6ED003L06C2X1SA1 [INFINEON]

Half Bridge Based MOSFET Driver;
6ED003L06C2X1SA1
型号: 6ED003L06C2X1SA1
厂家: Infineon    Infineon
描述:

Half Bridge Based MOSFET Driver

驱动 接口集成电路
文件: 总25页 (文件大小:612K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
EiceDRIVERCompact  
High voltage gate driver IC  
6ED family - 2nd generation  
Chip product  
3 phase 600 V gate drive IC  
6ED003L06-C2  
6EDL04I06PC  
6EDL04I06NC  
6EDL04N06PC  
EiceDRIVERCompact  
datasheet  
<Revision 2.5>, 20.04.2015  
Industrial Power Control  
Edition 20.04.2015  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2015 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all  
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual  
property rights of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the  
failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life  
support devices or systems are intended to be implanted in the human body or to support and/or maintain and  
sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other  
persons may be endangered.  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
Revision History  
Page or Item  
Subjects (major changes since previous revision)  
<Revision 2.5>, 20.04.2015  
all  
revised wording of test temperature  
Trademarks of Infineon Technologies AG  
AURIX™, BlueMoon™, C166™, CanPAK™, CIPOS™, CIPURSE™, COMNEON™, EconoPACK™,  
CoolMOS™, CoolSET™, CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™,  
EconoDUAL™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™,  
ISOFACE™, IsoPACK™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OptiMOS™, ORIGA™,  
PRIMARION™, PrimePACK™, PrimeSTACK™, PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™,  
SIEGET™, SINDRION™, SIPMOS™, SMARTi™, SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™,  
TRENCHSTOP™, TriCore™, X-GOLD™, X-PMU™, XMM™, XPOSYS™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,  
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by  
AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum.  
COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™  
of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium.  
HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™  
of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR  
STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc.  
MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc.  
MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE  
OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc.  
Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of  
Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd.  
Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc.  
TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company  
Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments  
Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex  
Limited.  
Last Trademarks Update 2010-10-26  
datasheet  
3
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
Table of Contents  
1
Overview .............................................................................................................................................7  
2
Blockdiagram......................................................................................................................................9  
3
Chip size, bondpad configuration and description ......................................................................11  
Mechanical data .................................................................................................................................11  
Pad description...................................................................................................................................12  
Low Side and High Side Control Pins (Pin 2, 3, 4, 5, 6, 7) ................................................................13  
EN (Gate Driver Enable, Pin 10)........................................................................................................13  
FAULT (Fault Feedback, Pin 8) .........................................................................................................13  
ITRIP and RCIN (Over-Current Detection Function, Pin 9, 11) .........................................................14  
VCC, VSS and COM (Low Side Supply, Pin 1, 12,13) ......................................................................14  
VB1,2,3 and VS1,2,3 (High Side Supplies, Pin 18, 20, 22, 24, 26, 28) .............................................14  
LO1,2,3 and HO1,2,3 (Low and High Side Outputs, Pin 14, 15, 16, 19, 23, 27) ...............................14  
3.1  
3.2  
3.3  
3.4  
3.5  
3.6  
3.7  
3.8  
3.9  
4
Electrical Parameters.......................................................................................................................15  
Absolute Maximum Ratings ...............................................................................................................15  
Required operation conditions ...........................................................................................................16  
Operating Range................................................................................................................................16  
Static logic function table ...................................................................................................................17  
Static parameters ...............................................................................................................................17  
Dynamic parameters..........................................................................................................................20  
4.1  
4.2  
4.3  
4.4  
4.5  
4.6  
5
6
Quality disclaimer ............................................................................................................................21  
Timing diagrams...............................................................................................................................22  
datasheet  
4
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
Typical Application ...............................................................................................................................8  
Block diagram for 6ED003L06-C2, and 6EDL04I06NC (with ultra fast BS diodes).............................9  
