies with derating guidelines.  
Minimum is given by internal regulation when DTC is operating (DTC pin connected to GND via resistance).  
Continuous operation above 125°C may reduce lifetime.  
3.4  
Electrical characteristics  
Unless otherwise noted, the electrical characteristics are given for VDDI = 3.3 V, VDDA/B =12 V and no load. Typical  
values are given at TJ = 25°C whilst min. and max., instead, are the lower and upper limits, respectively, within  
the full operating range.  
Table 12  
Power supply  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or condition  
Min.  
Max.  
2.12  
IVDDI quiescent current  
IVDDIq  
1.67  
mA no switching  
IVDDA/B quiescent current IVDDA/Bq  
IVDDA/B quiescent current IVDDA/Bq  
IVDDA/B quiescent current IVDDA/Bq  
IVDDA/B quiescent current IVDDA/Bq  
0.62  
0.66  
0.76  
0.9  
0.86  
0.89  
1.0  
mA OUT = low, VDDA/B = 12 V  
mA OUT = low, VDDA/B = 18 V  
mA OUT = high, VDDA/B = 12 V  
mA OUT = high, VDDA/B = 18 V  
1.14  
Datasheet  
12  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
3 Electrical characteristics  
Table 13  
Undervoltage Lockout VDDI  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or condition  
Min.  
Max.  
2.95  
Undervoltage Lockout  
(UVLO) turn-on threshold  
VDDI  
UVLOVDDI,on  
2.85  
V
V
V
Undervoltage Lockout  
(UVLO) turn-off threshold  
VDDI  
UVLOVDDI,off 2.55  
2.7  
UVLO threshold hysteresis UVLOVDDI,hys 0.10  
VDDI  
0.15  
0.20  
Table 14  
Undervoltage Lockout VDDA, VDDB for 4 V UVLO option  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
Min.  
Max.  
4.4  
Undervoltage Lockout  
(UVLO) turn-on threshold UVLOVDDB,on  
VDDA, VDDB  
UVLOVDDA,on  
4.2  
V
V
V
Undervoltage Lockout  
UVLOVDDA,off 3.7  
3.9  
0.3  
(UVLO) turn-off threshold UVLOVDDB,off  
VDDA, VDDB  
UVLO threshold hysteresis UVLOVDDA,hys 0.2  
VDDA, VDDB  
0.4  
UVLOVDDB,hys  
Table 15  
Undervoltage Lockout VDDA, VDDB for 8 V UVLO option  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
Min.  
Max.  
8.5  
Undervoltage Lockout  
(UVLO) turn-on threshold UVLOVDDB,on  
VDDA, VDDB  
UVLOVDDA,on  
8.0  
V
V
V
Undervoltage Lockout  
UVLOVDDA,off 6.6  
7.0  
1
(UVLO) turn-off threshold UVLOVDDB,off  
VDDA, VDDB  
UVLO threshold hysteresis UVLOVDDA,hys 0.7  
VDDA, VDDB  
1.3  
UVLOVDDB,hys  
Table 16  
Undervoltage Lockout VDDA, VDDB for 12 V UVLO option  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
Min.  
Max.  
12.8  
Undervoltage Lockout  
UVLOVDDA,on  
12.2  
V
(UVLO) turn-on threshold UVLOVDDB,on  
VDDA, VDDB  
(table continues...)  
Datasheet  
13  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
3 Electrical characteristics  
Table 16  
(continued) Undervoltage Lockout VDDA, VDDB for 12 V UVLO option  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
Min.  
Max.  
Undervoltage Lockout  
UVLOVDDA,off 10.8  
11.5  
V
V
(UVLO) turn-off threshold UVLOVDDB,off  
VDDA, VDDB  
UVLO threshold hysteresis UVLOVDDA,hys 0.5  
VDDA, VDDB  
0.7  
0.9  
UVLOVDDB,hys  
Table 17  
Undervoltage Lockout VDDA, VDDB for 15 V UVLO option  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
Min.  
Max.  
15.5  
Undervoltage Lockout  
(UVLO) turn-on threshold UVLOVDDB,on  
VDDA, VDDB  
UVLOVDDA,on  
14.9  
V
V
V
Undervoltage Lockout  
UVLOVDDA,off 13.7  
14.4  
0.5  
(UVLO) turn-off threshold UVLOVDDB,off  
VDDA, VDDB  
Duplicate of UVLO  
UVLOVDDA,hys 0.3  
0.7  
threshold hysteresis VDDA, UVLOVDDB,hys  
VDDB  
Table 18  
Logic inputs INA, INB, DISABLE  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or condition  
Min.  
Max.  
Input voltage threshold for VINH  
2.0  
1.2  
0.8  
22  
2.36  
V
V
V
transition LH  
Input voltage threshold for VINL  
transition HL  
0.9  
Input voltage threshold  
hysteresis  
VIN_hys  
0.38  
1.2  
27  
High-level input leakage  
current  
IIN  
µA INA/INB pin tied to VDDI  
