BGT24MTR12 [INFINEON]

The BGT24MTR12 is a silicon germanium MMIC for signal generation and reception, operating from 24.00 to 26.00GHz. It is based on a 24GHz fundamental voltage controlled oscillator. A switchable frequency prescaler is included with output frequencies of 1.5GHz and 23kHz. The main RF output delivers up to 8 dBm signal power to feed an antenna. A RC polyphase filter (PPF) is used for LO quadrature phase generation of the homodyne quadrature downconversion mixer. Output power sensors as well as a temperature sensor are implemented for monitoring purposes. The device is controlled via SPI and is manufactured in a 0.18μm SiGe:C technology offering a cutoff frequency of 200GHz. The MMIC is packaged in a 32 pin leadless RoHs compliant VQFN package.;
BGT24MTR12
型号: BGT24MTR12
厂家: Infineon    Infineon
描述:

The BGT24MTR12 is a silicon germanium MMIC for signal generation and reception, operating from 24.00 to 26.00GHz. It is based on a 24GHz fundamental voltage controlled oscillator. A switchable frequency prescaler is included with output frequencies of 1.5GHz and 23kHz. The main RF output delivers up to 8 dBm signal power to feed an antenna. A RC polyphase filter (PPF) is used for LO quadrature phase generation of the homodyne quadrature downconversion mixer. Output power sensors as well as a temperature sensor are implemented for monitoring purposes. The device is controlled via SPI and is manufactured in a 0.18μm SiGe:C technology offering a cutoff frequency of 200GHz. The MMIC is packaged in a 32 pin leadless RoHs compliant VQFN package.

