BTC30010-1TAA [INFINEON]

High-Side Power Connector;
BTC30010-1TAA
型号: BTC30010-1TAA
厂家: Infineon    Infineon
描述:

High-Side Power Connector

文件: 总36页 (文件大小:2106K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BTC50010-1TAA & BTC30010-1TAA  
Smart High-Side Power Connector  
2x Single Channel, 2x 1m  
Data Sheet  
1.3, 2015-02-06  
Automotive Power  
BTC50010-1TAA & BTC30010-1TAA  
Table of Contents  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1
2
3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1  
3.2  
3.3  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
4.1  
4.2  
4.3  
5
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Switching an Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Gate Driver Functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Protection during Loss of Load or Loss of VS Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
BTC50010-1TAA Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
5.1  
5.1.1  
5.1.2  
5.2  
5.3  
5.4  
5.5  
5.6  
5.7  
5.8  
6
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Information for Application Combining PWM Mode with Fuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Information for Driving Capability of Charge Pump Pin after Switch ON . . . . . . . . . . . . . . . . . . . . . . 32  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.1  
6.2  
6.3  
7
8
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Data Sheet  
Connect FET & Companion  
2
1.3, 2015-02-06  
High-Side Power Connector  
BTC50010-1TAA &  
BTC30010-1TAA  
1
Overview  
Applications  
Switching resistive, capacitive and inductive loads in conjunction with  
an effective peripheral free wheeling circuit  
Replaces electromechanical relay  
Most suitable for high current applications, such as Start-Stop, power  
distribution, main switch, heating systems  
PWM application with low frequencies  
PG-TO-263-7-8  
Features  
Load or Supply Line switching up to 60 A DC  
Operating temperature up to 150°C  
Current controlled Input pin  
Low Stand-by current  
Two times one channel device, easily be combined for reverse blocking or to halve the RDS(ON)  
Electrostatic discharge protected (ESD)  
Optimized Electromagnetic Compatibility (EMC)  
Very low power consumption in ON state  
Compatible to cranking pulse requirement (test pulse 4 in ISO7637 and cold start pulse in LV124)  
Infineon® Reversave™: Reverse battery protection by self turn ON of the power MOSFET  
Inverse operation robustness capability  
Infineon® SMART CLAMPING  
Green Product (RoHS compliant, halogen free package)  
AEC Qualified  
Dustproof  
Description  
The BTC50010-1TAA & BTC30010-1TAA are one High-Side Power Connector (BTC50010-1TAA) combined with  
a perfect fitting n-channel MOSFET (BTC30010-1TAA) to replace electromechanical relay. These easy to use twin  
devices can provide higher current-driven capability or additional reverse polarity protection feature. They offer  
switching without audible noise, weight reduction and increased switching cycle capability to comply with  
upcoming requirements on power distribution applications (e.g. battery disconnect switch). In addition, they  
Type  
Package  
Marking  
C50010A  
C30010A  
BTC50010-1TAA  
BTC30010-1TAA  
PG-TO-263-7-8  
PG-TO-263-7-8  
Data Sheet  
Connect FET & Companion  
3
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Overview  
significantly reduce power/current consumption of the device while ON to increase energy efficiency. The device  
can withstand harshest cranking pulse such as test pulse 4 in ISO7637 and cold start pulse in LV124.  
Table 1  
Product Summary  
Parameter  
Symbol  
Values  
BTC50010-1TAA  
Weight (approx.)  
G1  
1.5 g  
Nominal operating voltage  
VS(OP)  
VS(DYN)  
IL(NOM)  
RDS(ON)  
IIN(ON)  
IS(OFF)  
8 V … 18 V  
3.2 V … 28 V  
30 A  
Extended operating voltage contain dynamic undervoltage capability  
Nominal load current  
Typical ON-state resistance at TJ = 25 °C (CP pin open)  
Typical input current in ON state  
Typical stand-by current at TJ = 25 °C  
BTC30010-1TAA  
0.9 m  
2 mA  
3 µA  
Weight (approx.)  