Block Diagram for 6EDL04I06PC, and 6EDL04N06PC.....................................................................10  
Bond pad configuration of 6ED family (signals HIN1,2,3 and LIN1,2,3 according to Table 1) ..........11  
Input pin structure for negative logic (left) and positive logic (right)...................................................13  
Input filter timing diagram for negative logic (left) and positive logic (right).......................................13  
EN pin structures................................................................................................................................13  
FAULT pin structures .........................................................................................................................14  
Timing of short pulse suppression (6EDL04I06NC, 6ED003L06-C2)................................................22  
Figure 10 Timing of short pulse suppression (6EDL04I06PC, 6EDL04N06PC)................................................22  
Figure 11 Timing of of internal deadtime (input logic according to Table 1) ......................................................22  
Figure 12 Enable delay time definition ...............................................................................................................23  
Figure 13 Input to output propagation delay times and switching times definition (6EDL04I06NC, 6ED003L06-  
C2)......................................................................................................................................................23  
Figure 14 Input to output propagation delay times and switching times definition (6EDL04I06PC,  
6EDL04N06PC)..................................................................................................................................23  
Figure 15 Operating areas (6EDL04I06NC, 6EDL04I06PC, 6ED003L06-C2)...................................................23  
Figure 16 Operating Areas (6EDL04N06PC).....................................................................................................24  
Figure 17 ITRIP-Timing ......................................................................................................................................24  
datasheet  
5
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Members of 6ED family 2nd generation .............................................................................................7  
Mechanical parameters......................................................................................................................11  
Pad position and dimension...............................................................................................................11  
Pad Description..................................................................................................................................12  
Abs. maximum ratings........................................................................................................................15  
Required Operation Conditions..........................................................................................................16  
Operating range .................................................................................................................................16  
Static parameters ...............................................................................................................................17  
Dynamic parameters..........................................................................................................................20  
datasheet  
6
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
EiceDRIVERCompact  
3 phase 600 V gate drive IC  
1
Overview  
Main features  
Thin-film-SOI-technology  
Maximum blocking voltage +600V  
Separate control circuits for all six drivers  
CMOS and LSTTL compatible input (negative logic)  
Chip product  
Signal interlocking of every phase to prevent cross-conduction  
Detection of over current and under voltage supply  
externally programmable delay for fault clear after over current detection  
Product highlights  
Insensitivity of the bridge output to negative transient voltages up to -50V given by SOI-technology  
Ultra fast bootstrap diodes (except 6ED003L06-C2)  
'shut down' of all switches during error conditions  
Typical applications  
Home appliances  
Fans, pumps  
General purpose drives  
Product family  
Table 1  
Members of 6ED family 2nd generation  
high side control typ. UVLO-  
Sales Name  
Bootstrap diode Package  
Replacement for  
1st generation  
input HIN1,2,3 and Thresholds  
LIN1,2,3  
6EDL04I06NC  
6EDL04I06PC  
6EDL04N06PC  
6ED003L06-C2  
negative logic  
positive logic  
positive logic  
negative logic  
11.7 V / 9.8 V Yes  
11.7 V / 9.8 V Yes  
9 V / 8.1 V Yes  
11.7 V / 9.8 V No  
sawn on foil No  
sawn on foil No  
sawn on foil No  
sawn on foil Yes  
Description  
The device 6ED family 2nd generation is a full bridge driver to control power devices like MOS-transistors or  
IGBTs in 3-phase systems with a maximum blocking voltage of +600 V. Based on the used SOI-technology  
there is an excellent ruggedness on transient voltages. No parasitic thyristor structures are present in the  
device. Hence, no parasitic latch-up may occur at all temperatures and voltage conditions.  
The six independent drivers are controlled at the low-side using CMOS resp. LSTTL compatible signals, down  
to 3.3 V logic. The device includes an under-voltage detection unit with hysteresis characteristic and an over-  
current detection. The over-current level is adjusted by choosing the resistor value and the threshold level at pin  
ITRIP. Both error conditions (under-voltage and over-current) lead to a definite shut down off all six switches. An  
error signal is provided at the FAULT open drain output pin. The blocking time after over-current can be  
adjusted with an RC-network at pin RCIN. The input RCIN owns an internal current source of 2.8 µA. Therefore,  
the resistor RRCIN is optional. The typical output current can be given with 165 mA for pull-up and 375 mA for pull  
down. Because of system safety reasons a 310 ns interlocking time has been realised. The function of input EN  
datasheet  
7
<Revision 2.5>, 20.04.2015  
 