文件: 总28页 (文件大小:1871K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Data Sheet  
Revision 3.2, 2014-07-15  
RF & Protection Devices  
Edition 2014-07-15  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2014 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
BGT24MTR12 Silicon Germanium 24 GHz Transceiver MMIC  
Revision History: 2014-07-15, Revision 3.2  
Previous Revision: 2014-03-25, Revision 3.1  
Page  
Subjects (major changes since last revision)  
update recommended footprint drawing (change of ground plains)  
24  
Trademarks of Infineon Technologies AG  
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, EconoPACK™, CoolMOS™, CoolSET™,  
CORECONTROL™, CROSSAVE™, DAVE™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPIM™,  
EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, I²RF™, ISOFACE™, IsoPACK™, MIPAQ™,  
ModSTACK™, my-d™, NovalithIC™, OptiMOS™, ORIGA™, PRIMARION™, PrimePACK™, PrimeSTACK™,  
PRO-SIL™, PROFET™, RASIC™, ReverSave™, SatRIC™, SIEGET™, SINDRION™, SIPMOS™,  
SmartLEWIS™, SOLID FLASH™, TEMPFET™, thinQ!™, TRENCHSTOP™, TriCore™.  
Other Trademarks  
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™,  
PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR  
development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™,  
FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG.  
FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of  
Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data  
Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of  
MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics  
Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™  
of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc.,  
OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc.  
RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc.  
SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden  
Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA.  
UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™  
of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of  
Diodes Zetex Limited.  
Last Trademarks Update 2011-02-24  
Data Sheet  
3
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Table of Contents  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
1
2
2.1  
2.2  
2.3  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
ESD Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Measured RF Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
TX Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
RX Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Temperature Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Power Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
2.4  
2.4.1  
2.4.2  
2.4.3  
2.5  
2.6  
3
Application Circuit and Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Application Circuit Schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Pin Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Application Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Equivalent Circuit Diagram of MMIC Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
3.1  
3.2  
3.3  
3.4  
3.5  
4
Physical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Package Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
4.1  
4.2  
4.3  
Data Sheet  
4
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
List of Figures  
List of Figures  
Figure 1  
Figure 2  
Figure 3  
Figure 4  
Figure 5  
Figure 6  
Figure 7  
Figure 8  
Figure 9  
BGT24MTR12 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Application Circuit with Chip Outline (Top View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Timing Diagram of the SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Cross-Section View of Application Board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Detail of Compensation Structure (valid for appl. board mat. Ro4350B, 0.254mm acc. to Fig. 5) 21  
