AUIRF7759L2TR1 [INFINEON]

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET;
AUIRF7759L2TR1
型号: AUIRF7759L2TR1
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET

文件: 总12页 (文件大小:249K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 96426  
AUTOMOTIVE GRADE  
AUIRF7759L2TR  
AUIRF7759L2TR1  
Advanced Process Technology  
Optimized for Automotive Motor Drive, DC-DC and  
other Heavy Load Applications  
Exceptionally Small Footprint and Low Profile  
High Power Density  
Low Parasitic Parameters  
Dual Sided Cooling  
175°C Operating Temperature  
Repetitive Avalanche Capability for Robustness and  
Reliability  
Automotive DirectFET® Power MOSFET ‚  
V(BR)DSS  
75V  
RDS(on) typ.  
1.8m  
2.3m  
Ω
Ω
max.  
ID (Silicon Limited)  
Qg  
160A  
200nC  
Lead Free, RoHS Compliant and Halogen Free  
Automotive Qualified *  
S
S
S
S
D
D
G
S
S
S
S
DirectFET®ISOMETRIC  
L8  
Applicable DirectFET® Outline and Substrate Outline   
SB  
SC  
M2  
M4  
L4  
L6  
L8  
Description  
The AUIRF7759L2TR(1) combines the latest Automotive HEXFET® Power MOSFET Silicon technology with the advanced DirectFET®  
packaging to achieve the lowest on-state resistance in a package that has the footprint of a DPak (TO-252AA) and only 0.7 mm profile. The  
DirectFET® package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase,  
infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and pro-  
cesses. The DirectFET® package allows dual sided cooling to maximize thermal transfer in automotive power systems.  
This HEXFET® Power MOSFET is designed for applications where efficiency and power density are essential. The advanced DirectFET®  
packaging platform coupled with the latest silicon technology allows the AUIRF7759L2TR(1) to offer substantial system level savings and  
performance improvement specifically in motor drive, high frequency DC-DC and other heavy load applications on ICE, HEV and EV plat-  
forms. This MOSFET utilizes the latest processing techniques to achieve low on-resistance and low Qg per silicon area. Additional features of  
this MOSFET are 175°C operating junction temperature and high repetitive peak current capability. These features combine to make this  
MOSFET a highly efficient, robust and reliable device for high current automotive applications.  
Max.  
75  
Parameter  
Units  
VDS  
Drain-to-Source Voltage  
Gate-to-Source Voltage  
V
±20  
160  
113  
26  
V
GS  
(Silicon Limited)  
(Silicon Limited)  
(Silicon Limited)  
(Package Limited)  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
I
I
I
I
I
@ TC = 25°C  
D
D
D
D
@ TC = 100°C  
@ TA = 25°C  
@ TC = 25°C  
A
375  
640  
125  
63  
DM  
P
P
P
@TC = 25°C  
@TC = 100°C  
@TA = 25°C  
Power Dissipation  
D
D
D
W
Power Dissipation  
3.3  
Power Dissipation  
EAS  
IAR  
257  
Single Pulse Avalanche Energy  
Avalanche Current  
mJ  
A
See Fig.18a, 18b, 16, 17  
EAR  
Repetitive Avalanche Energy  
Peak Soldering Temperature  
Operating Junction and  
mJ  
270  
T
T
T
P
J
-55 to + 175  
°C  
Storage Temperature Range  
STG  
Thermal Resistance  
Parameter  
Typ.  
–––  
12.5  
20  
Max.  
45  
Units  
°C/W  
W/°C  
RθJA  
Junction-to-Ambient  
RθJA  
Junction-to-Ambient  
Junction-to-Ambient  
Junction-to-Can  
–––  
–––  
1.2  
RθJA  
RθJ-Can  
RθJ-PCB  
–––  
–––  
