AUIRFS8408TRR [INFINEON]

NEW ULTRA LOW ON-RESISTANCE; 新的超低导通电阻
AUIRFS8408TRR
型号: AUIRFS8408TRR
厂家: Infineon    Infineon
描述:

NEW ULTRA LOW ON-RESISTANCE
新的超低导通电阻

文件: 总13页 (文件大小:297K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AUIRFS8408  
AUIRFSL8408  
AUTOMOTIVE GRADE  
HEXFET® Power MOSFET  
Features  
l
l
l
l
l
l
l
Advanced Process Technology  
VDSS  
RDS(on) typ.  
max.  
ID (Silicon Limited)  
ID (Package Limited)  
40V  
New Ultra Low On-Resistance  
175°C Operating Temperature  
Fast Switching  
Repetitive Avalanche Allowed up to Tjmax  
Lead-Free, RoHS Compliant  
Automotive Qualified *  
1.3m  
Ω
Ω
1.6m  
317A  
195A  
Description  
Specifically designed for Automotive applications, this HEXFET®  
PowerMOSFETutilizesthelatestprocessingtechniquestoachieve  
extremely low on-resistance per silicon area. Additional features  
of this design are a 175°C junction operating temperature, fast  
switching speed and improved repetitive avalanche rating. These  
features combine to make this product an extremely efficient and  
reliable device for use in Automotive and wide variety of other  
applications.  
D
D
S
D
S
S
D
G
G
G
D2Pak  
TO-262  
Applications  
AUIRFSL8408  
AUIRFS8408  
l
l
l
l
l
Electric Power Steering (EPS)  
Battery Switch  
Start/Stop Micro Hybrid  
Heavy Loads  
SMPS  
G
Gate  
D
Drain  
S
Source  
Ordering Information  
Base part number  
Package Type  
Standard Pack  
Form  
Complete Part Number  
Quantity  
50  
AUIRFSL8408  
AUIRFS8408  
TO-262  
D2Pak  
Tube  
Tube  
AUIRFSL8408  
AUIRFS8408  
50  
Tape and Reel Left  
Tape and Reel Right  
800  
800  
AUIRFS8408TRL  
AUIRFS8408TRR  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only; and  
functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-  
maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under  
board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.  
Symbol  
ID @ TC = 25°C  
Parameter  
Max.  
317  
Units  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
ID @ TC = 100°C  
ID @ TC = 25°C  
IDM  
Continuous Drain Current, VGS @ 10V (Silicon Limited)  
Continuous Drain Current, VGS @ 10V (Package Limited)  
Pulsed Drain Current  
224  
195  
A
1270  
PD @TC = 25°C  
294  
W
Maximum Power Dissipation  
1.96  
Linear Derating Factor  
W/°C  
V
VGS  
TJ  
± 20  
Gate-to-Source Voltage  
-55 to + 175  
Operating Junction and  
TSTG  
°C  
Storage Temperature Range  
300  
Soldering Temperature, for 10 seconds (1.6mm from case)  
Avalanche Characteristics  
EAS (Thermally limited)  
Single Pulse Avalanche Energy  
490  
800  
mJ  
EAS (tested)  
IAR  
Single Pulse Avalanche Energy Tested Value  
Avalanche Current  
See Fig. 14, 15, 24a, 24b  
A
Repetitive Avalanche Energy  
EAR  
mJ  
Thermal Resistance  
Symbol  
Parameter  
Typ.  
–––  
Max.  
0.51  
40  
Units  
°C/W  
RθJC  
Junction-to-Case  
RθJA  
–––  
Junction-to-Ambient (PCB Mount)  
HEXFET® is a registered trademark of International Rectifier.  
*Qualification standards can be found at http://www.irf.com/  
1
www.irf.com  
© 2013 International Rectifier  
April 25, 2013  
AUIRFS/SL8408  
Static @ TJ = 25°C (unless otherwise specified)  
Symbol  
V(BR)DSS  
Parameter  
Drain-to-Source Breakdown Voltage  
Breakdown Voltage Temp. Coefficient  
Static Drain-to-Source On-Resistance  
Gate Threshold Voltage  
Min.  