G2  
1.5 g  
Nominal load current  
IL(NOM)_C  
RDS(ON)  
30 A  
Typical ON-state resistance at TJ = 25 °C  
BTC50010-1TAA & BTC30010-1TAA  
Operating voltage  
0.9 mΩ  
VS(OP)  
8 V … 18 V  
Extended operating voltage contain dynamic undervoltage capability  
VS(DYN)  
3.2 V … 28 V  
Nominal load current of parallel connected BTC50010-1TAA &  
BTC30010-1TAA  
IL(NOM) + IL(NOM)_C 60 A  
Data Sheet  
Connect FET & Companion  
4
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Block Diagram  
2
Block Diagram  
Internal  
Power  
Supply  
RVS  
VS  
ON Mode  
Control  
Smart  
Clamp  
Gate Control  
IN1  
IN2  
Driver  
Logic  
&
Charge  
Pump  
OUT  
CP  
ESD  
Protection  
VZ = 6V  
Figure 1  
Block Diagram BTC50010-1TAA  
Drain  
Smart  
Clamp  
ESD  
Gate  
Protection  
Source  
Figure 2  
Block Diagram BTC30010-1TAA  
Data Sheet  
Connect FET & Companion  
5
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
4
1 2 3  
5 6 7  
Figure 3  
Pin Configuration for BTC50010-1TAA and BTC30010-1TAA  
3.2  
Pin Definitions and Functions  
Table 2  
Pin definition and functions of BTC50010-1TAA  
Pin  
1
Symbol  
IN1  
Function  
IN; Pull down to module ground for channel activation1)  
IN2; Pull down to module ground for channel activation1)  
2
IN2  
3
CP  
Charge Pump Output; Output pin of internal charge pump voltage of BTC50010-  
1TAA for driving BTC30010-1TAA  
4, Cooling Tab VS  
5, 6, 7 OUT  
Supply Voltage; Connected to battery voltage  
OUTPUT; High side power output2)  
1) IN1 and IN2 are internally connected  
2) All output pins are connected internally. All output pins have to be connected externally together on PCB. Not shorting all  
outputs pins will considerably increase the ON-resistance. PCB traces have to be designed to withstand the maximum  
current which can flow. PCB traces for output current are recommended to be designed symmetrically or having similar  
line resistance for any of the three output pins from this device.  
Data Sheet  
Connect FET & Companion  
6
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Pin Configuration  
Table 3  
Pin  
Pin definitions and functions of BTC30010-1TAA  
Symbol  
Function  
1
Gate  
Gate; is not allowed to be floating and has to be connected to CP pin of BTC50010-  
1TAA to be switched ON/OFF by BTC50010-1TAA.  
2
3
NC  
NC  
4, Cooling Tab Drain  
Drain; Connected to battery voltage for “Parallel Circuit to halve the RDS(ON)”  
application in Figure 27. Connected to load for ”Blocking Current in Reverse  
Polarity” application in Figure 28.  
5, 6, 7  
Source  
Source; N-channel MOSFET Source1). Connected to BTC50010-1TAA “OUT“ pin  
for “Parallel Circuit to halve the RDS(ON)” application in Figure 27. Connected to  
BTC50010-1TAA “OUT“ pin for ”Blocking Current in Reverse Polarity” application in  
Figure 28.  
1) All Source pins are connected internally. All Source pins have to be connected externally together on PCB. Not shorting all  
outputs pins will considerably increase the ON-resistance. PCB traces have to be designed to withstand the maximum  
current which can flow. PCB traces for output current are recommended to be designed symmetrically or having similar line  
resistance for any of the three output pins from this device.  
Data Sheet  
Connect FET & Companion  
7
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Pin Configuration  
3.3  
Voltage and Current Definition  
Figure 4 and Figure 5 shows all terms used in this data sheet, with associated convention for positive values.  
I S  
VS( REV)  
VS  
VSIN  
Connect IN1  
or / and IN2  
VS  
IIN  
IN1  
IN2  
VDS  
VOUT-IN  
IL  
VIN  
OUT  
VCP  
ICP  
VOUT  
CP  
Module Ground  
Figure 4  
Voltage and Current Definition of BTC50010-1TAA  
IL_C  
Drain  
VDS_C  
Gate  
VGS_C  
Source  
Figure 5  
Voltage and Current Definition of BTC30010-1TAA  
Data Sheet  
Connect FET & Companion  
8
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 4  
Absolute Maximum Ratings 1)  
TJ = -40 °C to +150 °C, all voltages and currents refer to definitions in Figure 4 and Figure 5 (unless otherwise  
specified). All parameters are specified for BTC50010-1TAA drives BTC30010-1TAA in parallel or anti serial  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Number  
Min.  
Typ.  
Max.  