Junction-to-PCB Mounted  
Linear Derating Factor  
0.5  
0.83  
HEXFET® is a registered trademark of International Rectifier.  
www.irf.com  
1
03/28/12  
AUIRF7759L2TR/TR1  
Static Characteristics @ TJ = 25°C (unless otherwise stated)  
Conditions  
VGS = 0V, ID = 250μA  
Parameter  
Min. Typ. Max. Units  
BVDSS  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
75  
–––  
0.02  
1.8  
–––  
–––  
2.3  
4.0  
V
Reference to 25°C, ID = 2mA  
ΔΒVDSS/ΔTJ  
RDS(on)  
VGS(th)  
–––  
–––  
2.0  
V/°C  
V
GS = 10V, ID = 96A  
m
Ω
3.0  
V
VDS = VGS, ID = 250μA  
ΔVGS(th)/ΔTJ  
gfs  
Gate Threshold Voltage Coefficient  
Forward Transconductance  
–––  
74  
-11  
––– mV/°C  
VDS = 25V, ID = 96A  
VDS = 75V, VGS = 0V  
VDS = 60V, VGS = 0V, TJ = 125°C  
VGS = 20V  
–––  
–––  
–––  
–––  
–––  
–––  
20  
S
IDSS  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
μA  
250  
100  
-100  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
nA  
nC  
VGS = -20V  
Dynamic Characteristics @ TJ = 25°C (unless otherwise stated)  
Qg  
Qgs1  
Total Gate Charge  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
200  
37  
11  
62  
91  
73  
60  
1.1  
18  
37  
80  
33  
300  
–––  
–––  
93  
VDS = 38V  
Pre-Vth Gate-to-Source Charge  
Post-Vth Gate-to-Source Charge  
Gate-to-Drain Charge  
Gate Charge Overdrive  
Switch Charge (Qgs2 + Qgd)  
Output Charge  
V
GS = 10V  
Qgs2  
Qgd  
ID = 96A  
Qgodr  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
See Fig. 9  
Qsw  
V
DS = 16V, VGS = 0V  
Qoss  
RG  
nC  
Gate Resistance  
Ω
VDD = 38V, VGS = 10V  
ID = 96A  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
Rise Time  
–––  
–––  
–––  
–––  
ns  
RG=1.8Ω  
Turn-Off Delay Time  
Fall Time  
VGS = 0V  
Ciss  
Coss  
Crss  
Coss  
Coss  
Input Capacitance  
––– 12222 –––  
––– 1465 –––  
VDS = 25V  
Output Capacitance  
Reverse Transfer Capacitance  
Output Capacitance  
Output Capacitance  
pF ƒ = 1.0MHz  
–––  
––– 7457 –––  
––– 955 –––  
609  
–––  
V
GS = 0V, VDS = 1.0V, f=1.0MHz  
VGS = 0V, VDS = 60V, f=1.0MHz  
Diode Characteristics @ TJ = 25°C (unless otherwise stated)  
Conditions  
MOSFET symbol  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
IS  
–––  
–––  
160  
showing the  
A
ISM  
integral reverse  
Pulsed Source Current  
(Body Diode)  
–––  
–––  
640  
p-n junction diode.  
TJ = 25°C, IS = 96A, VGS = 0V  
TJ = 25°C, IF = 96A, VDD = 38V  
di/dt = 100A/μs  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
Reverse Recovery Charge  
–––  
–––  
–––  
–––  
64  
1.3  
96  
V
ns  
nC  
Qrr  
150  
225  
‰ Mounted to a PCB with small  
clip heatsink (still air)  
‰ Mounted on minimum footprint full size  
board with metalized back and with small  
clip heatsink (still air)  
ƒ Surface mounted on 1 in. square Cu  
(still air).  
Notes  through Šare on page 10  
2
www.irf.com  
AUIRF7759L2TR/TR1  
Qualification Information†  
Automotive  
††  
(per AEC-Q101)  
Qualification Level  
Comments: This part number(s) passed Automotive qualification. IR’s  
Industrial and Consumer qualification level is granted by extension of  
the higher Automotive level.  
LARGE-CAN  
MSL1  
Class M4 (+/- 800V)  
Moisture Sensitivity Level  
Machine Model  
(per AEC-Q101-002)  
Class H2 (+/- 6000V)  
(per AEC-Q101-001)  
N/A  
Human Body Model  
ESD  
