AUIRFN8459 [INFINEON]

40V 双 N 通道 HEXFET Power MOSFET, 采用 PQFN 5 x 6 L 封装;
AUIRFN8459
型号: AUIRFN8459
厂家: Infineon    Infineon
描述:

40V 双 N 通道 HEXFET Power MOSFET, 采用 PQFN 5 x 6 L 封装

文件: 总10页 (文件大小:534K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AUTOMOTIVE GRADE  
AUIRFN8459  
Features  
VDSS  
RDS(on) typ.  
40V  
Advanced Process Technology  
Dual N-Channel MOSFET  
Ultra Low On-Resistance  
175°C Operating Temperature  
Fast Switching  
4.8m  
5.9m  
max  
ID (Silicon Limited)  
70A  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free, RoHS Compliant  
Automotive Qualified *  
ID (Package Limited)  
50A  
Description  
Specifically designed for Automotive applications, this HEXFET®  
Power MOSFET utilizes the latest processing techniques to  
achieve extremely low on-resistance per silicon area. Additional  
features of this design are a 175°C junction operating temperature,  
fast swithcing speed and improved repetitive avalanche rating.  
These features combine to make this product an extremely  
efficient and reliable device for use in Automotive and wide variety  
of other applications.  
DUAL PQFN 5X6 mm  
G
D
S
Applications  
Gate  
Drain  
Source  
12V Automotive Systems  
Brushed DC Motor  
Braking  
Transmission  
Base Part Number  
Package Type  
Standard Pack  
Form  
Tape and Reel  
Orderable Part Number  
Quantity  
4000  
AUIRFN8459  
Dual PQFN 5mm x 6mm  
AUIRFN8459TR  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and  
functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under  
board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.  
Parameter  
Continuous Drain Current, VGS @ 10V   
Continuous Drain Current, VGS @ 10V  
Max.  
70  
Units  
ID @ TC (Bottom) = 25°C  
ID @ TC (Bottom) = 100°C  
ID @ TC (Bottom) = 25°C  
IDM  
50  
A
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current   
50  
320  
Power Dissipation  
50  
W
PD @TC (Bottom) = 25°C  
Linear Derating Factor  
0.33  
W/°C  
V
VGS  
Gate-to-Source Voltage  
± 20  
mJ  
EAS  
Single Pulse Avalanche Energy (Thermally Limited)   
Single Pulse Avalanche Energy   
Avalanche Current   
66  
110  
EAS (Tested)  
A
IAR  
See Fig. 14, 15, 22a, 22b  
EAR  
TJ  
TSTG  
Repetitive Avalanche Energy   
Operating Junction and  
Storage Temperature Range  
-55 to + 175  
°C  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
51 www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
May 12, 2015  
AUIRFN8459  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
–––  
–––  
Max.  
3.0  
45  
Units  
°C/W  
Junction-to-Case   
Junction-to-Case   
Junction-to-Ambient   
RJC (Bottom)  
RJC (Top)  
40  
RJA  
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
40 ––– –––  
––– 0.037 ––– V/°C Reference to 25°C, ID = 1.0mA  
Conditions  
VGS = 0V, ID = 250µA  
V
V(BR)DSS/TJ  
RDS(on)  
VGS(th)  
gfs  
–––  
2.2  
66  
–––  
–––  
–––  
–––  
–––  
4.8  
3.0  
–––  
1.9  
–––  
–––  
–––  
5.9  
3.9  
–––  
–––  
1.0  
VGS = 10V, ID = 40A   
VDS = VGS, ID = 50µA  
VDS = 10V, ID = 40A  
m  
V
S
Forward Transconductance  
Internal Gate Resistance  
RG  
VDS = 40V, VGS = 0V  
VDS = 40V, VGS = 0V, TJ = 125°C  
VGS = 20V  
IDSS  
IGSS  
Drain-to-Source Leakage Current  
µA  
nA  
150  
100  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
––– -100  
VGS = -20V  
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Symbol Parameter Min. Typ. Max. Units  
Conditions  
ID = 40A  
VDS = 20V  
VGS = 10V  
ID = 40A, VDS =0V, VGS = 10V  
Qg  
Qgs  
Qgd  
Total Gate Charge  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
–––  
–––  
–––  
–––  
40  
13  
14  
26  
60  
–––  
–––  
–––  
nC  
ns  
Qsync  
td(on)  
tr  
td(off)  
tf  
Turn-On Delay Time  
Rise Time  
Turn-Off Delay Time  
Fall Time  
–––  
–––  
–––  
–––  
10  
55  
25  
42  
–––  
–––  
–––  
–––  
VDD = 26V  
ID = 40A  
RG = 2.7  
VGS = 10V  
Ciss  
Coss  
Crss  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
––– 2250 –––  
VGS = 0V  
VDS = 25V  
ƒ = 1.0 MHz  
VGS = 0V, VDS = 0V to 32V   
VGS = 0V, VDS = 0V to 32V   
–––  
–––  
–––  
–––  
340  
215  
400  
490  
–––  
–––  
–––  
–––  
pF  