40  
–––  
–––  
2.2  
–––  
–––  
–––  
–––  
–––  
Typ.  
–––  
0.032  
1.3  
Max.  
–––  
–––  
1.6  
3.9  
1.0  
150  
100  
-100  
–––  
Units  
V
Conditions  
VGS = 0V, ID = 250μA  
Δ
Δ
V(BR)DSS/ TJ  
V/°C Reference to 25°C, ID = 5mA  
RDS(on)  
VGS(th)  
IDSS  
VGS = 10V, ID = 100A  
VDS = VGS, ID = 250μA  
VDS = 40V, VGS = 0V  
VDS = 40V, VGS = 0V, TJ = 125°C  
Ω
m
V
3.0  
Drain-to-Source Leakage Current  
–––  
–––  
–––  
–––  
2.1  
μA  
IGSS  
RG  
Gate-to-Source Forward Leakage  
Gate-to-Source Reverse Leakage  
Internal Gate Resistance  
V
GS = 20V  
nA  
VGS = -20V  
Ω
Dynamic @ TJ = 25°C (unless otherwise specified)  
Symbol Parameter  
Forward Transconductance  
Min.  
211  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Typ.  
–––  
216  
51  
77  
139  
29  
202  
108  
119  
10820  
1540  
1140  
1880  
2208  
Max.  
–––  
324  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
Units  
S
Conditions  
VDS = 10V, ID = 100A  
gfs  
Qg  
Total Gate Charge  
ID = 100A  
VDS =20V  
VGS = 10V  
Qgs  
Qgd  
Qsync  
td(on)  
tr  
Gate-to-Source Charge  
Gate-to-Drain ("Miller") Charge  
Total Gate Charge Sync. (Qg - Qgd)  
Turn-On Delay Time  
nC  
ns  
ID = 100A, VDS =0V, VGS = 10V  
VDD = 26V  
Rise Time  
ID = 100A  
Ω
td(off)  
tf  
Turn-Off Delay Time  
Fall Time  
RG = 2.4  
VGS = 10V  
VGS = 0V  
VDS = 25V  
Ciss  
Coss  
Crss  
Coss eff. (ER)  
Coss eff. (TR)  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
Effective Output Capacitance (Energy Related)  
Effective Output Capacitance (Time Related)  
ƒ = 1.0 MHz, See Fig. 5  
VGS = 0V, VDS =0V to 32V See Fig. 11  
VGS = 0V, VDS = 0V to 32V  
pF  
Diode Characteristics  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Units  
Conditions  
IS  
Continuous Source Current  
MOSFET symbol  
D
–––  
–––  
317  
(Body Diode)  
Pulsed Source Current  
showing the  
integral reverse  
A
G
ISM  
–––  
–––  
1270  
S
(Body Diode)  
p-n junction diode.  
VSD  
dv/dt  
trr  
Diode Forward Voltage  
Peak Diode Recovery  
Reverse Recovery Time  
–––  
–––  
–––  
–––  
–––  
–––  
–––  
0.9  
5.0  
38  
37  
50  
1.3  
–––  
–––  
–––  
–––  
–––  
–––  
V
TJ = 25°C, IS = 100A, VGS = 0V  
V/ns TJ = 175°C, IS = 100A, VDS = 40V  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
TJ = 125°C  
TJ = 25°C  
VR = 34V,  
IF = 100A  
di/dt = 100A/μs  
ns  
Qrr  
Reverse Recovery Charge  
Reverse Recovery Current  
nC  
A
50  
1.9  
IRRM  
Notes:  
 Calculated continuous current based on maximum allowable  
junction temperature. Bond wire current limit is 195A by source  
bonding technology . Note that current limitations arising from  
heating of the device leads may occur with some lead mounting  
arrangements. (Refer to AN-1140)  
Pulse width 400µs; duty cycle 2%.  
† Coss eff. (TR) is a fixed capacitance that gives the same charging time  
as Coss while VDS is rising from 0 to 80% VDSS  
‡ Coss eff. (ER) is a fixed capacitance that gives the same energy as  
Coss while VDS is rising from 0 to 80% VDSS  
.
.
‚ Repetitive rating; pulse width limited by max. junction temperature.  
ƒ Limited by TJmax, starting TJ = 25°C, L = 0.099mH, RG = 50Ω,  
IAS = 100A, VGS =10V. Part not recommended for use above  
this value.  
ˆ When mounted on 1" square PCB (FR-4 or G-10 Material).  
For recommended footprint and soldering techniques  