Charged Device  
Model  
(per AEC-Q101-005)  
Yes  
RoHS Compliant  
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/  
Exceptions (if any) to AEC-Q101 requirements are noted in the qualification report.  
††  
www.irf.com  
3
AUIRF7759L2TR/TR1  
1000  
1000  
100  
10  
VGS  
VGS  
15V  
TOP  
15V  
10V  
TOP  
10V  
7.00V  
5.50V  
5.00V  
4.50V  
4.00V  
3.75V  
100  
10  
7.00V  
5.50V  
5.00V  
4.50V  
4.00V  
3.75V  
BOTTOM  
BOTTOM  
1
3.75V  
3.75V  
60μs  
0.1  
0.01  
PULSE WIDTH  
60μs  
Tj = 175°C  
PULSE WIDTH  
Tj = 25°C  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 2. Typical Output Characteristics  
Fig 1. Typical Output Characteristics  
1.95  
8
6
4
2
0
T = 25°C  
A
I
= 96A  
D
V
= 7.0V  
= 8.0V  
GS  
1.85  
1.75  
1.65  
V
V
GS  
T
= 125°C  
J
= 10V  
GS  
V
= 15V  
GS  
T
= 25°C  
J
15  
30  
45  
60  
75  
90  
105  
2
4
6
8
10 12 14 16 18 20  
I , Drain Current (A)  
D
V
Gate -to -Source Voltage (V)  
GS,  
Fig 4. Typical On-Resistance vs. Drain Current  
Fig 3. Typical On-Resistance vs. Gate Voltage  
1000  
100  
10  
2.5  
I
= 96A  
V
= 25V  
DS  
D
V
= 10V  
60μs PULSE WIDTH  
GS  
2.0  
1.5  
1.0  
0.5  
T
= 175°C  
J
TJ = 25°C  
TJ = -40°C  
1
0.1  
2
2.5  
3
3.5  
4
4.5  
5
5.5  
6
-60  
-20  
20  
60  
100  
140  
180  
T , Junction Temperature (°C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 5. Typical Transfer Characteristics  
Fig 6. Normalized On-Resistance vs. Temperature  
4
www.irf.com  
AUIRF7759L2TR/TR1  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
1000  
100  
10  
T
= 175°C  
J
TJ = 25°C  
TJ = -40°C  
I
= 1.0A  
D
1
ID = 1.0mA  
ID = 250μA  
V
= 0V  
GS  
0.1  
-75 -50 -25  
0
25 50 75 100 125 150 175  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
T , Temperature ( °C )  
J
V
, Source-to-Drain Voltage (V)  
SD  
Fig 7. Typical Threshold Voltage vs.  
Fig 8. Typical Source-Drain Diode Forward Voltage  
Junction Temperature  
600  
500  
400  
300  
200  
100  
0
100000  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
C
C
C
+ C , C  
SHORTED  
ds  
iss  
gs  
gd  
= C  
rss  
oss  
gd  
T = 25°C  
J
= C + C  
ds  
gd  
C
iss  
10000  
1000  
100  
C
oss  
T
= 175°C  
J
C
rss  
V
= 25V  
DS  
20μs PULSE WIDTH  
0
50  
100  
150  
200  
250  
300  
1
10  
, Drain-to-Source Voltage (V)  
100  
I ,Drain-to-Source Current (A)  
V
D
DS  
Fig 10. Typical Capacitance vs.Drain-to-Source Voltage  
Fig 9. Typical Forward Transconductance vs. Drain Current  
14  
200  
I = 96A  
D
V
= 60V  
= 38V  
DS  
12  
10  
8
V
DS  
160  
120  
80  
VDS= 15V  
6
4
40  
2
0
0
0
50  
100  
150  
200  
250  
300  
25  
50  
75  
100  
125  
150  
175  
Q , Total Gate Charge (nC)  
T
, Case Temperature (°C)  
G
C
Fig.11 Typical Gate Charge vs.Gate-to-Source Voltage  
Fig 12. Maximum Drain Current vs. Case Temperature  
www.irf.com  
5
AUIRF7759L2TR/TR1  
10000  
1200  
1000  
800  
600  
400  
200  
0
OPERATION IN THIS AREA LIMITED  
I
D
BY R (on)  
DS  
TOP  
15.39A  
23.97A  
1000  
BOTTOM 96A  
100  
100μsec  
DC  
1msec  
10  
1
10msec  
Tc = 25°C  
Tj = 175°C  
Single Pulse  
0.1  
0
1
10  
100  
25  
50  
75  
100  
125  
150  
175  
V
, Drain-to-Source Voltage (V)  
Starting T , Junction Temperature (°C)  
DS  
J
Fig 13. Maximum Safe Operating Area  
