AUIRFR3806TR [INFINEON]

Power Field-Effect Transistor, 43A I(D), 60V, 0.0158ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, PLASTIC, DPAK-3;
AUIRFR3806TR
型号: AUIRFR3806TR
厂家: Infineon    Infineon
描述:

Power Field-Effect Transistor, 43A I(D), 60V, 0.0158ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, PLASTIC, DPAK-3

开关 脉冲 晶体管
文件: 总12页 (文件大小:272K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PD - 97644  
AUTOMOTIVE GRADE  
AUIRFR3806  
HEXFET® Power MOSFET  
Features  
Advanced Process Technology  
D
VDSS  
RDS(on) typ.  
max.  
60V  
Ultra Low On-Resistance  
Dynamic dV/dT Rating  
175°C Operating Temperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free, RoHS Compliant  
Automotive Qualified *  
12.6m  
15.8m  
43A  
Ω
Ω
G
ID  
S
D
Description  
Specifically designed for Automotive applications, this HEXFET®  
Power MOSFET utilizes the latest processing techniques to achieve  
extremely low on-resistance per silicon area. Additional features of  
thisdesign area175°Cjunctionoperatingtemperature,fastswitching  
speed and improved repetitive avalanche rating . These features  
combine to make this design an extremely efficient and reliable  
device for use in Automotive applications and a wide variety of other  
S
G
D-Pak  
AUIRFR3806  
G
D
S
applications.  
Gate  
Drain  
Source  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and  
functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under  
board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.  
Symbol  
ID @ TC = 25°C  
Parameter  
Continuous Drain Current, VGS @ 10V  
Continuous Drain Current, VGS @ 10V  
Pulsed Drain Current  
Max.  
43  
Units  
A
ID @ TC = 100°C  
IDM  
31  
170  
PD @TC = 25°C  
W
71  
Maximum Power Dissipation  
Linear Derating Factor  
0.47  
W/°C  
V
VGS  
EAS  
IAR  
± 20  
Gate-to-Source Voltage  
73  
mJ  
A
Single Pulse Avalanche Energy (Thermally Limited)  
Avalanche Current  
25  
7.1  
Repetitive Avalanche Energy  
EAR  
mJ  
24  
Peak Diode Recovery  
dv/dt  
TJ  
V/ns  
°C  
-55 to + 175  
Operating Junction and  
TSTG  
Storage Temperature Range  
300  
Soldering Temperature, for 10 seconds (1.6mm from case)  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
2.12  
–––  
62  
Units  
Rθ  
Junction-to-Case  
JC  
Rθ  
0.50  
–––  
°C/W  
Case-to-Sink, Flat Greased Surface  
Junction-to-Ambient  
CS  
RθJA  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
www.irf.com  
1
03/11/11  
AUIRFR3806  
Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min. Typ. Max. Units  
60 ––– –––  
––– 0.075 ––– V/°C Reference to 25°C, ID = 5mA  
Conditions  
VGS = 0V, ID = 250μA  
V
V
/ T  
(BR)DSS Δ  
Δ
J
RDS(on)  
VGS(th)  
gfs  
––– 12.6 15.8  
VGS = 10V, ID = 25A  
VDS = VGS, ID = 50μA  
VDS = 10V, ID = 25A  
m
Ω
2.0  
41  
–––  
4.0  
V
Forward Transconductance  
––– –––  
S
RG(int)  
IDSS  
–––  
Internal Gate Resistance  
Drain-to-Source Leakage Current  
0.79 –––  
Ω
μA  
––– –––  
20  
V
V
DS = 60V, VGS = 0V  
DS = 48V, VGS = 0V, TJ = 125°C  
––– ––– 250  
––– ––– 100  
––– ––– -100  
IGSS  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
nA VGS = 20V  
GS = -20V  
V
Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Symbol Parameter Min. Typ. Max. Units  
Total Gate Charge  
Conditions  
Qg  
–––  
–––  
–––  
22  
5.0  
6.3  
30  
nC ID = 25A  
DS = 30V  
VGS = 10V  
ID = 25A, VDS =0V, VGS = 10V  
ns VDD = 39V  
ID = 25A  
R = 20  
Qgs  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
Rise Time  
–––  
–––  
V
Qgd  
Qsync  
––– 28.3 –––  
td(on)  
–––  
–––  
–––  
–––  
6.3  
40  
49  
47  
–––  
–––  
–––  
–––  
tr  
td(off)  
Turn-Off Delay Time  
Fall Time  
Ω
G
tf  
VGS = 10V  
Ciss  
Input Capacitance  
––– 1150 –––  
––– 130 –––  