kΩ  
Input pull-down resistor  
RIN,PD  
150  
Table 19  
Dead-time control (DTC) and shoot-through protection (STP)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
Min.  
Max.  
115  
Dead-time  
Dead-time  
Dead-time  
tdt  
tdt  
tdt  
85  
100  
ns  
ns  
ns  
RDTC = 10 kΩ  
RDTC = 30 kΩ  
RDTC = 100 kΩ 1)  
255  
800  
300  
950  
345  
1100  
(table continues...)  
Datasheet  
14  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
3 Electrical characteristics  
Table 19  
(continued) Dead-time control (DTC) and shoot-through protection (STP)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
Min.  
Max.  
Channel-to-channel dead- tdt,Ch-Ch  
0
0
0
0
0
0
10  
14  
40  
20  
55  
ns  
ns  
ns  
ns  
ns  
ns  
RDTC = 10 kΩ  
time mismatch  
Channel-to-channel dead- tdt,Ch-Ch  
time mismatch  
RDTC = 30 kΩ  
Channel-to-channel dead- tdt,Ch-Ch  
time mismatch  
RDTC = 100 kΩ 1)  
RDTC = 10 kΩ 2)  
RDTC = 30 kΩ 2)  
RDTC = 100 kΩ 1) 2)  
Part-to-part dead-time  
mismatch  
tdt,p-p  
tdt,p-p  
tdt,p-p  
Part-to-part dead-time  
mismatch  
Part-to-part dead-time  
mismatch  
105  
1)  
2)  
Not subject to production test - verified by design/characterization.  
The parameter gives the difference in the dead-time inserted from different samples under the same conditions, including same  
ambient temperature.  
Table 20  
Static output characteristics  
Parameter  
Symbol  
Min.  
Values  
Typ.  
Unit Note or condition  
Max.  
1.5  
High-level (sourcing)  
output resistance  
Ron_SRC  
0.6  
0.95  
Ω
A
ISRC = 50 mA  
Peak sourcing output  
current  
ISRC_pk  
5
CLOAD = 22 nF 1)  
ISNK = 50 mA  
Low-level (sinking) output Ron_SNK  
resistance  
0.24  
0.39  
-9  
0.62  
Ω
A
Peak sinking output  
current  
ISNK_pk  
CLOAD = 22 nF 1)  
1)  
Not subject to production test - verified by design/characterization.  
Table 21  
Dynamic characteristics  
Symbol  
Parameter  
Values  
Typ.  
Unit Note or condition  
Min.  
Max.  
INx to OUTx turn-on  
propagation delay  
tPDon,INx  
tPDoff,INx  
33  
30  
38  
47  
46  
ns  
ns  
See Figure 5, Figure 6  
See Figure 5, Figure 6  
INx to OUTx turn-off  
propagation delay  
36  
(table continues...)  
Datasheet  
15  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
3 Electrical characteristics  
Table 21  
(continued) Dynamic characteristics  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
Min.  
Max.  
1)  
Part-to-part turn-on  
propagation delay  
mismatch  
tPDon,p-p  
0
0
6
8
4
3
ns  
1)  
Part-to-part turn-off  
propagation delay  
mismatch  
tPDoff,p-p  
ns  
2)  
Channel-to-channel turn- tPDon,ChA-ChB -4  
on propagation delay  
mismatch  
ns  
ns  
See Figure 7  
See Figure 7  
See Figure 8  
2)  
3)  
Channel-to-channel turn- tPDoff,ChA-  
off propagation delay  
mismatch  
-5.5  
ChB  
Pulse width distortion  
tPWD  
-5  
-5  
2
5.5  
1
ns  
ns  
4) 5)  
Channel turn-off  
to channel turn-on  
propagation delay  
mismatch  
tDTD  
-2  
See Figure 9  
6)  
Rise time  
trise  
tfall  
tPW  
7.5  
6
14  
11  
25  
ns  
ns  
ns  
CLOAD = 1.8 nF,  
see Figure 10  
6)  
Fall time  
CLOAD = 1.8 nF,  
see Figure 10  
Minimum input pulse  
width that changes output  
state  
10  
17  
See Figure 11  
6)  
Input-side start-up time  
tSTART,VDDI  
tSTOP,VDDI  
3.5  
5
µs  
ns  
see Figure 12  
6)  
Input-side deactivation  
time  
600  
750  
see Figure 12  
6)  
Output-side start-up time tSTART,VDDA/B  
2.5  
5
µs  
ns  
see Figure 13  
6)  
Output-side deactivation tSTOP,VDDA/B  
time  
500  
800  
see Figure 13  
1)  
The parameter gives the difference in the propagation delay between different samples switching in the same direction under  
same conditions, including same ambient temperature; therefore, is an indication of the production spread. The limits given are  