Fig 14. Maximum Avalanche Energy vs. Temperature  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
Ri (°C/W) τi (sec)  
R1  
R1  
R2  
R2  
R3  
R3  
R4  
R4  
0.02  
0.01  
0.10804  
0.61403  
0.45202  
0.00001  
0.000171  
0.053914  
0.006099  
0.036168  
τ
τ
J τJ  
τ
Cτ  
0.01  
1τ1  
Ci= τi/Ri  
τ
τ
τ
2 τ2  
3τ3  
4τ4  
0.001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.0001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 15. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
1
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 150°C.  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 16. Typical Avalanche Current vs.Pulsewidth  
6
www.irf.com  
AUIRF7759L2TR/TR1  
Notes on Repetitive Avalanche Curves , Figures 14, 17:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for  
every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is  
not exceeded.  
3. Equation below based on circuit and waveforms shown in  
Figures 18a, 18b.  
4. PD (ave) = Average power dissipation per single  
avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for  
voltage increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed  
300  
250  
200  
150  
100  
50  
TOP  
BOTTOM 1.0% Duty Cycle  
= 96A  
Single Pulse  
I
D
Tjmax (assumed as 25°C in Figure 15, 16).  
t
av = Average time in avalanche.  
0
D = Duty cycle in avalanche = tav ·f  
ZthJC(D, tav) = Transient thermal resistance, see figure 11)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Fig 17. Maximum Avalanche Energy vs. Temperature  
Iav = 2DT/ [1.3·BV·Zth]  
EAS (AR) = PD (ave)·tav  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
VGS  
20V  
0.01  
t
Ω
p
I
AS  
Fig 18b. Unclamped Inductive Waveforms  
Fig 18a. Unclamped Inductive Test Circuit  
Id  
Vds  
Vgs  
L
VCC  
DUT  
0
20K  
Vgs(th)  
Qgs1  
Qgs2  
Qgodr  
Qgd  
Fig 19b. Gate Charge Waveform  
Fig 19a. Gate Charge Test Circuit  
RD  
V
DS  
VDS  
90%  
VGS  
D.U.T.  
RG  
+
-
VDD  
10%  
10V  
V
GS  
Pulse Width ≤ 1 µs  
Duty Factor ≤ 0.1 %  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 20a. Switching Time Test Circuit  
Fig 20b. Switching Time Waveforms  
www.irf.com  
7
AUIRF7759L2TR/TR1  
Driver Gate Drive  
P.W.  
P.W.  
Period  
Period  
D =  
D.U.T  
+
***  
V
=10V  
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
Reverse  
Recovery  
Current  
‚
Body Diode Forward  
„
Current  
di/dt  
-
+
-
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
*
VDD  
**  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Curent  
I
SD  
Ripple  
5%  
* Use P-Channel Driver for P-Channel Measurements  
** Reverse Polarity for P-Channel  
*** VGS = 5V for Logic Level Devices  
Fig 21. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs  
Automotive DirectFET® Board Footprint, L8 (Large Size Can).  
Please see AN-1035 for DirectFET® assembly details and stencil and substrate design recommendations  
G = GATE  
D = DRAIN  
S = SOURCE  
D
D
D
D
D
D
S
S
S
S
S
S
S
S
G
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
8
www.irf.com  
AUIRF7759L2TR/TR1  
Automotive DirectFET® Outline Dimension, L8 Outline (LargeSize Can).  
Please see AN-1035 for DirectFET® assembly details and stencil and substrate design recommendations  
DIMENSIONS  
METRIC  
IMPERIAL  
CODE MIN MAX  
MIN MAX  
A
B
C
D
E
F
9.05 9.15  
6.85 7.10  
5.90 6.00  
