AUIRGDC0250 [INFINEON]

汽车低 VCEon 分立 IGBT,采用Super TO-220 封装;
AUIRGDC0250
型号: AUIRGDC0250
厂家: Infineon    Infineon
描述:

汽车低 VCEon 分立 IGBT,采用Super TO-220 封装

双极性晶体管
文件: 总10页 (文件大小:432K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AUTOMOTIVE GRADE  
AUIRGDC0250  
Features  
C
Low VCE (on) Planar IGBT Technology  
VCES = 1200V  
Low Switching Losses  
Square RBSOA  
IC = 81A @ TC = 100°C  
G
100% of the Parts Tested for ILM  
Positive VCE (on) Temperature Coefficient  
Reflow Capable per JDSD22-A113  
Lead-Free, RoHS Compliant  
Automotive Qualified *  
VCE(on) typ. = 1.47V @ 33A  
E
n-channel  
Benefits  
Device optimized for soft switching applications  
High Efficiency due to Low VCE(on), low switching losses  
Rugged transient performance for increased reliability  
Excellent current sharing in parallel operation  
Low EMI  
Super-TO-220  
AUIRGDC0250  
G
Gate  
C
E
Application  
PTC Heater  
Collector  
Emitter  
Relay Replacement  
Standard Pack  
Form Quantity  
Tube 50  
Base Part Number  
Package Type  
Orderable Part Number  
AUIRGDC0250  
Super-TO-220  
AUIRGDC0250  
Absolute Maximum Ratings  
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These  
are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in  
the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect  
device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air  
conditions. Ambient temperature (TA) is 25°C, unless otherwise specified.  
Parameter  
Collector-to-Emitter Voltage  
IC @ TC = 25°C Continuous Collector Current  
IC @ TC = 100°C Continuous Collector Current  
Max.  
1200  
141  
81  
Units  
V
VCES  
A
ICM  
ILM  
VGE  
Pulse Collector Current, VGE = 15V   
Clamped Inductive Load Current, VGE = 20V   
Continuous Gate-to-Emitter Voltage  
Transient Gate-to-Emitter Voltage  
99  
99  
±20  
±30  
V
PD @ TC = 25°C Maximum Power Dissipation  
PD @ TC = 100°C Maximum Power Dissipation  
543  
217  
W
TJ  
Operating Junction and  
-55 to +150  
TSTG  
Storage Temperature Range  
°C  
Soldering Temperature, for 10 sec. (Through Hole Mounting) 300 (0.063 in. (1.6mm) from case)  
Thermal Resistance  
Parameter  
Typ.  
Max. Units  
Thermal Resistance Junction-to-Case (each IGBT)   
Thermal Resistance, Case-to-Sink (flat, greased surface)  
Thermal Resistance, Junction-to-Ambient (typical socket mount)  
–––  
0.23  
–––  
62  
RJC (IGBT)  
RCS  
RJA  
0.50  
–––  
°C/W  
* Qualification standards can be found at www.infineon.com  
V 2.6  
2019-04-18  
1
AUIRGDC0250  
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
V(BR)CES  
Collector-to-Emitter Breakdown Voltage  
Temperature Coeff. of Breakdown Voltage  
Collector-to-Emitter Saturation Voltage  
1200  
V
VGE = 0V, IC = 250µA  
1.2  
1.47  
1.56  
1.8  
V/°C VGE = 0V, IC = 1mA (25°C-150°C)  
V(BR)CES/TJ  
IC = 33A, VGE = 15V, TJ = 25°C  
VCE(on)  
V
IC = 33A, VGE = 15V, TJ = 150°C  
VGE(th)  
VGE(th)/TJ  
gfe  
Gate Threshold Voltage  
3.0  
6.0  
V
VCE = VGE, IC = 250µA  
Threshold Voltage temp. coefficient  
Forward Transconductance  
-15  
30  
mV/°C VCE = VGE, IC = 250µA (25°C-150°C)  
S
VCE = 50V, IC = 33A,PW = 20µS  
GE = 0V, VCE = 1200V, TJ = 25°C  
ICES  
Collector-to-Emitter Leakage Current  
250  
1000  
V
µA  
VGE = 0V, VCE = 1200V,TJ = 150°C  
VGE = ±20V  
IGES  
Gate-to-Emitter Leakage Current  
±100  
nA  
Switching Characteristics @ TJ = 25°C (unless otherwise specified)  
Parameter  
Min. Typ. Max. Units  
Conditions  
IC = 33A  
VGE = 15V  
Qg  
Qge  
Qgc  
Total Gate Charge (turn-on)  
Gate-to-Emitter Charge (turn-on)  
Gate-to-Collector Charge (turn-on)  
151  
26  
62  
227  
39  
93  
nC  
mJ  
ns  
VCC = 600V  
Eoff  
td(off)  
tf  
Turn-Off Switching Loss  
Turn-Off delay time  
15  
16  
IC = 33A, VCC = 600V, VGE = 15V  
RG = 5, L = 400µH, TJ = 25°C  
Energy losses include tail  
485  
616  