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
can optionally be extended with an over-temperature detection, using an external NTC-resistor (see Fig.1). The  
monolithic integrated bootstrap diode structures between pins VCC and VBx can be used for power supply of  
the high side.  
DC-Bus  
VCC  
HIN1,2,3  
LIN1,2,3  
EN  
VCC  
VB1,2,3  
HO1,2,3  
HIN1,2,3  
LIN1,2,3  
EN  
To Load  
VS1,2,3  
5V  
FAULT  
RCIN  
FAULT  
LO1,2,3  
COM  
RRCIN  
CRCIN  
ITRIP  
VSS  
RSh  
VSS  
Signals HIN1,2,3 and LIN1,2,3 according to Table 1  
Typical Application  
Figure 1  
datasheet  
8
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
2
Blockdiagram  
BOOTSTRAP DIODE-VB1  
BIAS NETWORK / VDD2  
VB1  
INPUT NOISE  
FILTER  
BIAS NETWORK - VB1  
HIN1  
DEADTIME &  
SHOOT-THROUGH  
PREVENTION  
LATCH  
Gate-  
Drive  
HV LEVEL-SHIFTER  
+ REVERSE-DIODE  
COMPAR  
ATOR  
z
HO1  
VS1  
UV-  
DETECT  
INPUT NOISE  
FILTER  
LIN1  
BOOTSTRAP DIODE-VB2  
BIAS NETWORK - VB2  
VB2  
INPUT NOISE  
FILTER  
HIN2  
LIN2  
HIN3  
LIN3  
EN  
DEADTIME &  
SHOOT-THROUGH  
PREVENTION  
LATCH  
Gate-  
Drive  
HV LEVEL-SHIFTER  
+ REVERSE-DIODE  
COMPAR  
ATOR  
HO2  
VS2  
UV-  
DETECT  
INPUT NOISE  
FILTER  
BOOTSTRAP DIODE-VB3  
BIAS NETWORK / VB3  
INPUT NOISE  
FILTER  
VB3  
HO3  
VS3  
DEADTIME &  
SHOOT-THROUGH  
PREVENTION  
LATCH  
Gate-  
Drive  
HV LEVEL-SHIFTER  
+ REVERSE-DIODE  
COMPAR  
ATOR  
UV-  
DETECT  
INPUT NOISE  
FILTER  
>1  
INPUT NOISE  
FILTER  
VCC  
LO1  
UV-  
DETECT  
VSS / COM  
LEVEL-  
Gate-  
Drive  
DELAY  
SHIFTER  
INPUT NOISE  
FILTER  
ITRIP  
VSS / COM  
LEVEL-  
SHIFTER  
Gate-  
Drive  
DELAY  
DELAY  
LO2  
S
Q
VDD2  
SET  
DOMINANT  
LATCH  
R
IRCIN  
VSS / COM  
LEVEL-  
SHIFTER  
Gate-  
Drive  
LO3  
RCIN  
COM  
FAULT  
VSS  
>1  
Figure 2  
Block diagram for 6ED003L06-C2, and 6EDL04I06NC (with ultra fast BS diodes)  
datasheet  
9
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
BOOTSTRAP DIODE-VB1  
BIAS NETWORK / VDD2  
VB1  
INPUT NOISE  
FILTER  
BIAS NETWORK - VB1  
HIN1  
LIN1  
DEADTIME &  
SHOOT-THROUGH  
PREVENTION  
LATCH  
Gate-  
Drive  
HV LEVEL-SHIFTER  
+ REVERSE-DIODE  
COMPAR  
ATOR  
z
HO1  
VS1  
UV-  
DETECT  
INPUT NOISE  
FILTER  
BOOTSTRAP DIODE-VB2  
BIAS NETWORK - VB2  
VB2  
INPUT NOISE  
FILTER  
HIN2  
LIN2  
HIN3  
LIN3  
EN  
DEADTIME &  
SHOOT-THROUGH  
PREVENTION  
LATCH  
Gate-  
Drive  
HV LEVEL-SHIFTER  
+ REVERSE-DIODE  
COMPAR  
ATOR  
HO2  
VS2  
UV-  
DETECT  
INPUT NOISE  
FILTER  
BOOTSTRAP DIODE-VB3  
BIAS NETWORK / VB3  
INPUT NOISE  
FILTER  
VB3  
HO3  
VS3  
DEADTIME &  
SHOOT-THROUGH  
PREVENTION  
LATCH  
Gate-  
Drive  
HV LEVEL-SHIFTER  
+ REVERSE-DIODE  
COMPAR  
ATOR  
UV-  
DETECT  
INPUT NOISE  
FILTER  
>1  
INPUT NOISE  
FILTER  
VCC  
LO1  
UV-  
DETECT  
VSS / COM  
LEVEL-  
Gate-  
Drive  
DELAY  
SHIFTER  
INPUT NOISE  
FILTER  
ITRIP  
VSS / COM  
LEVEL-  
SHIFTER  
Gate-  
Drive  
DELAY  
DELAY  
LO2  
S
Q
VDD2  
IRCIN  
SET  
DOMINANT  
LATCH  
R
VSS / COM  
LEVEL-  
SHIFTER  
Gate-  
Drive  
LO3  
RCIN  
COM  
FAULT  
VSS  
>1  
Figure 3  
Block Diagram for 6EDL04I06PC, and 6EDL04N06PC  
datasheet  
10  
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
3
Chip size, bondpad configuration and description  
3.1  
Mechanical data  
Table 2  
Mechanical parameters  
Raster size of die  
Area total / active  
Thickness  
2544 x 1706  
4.34 / 4.65  
280  
µm x µm  
mm²  
µm  
Wafer size  
200  
mm  
Max. possible chips per wafer  
Passivation frontside  
Backside (Note 2)  
Reject ink dot diameter  
5908  
pcs  
Polyimide  
Grinded silicon  
Min. 0.6 max 1.2  
mm  
Note1: Filler material inside the mould compound with sharp edges may harm the passivation.  
Note2: Chip must be bonded onto an electrically isolated area  
All pad openings are designed for gold wire ball bonds and not for aluminum wedge bonds.  
y
x
Figure 4  
Bond pad configuration of 6ED family (signals HIN1,2,3 and LIN1,2,3 according to Table 1)  
Table 3  
Pad position and dimension  
Pad Name  
Pad Number Voltage  
Domain  
Pad Center Coordinates /µm Active Pad Dimension /µm  
X
Y
X
Y
VCC  
HIN1  
HIN2  
HIN3  
LIN1  
LIN2  
1
2
3
4
5
6
1
1
1
1
1
1
271  
271  
271  
271  
390  
669  
565  
423  
313  
203  
185  
185  
80  
80  
80  
80  
80  
80  
145  
80  
80  
80  
80  
80  
datasheet  
11  
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
Table 3  
Pad position and dimension  
Pad Name  
Pad Number Voltage  
Domain  