Coss eff. (ER) Effective Output Capacitance (Energy Related)  
Coss eff. (TR) Effective Output Capacitance (Time Related)  
Diode Characteristics  
Symbol  
Parameter  
Continuous Source Current  
(Body Diode)  
Min. Typ. Max. Units  
Conditions  
MOSFET symbol  
showing the  
–––  
––– 70  
IS  
A
integral reverse  
p-n junction diode.  
TJ = 25°C, IS = 40A, VGS = 0V   
Pulsed Source Current  
(Body Diode)   
Diode Forward Voltage  
Peak Diode Recovery   
–––  
–––  
320  
ISM  
A
V
VSD  
dv/dt  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
7.0  
22  
23  
17  
1.3  
–––  
–––  
–––  
–––  
–––  
–––  
V/ns TJ = 175°C, IS= 40A, VDS = 40V  
TJ = 25°C  
trr  
Reverse Recovery Time  
ns  
VR = 34V,  
IF = 40A  
di/dt = 100A/µs  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
Qrr  
Reverse Recovery Charge  
Reverse Recovery Current  
nC  
A
17  
1.0  
IRRM  
2
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
May 12, 2015  
AUIRFN8459  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.0V  
4.5V  
4.3V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.0V  
4.5V  
4.3V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.3V  
1
4.3V  
60µs PULSE WIDTH  
Tj = 25°C  
60µs PULSE WIDTH  
Tj = 175°C  
0.1  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
V
, Drain-to-Source Voltage (V)  
DS  
DS  
Fig. 1 Typical Output Characteristics  
Fig. 2 Typical Output Characteristics  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
1000  
I
= 40A  
D
V
= 10V  
GS  
100  
10  
1
T
= 175°C  
J
T
= 25°C  
J
V
= 10V  
DS  
60µs PULSE WIDTH  
0.1  
2.0  
3.0  
V
4.0  
5.0  
6.0  
7.0  
8.0  
9.0  
-60 -40 -20  
T
0
20 40 60 80 100 120 140 160 180  
, Gate-to-Source Voltage (V)  
GS  
, Junction Temperature (°C)  
J
Fig. 4 Normalized On-Resistance vs. Temperature  
Fig. 3 Typical Transfer Characteristics  
14  
10000  
1000  
100  
V
= 0V,  
f = 1 MHZ  
GS  
I
= 40A  
D
V
V
V
= 32V  
= 20V  
8.0V  
C
C
C
= C + C , C  
SHORTED  
DS  
DS  
iss  
rss  
oss  
gs  
gd  
ds  
12  
10  
8
= C  
gd  
= C + C  
ds  
gd  
DS=  
Ciss  
6
4
Coss  
Crss  
2
0
0
10  
20  
30  
40  
50  
60  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
Total Gate Charge (nC)  
G
V
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
www.irf.com © 2015 International Rectifier  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
Submit Datasheet Feedback May 12, 2015  
3
AUIRFN8459  
1000  
100  
10  
1000  
100  
10  
100µsec  
1msec  
T
= 175°C  
J
imited by  
Package  
L
T
= 25°C  
J
OPERATION IN THIS AREA  
LIMITED BY R (on)  
DS  
10msec  
DC  
1
1
Tc = 25°C  
Tj = 150°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
3.0  
0.1  
1
10  
100  
V
, Source-to-Drain Voltage (V)  
V
, Drain-toSource Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig. 7 Typical Source-to-Drain Diode  
70  
60  
50  
40  
30  
20  
10  
0
50  
48  
46  
44  
42  
40  
Id = 1.0mA  
Limited By Package  
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100 120 140 160 180  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
J
C
Fig 9. Maximum Drain Current vs. Case Temperature  
Fig 10. Drain-to–Source Breakdown Voltage  
20.0  
16.0  
12.0  
8.0  
0.30  
0.25  
0.20  
0.15  
0.10  
0.05  
0.00  
V
V
V
V
V
= 5.5V  
= 6.0V  
= 7.0V  
= 8.0V  
= 10V  
GS  
GS  
GS  
GS  
GS  
4.0  
0
10  
20  
30  
40  
0
50  
100  
150  
200  
V
Drain-to-Source Voltage (V)  
I , Drain Current (A)  
DS,  
D
Fig 12. Typical On-Resistance vs. Drain Current  
Submit Datasheet Feedback May 12, 2015  
Fig 11. Typical Coss Stored Energy  
www.irf.com © 2015 International Rectifier  
4
AUIRFN8459  
10  
1
D = 0.50  
0.20  
0.10  
0.05  
0.1  
0.02  
0.01  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
Notes:  
1. DutyFactor D = t1/t2  
2. PeakTj = P dm xZthjc + Tc  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming Tj = 150°C and  
Tstart =25°C (Single Pulse)  
10  
1
0.1  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming j = 25°C and  
Tstart = 125°C.  
0.01  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav(sec)  
Fig 14. Avalanche Current vs. Pulse Width Current  
70  
60  
50  
40  