Application Board Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Equivalent Circuit Diagram of MMIC Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Recommended Footprint and Stencil Layout for the VQFN32-9 Package . . . . . . . . . . . . . . . . . . . 24  
Reflow Profile for BGT24MTR12 (VQFN32-9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 10 Package Outline (Top, Side and Bottom View) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 11 Marking Layout VQFN32-9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 12 Tape of VQFN32-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Data Sheet  
5
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
List of Tables  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Table 5  
Table 6  
Table 7  
Table 8  
Table 9  
Table 10  
Table 11  
Table 12  
Table 13  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
ESD Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Typical Characteristics TA = -40 .. 105 °C, SPI-Bit 4 = low . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Typical Characteristics TA = -40 .. 105 °C, f = 24.0 .. 24.25 GHz, SPI-Bit 4 = low . . . . . . . . . . . . 11  
Typical Characteristics TA = -40 .. 105 °C, f = 24.0 .. 24.25 GHz, SPI-Bit 4 = low . . . . . . . . . . . . 13  
Typical Characteristics Temperature Sensor TA = -40 .. 105 °C . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Typical Characteristics Power Detector TA = -40 .. 105 °C, VCC = 3.3 V . . . . . . . . . . . . . . . . . . . 14  
Bill of Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Pin Definition and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
SPI Block Data Bit Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
SPI Timing and Logic Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Truth Table AMUX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Data Sheet  
6
Revision 3.2, 2014-07-15  
Silicon Germanium 24 GHz Transceiver MMIC  
BGT24MTR12  
1
Features  
24 GHz transceiver MMIC with one transmitter and two receiver units  
Fully integrated low phase noise VCO  
Switchable prescaler with 1.5 GHz and 23 kHz output  
On chip power and temperature sensors  
Gilbert based homodyne quadrature receiver  
Single ended RF input terminals  
Low noise figure NFSSB: 12 dB  
High conversion gain: 26 dB  
High 1 dB input compression point: -12 dBm  
Single supply voltage 3.3 V  
Power consumption 690 mW in continuous operating mode  
200 GHz bipolar SiGe:C technology b7hf200  
Fully ESD protected device  
VQFN-32-9 leadless plastic package incl. LTI feature  
Pb-free (RoHS compliant) package  
Description  
The BGT24MTR12 is a Silicon Germanium MMIC for signal generation and reception, operating from 24.0 to 24.25  
GHz. It is based on a 24 GHz fundamental voltage controlled oscillator. A switchable frequency prescaler is  
included with output frequencies of 1.5 GHz and 23 kHz. The main RF output delivers typ. 11 dBm signal power  
to feed an antenna. A RC polyphase filter (PPF) is used for LO quadrature phase generation of the homodyne  
quadrature downconversion mixer. Output power sensors as well as a temperature sensor are implemented for  
monitoring purposes. The device is controlled via SPI and is manufactured in a 0.18µm SiGe:C technology offering  
a cutoff frequency of 200 GHz. The MMIC is packaged in a 32 pin leadless RoHs compliant VQFN package.  
Product Name  
Package  
Chip  
Marking  
BGT24MTR12  
VQFN32-9  
T0825  
BGT24MTR12  
Data Sheet  
7
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Features  
SI CS CLK  
Q1  
Q2  
3
2
TX Power  
Sensor  
Temp.  
Sensor  
ANA  
AMUX  
SPI  
/65536  
TX  
TXX  
PA  
/16  
2
FINE  
LO POWER  
SENSOR  
Buffer  
MPA  
COARSE  
IFQ1  
90°  
IFQX1  
LO  
Buffer  
RFIN1  
PPF*  
LNA  
0°  
IFI1  
IFIX1  
IFQ2  
IFQX2  
90°  
LO  
Buffer  
RFIN2  
PPF*  
LNA  