Pad Center Coordinates /µm Active Pad Dimension /µm  
X
Y
X
Y
LIN3  
FAULT  
ITRIP  
EN  
7
1
862  
185  
80  
80  
80  
80  
80  
80  
100  
80  
80  
80  
140  
80  
80  
80  
80  
80  
80  
80  
140  
140  
---  
8
1
1063  
1210  
1488  
1637  
2104  
2305  
2350  
2350  
2350  
2217  
2047  
1877  
1440  
1270  
1100  
324  
185  
80  
9
1
185  
80  
10  
11  
12  
13  
14  
15  
16  
18  
19  
20  
22  
23  
24  
26  
27  
28  
1
185  
80  
RCIN  
VSS  
COM  
LO3  
LO2  
LO1  
VS3  
HO3  
VB3  
VS2  
HO2  
VB2  
VS1  
HO1  
VB1  
1
185  
80  
1
171  
160  
160  
80  
1
226  
1
349  
1
469  
80  
1
619  
80  
2
1325  
1325  
1325  
1325  
1325  
1325  
1325  
1185  
1014  
---  
140  
140  
140  
140  
140  
140  
140  
80  
2
2
3
3
3
4
4
294  
4
294  
80  
Chip back side ---  
floating  
---  
---  
3.2  
Pad description  
Table 4  
Symbol  
VCC  
Pad Description  
Description  
Low side power supply  
Logic ground  
VSS  
/HIN1,2,3  
/LIN1,2,3  
/FAULT  
EN  
High side logic input (negative logic)  
Low side logic input (negative logic)  
Indicates over-current and under-voltage (negative logic, open-drain output)  
Enable I/O functionality (positive logic)  
ITRIP  
Analog input for over-current shutdown, activates FAULT and RCIN to VSS  
external RC-network to define FAULT clear delay after FAULT-Signal (TFLTCLR  
Low side gate driver reference  
RCIN  
)
COM  
VB1,2,3  
HO1,2,3  
VS1,2,3  
LO1,2,3  
High side positive power supply  
High side gate driver output  
High side negative power supply  
Low side gate driver output  
Chip back side Floating back side (floats towards the highest momentarily active potential)  
datasheet  
12  
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
3.3  
Low Side and High Side Control Pins (Pin 2, 3, 4, 5, 6, 7)  
The Schmitt trigger input threshold of them are such to guarantee LSTTL and CMOS compatibility down to 3.3 V  
controller outputs. Input Schmitt trigger and noise filter provide beneficial noise rejection to short input pulses  
according to Figure 5 and Figure 6.  
Vcc  
Schmitt-Trigger  
Schmitt-Trigger  
INPUT NOISE  
FILTER  
INPUT NOISE  
FILTER  
HINx  
LINx  
HINx  
LINx  
UZ=10.5V  
UZ=10.5V  
5k  
SWITCH LEVEL  
VIH; VIL  
SWITCH LEVEL  
VIH; VIL  
Figure 5  
Input pin structure for negative logic (left) and positive logic (right)  
An internal pull-up of about 75 k(negative logic) pre-biases the input during supply start-up and a ESD zener  
clamp is provided for pin protection purposes. The zener diodes are therefore designed for single pulse stress  
only and not for continuous voltage stress over 10V. For versions with positive, a 5 kpull-down resistor is used  
for this function.  
a)  
b)  
HIN  
tFILIN  
a)  
b)  
HIN  
tFILIN  
tFILIN  
tFILIN  
LIN  
LO  
LIN  
LO  
LIN  
LIN  
high  
high  
HO  
LO  
HO  
LO  
low  
low  
Figure 6  
Input filter timing diagram for negative logic (left) and positive logic (right)  
It is anyway recommended for proper work of the driver not to provide input pulse-width lower than 1 µs.  
The 6ED family 2nd generation provides additionally a shoot through prevention capability which avoids the  
simultaneous on-state of two channels of the same leg (i.e. HO1 and LO1, HO2 and LO2, HO3 and LO3). When  
two inputs of a same leg are activated, only one leg output is activated, so that the leg is kept steadily in a safe  
state. Please refer to the application note AN-Gatedrive-6ED2-1 for a detailed description.  
A minimum dead time insertion of typ. 310 ns is also provided, in order to reduce cross-conduction of the  
external power switches.  
3.4  
EN (Gate Driver Enable, Pin 10)  
The signal applied to pin EN controls directly the output stages. All outputs are set to LOW, if EN is at LOW  
logic level. The internal structure of the pin is given in Figure 7. The switching levels of the Schmitt-Trigger are  
here VEN,TH+ = 2.1 V and VEN,TH- = 1.3 V. The typical propagation delay time is tEN = 780 ns. There is an internal  
pull down resistor (75 k), which keeps the gate outputs off in case of broken PCB connection.  
IEN+, IEN-  
EN  
INPUT NOISE  
FILTER  
VEN,TH+  
VEN,TH-  
,
VZ= 10.5 V  
6ED family 2nd generation  
Figure 7  
EN pin structures  
3.5  
/FAULT (Fault Feedback, Pin 8)  
/Fault pin is an active low open-drain output indicating the status of the gate driver (see Figure 8). The pin is  
active (i.e. forces LOW voltage level) when one of the following conditions occur:  
datasheet  
13  
<Revision 2.5>, 20.04.2015  
 