30  
20  
10  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1.Avalanche failures assumption:  
TOP  
BOTTOM 1.0% DutyCycle  
= 40A  
Single Pulse  
I
D
Purely a thermal phenomenon and failure occurs at a  
temperature far in excess of Tjmax. This is validated for every  
part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not  
exceeded.  
3. Equation below based on circuit and waveforms shown in Figures  
22a, 22b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage  
increase during avalanche).  
6. Iav = Allowable avalanche current.  
7. T = Allowable rise in junction temperature, not to exceed Tjmax  
(assumed as 25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
J
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC  
Iav = 2T/ [1.3·BV·Zth]  
Fig 15. Maximum Avalanche Energy vs. Temperature  
EAS (AR) = PD (ave)· av  
t
5
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
May 12, 2015  
AUIRFN8459  
4.5  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
25  
20  
15  
10  
5
I
= 40A  
D
I
I
I
I
= 50µA  
= 250µA  
= 1.0mA  
= 1.0A  
T
= 125°C  
= 25°C  
D
D
D
D
J
T
J
0
4
8
12  
16  
20  
-75 -50 -25  
0
25  
50  
75 100 125 150  
V
, Gate-to-Source Voltage (V)  
GS  
T
, Temperature ( °C )  
J
Fig 17. Threshold Voltage vs. Temperature  
Fig 16. Typical On-Resistance vs. Gate Voltage  
5
5
I = 40A  
F
I = 26A  
F
V
= 34V  
V
= 34V  
R
R
4
3
2
1
0
4
3
2
1
0
T = 25°C  
J
T = 125°C  
J
T = 25°C  
J
T = 125°C  
J
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
di /dt ( A/µs)  
di /dt ( A/µs)  
F
F
Fig 19. Typical Stored Charge vs. dif/dt  
Fig 18. Typical Recovery Current vs. dif/dt  
90  
90  
I = 40A  
F
I = 26A  
F
80  
80  
V
= 34V  
V
= 34V  
R
R
70  
60  
50  
40  
30  
20  
10  
0
T = 25°C  
J
T = 125°C  
J
70  
60  
50  
40  
30  
20  
10  
0
T = 25°C  
J
T = 125°C  
J
0
100  
200  
300  
400  
500  
600  
0
100  
200  
300  
400  
500  
600  
di /dt ( A/µs)  
di /dt ( A/µs)  
F
F
Fig 21. Typical Stored Charge vs. dif/dt  
Submit Datasheet Feedback May 12, 2015  
Fig 20. Typical Recovery Current vs. dif/dt  
6
www.irf.com © 2015 International Rectifier  
AUIRFN8459  
Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs  
Fig 22b. Unclamped Inductive Waveforms  
Fig 22a. Unclamped Inductive Test Circuit  
Fig 23b. Switching Time Waveforms  
Fig 23a. Switching Time Test Circuit  
VDD  
Fig 24a. Gate Charge Test Circuit  
Fig 24b. Gate Charge Waveform  
7
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
May 12, 2015  
AUIRFN8459  
Dual PQFN 5x6 Package Details  
For more information on board mounting, including footprint and stencil recommendation, please refer to application  
note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf  
For more information on package inspection techniques, please refer to application note AN-1154:  
http://www.irf.com/technical-info/appnotes/an-1154.pdf  
Dual PQFN 5x6 Part Marking  
INTERNATIONAL  
RECTIFIER LOGO  
DATE CODE  
PART NUMBER  
XXXX  
(“4 or 5 digits”)  
ASSEMBLY  
SITE CODE  
(Per SCOP 200-002)  
MARKING CODE  
XYWWX  
XXXXX  
(Per Marking Spec)  
PIN 1  
IDENTIFIER  
LOT CODE  
(Eng Mode - Min last 4 digits of EATI#)  
(Prod Mode - 4 digits of SPN code)  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com © 2015 International Rectifier Submit Datasheet Feedback  
8
May 12, 2015  
AUIRFN8459  
Qualification Information†  
Automotive  
(per AEC-Q101)  
Comments: This part number(s) passed Automotive qualification. IR’s In-  
dustrial and Consumer qualification level is granted by extension of the high-  
er Automotive level.  
Qualification Level  
Moisture Sensitivity Level  
Human Body Model  
Dual PQFN 5mm x 6mm  
MSL1  
Class H1B(+/- 1000V)††  
AEC-Q101-001  
Class C5 (+/- 1000V)††  
AEC-Q101-005  
Yes  
ESD  
Charged Device Model  
RoHS Compliant  
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/  
†† Highest passing voltage.  
Notes:  
Repetitive rating; pulse width limited by max. junction temperature.  
Limited by TJmax, starting TJ = 25°C, L =75µH, RG = 50, IAS = 40A, VGS = 10V.  
ISD 50A, di/dt 650A/µs, VDD V(BR)DSS, TJ 175°C.  
