AFL27015DXES [INFINEON]

HYBRID-HIGH RELIABILITY DC/DC CONVERTER;
AFL27015DXES
型号: AFL27015DXES
厂家: Infineon    Infineon
描述:

HYBRID-HIGH RELIABILITY DC/DC CONVERTER

文件: 总16页 (文件大小:539K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 94435B  
AFL270XXS SERIES  
270V Input, Single Output  
HYBRID-HIGH RELIABILITY  
DC/DC CONVERTER  
Description  
The AFL Series of DC/DC converters feature high power  
density with no derating over the full military  
temperature range. This series is offered as part of a  
complete family of converters providing single and dual  
output voltages and operating from nominal +28V or  
+270V inputs with output power ranging from 80W to  
120W. For applications requiring higher output power,  
multiple converters can be operated in parallel. The  
internal current sharing circuits assure equal current  
distribution among the paralleled converters. This series  
incorporates International Rectifier’s proprietary  
magnetic pulse feedback technology providing  
optimum dynamic line and load regulation response.  
This feedback system samples the output voltage at  
the pulse width modulator fixed clock frequency,  
nominally 550KHz. Multiple converters can be  
synchronized to a system clock in the 500 KHz to 700KHz  
range or to the synchronization output of one converter.  
Undervoltage lockout, primary and secondary  
referenced inhibit, softstart and load fault protection  
are provided on all models.  
AFL  
Features  
n 160V To 400V Input Range  
n 5V, 6V, 9V, 12V, 15V and 28V Outputs  
Available  
3
n High Power Density - up to 84W/in  
n Up To 120W Output Power  
n Parallel Operation with Stress and Current  
Sharing  
n Low Profile (0.380") Seam Welded Package  
n Ceramic Feedthru Copper Core Pins  
n High Efficiency - to 87%  
n Full Military Temperature Range  
n Continuous Short Circuit and Overload  
Protection  
n Remote Sensing Terminals  
n Primary and Secondary Referenced  
Inhibit Functions  
n Line Rejection > 60dB - DC to 50KHz  
n External Synchronization Port  
n Fault Tolerant Design  
n Dual Output Versions Available  
n Standard Microcircuit Drawings Available  
These converters are hermetically packaged in two  
enclosure variations, utilizing copper core pins to  
minimize resistive DC losses. Three lead styles are  
available, each fabricated with International Rectifier’s  
rugged ceramic lead-to-package seal assuring long  
term hermeticity in the most harsh environments.  
Manufactured in a facility fully qualified to MIL-PRF-  
38534, these converters are fabricated utilizing DSCC  
qualified processes. For available screening options,  
refer to device screening table in the data sheet.  
Variations in electrical, mechanical and screening can  
be accommodated. Contact IR Santa Clara for special  
requirements.  
www.irf.com  
1
12/18/06  
AFL270XXS Series  
Specifications  
Absolute Maximum Ratings  
Input voltage  
-0.5V to +500VDC  
300°C for 10 seconds  
-55°C to +125°C  
Soldering temperature  
Operating case temperature  
Storage case temperature  
-65°C to +135°C  
Static Characteristics  
-55°C TCASE +125°C, 160 VIN 400 unless otherwise specified.  
Group A  
Subgroups  
Parameter  
INPUT VOLTAGE  
Test Conditions  
Min  
Nom  
Max  
Unit  
Note 6  
160  
270  
400  
V
V
= 270 Volts, 100% Load  
OUTPUT VOLTAGE  
IN  
1
1
1
1
1
1
4.95  
5.94  
8.91  
11.88  
14.85  
27.72  
5.00  
6.00  
9.00  
12.00  
15.00  
28.00  
5.05  
6.06  
9.09  
12.12  
15.15  
28.28  
AFL27005S  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
V
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
4.90  
5.88  
8.82  
11.76  
14.70  
27.44  
5.10  
6.12  
9.18  
12.24  
15.30  
28.56  
AFL27005S  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
V
= 160, 270, 400 Volts - Note 6  
OUTPUT CURRENT  
OUTPUT POWER  
IN  
16.0  
13.5  
10.0  
9.0  
AFL27005S  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
A
8.0  
4.0  
Note 6  
Note 1  
80  
81  
90  
AFL27005S  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
W
108  
120  
112  
10,000  
µF  
MAXIMUM CAPACITIVE LOAD  
V
= 270 Volts,100% Load - Notes1, 6 -0.015  
+0.015  
%/°C  
OUTPUT VOLTAGE  
TEMPERATURE COEFFICIENT  
IN  
OUTPUT VOLTAGE REGULATION  
1, 2, 3  
1, 2, 3  
No Load, 50% Load, 100% Load  
-70.0  
-10.0  
+70.0  
+10.0  
mV  
mV  
AFL27028S  
All Others  
Line  
Line  
V
= 160, 270, 400 Volts  
IN  
1, 2, 3  
-1.0  
+1.0  
%
Load  
V
Load,  
BW = 10MHz  
= 160, 270, 400 Volts, 100%  