valid for all channels combination: tPD_ChA - tPD_ChA, tPD_ChB - tPD_ChB, tPD_ChA - tPD_ChB, tPD_ChB - tPD_ChA  
.
2)  
3)  
4)  
The parameter gives the difference in the propagation delay of channel A and channel B switching in the same direction in the  
same sample.  
The parameter gives the difference between ON and OFF propagation delay in the same channel (ChA or ChB), in the same sample  
at same ambient temperature.  
The parameter gives the difference between the ON propagation delay of one channel and the OFF propagation delay of the other  
channel, in the same sample at same room temperature. This parameter represents the distortion of the inputs dead-time only  
when the driver DTC is not used or not enforced otherwise, please refer to Table 19.  
Not subject to production test - verified by characterization.  
5)  
6)  
Not subject to production test - verified by design/characterization.  
Datasheet  
16  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
3 Electrical characteristics  
Table 22  
Common-Mode Transient Immunity (CMTI)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or condition  
Min.  
150  
Max.  
Static Common-Mode  
Transient Immunity  
|CMStatic,H  
|
V/ns VCM = 1500 V; INA, INB  
tied to VDDI (logic high  
1) 2)  
inputs)  
Static Common-Mode  
Transient Immunity  
|CMStatic,L  
|
150  
V/ns VCM = 1500 V; INA, INB  
tied to GNDI (logic low  
1) 2)  
inputs)  
1)  
2)  
Minimum slew rate of a common-mode voltage that is able to cause an incorrect output signal  
Verified by characterization according to VDE0884-11 standard definitions and test-methods  
3.5  
Isolation specifications  
Table 23  
Isolation specifications  
Symbol  
Parameter  
Value  
Unit  
Note or condition  
External input-to-output  
creepage 1)  
CRP  
8
mm  
Shortest distance over package surface  
from any input pin to any output pin  
according to IEC 60664-1  
External input-to-output  
clearance 1)  
CLR  
8
mm  
Shortest distance in air from any input pin  
to any output pin according to IEC 60664-1  
Comparative tracking index  
Material group  
CTI  
> 400  
II  
V
According to DIN EN 60112 (VDE 0303-11)  
According to IEC 60112  
Pollution degree  
II  
According to IEC 60664-1  
Overvoltage category (for  
reinforced isolation)  
I - IV  
I - IV  
I - III  
Rated mains voltage ≤ 150 VRMS  
Rated mains voltage ≤ 300 VRMS  
Rated mains voltage ≤ 600 VRMS  
Input-to-output isolation according to UL1577 Ed.5 2)  
Input-to-output isolation  
voltage  
VISO  
5700  
VRMS  
VTEST = VISO for t = 60 s (qualification);  
VTEST = 1.2 x VISO for t = 1 s (100%  
productive tests)  
Input-to-output isolation according to DIN VDE V0884-11 3) and IEC 60747-17 4)  
Maximum impulse voltage  
VIMP  
8000  
8000  
Vpk  
Vpk  
According to IEC 60664-1  
Maximum rated transient  
isolation voltage  
VIOTM  
VTEST = VIOTM for tini = 60 s (type tests and  
quarterly monitoring)  
VTEST = 1.2 x VIOTM for tini = 1 s (100%  
productive tests)  
Maximum rated repetitive  
isolation voltage  
VIORM  
1767  
Vpk  
According to Time Dependent Dielectric  
Breakdown (TDDB) Test for reinforced  
isolation  
(table continues...)  
Datasheet  
17  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
3 Electrical characteristics  
Table 23  
(continued) Isolation specifications  
Parameter  
Symbol  
Value  
Unit  
Note or condition  
Apparent charge  
qPD  
< 5  
pC  
Vini,b1= 1.2 x VIOTM (100% productive  
tests) and Vini,b1 = VIOTM (type tests  
preconditioning) for tini =1s  
Vpd(m) = 1.875 x VIORM for tm = 1 s 5)  
Afer subgroup 1 life tests (type test) and in  
quarterly monitoring  
Vini,a = VIOTM for tini = 60 s  
Vpd(m) = 1.6 x VIORM for tm = 10 s  
Afer subgroup 2, 3 endurance tests (type  
test)  
Vini,a = VIOTM for tini = 60 s  
Vpd(m) = 1.2 x VIORM for tm = 10 s  
Maximum surge isolation  
voltage 6)  
VIOSM  
6875  