refer to application note #AN-994.  
‰ Rθ is measured at TJ approximately 90°C.  
Š Pulse drain current is limited by source bonding technology.  
„ ISD 100A, di/dt 1307A/µs, VDD V(BR)DSS, TJ 175°C.  
2
www.irf.com  
© 2013 International Rectifier  
April 25, 2013  
AUIRFS/SL8408  
1000  
100  
10  
1000  
100  
10  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
VGS  
15V  
10V  
8.0V  
7.0V  
6.0V  
5.5V  
5.0V  
4.5V  
TOP  
TOP  
BOTTOM  
BOTTOM  
4.5V  
1
4.5V  
60μs  
Tj = 25°C  
PULSE WIDTH  
60μs  
Tj = 175°C  
PULSE WIDTH  
0.1  
1
0.1  
1
10  
100  
0.1  
1
10  
100  
V
, Drain-to-Source Voltage (V)  
DS  
V
, Drain-to-Source Voltage (V)  
DS  
Fig 1. Typical Output Characteristics  
Fig 2. Typical Output Characteristics  
1000  
100  
10  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
I
= 100A  
= 10V  
D
V
GS  
T
= 175°C  
J
T = 25°C  
J
1
V
= 10V  
DS  
60μs PULSE WIDTH  
0.1  
2
4
6
8
10  
-60  
-20  
20  
60  
100  
140  
180  
T , Junction Temperature (°C)  
J
V
, Gate-to-Source Voltage (V)  
GS  
Fig 4. Normalized On-Resistance vs. Temperature  
Fig 3. Typical Transfer Characteristics  
1000000  
100000  
10000  
1000  
14.0  
V
= 0V,  
= C  
f = 1 MHZ  
GS  
C
C
C
+ C , C  
SHORTED  
ds  
I = 100A  
D
iss  
gs  
gd  
= C  
12.0  
rss  
oss  
gd  
V
V
= 32V  
= 20V  
= C + C  
DS  
DS  
ds  
gd  
10.0  
8.0  
6.0  
4.0  
2.0  
0.0  
C
iss  
C
C
oss  
rss  
100  
0.1  
1
10  
100  
0
50  
100  
150  
200  
250  
300  
V
, Drain-to-Source Voltage (V)  
Q , Total Gate Charge (nC)  
DS  
G
Fig 5. Typical Capacitance vs. Drain-to-Source Voltage  
www.irf.com © 2013 International Rectifier  
Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage  
3
April 25, 2013  
AUIRFS/SL8408  
1000  
100  
10  
10000  
1000  
100  
10  
OPERATION IN THIS AREA  
LIMITED BY R  
(on)  
DS  
T
= 175°C  
J
100μsec  
1msec  
Limited By Package  
T
= 25°C  
J
10msec  
DC  
1
1
Tc = 25°C  
Tj = 175°C  
Single Pulse  
V
= 0V  
GS  
0.1  
0.1  
0.1  
1
10  
100  
0.0  
0.5  
1.0  
1.5  
2.0  
2.5  
V
, Drain-to-Source Voltage (V)  
V
, Source-to-Drain Voltage (V)  
DS  
SD  
Fig 8. Maximum Safe Operating Area  
Fig 7. Typical Source-Drain Diode  
Forward Voltage  
350  
300  
250  
200  
150  
100  
50  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
Id = 5.0mA  
Limited By Package  
0
25  
50  
75  
100  
125  
150  
175  
-60  
-20  
20  
60  
100  
140  
180  
T
, Case Temperature (°C)  
T , Temperature ( °C )  
C
J
Fig 9. Maximum Drain Current vs.  
Fig 10. Drain-to-Source Breakdown Voltage  
Case Temperature  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
2500  
2000  
1500  
1000  
500  
I
D
TOP  
25A  
52A  
BOTTOM 100A  
0
-5  
0
5
10 15 20 25 30 35 40 45  
Drain-to-Source Voltage (V)  
25  
50  
75  
100  
125  
150  
175  
Starting T , Junction Temperature (°C)  
V
J
DS,  
Fig 11. Typical COSS Stored Energy  
www.irf.com © 2013 International Rectifier  
Fig 12. Maximum Avalanche Energy vs. DrainCurrent  
4
April 25, 2013  
AUIRFS/SL8408  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
0.02  
0.01  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
0.0001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
t
, Rectangular Pulse Duration (sec)  
1
Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case  
1000  
100  
10  