 
 
 
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
Under-voltage condition of VCC supply: In this case the fault condition is released as soon as the  
supply voltage condition returns in the normal operation range (please refer to VCC pin description for  
more details).  
Over-current detection (ITRIP): The fault condition is latched until current trip condition is finished and  
RCIN input is released (please refer to ITRIP pin).  
6ED family –  
2nd generation  
VDD  
VCC  
RON,FLT  
from ITRIP-Latch  
from uv-detection  
FAULT  
>1  
Figure 8  
/FAULT pin structures  
3.6  
ITRIP and RCIN (Over-Current Detection Function, Pin 9, 11)  
The 6ED family 2nd generation provides an over-current detection function by connecting the ITRIP input with  
the motor current feedback. The ITRIP comparator threshold (typ 0.44 V) is referenced to VSS ground. A input  
noise filter (typ. tITRIPMIN = 230 ns) prevents the driver to detect false over-current events.  
Over-current detection generates a hard shut down of all outputs of the gate driver and provides a latched fault  
feedback at /FAULT pin. RCIN input/output pin is used to determine the reset time of the fault condition. As  
soon as ITRIP threshold is exceeded the external capacitor connected to RCIN is fully discharged. The  
capacitor is then recharged by the RCIN current generator when the over-current condition is finished. As soon  
as RCIN voltage exceeds the rising threshold of typ VRCIN,TH = 5.2 V, the fault condition releases and the driver  
returns operational following the ontrol input pins according to section 3.3. Please refer to AN-Gatedrive-6ED2-1  
for details on setting RCIN time constant.  
3.7  
VCC, VSS and COM (Low Side Supply, Pin 1, 12,13)  
VCC is the low side supply and it provides power both to input logic and to low side output power stage. Input  
logic is referenced to VSS ground as well as the under-voltage detection circuit. Output power stage is  
referenced to COM ground. COM ground is floating respect to VSS ground with a maximum range of operation  
of +/-5.7 V. A back-to-back zener structure protects grounds from noise spikes.  
The under-voltage circuit enables the device to operate at power on when a typical supply voltage higher than  
VCCUV+ is present. The IC shuts down all the gate drivers power outputs, when the VCC supply voltage is below  
VCCUV- = 9.8 V respectively 8.1 V. This prevents the external power switches from critically low gate voltage  
levels during on-state and therefore from excessive power dissipation.  
3.8  
VB1,2,3 and VS1,2,3 (High Side Supplies, Pin 18, 20, 22, 24, 26, 28)  
VB to VS is the high side supply voltage. The high side circuit can float with respect to VSS following the  
external high side power device emitter/source voltage. Due to the low power consumption, the floating driver  
stage can be supplied by bootstrap topology connected to VCC.  
The device operating area as a function of the supply voltage is given in Figure 15 and Figure 16. Details on  
bootstrap supply section and transient immunity can be found in application note AN-Gatedrive-6ED2-1.  
3.9  
LO1,2,3 and HO1,2,3 (Low and High Side Outputs, Pin 14, 15, 16, 19, 23, 27)  
Low side and high side power outputs are specifically designed for pulse operation such as gate drive of IGBT  
and MOSFET devices. Low side outputs (i.e. LO1,2,3) are state triggered by the respective inputs, while high  
side outputs (i.e. HO1,2,3) are edge triggered by the respective inputs. In particular, after an under voltage  
condition of the VBS supply, a new turn-on signal (edge) is necessary to activate the respective high side  
output, while after a under voltage condition of the VCC supply, the low side outputs switch to the state of their  
respective inputs.  
datasheet  
14  
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
4
Electrical Parameters  
4.1  
Absolute Maximum Ratings  
All voltages are absolute voltages referenced to VSS -potential unless otherwise specified. All parameters are  
valid for Ta=25 °C.  
Table 5  
Abs. maximum ratings  
Parameter  
Symbol Min.  
Max.  
Unit  
VS  
High side offset voltage(Note 1)  
V
VCC-VBS-6  
600  
High side offset voltage (tp<500ns, Note 1)  
VCC -VBS 50 –  
VB  
High side offset voltage(Note 1)  
VCC 6  
620  
High side offset voltage (tp<500ns, Note 1)  
VCC 50  
VCC-VBS-6  
VBack  
Chip back side  
620  
High side floating supply voltage (VB vs. VS) (internally clamped)  
High side output voltage (VHO vs. VS)  
-1  
20  
VHO  
VCC  
VB + 0.5  
20  
-0.5  
-1  
Low side supply voltage (internally clamped)  
Low side supply voltage (VCC vs. VCOM  
)
VCCOM  
VCOM  
VLO  
-0.5  
-5.7  
-0.5  
-1  
25  
Gate driver ground  
5.7  
Low side output voltage (VLO vs. VCOM  
Input voltage LIN,HIN,EN,ITRIP  
FAULT output voltage  
)
VCCOM + 0.5  
10  
VIN  
VFLT  
VRCIN  
TJ  
VCC + 0.5  
VCC + 0.5  
125  
-0.5  
-0.5  
RCIN output voltage  
Junction temperature  
°C  
TS  
Storage temperature  
- 40  
150  
dVS/dt  
offset voltage slew rate  
50  
V/ns  