Vpk  
Vpk  
VIOSM_TEST = 1.6 x VIOSM for reinforced  
isolation according VDE 0884-11  
11000  
VIOSM_TEST = 11 kVpk ≥ 1.3 x VIOSM for  
reinforced isolation according IEC  
60747-17  
Isolation resistance input-to- RIO  
output 7)  
1012  
1011  
Ω
Ω
VIO = 500 Vdc for t = 60 s, TA = 25°C (type  
tests subgroup 1)  
VIO = 500 Vdc for t = 60 s, TA = 125°C (type  
tests preconditioning, type test subgroup 4  
and quarterly monitoring)  
109  
Ω
VIO = 500 Vdc for t = 60 s, TA = 25°C (type  
tests subgroup 1, 2, 3) or TA = TS (type tests  
subgroup 4 and quarterly monitoring)  
Capacitance input-to-output CIO  
2
pF  
f = 1 MHz  
7)  
1) Creepage and clearance requirements depend on the application and related end-equipment isolation standard. Care should be taken to keep the  
required creepage and clearance value on printed-circuit-board level.  
2) See UL 1577 certificate n. E311313.  
3) See VDE 0884-11 certificate n. 40052310.  
4) See IEC 60747-17 certificate n. 40055138.  
5) The partial discharge voltage VPD(m) applied during production tests is greater (4411 Vpk > 1.875 x VIORM ) to include the F4 factor required by  
end equipment standards IEC 60664-1, IEC 62368-1 (VPD(m) = F1 x F2 x F3 x F4 x VIORM = 1.875 x F4 x VIORM).  
6) The surge test is performed in insulation oil to determine the intrinsic surge immunity of the insulation barrier.  
7) The parameters apply to the product converted in a two terminals device with all terminals on side 1 connected together and all terminals on side  
2 connected together.  
Table 24  
Output channel-to-channel isolation specifications  
Parameter  
Symbol Value  
Unit  
Note or condition  
External channel-to-channel creepage1)  
CRPCh-Ch, 3.3  
14pin  
mm  
Shortest distance over package  
surface between any output  
(table continues...)  
Datasheet  
18  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
3 Electrical characteristics  
Table 24  
(continued) Output channel-to-channel isolation specifications  
Parameter  
Symbol Value  
Unit  
Note or condition  
CRPCh-Ch, 2.5  
16pin  
mm  
channel A pin and any output  
channel B pin  
1) Creepage and clearance requirements depend on the application and related end-equipment isolation standard. Care should be taken to keep the  
required creepage and clearance value on printed-circuit-board level  
Datasheet  
19  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
4 Timing diagrams  
4
Timing diagrams  
Figure 5 illustrates the input-to-output propagation delays as observed at the capacitively loaded output.  
DISABLE  
Low logic level  
VINH  
VINL  
INA/B  
90%  
10%  
OUTA/B  
tPDon  
tPDoff  
Figure 5  
INx to OUTx propagation delays  
Figure 6 illustrates the disable-to-output propagation delays as observed at the capacitively loaded output.  
VINH  
VINL  
DISABLE  
INA/B  
OUTA/B  
90%  
10%  
tPDoff,DIS  
tPDon,DIS  
Figure 6  
DISABLE to OUTx propagation delays  
Figure 7 illustrates the channel-to-channel propagation delay mismatch at the unloaded outputs. This  
parameter is relevant when the channels drive parallel switches as it represents the delay in the two driving  
signals.  
INA/B  
tPDon_ChA  
tPDoff_ChB  
OUTA  
OUTB  
tPDoff  
tPDon  
tPDon_ChB  
tPDoff_ChB  
Figure 7  
Channel-to-channel propagation delay mismatch  
Figure 8 illustrates the pulse width distortion at the unloaded output. Ideally the width of the input pulse  
(tPW_INx) equals the width of the output pulse (tPW_OUTx); however, the driver introduces an output pulse  
distortion tPW given by the difference between ON and OFF propagation delay.  
Datasheet  
20  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
4 Timing diagrams  
tPW_INx  
INA/B  
tPDoff  
tPDon  
ideal  
tPWD  
OUTA/B  
tPW_OUTx  
= tPW_INx -tPWD  
Figure 8  
Pulse width distortion  