Duty Cycle = Single Pulse  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔTj = 150°C and  
Tstart =25°C (Single Pulse)  
0.01  
0.05  
0.10  
Allowed avalanche Current vs avalanche  
pulsewidth, tav, assuming ΔΤ j = 25°C and  
Tstart = 150°C.  
1
1.0E-06  
1.0E-05  
1.0E-04  
1.0E-03  
1.0E-02  
1.0E-01  
tav (sec)  
Fig 14. Typical Avalanche Current vs.Pulsewidth  
Notes on Repetitive Avalanche Curves , Figures 14, 15  
(For further info, see AN-1005 at www.irf.com)  
1. Avalanche failures assumption:  
Purely a thermal phenomenon and failure occurs at a temperature far in  
excess of Tjmax. This is validated for every part type.  
2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded.  
3. Equation below based on circuit and waveforms shown in Figures 24a, 24b.  
4. PD (ave) = Average power dissipation per single avalanche pulse.  
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase  
during avalanche).  
6. Iav = Allowable avalanche current.  
7. ΔT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as  
25°C in Figure 14, 15).  
tav = Average time in avalanche.  
D = Duty cycle in avalanche = tav ·f  
600  
500  
400  
300  
200  
100  
0
TOP  
BOTTOM 1.0% Duty Cycle  
= 100A  
Single Pulse  
I
D
ZthJC(D, tav) = Transient thermal resistance, see Figures 13)  
PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC  
Iav = 2DT/ [1.3·BV·Zth]  
25  
50  
75  
100  
125  
150  
175  
EAS (AR) = PD (ave)·tav  
Starting T , Junction Temperature (°C)  
J
Fig 15. Maximum Avalanche Energy vs. Temperature  
5
www.irf.com © 2013 International Rectifier  
April 25, 2013  
AUIRFS/SL8408  
4.5  
3.5  
2.5  
1.5  
0.5  
5
4
3
2
1
0
I
= 100A  
D
T
T
= 125°C  
J
J
ID = 250μA  
ID = 1.0mA  
ID = 1.0A  
= 25°C  
2
4
6
8
10 12 14 16 18 20  
-75  
-25  
25  
75  
125  
175  
225  
T , Temperature ( °C )  
J
V
Gate -to -Source Voltage (V)  
GS,  
Fig 16. On-Resistance vs. Gate Voltage  
Fig 17. Threshold Voltage vs. Temperature  
10  
240  
220  
200  
180  
160  
140  
120  
100  
80  
I = 60A  
I = 60A  
F
F
V
= 34V  
V
= 34V  
R
R
8
6
4
2
0
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
60  
40  
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 19 - Typical Stored Charge vs. dif/dt  
Fig. 18 - Typical Recovery Current vs. dif/dt  
10  
8
200  
160  
120  
80  
I = 100A  
F
I = 100A  
F
V
= 34V  
V
= 34V  
R
R
T = 25°C  
T = 25°C  
J
J
T = 125°C  
J
T = 125°C  
J
6
4
2
40  
0
0
0
200  
400  
600  
800  
1000  
0
200  
400  
600  
800  
1000  
di /dt (A/μs)  
di /dt (A/μs)  
F
F
Fig. 21 - Typical Stored Charge vs. dif/dt  
Fig. 20 - Typical Recovery Current vs. dif/dt  
www.irf.com © 2013 International Rectifier  
6
April 25, 2013  
AUIRFS/SL8408  
20.0  
15.0  
10.0  
5.0  
V
= 6.0V  
GS  
V
= 5.5V  
GS  
VGS = 7.0V  
VGS = 8.0V  
VGS = 10V  
0.0  
0
100  
200  
300  
400  
500  
I , Drain Current (A)  
D
Fig 22. Typical On-Resistance vs. Drain Current  
7
www.irf.com  
© 2013 International Rectifier  
April 25, 2013  
AUIRFS/SL8408  
Driver Gate Drive  
P.W.  
P.W.  
D =  
Period  
D.U.T  
Period  
+
*
=10V  
V
GS  
ƒ
CircuitLayoutConsiderations  
Low Stray Inductance  
Ground Plane  
Low Leakage Inductance  
Current Transformer  
-
D.U.T. I Waveform  
SD  
+
‚
-
Reverse  
Recovery  
Current  
Body Diode Forward  
„
Current  
di/dt  
-
+
D.U.T. V Waveform  
DS  
Diode Recovery  
dv/dt  