0°  
IFI2  
IFIX2  
* Poly Phase Filter  
BGT24MTR12_Chip_BID.vsd  
Figure 1  
BGT24MTR12 Block Diagram  
Data Sheet  
8
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Electrical Characteristics  
2
Electrical Characteristics  
2.1  
Absolute Maximum Ratings  
TA = -40 °C to 105 °C; all voltages with respect to ground, positive current flowing into pin (unless otherwise  
specified)1)  
Table 1  
Absolute Maximum Ratings  
Symbol  
Parameter  
Values  
Unit  
Note / Test Condition  
Min.  
-0.3  
0
Typ.  
Max.  
3.6  
0
Supply voltage  
VCC  
V
V
DC voltage at RF Pins TX,  
TXX, RFIN1, RFIN2  
VDCRF  
MMIC provides short circuit  
to GND for all RF pins  
DC voltage at Pins IFI1/2,  
IFIX1/2, IFQ1/2, IFQX1/2  
VDCIF  
IIF  
0
Vcc  
3.5  
V
DC current into Pins IFI1/2,  
IFIX1/2, IFQ1/2, IFQX1/2  
-8.5  
mA  
max. values indicate  
current due to short circuit  
to GND and Vcc  
respectively  
DC voltage at Pin ANA  
VDCANA  
-0.3  
125  
3.6  
V
DC current into Pin ANA (Sink) IANA SINK  
350  
500  
µA  
max. values indicate  
current due to short circuit  
to GND and Vcc  
respectively  
DC current into Pin ANA  
(Source)  
IANA SOURCE  
-7  
mA  
DC voltage at Pin Q1  
DC current into Pin Q1  
DC voltage at Pin Q2  
VDCQ1  
IQ1  
Vcc-0.3 –  
Vcc  
12  
3.6  
3
V
-8  
mA  
V
VDCQ2  
-0.3  
-3  
DC current into Pin Q2 enabled IQ2EN  
mA  
µA  
DC current into Pin Q2  
disabled  
IQ2DIS  
-10  
10  
DC voltage at SPI input Pins  
SI, CLK, CS  
VDCSPIIN  
-0.3  
3.6  
3
V
DC current into SPI input Pins ISPIIN  
SI, CLK, CS  
mA  
dBm  
V
RF input power into Pins  
RFIN1, RFIN2  
PRF  
0
DC voltage at Pins Fine,  
Coarse  
VF, VC  
IF, IC  
0
5
DC current into Pins FINE,  
COARSE  
-1  
0.11  
mA  
Positive currents if VTUNE  
VCC  
>
1) Not subject to production test, specified by design  
Data Sheet  
9
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Electrical Characteristics  
Table 1  
Absolute Maximum Ratings (cont’d)  
Parameter  
Symbol  
Min.  
Values  
Unit  
Note / Test Condition  
Typ.  
Max.  
1050  
150  
Total power dissipation  
Junction temperature  
PDISS  
TJ  
mW  
°C  
With BIST deactivated  
-40  
-40  
Ambient temperature range  
TA  
105  
°C  
TA = temperature at  
package soldering point  
Storage temperature range  
TSTG  
-40  
150  
°C  
Attention: Stresses exceeding the max. values listed here may cause permanent damage to the device.  
Exposure to absolute maximum rating conditions for extended periods may affect device  
reliability. Maximum ratings are absolute ratings; exceeding only one of these values may  
cause irreversible damage to the integrated circuit.  
2.2  
Thermal Resistance  
Table 2  
Thermal Resistance  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
Max.  
Junction - soldering point1)  
RthJS  
40  
K/W  
1) For calculation of RthJS please refer to application note thermal resistance  
2.3  
ESD Integrity  
Table 3  
ESD Integrity  
Parameter  
Symbol  
Values  
Unit  
Note / Test Condition  
Min.  
Typ.  
Max.  
1
ESD robustness, HBM1)  
ESD robustness, CDM2)  
VESD-HBM -1  
kV  
V
All pins  
All pins  
VESD-CDM -500  
500  
1) According to ANSI/ESDA/JEDEC JS-001 (R = 1.5kΩ, C = 100pF) for Electrostatic Discharge Sensitivity Testing, Human  
Body Model (HBM)-Component Level  
2) According to JEDEC JESD22-C101 Field-Induced Charged Device Model (CDM), Test Method for Electrostatic-Discharge-  
Withstand Thresholds of Microelectronic Components  
Data Sheet  
10  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Electrical Characteristics  
2.4  
Measured RF Characteristics  
Power Supply  
2.4.1  
Table 4  
Typical Characteristics TA = -40 .. 105 °C, SPI-Bit 4 = low  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Parameter  
Min.  
3.135  
150  
Max.  
3.465  
270  
VCC  
ICC  
3.3  
V
Supply voltage  
Supply current  
210  
mA  
Max. TX output  