OUTPUT RIPPLE VOLTAGE  
AFL27005S  
IN  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
30  
35  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
40  
mV  
pp  
45  
50  
100  
For Notes to Specifications, refer to page 4  
2
www.irf.com  
AFL270XXS Series  
Static Characteristics (Continued)  
Group A  
Parameter  
INPUT CURRENT  
Subgroups  
Test Conditions  
= 270 Volts  
Min  
Nom  
Max  
Unit  
V
IN  
1
2, 3  
1, 2, 3  
1, 2, 3  
15.00  
17.00  
3.00  
No Load  
I
= 0  
OUT  
mA  
Inhibit 1  
Inhibit 2  
Pin 4 Shorted to Pin 2  
Pin 12 Shorted to Pin 8  
5.00  
V
= 270 Volts, 100% Load  
INPUT RIPPLE CURRENT  
AFL27005S  
IN  
B.W. = 10MHz  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
60  
60  
70  
70  
80  
80  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
mA  
pp  
V
= 90% V  
NOM  
Note 5  
CURRENT LIMIT POINT  
OUT  
1
2
3
115  
105  
125  
125  
115  
140  
Expressed as a Percentage  
of Full Rated Load  
%
W
VIN = 270 Volts  
LOAD FAULT POWER DISSIPATION  
1, 2, 3  
30  
Overload or Short Circuit  
VIN = 270 Volts, 100% Load  
EFFICIENCY  
AFL27005S  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
1, 2, 3  
78  
79  
80  
82  
83  
82  
82  
83  
84  
85  
87  
85  
%
ENABLE INPUTS (Inhibit Function)  
Converter Off  
1, 2, 3  
1, 2, 3  
Logical Low, Pin 4 or Pin 12  
Note 1  
Logical High, Pin 4 and Pin 12 - Note 9 2.0  
-0.5  
0.8  
100  
50  
V
µA  
V
Sink Current  
Converter On  
Sink Current  
Note 1  
100  
µ
A
1, 2, 3  
500  
550  
600  
KHz  
SWITCHING FREQUENCY  
SYNCHRONIZATION INPUT  
Frequency Range  
1, 2, 3  
1, 2, 3  
1, 2, 3  
500  
2.0  
-0.5  
700  
10  
0.8  
100  
80  
KHz  
V
V
ns  
%
Pulse Amplitude, Hi  
Pulse Amplitude, Lo  
Pulse Rise Time  
Note 1  
Note 1  
20  
Pulse Duty Cycle  
M
1
Input to Output or Any Pin to Case  
(except Pin 3). Test @ 500VDC  
100  
ISOLATION  
DEVICE WEIGHT  
MTBF  
Slight Variations with Case Style  
85  
g
MIL-HDBK-217F, AIF @ T = 70°C  
C
300  
KHrs  
For Notes to Specifications, refer to page 4  
www.irf.com  
3
AFL270XXS Series  
Dynamic Characteristics  
-55°C TCASE +125°C, VIN = 270 Volts unless otherwise specified.  
Group A  
Parameter  
Subgroups  
Test Conditions  
Min  
Nom  
Max  
Unit  
Note 2, 8  
LOAD TRANSIENT RESPONSE  
4, 5, 6  
4, 5, 6  
Load Step 50% 100%  
Load Step 10% 50%  
Load Step 50% 100%  
-450  
-450  
-450  
-450  
-600  
-600  
-750  
-750  
-900  
-900  
-1200  
-1200  
450  
200  
mV  
AFL27005S  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
Amplitude  
Recovery  
µ
s
4, 5, 6  
4, 5, 6  
450  
400  
mV  
Amplitude  
Recovery  
µ
s
4, 5, 6  
4, 5, 6  
450  
200  
mV  
µs  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
Load Step 10%  
50%  
450  
400  
mV  
µs  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
Load Step 50% 100%  
Load Step 10% 50%  
Load Step 50% 100%  
600  
200  
mV  
µs  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
600  
400  
mV  
Amplitude  
Recovery  
µ
s
4, 5, 6  
4, 5, 6  
750  
200  
mV  
µs  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
Load Step 10%  
50%  
750  
400  
mV  
µs  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
Load Step 50% 100%  
Load Step 10% 50%  
Load Step 50% 100%  
900  
200  
mV  
µs  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
900  
400  
mV  
Amplitude  
Recovery  
µ
s
4, 5, 6  
4, 5, 6  
1200  
200  
mV  
µs  
Amplitude  
Recovery  
4, 5, 6  
4, 5, 6  
Load Step 10%  
50%  
1200  
400  
mV  
µs  
Amplitude  
Recovery  
Note 1, 2, 3  
LINE TRANSIENT RESPONSE  
-500  
500  
500  
mV  
Amplitude  
Recovery  
V
V
Step = 160 400 Volts  
IN  
IN  
µ
s
TURN-ON CHARACTERISTICS  
= 160, 270, 400 Volts. Note 4  
Overshoot  
Delay  
4, 5, 6  
4, 5, 6  
Enable 1, 2 on. (Pins 4, 12 high or  
open)  
250  
120  
mV  
ms  
50  
60  
75  
70  
Same as Turn On Characteristics.  
LOAD FAULT RECOVERY  
LINE REJECTION  
MIL-STD-461, CS101, 30Hz to 50KHz  
Note 1  
dB  
Notes to Specifications:  
1.  
2.  
Parameters not 100% tested but are guaranteed to the limits specified in the table.  
Recovery time is measured from the initiation of the transient to where V has returned to within ±1.0%  
OUT  
of V  
at 50% load.  
OUT  
3.  
4.  
5.  
6.  
7.  
8.  
9.  
Line transient transition time 100µs.  
Turn-on delay is measured with an input voltage rise time of between 100V and 500V per millisecond.  
Current limit point is that condition of excess load causing output voltage to drop to 90% of nominal.  