Note :The minimum value for ESD immunity is 1.0kV (Human Body Model). ESD immunity inside pins connected to the low side (VCC,  
HINx, LINx, FAULT, EN, RCIN, ITRIP, VSS, COM, LOx) and pins connected inside each high side itself (VBx, HOx, VSx) is guaranteed up  
to 1.5kV (Human Body Model).  
Note 1 : In case VCC > VB there is an additional power dissipation in the internal bootstrap diode between pins VCC and VBx. Insensitivity of  
bridge output to negative transient voltage up to 50V is not subject to production test verified by design / characterization.  
datasheet  
15  
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
4.2  
Required operation conditions  
All voltages are absolute voltages referenced to VSS -potential unless otherwise specified. All parameters are  
valid for Ta=25 °C.  
Table 6  
Required Operation Conditions  
Parameter  
Symbol Min.  
Max. Unit  
VB  
High side offset voltage (Note 1)  
V
7
620  
25  
Low side supply voltage (VCC vs. VCOM  
)
VCCOM  
10  
4.3  
Operating Range  
All voltages are absolute voltages referenced to VSS -potential unless otherwise specified. All parameters are  
valid for Ta=25 °C.  
Table 7  
Operating range  
Parameter  
Symbol Min.  
Max. Unit  
VS  
VCC -  
High side floating supply offset voltage  
V
VBS -1  
-1.0  
13  
550  
High side floating supply offset voltage (VB vs. VCC, statically)  
High side floating supply voltage (VB vs. VS, Note 1)  
VBCC  
550  
6EDL04I06NC VBS  
17.5  
6EDL04I06PC  
6ED003L06-C2  
6EDL04N06PC  
High side output voltage (VHO vs. VS)  
VHO  
VLO  
VCC  
10  
0
VBS  
Low side output voltage (VLO vs. VCOM  
)
VCC  
17.5  
Low side supply voltage  
6EDL04I06NC  
6EDL04I06PC  
6ED003L06-C2  
13  
6EDL04N06PC  
10  
-2.5  
0
17.5  
2.5  
5
VCOM  
VIN  
Low side ground voltage  
Logic input voltages LIN,HIN,EN,ITRIP (Note 2)  
FAULT output voltage  
VFLT  
VRCIN  
tIN  
VCC  
VCC  
0
RCIN input voltage  
0
Pulse width for ON or OFF (Note 3)  
Ambient temperature  
1
µs  
°C  
Ta  
-40  
95  
Note 1 : Logic operational for VB (VB vs. VS) > 7,0V  
Note 2 : All input pins (HINx, LINx) and EN, ITRIP pin are internally clamped (see abs. maximum ratings)  
Note 3 : In case of input pulse width at LINx and HINx below 1µ the input pulse may not be transmitted properly  
datasheet  
16  
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
4.4  
Static logic function table  
VCC  
VBS  
X
RCIN  
X
ITRIP  
ENABLE  
X
FAULT  
LO1,2,3  
HO1,2,3  
<VCCUV  
15V  
X
0
0
0
<VBSUV–  
15V  
X
0
3.3 V  
3.3 V  
3.3 V  
3.3 V  
0
High imp  
0
LIN1,2,3*  
0
15V  
0
0
0
<3.2 V   
X
> VIT,TH+  
15V  
15V  
0
0
LIN1,2,3*  
0
0
HIN1,2,3*  
0
> VRCIN,TH  
> VRCIN,TH  
15V  
15V  
0
0
High imp  
High imp  
15V  
15V  
* according to Table 1  
4.5  
Static parameters  
VCC = VBS = 15V unless otherwise specified. All parameters are valid for Ta=25 °C.  
Table 8  
Static parameters  
Parameter  
Symbol  
Values  
Unit Test condition  
Min.  
1.7  
0.7  
1.9  
1.1  
380  
45  
-
Typ.  
2.1  
0.9  
2.1  
1.3  
445  
70  
Max.  
2.4  
VIH  
High level input voltage  
V
VIL  
Low level input voltage  
1.1  
VEN,TH+  
VEN,TH-  
VIT,TH+  
VIT,HYS  
VRCIN,TH  
VRCIN,HYS  
VIN,CLMAP  
EN positive going threshold  
EN negative going threshold  
ITRIP positive going threshold  
ITRIP input hysteresis  
2.3  
1.5  
510  
mV  
RCIN positive going threshold  
RCIN input hysteresis  
5.2  
2.0  
10.3  
6.4  
-
V
-
Input clamp voltage  
9
12  
IIN = 4mA  
(HIN and LIN acc. Table 1, EN, ITRIP)  
Input clamp voltage at high impedance  
(/HIN, /LIN negative logic only)  
VIN,FLOAT  
VOH  
-
5.3  
5.8  
controller output  
pin floating  
High level output voltage  
LO1,2,3  
-
-
VCC -0.7 VCC -1.4  
VB -0.7 VB -1.4  
IO = 20mA  
HO1,2,3  
LO1,2,3  
VOL  
VCOM  
+
VCOM+  
IO = -20mA  
Low level output voltage  
-
0.2  
0.6  
VS+ 0.2 VS + 0.6  
HO1,2,3  
-
VCC and VBS supply  
undervoltage positive  
going threshold  
VCCUV+  
VBSUV+  
6EDL04I06NC  
6EDL04I06PC  
6ED003L06-C2  
6EDL04N06PC  
11  
11.7  
12.5  
8.3  
9.5  
9
9.8  
VCC and VBS supply  
undervoltage negative  
going threshold  
VCCUV–  
6EDL04I06PC VBSUV–  
6EDL04I06NC  
9.8  
10.8  
V
6ED003L06-C2  
6EDL04N06PC  
7.5  
8.1  
8.8  
datasheet  
17  
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
Table 8  
Static parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit Test condition  
Min.  
Max.  
VCC and VBS supply  
undervoltage lockout  
hysteresis  
VCCUVH  
VBSUVH  
6EDL04I06NC  
6EDL04I06PC  
6ED003L06-C2  
1.2  
1.9  
-
6EDL04N06PC  
0.5  
0.9  
1
-
ILVS+  
High side leakage current betw. VS and VSS  
-
-
12.5  
-
µA  
VS = 600V  
1
TJ = 125°C,  
VS = 600V  
High side leakage current betw. VS and VSS ILVS+  
10  
1
TJ = 125°C  
High side leakage current between VSx and ILVS–  
-
10  
-
VSx - VSy = 600V  
VSy (x=1,2,3 and y=1,2,3)  
Quiescent current VBS supply (VB only)  
Quiescent current VBS supply (VB only)  
IQBS1  
IQBS2  
IQCC1  
-
-
-
210  
210  
1.1  
400  
400  
1.8  
µA  
HO=low  
HO=high  
VLIN=float.  
Quiescent current VCC  
6EDL04I06NC  
6ED003L06-C2  
mA  
supply (VCC only)  
6EDL04I06PC  
6EDL04N06PC  
-
-
0.75  