0.55 0.65  
0.58 0.62  
1.18 1.22  
0.98 1.02  
0.73 0.77  
0.38 0.42  
1.35 1.45  
2.55 2.65  
5.35 5.45  
0.68 0.74  
0.09 0.17  
0.02 0.08  
0.356 0.360  
0.270 0.280  
0.232 0.236  
0.022 0.026  
0.023 0.024  
0.046 0.048  
0.039 0.040  
0.029 0.030  
0.015 0.017  
0.053 0.057  
0.100 0.104  
0.211 0.215  
0.027 0.029  
0.003 0.007  
0.001 0.003  
G
H
J
K
L
L1  
M
P
R
Automotive DirectFET® Part Marking  
"AU" = GATE AND  
AUTOMOTIVE MARKING  
LOGO  
PART NUMBER  
BATCH NUMBER  
DATE CODE  
Line above the last character of  
the date code indicates "Lead-Free"  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
www.irf.com  
9
AUIRF7759L2TR/TR1  
Automotive DirectFET® Tape & Reel Dimension (Showing component orientation).  
LOADED TAPE FEED DIRECTION  
NOTE: Controlling dimensions in mm  
Std reel quantity is 4000 parts. (ordered as AUIRF7759L2TR). For 1000 parts on 7"  
reel, order AUIRF7759L2TR1  
DIMENSIONS  
METRIC  
REEL DIMENSIONS  
STANDARD OPTION (QTY 4000)  
IMPERIAL  
IMPERIAL  
TR1 OPTION (QTY 1000)  
IMPERIAL  
METRIC  
NOTE: CONTROLLING  
DIMENSIONS IN MM  
METRIC  
CODE  
MIN  
MIN  
MAX  
0.476  
0.161  
0.642  
0.299  
0.291  
0.398  
N.C  
MAX  
12.10  
4.10  
16.30  
7.60  
MIN  
MIN  
MAX  
N.C  
N.C  
0.50  
N.C  
N.C  
0.53  
N.C  
N.C  
CODE  
MIN  
MAX  
N.C  
MIN  
MAX  
N.C  
MAX  
N.C  
4.69  
A
B
C
D
E
F
11.90  
3.90  
15.90  
7.40  
7.20  
9.90  
1.50  
1.50  
A
B
C
D
E
F
12.992  
0.795  
0.504  
0.059  
3.900  
N.C  
7.000  
0.795  
0.331  
0.059  
2.460  
N.C  
330.00  
20.20  
12.80  
1.50  
177.80  
20.20  
12.98  
1.50  
0.154  
0.623  
0.291  
0.283  
0.390  
0.059  
0.059  
N.C  
N.C  
N.C  
13.20  
N.C  
0.520  
N.C  
13.50  
2.50  
N.C  
7.40  
99.00  
N.C  
62.48  
N.C  
100.00  
22.40  
18.40  
19.40  
3.940  
0.880  
0.720  
0.760  
10.10  
N.C  
N.C  
G
H
G
H
0.650  
0.630  
N.C  
16.40  
15.90  
N.C  
N.C  
0.063  
1.60  
0.630  
16.00  
N.C  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package  
Notes:  
† Starting TJ = 25°C, L = 0.056mH, RG = 25Ω, IAS = 96A.  
‡ Pulse width 400μs; duty cycle 2%.  
ˆ Used double sided cooling, mounting pad with large heatsink.  
‰ Mounted on minimum footprint full size board with metalized  
back and with small clip heatsink.  
 Click on this section to link to the appropriate technical paper.  
‚ Click on this section to link to the DirectFET® Website.  
ƒ Surface mounted on 1 in. square Cu board, steady state.  
„ TC measured with thermocouple mounted to top (Drain) of part.  
Repetitive rating; pulse width limited by max. junction temperature.  
Š R is measured at TJ of approximately 90°C.  
θ
10  
www.irf.com  
AUIRF7759L2TR/TR1  
Ordering Information  
Base part number  
Package Type  
Standard Pack  
Complete Part Number  
Form  
Tape and Reel  
Tape and Reel  
Quantity  
4000  
1000  
AUIRF7759L2TR  
AUIRF7759L2TR1  
AUIRF7759L2  
DirectFET2 Large Can  
www.irf.com  
11  
AUIRF7759L2TR/TR1  
IMPORTANT NOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR)  
reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its prod-  
ucts and services at any time and to discontinue any product or services without notice. Part numbers designated  
with the “AU” prefix follow automotive industry and / or customer specific requirements with regards to product  