Parameter verified as part of another test.  
All electrical tests are performed with the remote sense leads connected to the output leads at the load.  
Load transient transition time 10µs.  
Enable inputs internally pulled high. Nominal open circuit voltage 4.0VDC.  
4
www.irf.com  
AFL270XXS Series  
Block Diagram  
Figure 1. AFL Single Output  
INPUT  
FILTER  
+ INPUT  
1
4
OUTPUT  
FILTER  
PRIMARY  
BIAS SUPPLY  
+ OUTPUT  
+ SENSE  
7
ENABLE 1  
10  
CURRENT  
SENSE  
SYNC OUTPUT  
5
SHARE  
11  
12  
SHARE  
CONTROL  
AMPLIFIER  
ERROR  
AMP  
& REF  
SYNC INPUT  
CASE  
6
3
2
ENABLE 2  
SENSE  
AMPLIFIER  
9
8
RETURN SENSE  
OUTPUT RETURN  
INPUT RETURN  
Circuit Operation and Application Information  
not used, the sense leads should be connected to their  
respective output terminals at the converter. Figure 3.  
illustrates a typical application.  
The AFL series of converters employ a forward switched  
mode converter topology. (refer to Figure 1.) Operation of  
the device is initiated when a DC voltage whose magnitude  
is within the specified input limits is applied between pins 1  
and 2. If pin 4 is enabled (at a logical 1 or open) the primary  
bias supply will begin generating a regulated housekeeping  
voltage bringing the circuitry on the primary side of the  
converter to life. Two power MOSFETs used to chop the  
DC input voltage into a high frequency square wave, apply  
this chopped voltage to the power transformer. As this  
switching is initiated, a voltage is impressed on a second  
winding of the power transformer which is then rectified and  
applied to the primary bias supply. When this occurs, the  
input voltage is shut out and the primary bias voltage  
becomes exclusively internally generated.  
Inhibiting Converter Output (Enable)  
As an alternative to application and removal of the DC  
voltage to the input, the user can control the converter  
output by providing TTL compatible, positive logic signals  
to either of two enable pins (pin 4 or 12). The distinction  
between these two signal ports is that enable 1 (pin 4) is  
referenced to the input return (pin 2) while enable 2 (pin 12)  
is referenced to the output return (pin 8). Thus, the user  
has access to an inhibit function on either side of the isolation  
barrier. Each port is internally pulled “high” so that when  
not used, an open connection on both enable pins permits  
normal converter operation. When their use is desired, a  
logical “low” on either port will shut the converter down.  
The switched voltage impressed on the secondary output  
transformer winding is rectified and filtered to provide the  
converter output voltage. An error amplifier on the secondary  
side compares the output voltage to a precision reference  
and generates an error signal proportional to the difference.  
This error signal is magnetically coupled through the  
feedback transformer into the controller section of the  
converter varying the pulse width of the square wave signal  
driving the MOSFETs, narrowing the width if the output  
voltage is too high and widening it if it is too low.  
Figure 2. Enable Input Equivalent Circuit  
+5.6V  
100K  
1N4148  
Pin 4 or  
Pin 12  
Disable  
290K  
Remote Sensing  
2N3904  
Connection of the + and - sense leads at a remotely located  
load permits compensation for resistive voltage drop  
between the converter output and the load when they are  
physically separated by a significant distance. This  
connection allows regulation to the placard voltage at the  
point of application. When the remote sensing features is  
150K  
Pin 2 or  
Pin 8  
www.irf.com  
5
AFL270XXS Series  
Internally, these ports differ slightly in their function. In use,  
a low on Enable 1 completely shuts down all circuits in the  
converter while a low on Enable 2 shuts down the secondary  
side while altering the controller duty cycle to near zero.  
Externally, the use of either port is transparent save for  
minor differences in idle current. (See specification table).  
high level of +2.0V. The sync output of another converter  
which has been designated as the master oscillator provides  
a convenient frequency source for this mode of operation.  
When external synchronization is not required, the sync in  
pin should be left unconnected thereby permitting the  
converter to operate at its’ own internally set frequency.  
The sync output signal is a continuous pulse train set at  
550 ± 50KHz, with a duty cycle of 15 ± 5.0%. This signal is  