power, all prescal-  
ers are activated,  
LO and TX output  
buffer in high mode  
2.4.2  
TX Section  
Table 5  
Typical Characteristics TA = -40 .. 105 °C, f = 24.0 .. 24.25 GHz, SPI-Bit 4 = low1)  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Parameter  
Min.  
24.0  
0.53)  
0.53)  
Max.  
24.25  
3.1  
fVCO  
GHz  
V
VCO frequency range  
VCO fine tuning voltage2)  
VCO coarse tuning voltage2)  
VCO tuning slope FINE  
VCO tuning slope COARSE  
VCO temperature drift  
VCO pushing  
VF  
3.1  
V
VC  
Δf / ΔVF  
Δf / ΔVC  
1500  
3000  
MHz/V  
MHz/V  
Δf / ΔT  
Δf / ΔVCC  
PN  
-10  
-350  
-6  
0
MHz/K Min @ T = -40°C  
MHz/V Absolute values  
60  
-85  
350  
-75  
dBc/Hz @ 100kHz offset,  
VF = VC  
VCO phase noise  
20.8-j20.2 –  
19.5-j11.7  
Ω
Typical value at  
24.125GHz and  
VSWR 2:1  
TX/TXX load impedance  
ZTX  
ZTXX  
PTX  
aTX  
6
3
11  
9
15  
dBm  
dB  
Max. TX output power  
Adjustable via SPI  
TX ouput power adjustable  
range  
TX ouput power in “off” mode4)  
PTXoff  
-30  
dBm  
Parameter based on  
IFX eval board  
design  
DQ1  
PQ1  
24  
-9  
Q1 Prescaler division ratio  
Q1 Prescaler output power  
-14  
-4  
dBm  
Q1 loaded with 50  
Ohm (AC- coupled)  
Q1 output impedance4)  
Data Sheet  
ZQ1  
50  
Ω
11  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Electrical Characteristics  
Table 5  
Typical Characteristics TA = -40 .. 105 °C, f = 24.0 .. 24.25 GHz, SPI-Bit 4 = low1) (cont’d)  
Symbol  
Values  
Unit  
Note /  
Parameter  
Test Condition  
Min.  
Typ.  
Max.  
DQ2  
220  
Q2 Prescaler division ratio  
VmaxQ2  
2.4  
V
Test condition: Q2  
loaded with high  
impedance probe (1  
MOhm,13 pF)  
Q2 Prescaler max. output  
voltage  
VminQ2  
0.8  
V
Test condition: Q2  
loaded with high  
impedance probe (1  
MOhm, 13 pF)  
Q2 Prescaler min. output  
voltage  
Imaxsource Q2  
Imaxsink Q2  
RQ2,DIS  
1.2  
1.2  
100  
mA  
mA  
kΩ  
Test condition: Q2  
loaded with 50 Ohm  
to Vcc  
Q2 Prescaler max. output  
source current  
Test condition: Q2  
loaded with 50 Ohm  
to Vcc  
Q2 Prescaler max. output sink  
current  
Q2 Prescaler output resistance  
in disable mode  
1) Performance based on Application Circuit Figure 2 on Page 15, Cross Section of Application Board, Compensation  
Structures and Application Board Layout Figure 4 on Page 21ff and Footprint Figure 8 on Page 24  
2) At tuning pins chipinternal pull-up of 60kΩ ±20% to VCC; max.- and min. temperature tuning voltage limits are chosen in  
a way that they can be linearly interpolated within operating temperature range  
3) Min. limit @ 25°C = 0.8V; min. limit @ 105°C = 1.15V  
4) Guaranteed by device design  
Data Sheet  
12  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Electrical Characteristics  
2.4.3  
RX Section  
Table 6  
Typical Characteristics TA = -40 .. 105 °C, f = 24.0 .. 24.25 GHz, SPI-Bit 4 = low1)  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Parameter  
Min.  
24.0  
Max.  
fRFIN  
24.25  
GHz  
RFIN frequency range  
RFIN port impedance2)  
15.9-j18.4 –  
15.7-j18.9  
Ω
Typical value at  
24.125GHz and  
VSWR 2:1  
ZRFIN1  
ZRFIN2  
VSWR  
2:1  
At source port of off  
chip compensation  
network as pro-  
posed  
RFIN VSWR  
fIF  
0
10  
MHz  
Ω
IF frequency range  
IF output impedance  
Leakage LO to RFIN  
ZIF  
850  
1000  
1150  
-30  
LLO=>RFIN  
dBm  
LO Signal Power @  
RFIN Port, Parame-  
ter based on IFX  
eval board design  
IRFIN1-RFIN2  
30  
dB  
Parameter based on  
IFX eval board  
design  
Isolation RFIN1 to RFIN2  
Voltage conversion gain3)  
LNA gain reduction  
SSB noise figure  
GC  
19  
3
26  
5
31  
8
dB  
dB  
dB  
RLOAD,IF > 10 kΩ  
ΔGCLG  
NSSB  
12  
20  
Single sideband at  
fIF = 100 kHz  
fc  
10  
-12  
-4  
20  
kHz  
dBm  
dBm  
deg  
dB  
IF 1/f corner frequency  
IP1dB  
IIP3  
εp  
-17  
-8  
Input compression point  