V
DD  
VDD  
Re-Applied  
Voltage  
dv/dtcontrolledbyRG  
RG  
+
-
Body Diode  
Forward Drop  
Driver same type as D.U.T.  
ISD controlled by Duty Factor "D"  
D.U.T. - Device Under Test  
InductorCurrent  
I
SD  
Ripple 5%  
* VGS = 5V for Logic Level Devices  
Fig 23. Peak Diode Recovery dv/dt Test Circuit for N-Channel  
HEXFET® Power MOSFETs  
V
(BR)DSS  
15V  
t
p
DRIVER  
+
L
V
DS  
D.U.T  
AS  
R
G
V
DD  
-
I
A
V
GS  
Ω
0.01  
t
p
I
AS  
Fig 24b. Unclamped Inductive Waveforms  
Fig 24a. Unclamped Inductive Test Circuit  
RD  
VDS  
V
DS  
90%  
VGS  
D.U.T.  
RG  
+
VDD  
-
VGS  
10%  
PulseWidth ≤ 1 µs  
Duty Factor ≤ 0.1 %  
V
GS  
t
t
r
t
t
f
d(on)  
d(off)  
Fig 25a. Switching Time Test Circuit  
Fig 25b. Switching Time Waveforms  
Id  
Current Regulator  
Same Type as D.U.T.  
Vds  
Vgs  
50KΩ  
.2μF  
12V  
.3μF  
+
V
DS  
D.U.T.  
-
Vgs(th)  
V
GS  
3mA  
I
I
D
G
Qgs1  
Qgs2  
Qgd  
Qgodr  
Current Sampling Resistors  
Fig 26a. Gate Charge Test Circuit  
www.irf.com © 2013 International Rectifier  
Fig 26b. Gate Charge Waveform  
8
April 25, 2013  
AUIRFS/SL8408  
D2Pak Package Outline (Dimensions are shown in millimeters (inches))  
D2Pak Part Marking Information  
PartNumber  
AUIRFS8408  
DateCode  
Y= Year  
WW= Work Week  
A= Automotive, Lead Free  
IRLogo  
YWWA  
XX or XX  
LotCode  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
9
www.irf.com  
© 2013 International Rectifier  
April 25, 2013  
AUIRFS/SL8408  
TO-262 Package Outline ( Dimensions are shown in millimeters (inches))  
TO-262 Part Marking Information  
PartNumber  
AUIRFSL8408  
DateCode  
Y= Year  
WW= Work Week  
IRLogo  
YWWA  
A= Automotive, Lead Free  
XX or XX  
LotCode  
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/  
10  
www.irf.com  
© 2013 International Rectifier  
April 25, 2013  
AUIRFS/SL8408  
D2Pak (TO-263AB) Tape & Reel Information  
Dimensions are shown in millimeters (inches)  
TRR  
1.60 (.063)  
1.50 (.059)  
1.60 (.063)  
1.50 (.059)  
4.10 (.161)  
3.90 (.153)  
0.368 (.0145)  
0.342 (.0135)  
FEED DIRECTION  
1.85 (.073)  
11.60 (.457)  
11.40 (.449)  
1.65 (.065)  
24.30 (.957)  
23.90 (.941)  
15.42 (.609)  
15.22 (.601)  
TRL  
1.75 (.069)  
1.25 (.049)  
10.90 (.429)  
10.70 (.421)  
4.72 (.136)  
4.52 (.178)  
16.10 (.634)  
15.90 (.626)  
FEED DIRECTION  
13.50 (.532)  
12.80 (.504)  
27.40 (1.079)  
23.90 (.941)  
4
330.00  
(14.173)  
MAX.  
60.00 (2.362)  
MIN.  
30.40 (1.197)  
MAX.  
NOTES :  
1. COMFORMS TO EIA-418.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION MEASURED @ HUB.  
4. INCLUDES FLANGE DISTORTION @ OUTER EDGE.  
26.40 (1.039)  
24.40 (.961)  
4
3
11  
www.irf.com  
© 2013 International Rectifier  
April 25, 2013  
AUIRFS/SL8408  
Qualification Information†  
Qualification Level  
Automotive  
(per AEC-Q101)  
Comments: This part number(s) passed Automotive qualification. IR’s Industrial  
and Consumer qualification level is granted by extension of the higher  
Automotive level.  
3L-D2 PAK  
MSL1  
Moisture Sensitivity Level  
3L-TO-262-PAK  
N/A  
Class M4 (+/- 600)††  
Machine Model  
AEC-Q101-002  
Class H3A (+/- 6000)††  
AEC-Q101-001  
Human Body Model  
ESD  
Class C5 (+/- 2000)††  
AEC-Q101-005  
Charged Device Model  
RoHS Compliant  
Yes  
†
Qualification standards can be found at International Rectifier’s web site: http//www.irf.com/  
†† Highest passing voltage.  
12  
www.irf.com  
© 2013 International Rectifier  
April 25, 2013  
AUIRFS/SL8408  
IMPORTANT NOTICE  
Unlessspecificallydesignatedfortheautomotivemarket,InternationalRectifierCorporationanditssubsidiaries(IR)reservethe  
righttomakecorrections,modifications,enhancements,improvements,andotherchangestoitsproductsandservicesatany  