Figure 9 illustrates the dead-time distortion at the unloaded outputs. This parameter is relevant in operation  
with complementary signals, as for the half-bridge driving when a certain dead-time tDT_INx is set on the inputs  
INA, INB. Ideally the dead-time on the driver output (tDT_OUTx) equals the input dead-time; however, the driver  
introduces a distortion tDTC given by the difference between the OFF propagation delay of one channel and the  
ON propagation delay of the other channel.  
tDT_INx  
INA  
INB  
tPDoff_ChA  
OUTA  
tPDon_ChB  
ideal  
OUTB  
tDTD  
tDT_OUTx  
= tDT_INx -tDTD  
Figure 9  
Channel turn-off to channel turn-on propagation delay mismatch  
Figure 10 illustrates the rise and fall time as observed at the capacitively loaded output.  
90%  
10%  
OUTA/B  
trise  
tfall  
Figure 10  
Rise and fall time  
Figure 8 illustrates the behavior or the deglitch filter that filters spurios pulses on INA, INB with duration shorter  
than tPWmin  
.
DISABLE  
Low logic level  
VINH  
VINH  
VINL  
VINL  
INA/B  
tPW > tPWmin  
t
PW < tPWmin  
OUTA/B  
Figure 11  
Minimum pulse that changes the output state  
Datasheet  
21  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
4 Timing diagrams  
Figure 12 illustrates the input-side supply UVLO behavior. It depicts the reaction time to UVLO events when VDDI  
crosses the UVLO thresholds during rising or falling transitions (power-up, power-down, supply noise).  
INA/INB  
High logic level  
High logic level  
VDDA  
UVLOVDDI,on  
UVLOVDDI,off  
VDDI  
OUTA/OUTB  
tSTART,VDDI  
tSTOP,VDDI  
Figure 12  
VDDI UVLO behavior, start-up and deactivation time  
Figure 13 illustrates the output-side supply UVLO behavior. It depicts the reaction time to UVLO events when  
VDDA/B crosses the UVLO thresholds during rising or falling transitions (power-up, power-down, supply noise).  
INA  
High logic level  
High logic level  
VDDI  
UVLOVDDA,on  
UVLOVDDA,off  
VDDA  
OUTA  
tSTART,VDDA  
tSTOP,VDDA  
Figure 13  
VDDA,VDDB UVLO behavior, start-up and deactivation time  
Figure 14 illustrates the shoot-through protection and dead-time logic. When enabled, the dead-time is added  
on top of the turn-off propagation delay if the driver dead-time is longer than the signals' own dead-time.  
DISABLE  
Low logic level  
µC dead-time  
VINH  
VINL  
INA  
INB  
VINH  
VINL  
90%  
10%  
OUTA  
OUTB  
tPDoff  
90%  
tPDoff  
10%  
µC dead-time  
Dead-time set by  
the input signals´s  
dead-time  
tdt  
Shoot-through  
protection pulls  
down INA, INB  
Dead-time  
set by the  
driver via  
RDTC  
Figure 14  
Shoot-through and configurable dead-time  
Datasheet  
22  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
5 Typical characteristics  
5
Typical characteristics  
VDDI = 3.3 V, VDDA/B = 12 V, TA = 25°C, fsw = 1 MHz, no load unless otherwise noted  
1.8  
1.7  
1.6  
1.5  
6
5
4
3
2
1
0
VDDI = 3.3V  
VDDI = 12V  
VDDI = 17V  
fsw = 100 KHz  
fsw = 1MHz  
fsw = 3MHz  
V
DDI=3.3V, no load,  
no switching  
square wave input  
-50  
50  
Tj [ C]  
150  
-50  
50  
Tj [ C]  
150  
Typical IVDDIq quiescent current  
vs. temperature  
Typical IVDDIq switching current vs.  
temperature  
7
no switching  
fsw = 100 kHz  
fsw = 1 MHz  
fsw = 3 MHz  
TJ = 25°C  
6
5
4
3
2
1
0
2
6
10  
DDI [V]  
14  
18  
V
Typical IVDDI current vs. input-  
supply voltage VDDI  
Figure 15  
Input-side supply current  
Datasheet  
23  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
5 Typical characteristics  
0.8  
0.7  
0.6  
0.5  
1.1  
0.9  
0.7  
0.5  
VDDA/B = 5V  
VDDA/B = 8V  
VDDA/B = 12V  
VDDA/B = 18V  
VDDA/B = 5V  
VDDA/B = 8V  
VDDA/B =12V  
VDDA/B = 18V  
OUT LOW  
OUT HIGH  
-50  
0
50  
100  
150  
-50  
0
50  
Tj [ C]  
100  
150  
Tj [ C]  
Typical IVDDA/B quiescient current (OUT low)  
vs. temperature  
Typical IVDDA/B quiescent current (OUT high)  