1.3  
0.75  
1.3  
0.75  
70  
1.5  
2
Quiescent current VCC  
supply (VCC only)  
IQCC2  
IQCC3  
ILIN+  
ILIN-  
VLIN=0, VHIN=3.3 V  
VLIN=3.3 V, VHIN=0  
VLIN=3.3 V, VHIN=0  
VLIN=3.3 V, VHIN=0  
VLIN=3.3 V  
6EDL04I06NC  
6ED003L06-C2  
6EDL04I06PC  
6EDL04N06PC  
1.5  
2
Quiescent current VCC  
supply (VCC only)  
6EDL04I06NC  
6ED003L06-C2  
-
6EDL04I06PC  
6EDL04N06PC  
1.5  
100  
1100  
200  
Input bias current  
Input bias current  
Input bias current  
Input bias current  
6EDL04I06NC  
6ED003L06-C2  
-
µA  
µA  
6EDL04I06PC  
6EDL04N06PC  
400  
-
700  
110  
0
6EDL04I06NC  
6ED003L06-C2  
VLIN=0  
6EDL04I06PC  
6EDL04N06PC  
IHIN+  
VHIN=3.3 V  
6EDL04I06NC  
6ED003L06-C2  
-
70  
100  
6EDL04I06PC  
6EDL04N06PC  
400  
-
700  
110  
0
1100  
200  
IHIN-  
VHIN=0  
6EDL04I06NC  
6ED003L06-C2  
6EDL04I06PC  
6EDL04N06PC  
IITRIP+  
IEN+  
VITRIP=3.3 V  
VENABLE=3.3 V  
VRCIN = 2 V  
Input bias current (ITRIP=high)  
Input bias current (EN=high)  
45  
45  
2.8  
120  
120  
-
IRCIN  
Input bias current RCIN (internal current  
source)  
IO+  
Mean output current for load capacity  
120  
165  
-
mA CL=10 nF  
1 Not subject of production test, verified by characterisation  
datasheet  
18  
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
Table 8  
Static parameters  
Parameter  
Symbol  
Values  
Typ.  
Unit Test condition  
Min.  
Max.  
charging in range from 3 V (20%) to 6 V  
(40%)  
1
IOpk+  
Peak output current turn on (single pulse)  
240  
375  
RL = 0 , tp <10 µs  
IO-  
Mean output current for load capacity  
discharging in range from 12 V (80%) to 9 V  
(60%)  
250  
-
CL=10 nF  
1
IOpk-  
Peak output current turn off (single pulse)  
420  
1.0  
RL = 0 , tp <10 µs  
VF,BSD  
Bootstrap diode forward voltage between  
VCC and VB (for types with bootstrap diode  
only)  
-
1.3  
75  
V
IF=0.5 mA  
IF,BSD  
VF=4 V  
Bootstrap diode forward current between  
VCC and VB (for types with bootstrap diode  
only)  
27  
51  
mA  
RBSD  
VF1=4 V, VF2=5 V  
VRCIN=0.5 V  
Bootstrap diode resistance (for types with  
bootstrap diode only)  
24  
-
40  
40  
45  
60  
Ron,RCIN  
Ron,FLT  
RCIN low on resistance of the pull down  
transistor  
100  
100  
FAULT low on resistance of the pull down  
transistor  
-
VFAULT=0.5 V  
1 Not subject of production test, verified by characterisation  
datasheet  
19  
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
4.6  
Dynamic parameters  
VCC = VBS = 15 V, VS = VSS = VCOM unless otherwise specified. All parameters are valid for Ta=25 °C.  
Table 9  
Dynamic parameters  
Parameter  
Symbol  
Values  
Unit Test condition  
Min.  
400  
360  
Typ.  
530  
490  
Max.  
800  
ton  
Turn-on propagation delay  
ns  
VLIN/HIN = 0 or 3.3 V  
toff  
Turn-off propagation delay 6EDL04I06NC  
6EDL04I06PC  
760  
6ED003L06-C2  
6EDL04N06PC  
Turn-on rise time  
400  
-
530  
60  
800  
100  
45  
tr  
VLIN/HIN = 0 or 3.3 V  
CL = 1 nF  
tf  
Turn-off fall time  
-
26  
tEN  
VEN=0  
Shutdown propagation delay ENABLE  
Shutdown propagation delay ITRIP  
Input filter time ITRIP  
-
780  
670  
230  
420  
300  
600  
1.9  
1100  
1000  
380  
700  
-
tITRIP  
tITRIPMIN  
tFLT  
VITRIP=1 V  
400  
155  
-
Propagation delay ITRIP to FAULT  
Input filter time at LIN/HIN for turn on and off  
Input filter time EN  
tFILIN  
tFILEN  
tFLTCLR  
VLIN/HIN = 0 & 3.3 V  
120  
300  
1.0  
-
VLIN/HIN = 0 & 3.3 V  
VITRIP = 0  
Fault clear time at RCIN after ITRIP-fault,  
(CRCin=1nF)  
3.0  
ms  
ns  
DT  
VLIN/HIN = 0 & 3.3 V  
Dead time  
150  
-
310  
20  
-
MTON  
Matching delay ON, max(ton)-min(ton), ton  
are applicable to all 6 driver outputs  
100  
external dead time  
> 500 ns  
MTOFF  
PM  
Matching delay OFF, max(toff)-min(toff), toff  
are applicable to all 6 driver outputs  
-
40  
40  
100  
100  
external dead time  
>500 ns  
Output pulse width  
6EDL04I06NC  
6EDL04I06PC  
6ED003L06-C2  
PWin > 1 µs  
matching. Pwin-PWout  
6EDL04N06PC  
10  
100  
datasheet  
20  
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
5
Quality disclaimer  
The described properties and parameters must be confirmed by specific qualification in the final system. The  
results of the qualification must be open to Infineon. Otherwise Infineon does not give any design release or  
warranty.  
It is the responsibility of the customer to select the suitable set of materials and the manufacturing processes for  
the final system, which complies to his requirements in respect of life time.  
We recommend to avoid in particular:  
during die separation - unwanted mechanical stress on the wafer, wear out of the cutting blade or any other  
cutter misconfiguration possibly causing cracks, chipping and/or delamination of the passivation;  
during/after die attachment die attach delamination causing possibly unwanted high thermal resistance,  
unwanted mechanical stress, or reduced electrical conductivity;  
during/after die attachment die attach voids causing possibly unwanted high thermal resistance, unwanted  
mechanical stress, or reduced electrical conductivity;  