Voltages  
Supply Voltage  
VS  
-0.3  
-0.3  
28  
60  
16  
V
V
V
P_4.1.1  
P_4.1.2  
P_4.1.3  
Voltage from VS to IN pin  
Reverse polarity voltage  
VSIN  
VS(REV)  
BTC50010-1TAA  
drive BTC30010-  
1TAA in parallel:  
t < 2 min  
TA = 25 °C  
RL 0.5Ω  
VIN = 0 V  
28  
45  
BTC50010-1TAA  
drive BTC30010-  
1TAA in anti serial:  
TA = 25 °C  
VIN = VS  
2) RL = 1.0 Ω  
Supply voltage for load dump  
protection  
VS(LD)  
V
P_4.1.4  
RIN = 100 Ω  
Voltage at CP pin  
VCP  
-0.3  
-64  
VCP_ON  
V
V
V
3)  
CP = VGS_C  
P_4.1.5  
P_4.1.6  
Voltage from OUT to IN pin  
VOUT-IN  
VOUTIN = VOUT -VIN  
Voltage from Gate to Source pin VGS_C  
-0.3  
VCP_ON  
V
VCP = VGS_C  
P_4.1.7  
of BTC30010-1TAA  
Currents  
Current through CP pin  
ICP  
-20  
20  
mA  
s
for t < 0.5 ms during P_4.1.8  
switch ON/OFF  
5) BTC50010-1TAA P_4.1.9  
drive BTC30010-  
Device current vs. time  
capability at:  
t @ I6.0  
0.8  
I
6.0_125°C = 0.85 x 6.0 x IRATE  
1TAA in parallel,  
current level:  
for IRATE = 40A4)  
I
6.0_125°C = 204 A,  
TA = 125 °C,  
Figure 6  
Data Sheet  
Connect FET & Companion  
9
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
General Product Characteristics  
Table 4  
Absolute Maximum Ratings (cont’d)1)  
TJ = -40 °C to +150 °C, all voltages and currents refer to definitions in Figure 4 and Figure 5 (unless otherwise  
specified). All parameters are specified for BTC50010-1TAA drives BTC30010-1TAA in parallel or anti serial  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Number  
Min.  
Typ.  
Max.  
Continuous drain current  
BTC50010-1TAA  
ID  
163  
A
A
TC = 25 °C  
P_4.1.10  
VIN = 0 V, ICP 2µA  
Current is limited by  
bondwire  
Continuous drain current of  
BTC30010-1TAA  
ID_C  
163  
160  
TC = 25 °C  
P_4.1.11  
VGS 6.2 V  
Current is limited by  
bondwire  
Power Stage  
Average power dissipation  
PTOT  
W
6) BTC50010-1TAA P_4.1.14  
or BTC30010-1TAA  
For TJ(0) 105 °C  
Temperatures  
Junction Temperature  
TJ  
-40  
150  
60  
°C  
K
P_4.1.15  
P_4.1.16  
Dynamic Temperature increase TJ  
while switching  
Storage Temperature  
ESD Susceptibility  
TSTG  
-55  
150  
°C  
P_4.1.17  
ESD Susceptibility (all pins)  
VESD  
-2  
2
4
kV  
kV  
HBM7)  
HBM7)  
P_4.1.18  
P_4.1.19  
ESD Susceptibility BTC50010- VESD_out -4  
1TAA OUT pin vs. VS  
ESD Susceptibility BTC30010- VESD_D  
1TAA Drain pin  
-4  
4
4
kV  
kV  
HBM7)  
HBM7)  
P_4.1.20  
P_4.1.21  
ESD Susceptibility BTC30010- VESD_S  
-4  
1TAA Source pin  
1) Not subject to production test, specified by design.  
2) VS(LD) is setup without DUT connected to the generator per ISO 7637-1.  
3) Relevant to application case such as loss of load, loss of battery (also negative ISO pulse).  
4) IQ_b_125°C = a x b x IRATE. “a” is the temperature re-rating factor from the fuse curve for 125°C refer to 25°C. “b” is the factor  
of load current to IRATE at 25°C.  
5) Use test PCB with 2 x 70 µm Cu layers and size of 54 x 48 x 1.5 mm. Where applicable, thermal via array is placed under  
the device footprint on this PCB. BTC50010-1TAA & BTC30010-1TAA on PCB have RthJA(2P) = 19.6 K/W (referring to 1W  
power dissipation for each device). PCB is vertical, keep constant environment temperature by indirect airflow of 6L/s.  