vs. temperature  
10  
30  
no load, TA = 25°C,  
square wave input  
fsw = 100kHz  
fsw = 1MHz  
fsw = 3MHz  
VDDO = 5V  
VDDO = 12V  
VDDO = 20V  
no load, VDDA/B = 12V,  
square wave input  
8
6
4
2
0
20  
10  
0
-50  
50  
TJ [ C]  
150  
0
2
4
6
8
10  
f
sw [MHz]  
Typical IVDDA/B switching current  
vs. temperature  
Typical IVDDA/B switching current  
vs. frequency  
2.0  
40  
30  
20  
10  
0
VDDO = 5V  
VDDO = 5V  
VDDO = 12V  
VDDO = 20V  
square wave input,  
TA = 25°C, fsw = 1KHz  
square wave input,  
VDDO = 12V  
TA = 25°C, fsw = 100KHz  
VDDO = 20V  
1.5  
1.0  
0.5  
0.0  
0
5
10  
0
5
10  
C
load [nF]  
C
load [nF]  
Typical IVDDA/B switching current  
vs. capacitive load (1 kHz frequency)  
Typical IVDDA/B switching current  
vs. capacitive load (100 kHz frequency)  
Figure 16  
Output-side supply current  
Datasheet  
24  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
5 Typical characteristics  
3.0  
ON threshold  
OFF threshold  
UVLO on  
UVLO off  
2.9  
2.7  
2.5  
2.5  
2.0  
1.5  
1.0  
0.5  
-50  
0
50  
Tj [ C]  
100  
150  
-50  
0
50  
Tj [ C]  
100  
150  
Typical input voltage thresholds  
vs. temperature  
Typical Undervoltage Lockout  
thresholds VDDI vs. temperature  
4.5  
4.3  
4.1  
3.9  
3.7  
8.8  
8.4  
8.0  
7.6  
7.2  
6.8  
6.4  
UVLO on  
UVLO off  
UVLO on  
UVLO off  
-50  
0
50  
Tj [ C]  
100  
150  
-50  
0
50  
Tj [ C]  
100  
150  
Typical Undervoltage Lockout VDDA/B  
thresholds vs. temperature (4 V version)  
Typical Undervoltage Lockout VDDA/B  
thresholds vs. temperature (8 V version)  
12.8  
12.4  
12.0  
11.6  
11.2  
10.8  
15.2  
UVLO on  
UVLO off  
UVLO on  
UVLO off  
14.8  
14.4  
14.0  
-50  
0
50  
Tj [ C]  
100  
150  
-50  
0
50  
Tj [ C]  
100  
150  
Typical Undervoltage Lockout VDDA/B  
thresholds vs. temperature (12 V version)  
Typical Undervoltage Lockout VDDA/B  
thresholds vs. temperature (15 V version)  
Figure 17  
Input voltage thresholds and Undervoltage Lockout  
Datasheet  
25  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
5 Typical characteristics  
6
5
4
3
2
1
0
2.0  
1.5  
1.0  
0.5  
0.0  
Ron_src  
Ron_snk  
Tj=25°C  
TJ=85°C  
TJ=125°C  
C
LOAD =22nF,  
series resistance  
RS = 0.1 Ω  
0
5
10  
15  
20  
-50  
0
50  
Tj [ C]  
100  
150  
VOUT [V]  
Typical output resistance  
vs. temperature  
Typical sourcing output current  
vs. output voltage  
12  
11  
10  
9
10  
8
VDDA/B=8V  
VDDA/B=12V  
VDDA/B=20V  
TJ=25°C  
TJ=85°C  
Tj=125°C  
8
7
6
6
5
4
4
3
2
1
0
2
CLOAD =22nF,  
TA = 25°C, CLOAD =22nF,  
series resistanceRS = 0.1 Ω  
series resistance RS = 0.1 Ω  
0
-50  
0
50  
Tj [ C]  
100  
150  
0
5
10  
V
15  
20  
OUT [V]  
Typical peak sourcing output current vs.  
temperature  
Typical sinking output current  
vs. output voltage  
14  
12  
10  
8
12  
VDDA/B=8V  
VDDA/B=12V  
VDDA/B=18V  
ISRC_pk  
ISNK_PK  
10  
8
6
6
4
V
DDO = 12V, TA = 25°C,  
4
2
C
LOAD =22nF,  
CLOAD =22nF,  
series resistance RS = 0.1 Ω  
series resistance RS = 0.1 Ω  
2
0
-50  
0
50  
Tj [ C]  
100  
150  
4
8
12  
16  
20  
V
DDO [V]  
Typical peak sinking output current  
vs. temperature  
Typical peak output current vs.  
supply voltage  
Figure 18  
Typical output static characteristics  
Datasheet  
26  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
5 Typical characteristics  
2
ON  
OFF  
ON  
44  
OFF  
1
42  
40  
0
38  
-1  
36  
34  
-2  
-50  
0
50  
Tj [ C]  
100  
150  
-50  
0
50  
Tj [ C]  
100  
150  
Typical input-to-output propagation  
delay vs. temperature  
Typical channel-to-channel propagation  
delay mismatch vs. temperature  
Figure 19  
Typical propagation delays  
Datasheet  
27  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
5 Typical characteristics  
102  
101  
100  
99  
320  
310  
300  
290  
280  
Rdt= 300 kΩ  
Rdt= 100 kΩ  
-50  
0
50  
Tj [ C]  