Input 3rd order intercept point  
Quadrat. phase imbalance  
Quadrat. amplitude imbalance  
-10  
-1  
10  
1
εA  
1) Performance based on Application Circuit Figure 2 on Page 15, Cross Section of Application Board, Compensation  
Structures and Application Board Layout Figure 4 on Page 21ff and Footprint Figure 8 on Page 24  
2) Guaranteed by device design  
3) Lowest gain at high temperature, highest gain at low temperature  
Data Sheet  
13  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Electrical Characteristics  
2.5  
Temperature Sensor  
Monitoring of the chip temperature is provided by the on-chip temperature sensor which delivers temperature-  
proportional voltage.  
Table 7  
Typical Characteristics Temperature Sensor TA = -40 .. 105 °C1)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-40  
Max.  
105  
Temperature range  
Output temperature voltage  
Sensitivity  
TTSENS  
°C  
V
VOUT,TEMP  
STSENS  
1.50  
4.5  
@ 25°C  
mV/K  
K
Overall accuracy error  
ErrTSENS  
±15  
1) all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
2.6  
Power Detector  
For RF power indication, peak voltage detectors are connected to the output of the TX power amplifier and to the  
LO medium power amplifier. To eliminate temperature and supply voltage variations, a reference output VREF is  
available through the ANA output for the TX and LO power sensor. The compensated detector output voltage is  
given by the difference between VOUT and VREF for both power sensors respectively. This voltage is proportional  
to the RF voltage swing at the individual amplifier outputs, its characteristic is non-directional.  
Table 8  
Typical Characteristics Power Detector TA = -40 .. 105 °C, VCC = 3.3 V1)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note / Test Condition  
Min.  
-10  
Max.  
15  
Power range  
PPSENS  
dBm  
mV  
TX power sensor  
VOUT,TX  
VREF,TX  
-
550  
@ PTX = 11 dBm  
LO power sensor  
VOUT,LO  
VREF,LO  
-
50  
mV  
@ typ. internal PLO  
1) all voltages with respect to ground, positive current flowing into pin (unless otherwise specified)  
Data Sheet  
14  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Application Circuit and Block Diagram  
3
Application Circuit and Block Diagram  
3.1  
Application Circuit Schematic  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
TEST PIN 2)  
Q2  
27  
28  
29  
30  
31  
16  
15  
14  
13  
12  
IFIX2  
IFI2  
IFIX1  
IFI1  
IFQ2  
IFQ1  
IFQX2  
IFQX1  
VEE  
32  
11  
VEE  
7
8
9
3
4
6
1
2
5
10  
C4 4)  
470μF  
C3  
1μF  
R1 1)  
100Ω  
C1 1)  
1μF  
R2 1)  
100Ω  
C2 1)  
1μF  
VCC 3)  
VCC 3)  
FINE  
COARSE  
1) RC-time constants to be defined according to modulation requirements.  
2) Connect pin 16 to pin 17  
3) Galvanic connection of VCC pins on silicon  
4) Optional value: according to quality of supply voltage  
BGT24MTR12_Appl_BID.vsd  
Figure 2  
Application Circuit with Chip Outline (Top View)  
Data Sheet  
15  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Application Circuit and Block Diagram  
Table 9  
Bill of Materials  
Part Number  
C1 ... C4  
Part Type  
Manufacturer  
Various  
Size  
Comment  
Chip capacitor  
Chip resistor  
Various  
0402  
R1 ... R2  
Various  
Data Sheet  
16  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Application Circuit and Block Diagram  
3.2  
Pin Description  
Table 10  
Pin No.  
1
Pin Definition and Function  
Name  
VCC  
VEE  
Function  
Supply voltage  
2
Ground  
3
RFIN1  
VEE  
RF input downconverter 1  
Ground  
4
5
FINE  
COARSE  
VEE  
VCO fine tuning input  
6
VCO coarse tuning input  
Ground  
7
8
RFIN2  
VEE  
RF input downconverter 2  
Ground  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
VCC  
VEE  
Supply voltage  
Ground  
IFQX2  
IFQ2  
IFI2  
Complementary quadrature phase IF output downconverter 2  
Quadrature phase IF output downconverter 2  