6) PTOT = (TJ(0) - TC) / RthJC. PTOT_max = (105°C - 25°C) / 0.5 K/W = 160 W.  
7) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001-2010.  
Data Sheet  
Connect FET & Companion  
10  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
General Product Characteristics  
BTC50010-1TAA & BTC30010-1TAA current robustness:  
Below diagram present the current robustness of BTC50010-1TAA & BTC30010-1TAA. Generally, module  
thermal characteristic is more depending on the module construction (e.g. PCB size, metal layer thickness and  
numbers, module connectors) than the thermal characteristic of BTC50010-1TAA & BTC30010-1TAA alone.  
When current pulse is longer than 0.3s, influence of module thermal characteristic is dominant. When current pulse  
is shorter than 0.3s, influence of thermal characteristic of BTC50010-1TAA & BTC30010-1TAA is getting  
significant.  
Combining BTC50010-1TAA & BTC30010-1TAA together with a fuse in application, the total I/t curve of the  
module (incl. BTC50010-1TAA & BTC30010-1TAA) has to be above the fuse I/t curve. With specified test setup 1)  
BTC50010-1TAA & BTC30010-1TAA can withstand minimum 10 fuse blows of a 40A ATO FUSE.  
BTC50010-1TAA and BTC30010-1TAA in parallel current robustness  
at TA=125°C and TA=25°C, Vs=13.5V  
PCB is vertical, keep constant enviroment temperature by airflow  
1000  
100  
Devices absolute max. ratings  
@TA=125°C  
Devices absolute max. ratings  
@TA=25°C  
10  
1
0,1  
10  
100  
1000  
Current [A]  
Figure 6  
BTC50010-1TAA & BTC30010-1TAA Current Robustness at TA = 25°C and TA = 125°C; VS =  
13.5V 1)  
1) Use test PCB with 2 x 70 µm Cu layers and size of 54 x 48 x 1.5 mm. Where applicable, thermal via array is placed under  
the device footprint on this PCB. BTC50010-1TAA & BTC30010-1TAA on PCB have RthJA(2P) = 19.6 K/W (referring to  
with 1 W power dissipation from each device). PCB is vertical, keep constant environment temperature by indirect airflow  
of 6l/s.  
Data Sheet  
Connect FET & Companion  
11  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
General Product Characteristics  
Notes  
1. Stresses above the ones described in Chapter 4.1 may cause permanent damage to the device. Exposure to  
absolute maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not  
designed for continuous repetitive operation.  
4.2  
Functional Range  
Table 5  
Functional Range  
TJ = 25 °C, all voltages and currents refer to definitions in and Figure 5 (unless otherwise specified). All  
parameters are specified for BTC50010-1TAA drive BTC30010-1TAA in parallel or anti serial (unless otherwise  
specified).  
Parameter  
Symbol  
Values  
Unit Note /  
Test Condition  
Number  
Min.  
Typ.  
Max.  
18  
Nominal operating voltage  
VS_OP  
8
5
V
V
P_4.2.1  
P_4.2.2  
Extended static operating  
voltage  
VS_OP_EXT  
28  
1) 2) IL IL(NOM)  
Extended operating voltage VS_DYN  
contain dynamic  
3.2  
28  
V
1) VS decreasing  
according to  
P_4.2.3  
undervoltage capability  
ISO7637  
according to LV124  
Static undervoltage level  
VS_UV  
4.5  
V
RL=270 Ω  
P_4.2.4  
(start of loss of functionality)  
VS decreasing  
VDS 0.5 V  
I
CP_ON = 0 µA  
Figure 7  
Undervoltage restart level  
static  
VS_UV_Restart  
5
V
RL=270 Ω  
VS increasing  
P_4.2.5  
P_4.2.6  
VDS 0.5 V  
I
CP_ON = 0 µA  
Figure 7  
Charge pump current in ON ICP_ON  
state (maximum allowed  
leakage current at CP pin)  
0
2
µA  
µA  
VIN = 0 V, t > tON  
Maximum allowed Current in IIN_OFF  
OFF state  
30  
Pull-up current flow P_4.2.7  
through internal  
IN pins High  
current source  
1) Not subject to production test, specified by design.  