100  
150  
-50  
0
50  
Tj [ C]  
100  
150  
Typical Dead-time vs.  
temperature (Rdt = 10kΩ)  
Typical Dead-time vs.  
temperature (Rdt = 30kΩ)  
1100  
1050  
1000  
950  
5
4
3
2
1
0
Rdt= 1000 kΩ  
Rdt= 100kOhm  
Rdt= 300kOhm  
Rdt= 1000kOhm  
900  
-50  
0
50  
Tj [ C]  
100  
150  
-50  
0
50  
100  
150  
Tj [ C]  
Typical channel-to-channel Dead-time  
matching vs. temperature  
Typical Dead-time vs.  
temperature (Rdt = 100kΩ)  
Figure 20  
Typical dead-time  
Datasheet  
28  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
6 Package outline dimensions  
6
Package outline dimensions  
6.1  
Device numbers and markings  
Table 25  
Device numbers and markings  
Part number  
2EDR8259H  
2EDR7259X  
2EDR8259X  
2EDR9259X  
2EDR6258X  
2EDR8258X  
2EDR9258X  
Orderable part number (OPN)  
2EDR8259HXUMA1  
2EDR7259XXUMA1  
2EDR8259XXUMA1  
2EDR9259XXUMA1  
2EDR6258XXUMA1  
2EDR8258XXUMA1  
2EDR9258XXUMA1  
Device marking  
2R8259A  
2R7259A  
2R8259A  
2R9259A  
2R6258A  
2R8258A  
2R9258A  
6.2  
Package DSO16-300mil  
Figure 21  
DSO16-300mil outline  
Datasheet  
29  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
6 Package outline dimensions  
Figure 22  
DSO16-300mil footprint  
Figure 23  
DSO16-300mil packing  
Green Product (RoHS compliant)  
To meet the worldwide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e. Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Further  
information on packages: https://www.infineon.com/packages  
Datasheet  
30  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
6 Package outline dimensions  
6.3  
Package DSO14-300mil  
Figure 24  
DSO14-300mil outline  
Figure 25  
DSO14-300mil footprint  
Datasheet  
31  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
6 Package outline dimensions  
Figure 26  
DSO14-300mil packing  
Green Product (RoHS compliant)  
To meet the worldwide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e. Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020). Further  
information on packages: https://www.infineon.com/packages  
Datasheet  
32  
Rev. 1.3  
2022-02-27  
EiceDRIVER2EDR8259H, 2EDRx259X, 2EDRx258X  
Dual-channel isolated gate driver ICs in 300 mil DSO package  
7 Revision history  
7
Revision history  
Revision  
Date  
Description of changes  
Rev 1.3  
2023-02-27  
Added condition "DTC pin connected to ground"  
Fixed typo in the OPN of Table 25  
Rev 1.2  
Rev 1.1  
2023-01-19  
2022-12-12  
Fixed typo in channel-to-channel propagation delay mismatch  
Removed watermark "restricted"  
"Dead-time distortion" renamed as "Channel turn-off to channel  
turn-on propagation delay mismatch" in Table 21  
Rev 1.0  
2022-12-09  
Initial release  
Datasheet  
33  
Rev. 1.3  
2022-02-27  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
Edition 2022-02-27  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
Important notice  
Warnings  
The information given in this document shall in no  
event be regarded as a guarantee of conditions or  
characteristics (“Beschaffenheitsgarantie”).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer’s compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer’s products and any use of the product of  
Infineon Technologies in customer’s applications.  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
Except as otherwise explicitly approved by Infineon  
Technologies in  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or  
any consequences of the use thereof can reasonably  
be expected to result in personal injury.  
a written document signed by  
©
2023 Infineon Technologies AG  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Document reference  
IFX-jqf1648202404767  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer’s technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to such  
application.  