In phase IF output downconverter 2  
Complementary in phase IF output downconverter 2  
Test pin; DC coupled pin  
Test pin; DC coupled pin  
Chip select input SPI (inverted)  
Clock input SPI block  
IFIX2  
TEST PIN  
TEST PIN  
CS  
CLK  
SI  
Data input SPI block  
VEE  
Ground  
TX  
Transmit output  
TXX  
Complementary transmit output  
Ground  
VEE  
ANA  
Analog output  
Q1  
Prescaler output 1.5GHz  
Prescaler output 23kHz  
Complementary in phase IF output downconverter 1  
In phase IF output downconverter 1  
Quadrature phase IF output downconverter 1  
Complementary quadrature phase IF output downconverter 1  
Ground  
Q2  
IFIX1  
IFI1  
IFQ1  
IFQX1  
VEE  
Data Sheet  
17  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Application Circuit and Block Diagram  
3.3  
SPI  
1.) Three signals control the serial peripheral interface of the BGT24MTR12:  
SI (Data); CLK (Clock); CS (Chip select)  
2.) The data bits SI (MSB first) are read in the shift register with falling edge of the CLK signal.  
Please make sure, that the data is present at least 10 ns before and at least 10 ns after the falling edge of the  
clock signal.  
3.) The CLK and CS signals are combined internally.  
At least 20 ns before first rising edge of the first CLK signal CS needs to be in "low" state.  
While the Data is read, CS has to remain in "low" state.  
4.) When Data read in is finished, the shift register content will be written in the latch at the rising edge of the CS  
signal. The time between the last falling edge of the CLK signal and the rising edge of the CS must be at least 20  
ns.  
Table 11  
SPI Block Data Bit Description  
Data Bit  
15  
Name  
GS  
Description (Logic High)  
LNA Gain reduction  
Not used  
Power ON State  
low  
low  
14  
13  
AMUX2  
DIS_PA  
Test Bit  
Analog multiplexer control bit 2 high  
Disable Power Amplifier high  
12  
11  
Test bit, must be low otherwise low  
malfunction  
10  
9
Test Bit  
Test Bit  
Test bit, must be low otherwise low  
malfunction  
Test bit, must be low otherwise low  
malfunction  
8
7
6
5
4
AMUX1  
Analog multiplexer control bit 1 low  
Analog multiplexer control bit 0 low  
AMUX0  
DIS_DIV64k  
DIS_DIV16  
PC2_BUF  
Disable 64k divider  
Disable 16 divider  
low  
low  
High LO buffer output power, low  
need to be low otherwise  
increased current consumption  
3
2
1
0
PC1_BUF  
PC2_PA  
PC1_PA  
PC0_PA  
High TX buffer output power  
TX power reduction bit 2  
TX power reduction bit 1  
TX power reduction bit 0  
low  
high  
high  
high  
Data Sheet  
18  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Application Circuit and Block Diagram  
BGT24MTR12_SPI.vsd  
Figure 3  
Timing Diagram of the SPI  
SPI Timing and Logic Levels  
Table 12  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Min.  
0
Max.  
50  
Serial clock frequency  
Serial clock high time  
Serial clock low time  
Chip select lead time  
Chip select lag time  
fSCLK  
fSCLK(H)  
tSCLK(L)  
tCS(lead)  
tCS(lag)  
tSI(su)  
tSI(h)  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
V
10  
10  
20  
20  
10  
10  
0
Data setup time  
Data hold time  
Low level (SI, CLK, CS)  
High level (SI, CLK, CS)  
Input capacitance (SI, CLK, CS)  
Input current (SI, CLK, CS)  
VIN(L)  
VIN(H)  
CIN  
0.8  
VCC  
2
2.0  
V
pF  
µA  
IIN  
-150  
150  
Table 13  
Truth Table AMUX  
Output signal ANA  
VOUT,TX  
AMUX2  
low  
AMUX1  
low  
AMUX0  
low  
VREF,TX  
low  
low  
high  
low  
VOUT,LO  
low  
high  
high  
low  
VREF,LO  
low  
high  
low  
VTEMP  
high  
high  
Test_Signal1  
low  
high  
Data Sheet  
19  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Application Circuit and Block Diagram  
Table 13  
Truth Table AMUX (cont’d)  
Output signal ANA  
Test_Signal2  
AMUX2  
high  
AMUX1  
high  
AMUX0  
low  
Test_Signal2  
high  
high  
high  
Data Sheet  