2) Within the range of VS_OP_EXT and out of the range of VS_OP, device parameter deviation is possible.  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
Data Sheet  
Connect FET & Companion  
12  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
General Product Characteristics  
VOUT  
Switch OFF  
Restart  
VS  
VS_UV  
VS_UV_Restart  
VS_UV_max  
VS_UV_Restart_max  
Figure 7  
Undervoltage Behavior of BTC50010-1TAA Connected with BTC30010-1TAA on its CP Pin  
Data Sheet  
Connect FET & Companion  
13  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
General Product Characteristics  
4.3  
Thermal Resistance  
Table 6  
Thermal Resistance1) for BTC50010-1TAA or BTC30010-1TAA at TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
0.5  
2)  
Junction to Case  
RthJC  
K/W  
K/W  
K/W  
P_4.3.1  
P_4.3.2  
P_4.3.3  
2) 3)  
2) 4)  
Junction to Ambient  
Junction to Ambient  
RthJA(2S2P)  
20  
RthJA(1S0p)  
70  
1) Not subject to production test, specified by design.  
2) Device is dissipating 1W power.  
3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product (chip +  
package) was simulated on a 76,4 x 114,3 x 1,5 mm board with 2 inner copper layers (2 x 70 µm Cu, 2 x 35 µm Cu). Where  
applicable, a thermal via array under the exposed pad contacted the first inner copper layer.  
4) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 1s0p board; The product (chip +  
package) was simulated on a 76,4 x 114,3 x 1,5 mm board with 1 copper layer (1 x 70 µm Cu).  
100  
2s2p Tj=105°C  
2s2p Tj=25°C  
1s0p Tj=105°C  
10  
1s0p Tj=25°C  
1
0.1  
0.01  
0.001  
1E-06 1E-05 0.0001 0.001  
0.01  
0.1  
1
10  
100  
1000 10000  
Time [s]  
Figure 8  
Typical Transient Thermal Impedance Zth(JA) = f(t) for Different Cooling Areas  
Figure 8 is showing the typical thermal impedance of BTC50010-1TAA or BTC30010-1TAA mounted on different  
PCB setup on FR4 1s0p (single layer) and 2s2p (quad layer) boards at TJ of 25°C and 105°C according to Jedec  
JESD51-2,-5,-7 at natural convection.  
Data Sheet  
Connect FET & Companion  
14  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Functional Description  
5
Functional Description  
5.1  
Power Stage  
5.1.1  
Output ON-State Resistance  
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 18  
shows the dependencies in terms of temperature and supply voltage, for the typical ON-state resistance. The  
behavior in reverse polarity is described in Chapter 5.7.  
A LOW signal (see Chapter 5.2) at the input pin causes a current IIN flowing internally from the VS pin out of the  
IN pin to the module Ground, thus the power DMOS is switched ON with a dedicated slope, which is optimized in  
terms of EMC emission.  
5.1.2  
Switching an Inductive Load  
When switching OFF inductive loads with high side switches, the voltage VOUT is driven below ground potential,  
due to the fact that the inductance intends to continue driving the current. To prevent the destruction of the device  
due to high voltages, the device implements an overvoltage protection, which clamps the voltage between VS and  
VOUT at VDS(CL) (see Figure 9).  
Nevertheless it is not recommended to operate the device repetitively under this condition. Therefore, when driving  
inductive loads, a free wheeling diode must be always placed.  
VS  
RVS  
VSIN  
Over-  
voltage  
clamp  
VDS  
LOGIC  
IN  
IL  
VBAT  
RIN  
IIN  
OUT  
VOUT  
L, RL  
Figure 9  
Overvoltage Clamp  
Data Sheet  
Connect FET & Companion  
15  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Functional Description  
I
I
IN  
IN  
t
t
t
t
VOUT  
VOUT  
VS  
VS  
VS-VDS(CL)  
IL  
VS-VDS(CL)  
IL  
t
t
Without free wheeling diode  
With free wheeling diode  
Figure 10 Switching an Inductance with or without free wheeling diode  
It is important to verify the effectiveness of the freewheeling solution (see Figure 10), which means the selection  
of the proper diode and of an appropriate free wheeling path. With regard to the choice of the free wheeling diode,  
low threshold and fast response are key parameter to achieve an effective result.  
Moreover the diode should be placed in order to have the shortest wire connection with the load (see Figure 11).  