referenced to the input return and has been tailored to be  
compatible with the AFL sync input port. Transition times  
are less than 100ns and the low level output impedance is  
less than 50. This signal is active when the DC input  
voltage is within the specified operating range and the  
converter is not inhibited. This output has adequate drive  
reserve to synchronize at least five additional converters.  
A typical synchronization connection option is illustrated in  
Figure 3.  
Synchronization of Multiple Converters  
When operating multiple converters, system requirements  
often dictate operation of the converters at a common  
frequency. To accommodate this requirement, the AFL  
series converters provide both a synchronization input and  
output.  
The sync input port permits synchronization of an AFL  
converter to any compatible external frequency source  
operating between 500KHz and 700KHz. This input signal  
should be referenced to the input return and have a 10% to  
90% duty cycle. Compatibility requires transition times less  
than 100ns, maximum low level of +0.8V and a minimum  
Figure 3. Preferred Connection for Parallel Operation  
1
12  
Power  
Input  
Enable 2  
Share  
Vin  
Rtn  
Case  
+ Sense  
- Sense  
Return  
+ Vout  
AFL  
AFL  
Enable 1  
Sync Out  
Sync In  
6
1
7
Optional  
Synchronization  
Connection  
Share Bus  
12  
Enable 2  
Share  
Vin  
Rtn  
Case  
+ Sense  
- Sense  
Return  
+ Vout  
Enable 1  
Sync Out  
Sync In  
to Load  
7
6
1
12  
Enable 2  
Share  
Vin  
Rtn  
Case  
+ Sense  
- Sense  
Return  
+ Vout  
AFL  
Enable 1  
Sync Out  
Sync In  
7
6
(Other Converters)  
Parallel Operation-Current and Stress Sharing  
AFL series operating in the parallel mode is that in addition  
to sharing the current, the stress induced by temperature  
will also be shared. Thus if one member of a paralleled set  
is operating at a higher case temperture, the current it  
provides to the load will be reduced as compensation for  
the temperature induced stress on that device.  
Figure III. illustrates the preferred connection scheme for  
operation of a set of AFL converters with outputs operating  
in parallel. Use of this connection permits equal sharing of  
a load current exceeding the capacity of an individual AFL  
among the members of the set. An important feature of the  
6
www.irf.com  
AFL270XXS Series  
When operating in the shared mode, it is important that  
symmetry of connection be maintained as an assurance of  
optimum load sharing performance. Thus, converter outputs  
should be connected to the load with equal lengths of wire of  
the same gauge and sense leads from each converter should  
be connected to a common physical point, preferably at the  
load along with the converter output and return leads. All  
converters in a paralleled set must have their share pins  
connected together. This arrangement is diagrammatically  
illustrated in Figure III. showing the outputs and sense pins  
connected at a star point which is located close as possible  
to the load.  
for minor variations of either surface. While other available  
types of heat conductive materials and compounds may  
provide similar performance, these alternatives are often  
less convinient and are frequently messy to use.  
A conservative aid to estimating the total heat sink surface  
area (AHEAT SINK) required to set the maximum case  
temperature rise (T) above ambient temperature is given  
by the following expression:  
1.43  
T  
A
HEAT SINK  
3.0  
0.85  
As a consequence of the topology utilized in the current  
sharing circuit, the share pin may be used for other functions.  
In applications requiring a single converter, the voltage  
appearing on the share pin may be used as a “current  
monitor”. The share pin open circuit voltage is nominally  
+1.00V at no load and increases linearly with increasing  
output current to +2.20V at full load. The share pin voltage  
is referenced to the output return pin.  
80P  
where  
T = Case temperature rise above ambient  
1
1  
P = Device dissipation in Watts = POUT  
Eff  
As an example, it is desired to maintain the case temperature  
of an AFL27015S at +85°C in an area where the ambient  
temperature is held at a constant +25°C; then  
Thermal Considerations  
Because of the incorporation of many innovative  
technological concepts, the AFL series of converters is  
capable of providing very high output power from a package  