Pulse width 400µs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS  
.
Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS  
.
When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques  
refer to application note #AN-994: http://www.irf.com/technical-info/appnotes/an-994.pdf  
Ris measured at TJ of approximately 90°C.  
This value determined from sample failure population, starting TJ = 25°C, L= 75µH, RG = 50, IAS = 40A, VGS =10V.  
 Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 50A.  
Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements  
9
www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
May 12, 2015  
AUIRFN8459  
IMPORTANT NOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve  
the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services  
at any time and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix follow  
automotive industry and / or customer specific requirements with regards to product discontinuance and process change  
notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s  
standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products  
and applications using IR components. To minimize the risks with customer products and applications, customers should  
provide adequate design and operating safeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with altera-  
tions is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Infor-  
mation of third parties may be subject to additional restrictions.  
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or  
service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive  
business practice. IR is not responsible or liable for any such statements.  
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into  
the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR  
product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for  
any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, em-  
ployees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable  
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or  
unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.  
Only products certified as military grade by the Defense Logistics Agency (DLA) of the US Department of Defense, are de-  
signed and manufactured to meet DLA military specifications required by certain military, aerospace or other applications.  
Buyers acknowledge and agree that any use of IR products not certified by DLA as military-grade, in applications requiring  
military grade products, is solely at the Buyer’s own risk and that they are solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR  
products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designa-  
tion “AU”. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will  
not be responsible for any failure to meet such requirements.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
101 N. Sepulveda Blvd., El Segundo, California 90245  
Tel: (310) 252-7105  
10 www.irf.com © 2015 International Rectifier  
Submit Datasheet Feedback  
May 12, 2015  

相关型号:

AUIRFN8459TR

Power Field-Effect Transistor
INFINEON

AUIRFP064N

Advanced Planar Technology Low On-Resistance
INFINEON

AUIRFP1405

Power Field-Effect Transistor, 95A I(D), 55V, 0.0053ohm, 1-Element, N-Channel, Silicon, Metal-Oxide Semiconductor FET, TO-247AC, ROHS COMPLIANT, PLASTIC PACKAGE-3
INFINEON

AUIRFP2602

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRFP2907

Power Field-Effect Transistor, 90A I(D), 75V, 0.0045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-247AC, ROHS COMPLIANT, PLASTIC PACKAGE-3
INFINEON

AUIRFP2907Z

HEXFET Power MOSFET
INFINEON

AUIRFP4004

Specifically designed for Automotive applications
INFINEON

AUIRFP4110

Power Field-Effect Transistor, 120A I(D), 100V, 0.0045ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-247AC,
INFINEON

AUIRFP4409

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRFP4568

Power Field-Effect Transistor
INFINEON

AUIRFR024N

Power Field-Effect Transistor, 17A I(D), 55V, 0.075ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, PLASTIC, DPAK-3
INFINEON

AUIRFR024NTR

Advanced Planar Technology
INFINEON