相关型号:

2EDR8259X

The EiceDRIVER™ 2EDR8259X is a reinforced isolated gate driver IC for control over the mandatory safe isolation barrier in SMPS. The strong 5 A/9 A source/sink dual-channel gate driver comes with a very high 150 V/ns CMTI (common mode transient immunity) for robust operation with CoolMOS™, CoolGaN™ GIT HEMTs and high-power switching noise environment.
INFINEON

2EDS8165H

快速、稳健、双通道、增强隔离 MOSFET 栅极驱动器,具有准确稳定定时
INFINEON

2EDS8165HXUMA2

MOSFET Driver,
INFINEON

2EDS8265H

快速、稳健、双通道、增强隔离 MOSFET 栅极驱动器,具有准确稳定定时
INFINEON

2EDS8265HXUMA1

Half Bridge Based MOSFET Driver,
INFINEON

2EDS9265H

快速稳健的双通道加强绝缘 MOSFET 栅极驱动器,具备准确稳定时序
INFINEON

2EE

15W DC-DC Converters
BTCPOWER

2EE-01

15W DC-DC Converters
BTCPOWER

2EE-02

15W DC-DC Converters
BTCPOWER

2EE-03

15W DC-DC Converters
BTCPOWER

2EE-04

15W DC-DC Converters
BTCPOWER

2EE-05

15W DC-DC Converters
BTCPOWER