Fall time  
1193 1371  
Eoff  
td(off)  
tf  
Turn-Off Switching Loss  
Turn-Off delay time  
Fall time  
29  
689  
2462  
3804  
161  
31  
mJ  
ns  
IC = 33A, VCC = 600V, VGE = 15V  
RG = 5, L = 400µH, TJ = 150°C  
Energy losses include tail  
VGE = 0V  
Cies  
Coes  
Cres  
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
VCC = 30V  
pF  
f = 1.0Mhz  
TJ = 150°C, IC = 99A  
RBSOA  
Reverse Bias Safe Operating Area  
FULL SQUARE  
VCC = 960V, Vp 1200V  
Rg = 5, VGE = +20V to 0V  
Notes:  
VCC = 80% (VCES), VGE = 20V, L = 400µH, RG = 5.  
Pulse width limited by max. junction temperature.  
Ris measured at TJ approximately 90°C.  
Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 78A.  
Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.  
2
V 2.6  
2019-04-18  
AUIRGDC0250  
160  
140  
120  
100  
80  
600  
500  
400  
300  
200  
100  
0
60  
40  
20  
0
25  
50  
75  
100  
(°C)  
125  
150  
25  
50  
75  
100  
(°C)  
125  
150  
T
T
C
C
Fig. 2 - Power Dissipation vs.  
Fig. 1 - Maximum DC Collector Current vs.  
Case Temperature  
Case Temperature  
1000  
5.0  
4.5  
4.0  
3.5  
3.0  
I
= 1mA  
C
100  
10µsec  
10  
100µsec  
1msec  
1
DC  
0.1  
Tc = 25°C  
Tj = 150°C  
Single Pulse  
0.01  
1
10  
100  
(V)  
1000  
10000  
25  
50  
75  
T , Temperature (°C)  
J
100  
125  
150  
V
CE  
Fig. 4 - Typical Gate Threshold Voltage  
(Normalized) vs. Junction Temperature  
Fig. 3 - Forward SOA  
TC = 25°C, TJ 150°C; VGE =15V  
100  
80  
60  
40  
20  
0
1000  
100  
10  
V
= 18V  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 9.0V  
VGE = 8.0V  
VGE = 7.0V  
1
0
2
4
6
8
10  
10  
100  
1000  
10000  
V
(V)  
V
(V)  
CE  
CE  
Fig. 5 - Reverse Bias SOA  
Fig. 6 - Typ. IGBT Output Characteristics  
TJ = 150°C; VGE = 20V  
TJ = -40°C; tp = 20µs  
3
V 2.6  
2019-04-18  
AUIRGDC0250  
100  
80  
60  
40  
20  
0
100  
80  
60  
40  
20  
0
V
= 18V  
V
= 18V  
GE  
GE  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 9.0V  
VGE = 8.0V  
VGE = 7.0V  
VGE = 15V  
VGE = 12V  
VGE = 10V  
VGE = 9.0V  
VGE = 8.0V  
VGE = 7.0V  
0
2
4
6
8
10  
0
2
4
6
8
10  
V
(V)  
V
(V)  
CE  
CE  
Fig. 8 - Typ. IGBT Output Characteristics  
Fig. 7 - Typ. IGBT Output Characteristics  
TJ = 150°C; tp = 20µs  
TJ = 25°C; tp =20µs  
8
7
6
5
4
3
2
1
0
8
7
6
5
4
3
2
1
0
I
I
I
= 17A  
= 33A  
= 66A  
CE  
CE  
CE  
I
I
I
= 17A  
= 33A  
= 66A  
CE  
CE  
CE  
5
10  
15  
20  
5
10  
15  
20  
V
(V)  
GE  
V
(V)  
GE  
Fig. 9 - Typical VCE vs. VGE  
Fig. 10 - Typical VCE vs. VGE  
TJ = -40°C  
TJ = 25°C  
100  
80  
60  
40  
20  
0
8
7
6
5
4
3
2
1
0
I
I
I
= 17A  
= 33A  
= 66A  
CE  
CE  
CE  
T
= 25°C  
J
T
= 150°C  
J
5
10  
15  
20  
4
5
6
7
8
9
10  
11  
V
(V)  
V
(V)  
GE  
GE  
Fig. 12 - Typ. Transfer Characteristics  
Fig. 11 - Typical VCE vs. VGE  
VCE = 50V; tp = 20µs  
TJ = 150°C  
4
V 2.6  
2019-04-18  
AUIRGDC0250  
50  
45  
40  
35  
30  
25  
20  
15  
10  
10000  
1000  
100  
t
F
E
OFF  
td  
OFF  
0
10  
20  
30  
40  
(A)  
50  
60  
70  
0
20  
40  
(A)  
60  
80  
I
C
I
C
Fig. 13 - Typ. Energy Loss vs. IC  
Fig. 14 - Typ. Switching Time vs. IC  
TJ = 150°C; L = 400µH; VCE = 600V, RG = 5; VGE = 15V  
TJ = 150°C; L = 400µH; VCE = 600V, RG = 5; VGE = 15V  
32  
10000  
t
30  
F
E
OFF  
28  
26  
24  
1000  
td  
OFF  
100  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
()  
80  
100  
R
Rg ()  
G
Fig. 16 - Typ. Energy Loss vs. RG  
TJ = 150°C; L = 400µH; VCE = 600V, ICE = 33A; VGE = 15V  
Fig. 15 - Typ. Energy Loss vs. RG  
TJ = 150°C; L = 400µH; VCE = 600V, ICE = 33A; VGE = 15V  
16  
10000  
V
V
= 600V  
= 400V  
14  
12  
10  
8
Cies  
CES  
CES  
1000  
100  
Coes  
6
4
10  
1
Cres  
2
0
0
20 40 60 80 100 120 140 160  
, Total Gate Charge (nC)  
0
100  
200  
300  
(V)  
400  
500  
600  
Q
G
V
CE  
Fig. 17 - Typ. Capacitance vs. VCE  