VGS = 0V  
Coss  
Output Capacitance  
Reverse Transfer Capacitance  
V
DS = 50V  
Crss  
–––  
67  
–––  
pF ƒ = 1.0MHz  
Coss eff. (ER)  
Coss eff. (TR)  
––– 190 –––  
––– 230 –––  
V
GS = 0V, VDS = 0V to 60V  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
VGS = 0V, VDS = 0V to 60V  
Diode Characteristics  
Symbol  
Parameter  
Min. Typ. Max. Units  
Conditions  
IS  
D
S
Continuous Source Current  
––– –––  
A
MOSFET symbol  
43  
(Body Diode)  
Pulsed Source Current  
(Body Diode)  
showing the  
integral reverse  
G
ISM  
––– ––– 170  
p-n junction diode.  
VSD  
trr  
Diode Forward Voltage  
Reverse Recovery Time  
––– –––  
1.3  
33  
V
TJ = 25°C, IS = 25A, VGS = 0V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 51V,  
IF = 25A  
di/dt = 100A/μs  
–––  
–––  
–––  
–––  
–––  
22  
26  
17  
24  
1.4  
ns  
39  
Qrr  
Reverse Recovery Charge  
26  
nC  
36  
IRRM  
ton  
Reverse Recovery Current  
Forward Turn-On Time  
–––  
A
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)  
Notes:  
 Repetitive rating; pulse width limited by max. junction  
temperature.  
‚ Limited by TJmax, starting TJ = 25°C, L = 0.23mH  
RG = 25Ω, IAS = 25A, VGS =10V. Part not recommended for  
use above this value.  
ƒ ISD 25A, di/dt 1580A/μs, VDD V(BR)DSS, TJ 175°C.  
„ Pulse width 400μs; duty cycle 2%.  
Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
† Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
‡ When mounted on 1" square PCB (FR-4 or G-10 Material). For recom  
mended footprint and soldering techniques refer to application note #AN-994.  
ˆ Rθ is measured at TJ approximately 90°C.  
2
www.irf.com  
AUIRFR3806  
Qualification Information†  
Automotive  
††  
(per AEC-Q101)  
Qualification Level  
Comments: This part number(s) passed Automotive qualification.  
IR’s Industrial and Consumer qualification level is granted by  
extension of the higher Automotive level.  
Moisture Sensitivity Level  
D-PAK  
MSL1  
Class M3 (+/- 250V)†††  
Machine Model  
AEC-Q101-002  
Class H1A (+/- 500V)†††  
AEC-Q101-001  
Human Body Model  
ESD  
Class C5 (+/- 2000V)†††  
AEC-Q101-005  
Charged Device  
Model  
RoHS Compliant  
Yes  
†
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/  
†† Exceptions to AEC-Q101 requirements are noted in the qualification report.  
††† Highest passing voltage.  
www.irf.com  
3
AUIRFR3806  
1000  
100  
10  
1000  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
VGS  
15V  
10V  
8.0V  
6.0V  
5.5V  
5.0V  
4.8V  
4.5V  
TOP  
TOP  
100  
BOTTOM  
BOTTOM  
4.5V  
10  
4.5V  
60μs PULSE WIDTH  
Tj = 175°C  
60μs PULSE WIDTH  
Tj = 25°C  
1
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
I
= 25A  
D
V
= 10V  
GS  
T
= 175°C  
J
T
= 25°C  
J
1
V
= 25V  
DS  
60μs PULSE WIDTH  
0.1  
2
3
4
5
6
7
8
9
-60 -40 -20 0 20 40 60 80 100120140160180  
, Junction Temperature (°C)  
T
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
12.0  
10000  
1000  
100  
V
C
= 0V,  
f = 1 MHZ  
GS  
I = 25A  
D
= C + C , C SHORTED  
iss  
gs gd ds  
V
V
V
= 48V  
= 30V  
= 12V  
C
= C  
DS  
DS  
DS  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
rss  
gd  
C
= C + C  
oss  
ds  
C
gd  
iss  
C
oss  
C
rss  
10  
0
5
10  
15  
20  
25  
1
10  
, Drain-to-Source Voltage (V)  
100  
Q
, Total Gate Charge (nC)  
V
G
DS  
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
4
www.irf.com  
AUIRFR3806  
1000  
100  
10  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
100μsec  
1msec  
T
= 175°C  
J
T
= 25°C  
J
10msec  
1
1
Tc = 25°C  
DC  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.0  
0.5  
1.0  
1.5  
2.0  
1
10  
100  
V
, Source-to-Drain Voltage (V)  
V
, Drain-to-Source Voltage (V)  
SD  
DS  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode Forward Voltage  