20  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Application Circuit and Block Diagram  
3.4  
Application Board  
Blind-Vias  
Vias  
Ro4350B, 0.254mm  
Copper  
35um  
FR4, 0.5mm  
FR4, 0.25mm  
BGT24MTR12_Cross_Section_View.vsd  
Figure 4  
Cross-Section View of Application Board  
Single-Ended RFIN  
Differential TX  
0.50  
1.15  
0.50  
1.10  
0.30  
0.30  
All specified values in [mm]  
BGT24MTR12_VQFN32-9-CS.vsd  
Figure 5  
Detail of Compensation Structure (valid for appl. board mat. Ro4350B, 0.254mm acc. to Fig. 5)  
Data Sheet  
21  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Application Circuit and Block Diagram  
Mid1 and Bottom layer (top  
view)  
Top layer (top view)  
Mid2 layer (top view)  
BGT24MTR12_App_Board_Layout.vsd  
Figure 6  
Application Board Layout  
Note:In order to achieve the same performance as given in this datasheet please follow the suggested PCB-  
layout. The compensation structure is critical for RF performance. Via holes as recommended on one of next  
pages (not shown above).  
Data Sheet  
22  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Application Circuit and Block Diagram  
3.5  
Equivalent Circuit Diagram of MMIC Interfaces  
Pin 5, 6  
Pin 3, 8, 22, 23  
Pin 12, 13, 14, 15, 28, 29, 30, 31  
VCC  
VCC  
RFIN1,  
RFIN2, TX,  
TXX  
60kΩ  
FINE,  
COARSE  
400Ω  
300Ω  
IFx  
100Ω  
VEE  
VEE  
VEE  
Pin 25  
Pin 26  
Pin 18, 19, 20  
VCC  
VCC  
VCC  
50Ω  
54kΩ  
CS, CLK, SI  
Q1  
ANA  
40Ω  
1500Ω  
VEE  
VEE  
VEE  
VCC  
Pin 27  
120Ω  
120Ω  
Q2  
Tolerance of all resistors +/- 20%  
VEE  
BGT24MTR12_ESB.vsd  
Figure 7  
Equivalent Circuit Diagram of MMIC Interfaces  
Data Sheet  
23  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Physical Characteristics  
4
Physical Characteristics  
4.1  
Package Footprint  
Copper  
Solder Mask  
Vias  
4.3  
3.9  
3.2  
Pastefree  
Area  
0.3  
1.0  
0.7  
0.3  
0.5  
0.1  
0.1  
0.15  
0.15  
All specified values in [mm]  
BGT24MTR12_VQFN32-9-FP.vsd  
Figure 8  
Recommended Footprint and Stencil Layout for the VQFN32-9 Package  
Data Sheet  
24  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Physical Characteristics  
4.2  
Reflow Profile  
Soldering process qualified during qualification with “Preconditioning MSL-3: 30°C. 60%r.h., 192h, according to  
JEDEC JSTD20”.  
Reflow Profile recommended by Infineon Technologies AG  
(based on IPC/JEDEC J-STD-020C)  
BGT24MTR12_Reflow_Profile.vsd  
Figure 9  
Reflow Profile for BGT24MTR12 (VQFN32-9)  
Data Sheet  
25  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Physical Characteristics  
4.3  
Package Dimensions  
All specified values in [mm]  
BGT24MTR12_VQFN32-9-PO.vsd  
Figure 10 Package Outline (Top, Side and Bottom View)  
BGT24MTR12_VQFN32-9_ML.vsd  
Figure 11 Marking Layout VQFN32-9  
Data Sheet  
26  
Revision 3.2, 2014-07-15  
BGT24MTR12  
Silicon Germanium 24 GHz Transceiver MMIC  
Physical Characteristics  
All specified values in [mm]  
BGT24MTR12_VQFN32-9_CT.vsd  
Figure 12 Tape of VQFN32-9  
Data Sheet  
27  
Revision 3.2, 2014-07-15  
w w w . i n f i n e o n . c o m  
Published by Infineon Technologies AG  

相关型号:

BGU2003

SiGe MMIC amplifier
NXP

BGU6005

Low Noise Amplifier MMIC for GPS, GLONASS, Galileo and Compass
NXP

BGU6005N2

Low Noise Amplifier MMIC for GPS, GLONASS, Galileo and Compass
NXP

BGU6009/N2

RF/MICROWAVE WIDE BAND LOW POWER AMPLIFIER
NXP

BGU6009/N2X

BGU6009/N2 - Low Noise Amplifier MMIC for GPS, GLONASS, Galileo and Compass SON 6-Pin
NXP

BGU6101

RF Manual 16th edition
NXP

BGU6101,147

BGU6101 - Wideband silicon low-noise amplifier MMIC
NXP

BGU6102

RF Manual 16th edition
NXP

BGU6102,147

BGU6102 - Wideband silicon low-noise amplifier MMIC
NXP

BGU6104

RF Manual 16th edition
NXP

BGU6104,147

BGU6104 - Wideband silicon low-noise amplifier MMIC
NXP

BGU7003

Wideband silicon germanium low-noise amplifier MMIC
NXP