Fig. 18 - Typical Gate Charge vs. VGE  
VGE= 0V; f = 1MHz  
ICE = 33A; L = 2.0mH  
5
V 2.6  
2019-04-18  
AUIRGDC0250  
1
0.1  
D = 0.50  
0.20  
0.10  
0.05  
Ri (°C/W)  
I (sec)  
0.0015  
0.0365  
0.1356  
0.0554  
0.000003  
0.000118  
0.001438  
0.006412  
0.01  
0.02  
0.01  
SINGLE PULSE  
( THERMAL RESPONSE )  
0.001  
0.0001  
Notes:  
1. Duty Factor D = t1/t2  
2. Peak Tj = P dm x Zthjc + Tc  
1E-006  
1E-005  
0.0001  
0.001  
0.01  
0.1  
1
t
, Rectangular Pulse Duration (sec)  
1
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)  
6
V 2.6  
2019-04-18  
AUIRGDC0250  
L
L
80 V  
+
-
DUT  
VCC  
VCC  
DUT  
0
Rg  
1K  
RBSOA Circuit  
Gate Charge Circuit  
Fig.C.T.1 - Gate Charge Circuit (turn-off)  
Fig.C.T.2 - RBSOA Circuit  
diode clamp /  
DUT  
L
DUT /  
DRIVER  
VCC  
Rg  
Switching Loss  
Fig.C.T.3 - Switching Loss Circuit  
700  
70  
60  
50  
40  
30  
20  
10  
0
tf  
600  
500  
400  
300  
200  
100  
0
90% ICE  
5% VCE  
10% ICE  
Eoff Loss  
-100  
-10  
-2  
0
2
4
6
time(µs)  
Fig. WF1 - Typ. Turn-off Loss Waveform  
@ TJ = 150°C using Fig. CT.3  
7
V 2.6  
AUIRGDC0250  
Super-TO-220 Package Outline  
Dimensions are shown in millimeters (inches)  
Super-TO-220 Part Marking Information  
8
V 2.6  
2019-04-18  
AUIRGDC0250  
Qualification Information  
Qualification Level  
Automotive  
(per AEC-Q101)  
Comments: This part number (s) passed Automotive qualification.  
Infineon’s Industrial and Consumer qualification level is granted by  
extension of the higher Automotive level.  
3L– Super TO-220  
MSL1  
Class M4(+/- 800V)  
Moisture Sensitivity Level  
Machine Model  
AEC-Q101-002  
Class H3A(+/- 6000V)  
AEC-Q101-001  
Class C5(+/- 2000V)  
AEC-Q101-005  
Yes  
Human Body Model  
ESD  
Charged Device Model  
RoHS Compliant  
Highest passing voltage.  
Revision History  
Revision  
2.0  
Date  
Subjects (major changes since last revision)  
 Final Datasheet  
9/2/2014  
12/1/2014  
3/2/2015  
2.1  
 Updated with V(BR)CES and VGE(th) conditions  
 Updated with minor changes  
2.2  
2.3  
2.4  
2.5  
8/31/2017  
03/01/2018  
11/06/2018  
 Updated with Infineon logo  
 Updated with qualification level  
 Updated maximum VCE(on)  
2.6  
4/18/2019  
 Updated typical Vce(on) value @ 150°C  
9
V 2.6  
2019-04-18  
AUIRGDC0250  
Published by  
Infineon Technologies AG  
81726 München, Germany  
© Infineon Technologies AG 2018  
All Rights Reserved.  
IMPORTANT NOTICE  
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics  
(“Beschaffenheitsgarantie”). With respect to any examples, hints or any typical values stated herein and/or any  
information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and  
liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third  
party.  
In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this  
document and any applicable legal requirements, norms and standards concerning customer’s products and any use of  
the product of Infineon Technologies in customer’s applications.  
The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of  
customer’s technical departments to evaluate the suitability of the product for the intended application and the  
completeness of the product information given in this document with respect to such application.  
For further information on the product, technology, delivery terms and conditions and prices please contact your nearest  
Infineon Technologies office (www.infineon.com).  
WARNINGS  
Due to technical requirements products may contain dangerous substances. For information on the types in question  
please contact your nearest Infineon Technologies office.  
Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized  
representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a  
failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.  
10  
V 2.6  
2019-04-18  