BTC30010-1TAA  
BTC50010-1TAA  
Inductive  
Free Wheeling Diode  
Not optimized free wheeling path  
Load  
BTC50010-1TAA  
Inductive  
Load  
Recommended free wheeling path  
BTC30010-1TAA  
Free Wheeling Diode  
Figure 11 Optimization of the free wheeling path  
Data Sheet  
Connect FET & Companion  
16  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Functional Description  
5.2  
Gate Driver Functionality  
BTC50010-1TAA has an embedded gate driver. It is used to drive the gate of an integrated power DMOS. The  
gate driver charges and discharges the gate of the DMOS with current ICHARGE and IDISCHARGE. Refer to Figure 12,  
the gate driver is accessible via the CP pin. BTC50010-1TAA is suitable for driving the BTC30010-1TAA in parallel  
to halve the connect resistance or in anti serial to block the reverse current. During Switch ON, BTC50010-1TAA  
charges the Gate capacitor of BTC30010-1TAA.  
VS  
VCP  
ICHARGE  
IDISCHARGE  
S1  
OUT  
CP  
Figure 12 Gate Driver Block Diagram of BTC50010-1TAA  
During switch OFF, when Vout decreases to around 2.5V below VS, the internal switch S1 between gate and source  
will switch ON to reduce the high energy consuming switch OFF time. Additionally, when S1 is switched ON, the  
device is much more robust against electromagnetic disturbance which could come from VS or output pin to ensure  
the device doesn’t suffer from an unwanted switch ON.  
Data Sheet  
Connect FET & Companion  
17  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Functional Description  
IIN  
IIN_ON  
IIN_OFF  
t
VOUT  
tON  
90% VS  
tOFF_delay  
50% VS  
25% VS  
10% VS  
tON_delay  
tOFF  
t
ICP  
ICP_SW_ON  
ICP_ON  
0
t
ICP_SW _OFF  
Figure 13 Timing Diagram of BTC50010-1TAA Connected with BTC30010-1TAA on its CP Pin  
Note:Figure 13 shows the general switching behavior. Under real condition, voltage or current sketch deviation  
is possible.  
5.3  
Undervoltage Protection  
Below VS_UV maximum value, the under voltage condition is met. Upon further decrease of VS, the device will begin  
to lose functionality, until finally it will turn OFF. During VS increasing, as soon as the supply voltage is above the  
static level VS_UV_Restart, device can be switched ON. Figure 7 sketches the undervoltage mechanism.  
Data Sheet  
Connect FET & Companion  
18  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Functional Description  
5.4  
Overvoltage Protection  
The BTC50010-1TAA & BTC30010-1TAA provides Infineon® SMART CLAMPING functionality, which suppresses  
non nominal over voltages by actively clamping the overvoltage across the power stage and the load. This is  
achieved by controlling the clamp voltage VDS(CL) depending on the junction temperature TJ and the load current IL.  
5.5  
Protection during Loss of Load or Loss of VS Condition  
In case of loss of VS with charged line inductances, the maximum supply voltage has to be limited. It is  
recommended to use a diode and a Z-diode (VZ1 + VD1 < 16V, please refer to Figure 14).  
by case  
Loss of Vs  
Module  
Vbat  
RVS  
A
VS  
External  
components  
according to  
either A or B is  
required, not  
both  
D1  
Z1  
VD1  
VZ1  
B
R/L cable  
D1  
Z1  
VD1  
VZ1  
RIN  
IN  
Load  
Module Ground  
VIN  
Ground  
R/L cable  
Figure 14 External Component for BTC50010-1TAA Loss of VS Protection  
In case of loss of load with charged primary power line inductances, the maximum supply voltage also has to be  
limited. It is recommended to use a Z-diode (VZ2 < 28V) or VS clamping power switches between VS and Module  
Ground (please refer to Figure 15).  
Data Sheet  
Connect FET & Companion  
19  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Functional Description  
Module  
R/L cable  
Vbat  
RVS  
VS  
by case Loss  
of Load  
VZ2  
R/L  
cable  
RIN  
IN  
Load  
Module Ground  
VIN  
Ground  
Figure 15 External Component for BTC50010-1TAA Loss of Load Protection  
The 16V Z-diode refers to the maximum VS(REV) voltage of the chip. The 28V Z-diode refers to the maximum supply  
voltage (VS) of the chip.  