of very small volume. These magnitudes of power density  
can only be obtained by combining high circuit efficiency  
with effective methods of heat removal from the die junctions.  
This requirement has been effectively addressed inside the  
device; but when operating at maximum loads, a significant  
amount of heat will be generated and this heat must be  
conducted away from the case. To maintain the case  
temperature at or below the specified maximum of 125°C,  
this heat must be transferred by conduction to an  
appropriate heat dissipater held in intimate contact with the  
converter base-plate.  
T = 85 - 25 = 60°C  
From the Specification Table, the worst case full load  
efficiency for this device is 83%; therefore the power  
dissipation at full load is given by  
1
( )  
1 = 1200.205 = 24.6W  
P = 120•  
.83  
and the required heat sink area is  
1.43  
60  
A
HEAT SINK  
=
3.0 = 71 in2  
Because effectiveness of this heat transfer is dependent  
on the intimacy of the baseplate/heatsink interface, it is  
strongly recommended that a high thermal conductivity heat  
transferance medium is inserted between the baseplate  
and heatsink. The material most frequently utilized at the  
factory during all testing and burn-in processes is sold under  
0.85  
80 24.6  
Thus, a total heat sink surface area (including fins, if any) of  
2
71 in in this example, would limit case rise to 60°C above  
ambient. A flat aluminum plate, 0.25" thick and of approximate  
dimension 4" by 9" (36 in per side) would suffice for this  
1
2
the trade name of Sil-Pad® 400 . This particular product  
is an insulator but electrically conductive versions are also  
available. Use of these materials assures maximum surface  
contact with the heat dissipator thereby compensating  
application in a still air environment. Note that to meet the  
criteria in this example, both sides of the plate require  
unrestricted exposure to the ambient air.  
1
Sil-Pad is a registered Trade Mark of Bergquist, Minneapolis, MN  
www.irf.com  
7
AFL270XXS Series  
Input Filter  
Finding a resistor value for a particular output voltage, is  
simply a matter of substituting the desired output voltage  
and the nominal device voltage into the equation and solving  
for the corresponding resistor value.  
The AFL270XXS series converters incorporate a single  
stage LC input filter whose elements dominate the input  
load impedance characteristic during the turn-on sequence.  
The input circuit is as shown in Figure 4.  
Figure 5. Connection for VOUT Adjustment  
Figure 4. Input Filter Circuit  
Enable 2  
Share  
RADJ  
8.4µH  
+ Sense  
AFL270xxS  
- Sense  
Pin 1  
Return  
To Load  
+ Vout  
0.54µfd  
Caution: Do not set Radj < 500Ω  
Pin 2  
Attempts to adjust the output voltage to a value greater than  
120% of nominal should be avoided because of the potential  
of exceeding internal component stress ratings and  
subsequent operation to failure. Under no circumstance  
should the external setting resistor be made less than 500.  
By remaining within this specified range of values, completely  
safe operation fully within normal component derating is  
assured.  
Undervoltage Lockout  
A minimum voltage is required at the input of the converter  
to initiate operation. This voltage is set to 150V ± 5.0V. To  
preclude the possibility of noise or other variations at the  
input falsely initiating and halting converter operation, a  
hysteresis of approximately 10V is incorporated in this circuit.  
Thus if the input voltage droops to 140V ± 5.0V, the converter  
will shut down and remain inoperative until the input voltage  
returns to 150V.  
Examination of the equation relating output voltage and  
resistor value reveals a special benefit of the circuit topology  
utilized for remote sensing of output voltage in the  
AFL270XXS series of converters. It is apparent that as the  
resistance increases, the output voltage approaches the  
nominal set value of the device. In fact the calculated limiting  
value of output voltage as the adjusting resistor becomes  
very large is 25mV above nominal device voltage.  
Output Voltage Adjust  
In addition to permitting close voltage regulation of remotely  
located loads, it is possible to utilize the converter sense  
pins to incrementally increase the output voltage over a  
limited range. The adjustments made possible by this method  
are intended as a means to “trim” the output to a voltage  