80  
75  
70  
65  
60  
45  
40  
35  
30  
25  
20  
15  
10  
5
Id = 5mA  
0
25  
50  
75  
100  
125  
150  
175  
-60 -40 -20 0 20 40 60 80 100120140160180  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
C
J
Fig 10. Drain-to-Source Breakdown Voltage  
Fig 9. Maximum Drain Current vs. Case Temperature  
0.4  
300  
I
D
0.3  
0.3  
0.2  
0.2  
0.1  
0.1  
0.0  
TOP  
2.8A  
5.1A  
250  
200  
150  
100  
50  
BOTTOM 25A  
0
-10  
0
10  
20 30 40 50  
60 70  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
J
V
Drain-to-Source Voltage (V)  
DS,  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
Fig 11. Typical COSS Stored Energy  
www.irf.com  
5
AUIRFR3806  
10  
D = 0.50  
1
0.1  
0.20  
0.10  
0.05  
R1  
R1  
R2  
R2  
R3  
R3  
Ri (°C/W) τi (sec)  
0.6086 0.00026  
0.9926 0.001228  
τ
τ
Cτ  
0.02  
0.01  
J τJ  
τ
τ
1τ1  
τ
2 τ2  
3τ3  
0.5203 0.00812  
Ci= τi/Ri  
0.01  
/
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
100  
10  
1
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
0.01  
pulsewidth, tav, assuming Tj = 150°C and  
Δ
Tstart =25°C (Single Pulse)  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming  
Tstart = 150°C.  
j = 25°C and  
ΔΤ  
0.1  
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
80  
60  
40  
20  
0
Notes on Repetitive Avalanche Curves , Figures 14, 15:  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 16a, 16b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
TOP  
BOTTOM 1.0% Duty Cycle  
= 25A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
25  
50  
75  
100  
125  
150  
175  
Iav = 2DT/ [1.3·BV·Zth]  
Starting T , Junction Temperature (°C)  
EAS (AR) = PD (ave)·tav  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
6
www.irf.com  
AUIRFR3806  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
14  
12  
10  
8
I = 17A  
F
V
= 51V  
R
T = 25°C  
J
T = 125°C  
J
I
I
I
I
= 50μA  
= 250μA  
= 1.0mA  
= 1.0A  
D
D
D
D
6
4
2
0
-75 -50 -25  
0
25 50 75 100 125 150175 200  
, Temperature ( °C )  
0
200  
400  
600  
800  
1000  
T
di /dt (A/μs)  
J
F
Fig. 17 - Typical Recovery Current vs. dif/dt  
Fig 16. Threshold Voltage vs. Temperature  
14  
260  
I = 25A  
I = 17A  
F
F
12  
10  
8
V
= 51V  
V
= 51V  
R
R
210  
160  
110  
60  
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
6
4
2
10  
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 18 - Typical Recovery Current vs. dif/dt  
Fig. 19 - Typical Stored Charge vs. dif/dt  
260  
I = 25A  
F
V
= 51V  
R
210  
160  
110  
60  
T = 25°C  
J
T = 125°C  
J
10  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
F
Fig. 20 - Typical Stored Charge vs. dif/dt  
www.irf.com  
7
AUIRFR3806  
Driver Gate Drive  
P.W.  
P.W.  
Period  
D.U.T  
Period  
D =  
+
*
=10V  
V
GS  
ƒ
Circuit Layout Considerations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dt controlled by RG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
Inductor Current  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
2
GS  
Ω
0.01  
t
p
I
AS  
Fig 21b. Unclamped Inductive Waveforms  
Fig 21a. Unclamped Inductive Test Circuit  
LD  
VDS  
VDS  
90%  
+
-
VDD  
10%  
VGS  
D.U.T  
VGS  
Pulse Width < 1μs  
Duty Factor < 0.1%  
td(on)  
td(off)  
tr  
tf  
Fig 22a. Switching Time Test Circuit  
Fig 22b. Switching Time Waveforms  
Id  
Vds  
Vgs  
L
VCC  
DUT  
Vgs(th)  
0
1K  
Qgs1  
Qgs2  
Qgd  
Qgodr  
Fig 23a. Gate Charge Test Circuit  
Fig 23b. Gate Charge Waveform  
8
www.irf.com  
AUIRFR3806  
D-Pak (TO-252AA) Package Outline  
Dimensions are shown in millimeters (inches)  
D-Pak Part Marking Information  
Part Number  
IR Logo  
AUFR3806  
Date Code  
Y= Year  
WW= Work Week  
A= Automotive, LeadFree  
YWWA  
XX or XX  