during/after die attachment unwanted ion migration possibly causing unwanted leakage or electrical  
modification of the device;  
during/after die attachment unwanted ion migration causing possibly unwanted leakage or unwanted  
electrical modification of the device;  
during/after die attachment unwanted increase of thermal conductivity possibly causing unwanted  
overheating of the device;  
during electrical interconnect, in particular wire bonding mechanical overstress possibly causing sheared  
wires and/or damaged pads;  
during electrical interconnect, in particular wire bonding lacking bond integrity, in particular non sticking  
interconnects on pads possibly causing unwanted misfunction of the device and/or unwanted leakages;  
during encapsulation of the device unwanted shrink or extension of the mould compound possibly causing  
corrosion;  
during encapsulation of the device unwanted ion migration causing unwanted leakage or unwanted  
electrical modification of the device;  
during encapsulation of the device unsuitable mould, unsuitable moulding processes possibly causing  
potentially wire sweep of electrical interconnects;  
during encapsulation of the device sharp moudl filler components possibly causing penetration of the  
passivation, hence unwanted environmental influences like corrosion or ion migration etc.  
during encapsulation of the device unsuitable mould with unsuitable thermal conductivity possibly causing  
overheating of the device, resulting in damage of single or multiple transistors/diodes causing non  
functionality of the device, uncluding unwanted leakages;  
during encapsulation of the device unwanted low creepage distances, possibly bringing about the risk of  
high voltage avalanche breakthroughs;  
during encapsulation of the device unsuitable mould and/or mouldling processes possibly causing  
delamination, resulting in overheating, leackages, shorts, open accessible voltage carrying parts, shortend  
lifetime etc.  
during encapsulation of the device unsuitable thermal behaviour of encapsulation (expansion/shrinking,  
state change) possibly resulting in overheating, sheared wire, openly accessible voltage carrying parts.  
datasheet  
21  
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
6
Timing diagrams  
tFILIN  
tIN  
tFILIN  
tIN  
HIN/LIN  
HIN/LIN  
HO/LO  
HIN/LIN  
HO/LO  
tIN < tFILIN  
tIN < tFILIN  
high  
HO/LO  
low  
tIN  
tIN  
HIN/LIN  
tIN > tFILIN  
tIN > tFILIN  
HO/LO  
Figure 9  
Timing of short pulse suppression (6EDL04I06NC, 6ED003L06-C2)  
tFILIN  
tIN  
tFILIN  
tIN  
HIN/LIN  
HIN/LIN  
HO/LO  
HIN/LIN  
HO/LO  
tIN < tFILIN  
tIN < tFILIN  
high  
HO/LO  
HIN/LIN  
HO/LO  
low  
tIN  
tIN  
tIN > tFILIN  
tIN > tFILIN  
Figure 10 Timing of short pulse suppression (6EDL04I06PC, 6EDL04N06PC)  
LIN1,2,3  
1.65V  
1.65V  
HIN1,2,3  
HO1,2,3  
12V  
3V  
DT  
DT  
3V  
12 V  
LO1,2,3  
Figure 11 Timing of of internal deadtime (input logic according to Table 1)  
datasheet  
22  
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
EN  
tEN  
HO1,2,3  
LO1,2,3  
3V  
Figure 12 Enable delay time definition  
PWIN  
LIN1,2,3  
HIN1,2,3  
1.65V  
1.65V  
toff  
ton  
tr  
tf  
12V  
12V  
HO1,2,3  
LO1,2,3  
3V  
3V  
PWOUT  
Figure 13 Input to output propagation delay times and switching times definition (6EDL04I06NC,  
6ED003L06-C2)  
PWIN  
LIN1,2,3  
1.65V  
1.65V  
HIN1,2,3  
toff  
ton  
tr  
tf  
12V  
12V  
HO1,2,3  
LO1,2,3  
3V  
3V  
PWOUT  
Figure 14 Input to output propagation delay times and switching times definition (6EDL04I06PC,  
6EDL04N06PC)  
VCCMAX , VBSMAX  
20  
V
17.5  
vCC  
vBS  
13  
VCCUV+, VBSUV+ 11.7  
VCCUV-, VBSUV- 9.8  
t
IC STATE  
ON  
Recommended  
Area  
ON  
Recommended  
Area  
Forbidden  
Area  
OFF  
ON  
ON  
ON  
ON  
OFF  
Figure 15 Operating areas (6EDL04I06NC, 6EDL04I06PC, 6ED003L06-C2)  
datasheet 23  
<Revision 2.5>, 20.04.2015  
EiceDRIVER(tm) Compact  
6ED family - 2nd generation chip product  
VCCMAX , VBSMAX  
20  
V
17.5  
vCC  
vBS  
10.0  
VCCUV+, VBSUV+ 9.0  
VCCUV-, VBSUV- 8.1  
t
IC STATE  
OFF  
ON  
Recommended  
Area  
ON  
Recommended  
Area  
Forbidden  
Area  
ON  
ON  
ON  
ON  
OFF  
Figure 16 Operating Areas (6EDL04N06PC)  
VRCIN,TH  
RCIN  
ITRIP  
0.1V  
0.1V  
FAULT  
1V  
0.5V  
tFLT  
tFLTCLR  
Any  
output  
3V  
tITRIP  
Figure 17 ITRIP-Timing  
datasheet  
24  
<Revision 2.5>, 20.04.2015  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

6ED003L06F2XUMA2

Half Bridge Based MOSFET Driver,
INFINEON

6ED003L06FXUMA1

Half Bridge Based MOSFET Driver, PDSO28, GREEN, PLASTIC, SOP-28
INFINEON

6ED003L0X-F2

High voltage gate driver IC
INFINEON

6ED1

Medium Performance Compact EMI Power Inlet Filter
TE

6ED1050-1AA00-0BE4

MANUAL EDITION 0901
ETC

6ED1052-1

Monitoring and Control Devices
ETC

6ED1052-1CC00-0BA3

LOGIKMODUL SHORT 24V TRANSISTOR
ETC

6ED1052-1FB00-0BA2

LOGIKMODUL SHORT 115/230V RELAIS
ETC

6ED1052-1FB00-0BA3

MODULES LOGIC 230RC
ETC

6ED1052-1HB00-0BA2

LOGIKMODUL SHORT 24V RELAIS
ETC

6ED1052-1HB00-0BA3

MODULES LOGIC 24RC 8DI
ETC

6ED1052-1MD00-0BA2

LOGIKMODUL SHORT 12V RELAIS
ETC