discontinuance and process change notification. All products are sold subject to IR’s terms and conditions of sale  
supplied at the time of order acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance  
with IR’s standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary  
to support this warranty. Except where mandated by government requirements, testing of all parameters of each  
product is not necessarily performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their  
products and applications using IR components. To minimize the risks with customer products and applications,  
customers should provide adequate design and operating safeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration  
and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this informa-  
tion with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered  
documentation. Information of third parties may be subject to additional restrictions.  
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that  
product or service voids all express and any implied warranties for the associated IR product or service and is an  
unfair and deceptive business practice. IR is not responsible or liable for any such statements.  
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant  
into the body, or in other applications intended to support or sustain life, or in any other application in which the failure  
of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR  
products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages,  
and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the  
design or manufacture of the product.  
Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense,  
are designed and manufactured to meet DLA military specifications required by certain military, aerospace or other  
applications. Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in  
applications requiring military grade products, is solely at the Buyer’s own risk and that they are solely responsible for  
compliance with all legal and regulatory requirements in connection with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific  
IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the  
designation “AU”. Buyers acknowledge and agree that, if they use any non-designated products in automotive  
applications, IR will not be responsible for any failure to meet such requirements.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
101 N. Sepulveda Blvd., El Segundo, California 90245  
Tel: (310) 252-7105  
12  
www.irf.com  

相关型号:

AUIRF7759L2TR_15

Automotive DirectFET Power MOSFET
INFINEON

AUIRF7769L2

Advanced Process Technology
INFINEON

AUIRF7769L2TR

Power Field-Effect Transistor
INFINEON

AUIRF7769L2TR_15

Automotive DirectFET Power MOSFET
INFINEON

AUIRF7799L2

Automotive DirectFET® Power MOSFET
INFINEON

AUIRF7799L2TR

Automotive DirectFET® Power MOSFET
INFINEON

AUIRF7799L2TR1

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRF7805Q

Advanced Planar Technology Low On-Resistance
INFINEON

AUIRF7805QTR

Advanced Planar Technology Low On-Resistance
INFINEON

AUIRF8736M2

Automotive DirectFET® Power MOSFET
INFINEON

AUIRF8736M2TR

Automotive DirectFET® Power MOSFET
INFINEON

AUIRF8739L2

40V 汽车单个 N 通道 HEXFET Power MOSFET, 采用 DirectFET L8 封装
INFINEON