timeandtodiscontinueanyproductorserviceswithoutnotice.Partnumbersdesignatedwiththe“AU”prefixfollowautomotive  
industry and / or customer specific requirements with regards to product discontinuance and process change notification. All  
products are sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment.  
IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s  
standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this  
warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily  
performed.  
IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products  
and applications using IR components. To minimize the risks with customer products and applications, customers should  
provideadequatedesignandoperatingsafeguards.  
Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is  
accompaniedbyallassociatedwarranties,conditions,limitations,andnotices. Reproductionofthisinformationwithalterations  
isanunfairanddeceptivebusinesspractice. IRisnotresponsibleorliableforsuchaltereddocumentation. Informationofthird  
parties may be subject to additional restrictions.  
ResaleofIRproductsorservicedwithstatementsdifferentfromorbeyondtheparametersstatedbyIRforthatproductorservice  
voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business  
practice. IR is not responsible or liable for any such statements.  
IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the  
body, orinotherapplicationsintendedtosupportorsustainlife, orinanyotherapplicationinwhichthefailureoftheIR product  
could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney  
feesarisingoutof, directlyorindirectly, anyclaimofpersonalinjuryordeathassociatedwithsuchunintendedorunauthorized  
use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product.  
OnlyproductscertifiedasmilitarygradebytheDefenseLogisticsAgency(DLA)oftheUSDepartmentofDefense,aredesigned  
and manufactured to meet DLA military specifications required by certain military, aerospace or other applications. Buyers  
acknowledgeandagreethatanyuseofIRproductsnotcertifiedbyDLAasmilitary-grade,inapplicationsrequiringmilitarygrade  
products, is solely at the Buyer’s own risk and that they are solely responsible for compliance with all legal and regulatory  
requirements in connection with such use.  
IRproductsareneitherdesignednorintendedforuseinautomotiveapplicationsorenvironmentsunlessthespecificIRproducts  
are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”.  
Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be  
responsible for any failure to meet such requirements.  
For technical support, please contact IR’s Technical Assistance Center  
http://www.irf.com/technical-info/  
WORLDHEADQUARTERS:  
101N.SepulvedaBlvd.,ElSegundo,California90245  
Tel:(310)252-7105  
13  
www.irf.com  
© 2013 International Rectifier  
April 25, 2013  

相关型号:

AUIRFS8409

AUTOMOTIVE GRADE
INFINEON

AUIRFS8409-7P

HEXFETPower MOSFET
INFINEON

AUIRFS8409-7TRL

HEXFETPower MOSFET
INFINEON

AUIRFS8409-7TRR

HEXFETPower MOSFET
INFINEON

AUIRFS8409TRL

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
INFINEON

AUIRFSA8409-7P

Power Field-Effect Transistor,
INFINEON

AUIRFSL3004

Advanced Process Technology Ultra Low On-Resistance
INFINEON

AUIRFSL3107

AUTOMOTIVE GRADE
INFINEON

AUIRFSL3206

Advanced Process Technology Ultra Low On-Resistance
INFINEON

AUIRFSL3207Z

Specifically designed for Automotive applications
INFINEON

AUIRFSL3307Z

Advanced Process Technology
INFINEON

AUIRFSL3607

Power Field-Effect Transistor, 80A I(D), 75V, 0.009ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA, ROHS COMPLIANT, PLASTIC, TO-262, 3 PIN
INFINEON