相关型号:

AUIRGF66524D0

Insulated Gate Bipolar Transistor,
INFINEON

AUIRGP35B60PD

Insulated Gate Bipolar Transistor, 60A I(C), 600V V(BR)CES, N-Channel, TO-247AC, ROHS COMPLIANT PACKAGE-3
INFINEON

AUIRGP35B60PD-E

Insulated Gate Bipolar Transistor, 60A I(C), 600V V(BR)CES, N-Channel, TO-247AD, ROHS COMPLIANT, PLASTIC PACKAGE-3
INFINEON

AUIRGP4062D

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

AUIRGP4062D1-E

Insulated Gate Bipolar Transistor, 55A I(C), 600V V(BR)CES, N-Channel
INFINEON

AUIRGP4063D

Insulated Gate Bipolar Transistor, 96A I(C), 600V V(BR)CES, N-Channel, TO-247AC, ROHS COMPLIANT, PLASTIC PACKAGE-3
INFINEON

AUIRGP4063D-E

Insulated Gate Bipolar Transistor, 96A I(C), 600V V(BR)CES, N-Channel, TO-247AD, ROHS COMPLIANT, PLASTIC PACKAGE-3
INFINEON

AUIRGP4066D1

Insulated Gate Bipolar Transistor, 140A I(C), 600V V(BR)CES, N-Channel, TO-247AC, ROHS COMPLIANT, PLASTIC PACKAGE-3
INFINEON

AUIRGP4066D1-E

Insulated Gate Bipolar Transistor, 140A I(C), 600V V(BR)CES, N-Channel, TO-247AD, ROHS COMPLIANT, PLASTIC PACKAGE-3
INFINEON

AUIRGP50B60PD1

WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON

AUIRGP50B60PD1-E

Insulated Gate Bipolar Transistor, 60A I(C), 600V V(BR)CES, N-Channel, TO-247AD, ROHS COMPLIANT PACKAGE-3
INFINEON

AUIRGP50B60PD1E

WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE
INFINEON