setting for some particular application, but are not intended  
to create an adjustable output converter. These output  
voltage setting variations are obtained by connecting an  
appropriate resistor value between the +sense and -sense  
pins while connecting the -sense pin to the output return pin  
as shown in Figure 5. below. The range of adjustment and  
corresponding range of resistance values can be  
determined by use of the equation presented below.  
The consequence is that if the +sense connection is  
unintentionally broken, an AFL270XXS has a fail-safe output  
voltage of Vout + 25mV, where the 25mV is independent of  
the nominal output voltage. It can be further demonstrated  
that in the event of both the + and - sense connections  
being broken, the output will be limited to Vout + 440mV.  
This 440mV is also essentially constant independent of the  
nominal output voltage. While operation in this condition is  
not damaging to the device, not all performance parameters  
will be met.  
Performance Data  
VNOM  
Radj = 100•  
Typical performance data is graphically presented on the following  
pages for selected parameters on a variety of AFL270XXS type  
converters. The data presented was selected as representative  
of more critical parameters and for general interest in typical  
converter applications.  
VOUT - VNOM -.025  
Where VNOM = device nominal output voltage, and  
VOUT = desired output voltage  
8
www.irf.com  
AFL270XXS Series  
AFL270XXS - Typical Line Rejection Characteristics  
Measured per MIL-STD 461D, CS101 with 100% Output Load, Vin = 270VDC  
Fig.7 AFL27006S  
Fig.6 AFL27005S  
0
0
-20  
-20  
-40  
-60  
-40  
-60  
-80  
-80  
-100  
-100  
30  
100  
1000  
10000  
50000  
30  
100  
100  
100  
1000  
10000  
50000  
Frequency ( Hz )  
Frequency ( Hz )  
Fig.9 AFL27012S  
Fig.8 AFL27009S  
0
0
-20  
-40  
-20  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
30  
1000  
10000  
50000  
30  
100  
1000  
10000  
50000  
Frequency ( Hz )  
Frequency ( Hz )  
Fig.10 AFL27015S  
Fig.11 AFL27028S  
0
-20  
0
-20  
-40  
-40  
-60  
-60  
-80  
-80  
-100  
-100  
30  
1000  
10000  
50000  
30  
100  
1000  
10000  
50000  
Frequency ( Hz )  
Frequency ( Hz )  
www.irf.com  
9
AFL270XXS Series  
AFL270XXS Typical Efficiency Characteristics  
Presented for three values of Input Voltage.  
Fig.12 AFL27005S  
Fig.13 AFL27006S  
90  
90  
80  
70  
60  
50  
80  
160V  
70  
160V  
270V  
270V  
60  
400V  
400V  
50  
0
20  
40  
60  
80  
0
20  
40  
60  
80  
Output Power ( Watts )  
Output Power ( Watts )  
Fig.14 AFL27009S  
Fig.15 AFL27012S  
90  
80  
70  
60  
50  
95  
85  
75  
65  
55  
160V  
270V  
160V  
270V  
400V  
400V  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
120  
Output Power ( Watts )  
Output Power ( Watts )  
Fig.17 AFL27028S  
Fig.16 AFL27015S  
90  
95  
80  
70  
60  
50  
85  
75  
65  
55  
160V  
160V  
270V  
270V  
400V  
400V  
0
20  
40  
60  
80  
100  
120  
0
20  
40  
60  
80  
100  
120  
Output Power ( Watts )  
Output Power ( Watts )  
10  
www.irf.com  
AFL270XXS Series  
Typical Performance Characteristics - AFL27005S  
Output Load = 100%, Vin = 270VDC unless otherwise specified.  
Fig.18 Turn-on Time, No Load  
Fig.19 Turn-on Time, Full Load  
6
5
6
5
4
4
3
3
2
2
1
1
0
0
-1  
-1  
70  
75  
80  
85  
90  
95  
100  
70  
75  
80  
85  
90  
95  
100  
Time from Application of Input Power ( msec )  
Time from Application of Input Power ( msec )  
Fig.20 Output Ripple Voltage  
Fig.21 Input Ripple Current  
40  
20  
0
8
4
0
-20  
-40  
-4  
-8  
0
2
4
6
8
10  
0
2
4
6
8
10  
Time ( usec )  
Time ( usec )  
Fig.23 Output Load Transient Response  
10% Load to/from 50% Load  
Fig.22 Output Load Transient Response  
50% Load to/from 100% Load  
400  
200  
0
400  
200  
0
-200  
-400  
-200  
-400  
0
200  
400  
600  
Time ( usec )  
800  
1000  
0
200  
400  
600  
Time ( usec )  
800  
1000  
www.irf.com  
11  
AFL270XXS Series  
Typical Performance Characteristics - AFL27015S  
Output Load = 100%, Vin = 270VDC unless otherwise specified.  
Fig.24 Turn-on Time, No Load  
Fig.25 Turn-on Time, Full Load  
18  
16  
14  
12  
10  
8
18  
16  
14  
12  
10  
8
6
6
4
4
2
2
0
0
-2  
-2  
50  
55  
60  
65  
70  
75  
80  
50  
55  
60  
65  
70  
75  
80  
Time from Application of Input Power ( msec )  
Time from Application of Input Power ( msec )  
Fig.26 Output Ripple Voltage  
Fig.27 Input Ripple Current  
40  
8
20  
4
0
0
-20  
-40  
-4  
-8  