Lot Code  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
www.irf.com  
9
AUIRFR3806  
D-Pak (TO-252AA) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TR  
TRL  
TRR  
16.3 ( .641 )  
15.7 ( .619 )  
16.3 ( .641 )  
15.7 ( .619 )  
12.1 ( .476 )  
8.1 ( .318 )  
7.9 ( .312 )  
FEED DIRECTION  
11.9 ( .469 )  
FEED DIRECTION  
NOTES :  
1. CONTROLLING DIMENSION : MILLIMETER.  
2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ).  
3. OUTLINE CONFORMS TO EIA-481 & EIA-541.  
13 INCH  
16 mm  
NOTES :  
1. OUTLINE CONFORMS TO EIA-481.  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
AUIRFR3806  
Ordering Information  
Base part number Package Type  
Standard Pack  
Form  
Complete Part Number  
Quantity  
75  
2000  
3000  
3000  
AUIRFR3806  
Dpak  
Tube  
AUIRFR3806  
AUIRFR3806TR  
AUIRFR3806TRL  
AUIRFR3806TRR  
Tape and Reel  
Tape and Reel Left  
Tape and Reel Right  
www.irf.com  
11  
AUIRFR3806  
IMPORTANT NOTICE  
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve  
the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services  
at any time and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix follow  
automotive industry and / or customer specific requirements with regards to product discontinuance and process change  
notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s  
standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products  
and applications using IR components. To minimize the risks with customer products and applications, customers should  
provide adequate design and operating safeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is  
accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with  
alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation.  
Information of third parties may be subject to additional restrictions.  
Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or  
service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive  
business practice. IR is not responsible or liable for any such statements.  
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the  
body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.  
IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR  
productsarespecificallydesignatedbyIRasmilitary-gradeorenhancedplastic.” OnlyproductsdesignatedbyIRasmilitary-  
grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not  
designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and  
regulatory requirements in connection with such use.  
IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR  
productsaredesignatedbyIRascompliantwithISO/TS16949requirementsandbearapartnumberincludingthedesignation  
“AU”. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be  
responsible for any failure to meet such requirements.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLD HEADQUARTERS:  
101 N. Sepulveda Blvd., El Segundo, California 90245  
Tel: (310) 252-7105  
12  
www.irf.com  

相关型号:

AUIRFR3806TRL

Power Field-Effect Transistor, 43A I(D), 60V, 0.0158ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, ROHS COMPLIANT, PLASTIC, DPAK-3
INFINEON

AUIRFR3806TRR

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRFR4104

HEXFET® Power MOSFET
INFINEON

AUIRFR4104

Advanced Process Technology Ultra Low On-Resistance
KERSEMI

AUIRFR4104TR

HEXFET® Power MOSFET
INFINEON

AUIRFR4104TRL

HEXFET® Power MOSFET
INFINEON

AUIRFR4104TRR

HEXFET® Power MOSFET
INFINEON

AUIRFR4105

Advanced Planar Technology Low On-Resistance
INFINEON

AUIRFR4105

Advanced Planar Technology
KERSEMI

AUIRFR4105TR

Advanced Planar Technology Low On-Resistance
INFINEON

AUIRFR4105TRL

Advanced Planar Technology Low On-Resistance
INFINEON

AUIRFR4105TRR

Advanced Planar Technology Low On-Resistance
INFINEON