0
2
4
6
8
10  
0
2
4
6
8
10  
Time ( usec )  
Time ( usec )  
Fig.28 Output Load Transient Response  
50% Load to/from 100% Load  
Fig.29 Output Load Transient Response  
10% Load to/from 50% Load  
800  
800  
400  
0
400  
0
-400  
-800  
-400  
-800  
0
200  
400  
600  
Time ( usec )  
800  
1000  
0
200  
400  
600  
Time ( usec )  
800  
1000  
12  
www.irf.com  
AFL270XXS Series  
Typical Performance Characteristics - AFL27028S  
Output Load = 100%, Vin = 270VDC unless otherwise specified.  
Fig.31 Turn-on Time, Full Load  
Fig.30 Turn-on Time, No Load  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
-5  
-5  
60  
65  
70  
75  
80  
85  
90  
60  
65  
70  
75  
80  
85  
90  
Time from Application of Input Power ( msec )  
Time from Application of Input Power ( msec )  
Fig.33 Input Ripple Current  
Fig.32 Output Ripple Voltage  
40  
8
4
20  
0
0
-20  
-40  
-4  
-8  
0
2
4
6
8
10  
0
2
4
6
8
10  
Time ( usec )  
Time ( usec )  
Fig.34 Output Load Transient Response  
50% Load to/from 100% Load  
Fig.35 Output Load Transient Response  
10% Load to/from 50% Load  
800  
400  
0
800  
400  
0
-400  
-800  
-400  
-800  
0
200  
400  
600  
Time ( usec )  
800  
1000  
0
200  
400  
600  
Time ( usec )  
800  
1000  
www.irf.com  
13  
AFL270XXS Series  
Mechanical Outlines  
Case X  
Case W  
Pin Variation of Case Y  
3.000  
ø 0.128  
2.760  
0.050  
0.050  
0.250  
0.250  
1.000  
1.000  
Ref  
1.260 1.500  
0.200 Typ  
Non-cum  
Pin  
ø 0.040  
Pin  
ø 0.040  
0.220  
2.500  
0.220  
0.525  
2.800  
2.975 max  
0.238 max  
0.42  
0.380  
Max  
0.380  
Max  
Case Y  
Case Z  
Pin Variation of Case Y  
0.300  
ø 0.140  
1.150  
0.25 typ  
0.050  
0.050  
0.250  
0.250  
1.000  
Ref  
1.500 1.750 2.00  
1.000  
Ref  
0.200 Typ  
Non-cum  
Pin  
ø 0.040  
Pin  
ø 0.040  
0.220  
0.220  
1.750  
2.500  
0.375  
0.36  
2.800  
2.975 max  
0.525  
0.238 max  
0.380  
Max  
0.380  
Max  
Tolerances, unless otherwise specified: .XX  
.XXX  
=
=
±0.010  
±0.005  
BERYLLIA WARNING: These converters are hermetically sealed; however they contain BeO substrates and should not be ground or subjected to any other  
operations including exposure to acids, which may produce Beryllium dust or fumes containing Beryllium  
14  
www.irf.com  
AFL270XXS Series  
Pin Designation  
Pin #  
Designation  
1
2
+ Input  
Input Return  
Case Ground  
Enable 1  
3
4
5
Sync Output  
Sync Input  
+ Output  
6
7
8
Output Return  
Return Sense  
+ Sense  
9
10  
11  
12  
Share  
Enable 2  
Standard Microcircuit Drawing Equivalence Table  
Standard Microcircuit  
IR Standard  
Drawing Number  
5962-94569  
5962-95534  
5962-95535  
5962-94753  
5962-94570  
5962-95565  
Part Number  
AFL27005S  
AFL27006S  
AFL27009S  
AFL27012S  
AFL27015S  
AFL27028S  
www.irf.com  
15  
AFL270XXS Series  
Device Screening  
Requirement  
MIL-STD-883 Method No Suffix  
ES  
HB  
CH  
Temperature Range  
Element Evaluation  
Non-Destructive  
Bond Pull  
-20°C to +85°C -55°C to +125°C  
-55°C to +125°C -55°C to +125°C  
MIL-PRF-38534  
2023  
N/A  
N/A  
N/A  
N/A  
Class H  
N/A  
N/A  
N/A  
Internal Visual  
Temperature Cycle  
Constant Acceleration  
PIND  
2017  
1010  
Yes  
Cond B  
500 Gs  
N/A  
Yes  
Cond C  
3000 Gs  
N/A  
Yes  
Cond C  
3000 Gs  
N/A  
N/A  
N/A  
2001, Y1 Axis  
2020  
N/A  
Burn-In  
1015  
N/A  
48 hrs@hi temp 160 hrs@125°C 160 hrs@125°C  
Final Electrical  
( Group A )  
MIL-PRF-38534  
& Specification  
MIL-PRF-38534  
1014  
25°C  
25°C  
-55°C, +25°C,  
+125°C  
N/A  
-55°C, +25°C,  
+125°C  
10%  
PDA  
N/A  
Cond A  
N/A  
N/A  
Cond A, C  
N/A  
Seal, Fine and Gross  
Radiographic  
External Visual  
Cond A, C  
N/A  
Cond A, C  
N/A  
2012  
2009  
Yes  
Yes  
Yes  
Notes:  
 Best commercial practice  
‚ Sample tests at low and high temperatures  
ƒ -55°C to +105°C for AHE, ATO, ATW  
Part Numbering  
AFL 270 05 S X /CH  
Screening Level  
(Please refer to Screening Table)  
No suffix, ES, HB, CH  
Model  
Input Voltage  
28 = 28V  
50 = 50V  
120 = 120V  
270 = 270V  
Case Style  
W, X, Y, Z  
Output  
S = Single  
Output Voltage  
05 = 5V, 06 = 6V  
07 = 7V, 08 = 8V  
09 = 9V, 12 = 12V  
15 = 15V, 28 = 28V  
WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, Tel: (310) 322 3331  
IR SANTA CLARA: 2270 Martin Av., Santa Clara, California 95050, Tel: (408) 727-0500  
Visit us at www.irf.com for sales contact information.  
Data and specifications subject to change without notice. 12/2006  
16  
www.irf.com  

相关型号:

AFL27015DXHB

270V Input, Single Output
INFINEON

AFL27015DY

ADVANCED ANALOG HIGH RELIABILITY HYBRID DC/DC CONVERTERS
INFINEON

AFL27015DY-CH

ADVANCED ANALOG HIGH RELIABILITY HYBRID DC/DC CONVERTERS
INFINEON

AFL27015DY-ES

ADVANCED ANALOG HIGH RELIABILITY HYBRID DC/DC CONVERTERS
INFINEON

AFL27015DY-HB

ADVANCED ANALOG HIGH RELIABILITY HYBRID DC/DC CONVERTERS
INFINEON

AFL27015DY/CH

ADVANCED ANALOG HIGH RELIABILITY HYBRID DC/DC CONVERTERS
INFINEON

AFL27015DY/CHPBF

DC-DC Regulated Power Supply Module, 2 Output, 66W, Hybrid, HERMETIC SEALED PACKAGE-12
INFINEON

AFL27015DY/ES

ADVANCED ANALOG HIGH RELIABILITY HYBRID DC/DC CONVERTERS
INFINEON

AFL27015DY/ESPBF

DC-DC Regulated Power Supply Module, 2 Output, 66W, Hybrid, HERMETIC SEALED PACKAGE-12
INFINEON

AFL27015DY/HB

ADVANCED ANALOG HIGH RELIABILITY HYBRID DC/DC CONVERTERS
INFINEON

AFL27015DY/HBPBF

DC-DC Regulated Power Supply Module, 2 Output, 66W, Hybrid, HERMETIC SEALED PACKAGE-12
INFINEON

AFL27015DYCH

270V Input, Single Output
INFINEON