5.6  
BTC50010-1TAA Inverse Current Capability  
In case of inverse current, meaning a voltage VOUT at the output higher than the supply voltage VS (e.g. caused  
by a load operating as a generator), a current IL will flow from output to VS pin via the body diode of the power  
transistor (please refer to Figure 16). In case the IN pin is LOW1), the power DMOS is already activated and keeps  
ON. In case, the input goes from “H” to “L”, the DMOS will be activated. Due to the limited speed of INV  
comparator, the output voltage slope needs to be limited. In case the IN pin is HIGH2), power DMOS will not be  
switched ON automatically. Current will flow through the intrinsic body diode. This power dissipation could cause  
heating effect, which has to be considered.  
VBAT  
VS  
Gate  
driver  
IN  
V
Comp.
VOUT > VS  
OUT  
-IL  
Figure 16 BTC50010-1TAA Inverse Current Circuitry  
1) LOW means IN pin is pulled-down by external transistor or IIN > 0  
2) HIGH (H) means IIN = 0  
Data Sheet  
Connect FET & Companion  
20  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Functional Description  
5.7  
Reverse Polarity Protection  
In case of reverse polarity for BTC50010-1TAA drive BTC30010-1TAA in parallel or BTC50010-1TAA alone, the  
intrinsic body diode of the power DMOS causes power dissipation. To limit the risk of over temperature, the device  
provides Infineon® Reversave™ function. The power in this intrinsic body diode is limited by turning the DMOS  
ON. The DMOS resistance is then equal to RDS(ON)_REV (please refer to Figure 19 and Figure 20).  
Additionally, the current into the logic has to be limited. The device includes a RVS resistor which limits the current  
in the diodes. To avoid over current in the RVS resistor, it is nevertheless recommended to use a RIN resistor.  
Please refer to maximum current described in Table 4. Figure 17 shows a typical application. The recommended  
typical values for RIN is 100.  
Vbat  
IRVS  
RVS  
VS  
-IL  
OUT  
IN  
DOUT  
GND  
RIN  
IIN  
Module Ground  
Ground  
Figure 17 BTC50010-1TAA Reverse Polarity Protection with External Components  
Note:The RVS has a typical value of 80at 25°C. Refer to Figure 17, the RVS and RIN build up a voltage divider  
to split up the supply voltage on BTC50010-1TAA, which protect the device during high voltage pulse (e.g.  
ISO pulse 3b).  
Data Sheet  
Connect FET & Companion  
21  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Functional Description  
5.8  
Electrical Characteristics  
Table 7  
Electrical Characteristics: Power Stage  
VS = 13.5 V, TJ = 25 °C, all voltages and currents refer to definitions in Figure 4 and Figure 5 (unless otherwise  
specified). All parameters are specified for BTC50010-1TAA drive BTC30010-1TAA in parallel or anti serial  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
27  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Voltage drop (VDS and VDS_C) VDROP  
36  
mV  
IL = 30 A  
P_5.8.1  
and IL_C = 30 A  
BTC50010-1TAA  
drive BTC30010-  
1TAA in parallel  
ON-state resistance  
RDS(ON)  
0.9  
1.2  
2.0  
mΩ  
mΩ  
BTC50010-1TAA or P_5.8.2  
BTC30010-1TAA,  
Figure 18  
ON-state resistance hot  
RDS(ON)_HOT  
BTC50010-1TAA or P_5.8.3  
BTC30010-1TAA,  
TJ= 150 °C  
Figure 18  
ON-state resistance in  
Infineon® Reversave™  
RDS(ON)_REV  
RDS(ON)_INV  
IS_OFF  
0.9  
0.9  
3
mΩ  
mΩ  
µA  
BTC50010-1TAA or P_5.8.4  
BTC30010-1TAA,  
VIN = 0 V  
ON-state resistance during  
inverse operation  
BTC50010-1TAA or P_5.8.5  
BTC30010-1TAA,  
VIN = 0 V  
BTC50010-1TAA &  
BTC30010-1TAA supply  
current stand-by  
13  
Leakage current flow P_5.8.6  
through OUT pin  
IN pins floating  
Drain to source smart clamp VDS(CL)  
voltage  
28  
60  
V
I
L_C = 50 mA  
P_5.8.7  
TJ= 25 °C to 150°C  
(VDS(CL) = VS - VOUT for  
BTC50010-1TAA; VDS(CL)  
=
VD - VS for BTC30010-1TAA)  
Table 8  
Electrical Characteristics: Input Stage  
VS = 13.5 V, TJ = 25 °C, all voltages and currents refer to definitions in Figure 4 and Figure 5 (unless otherwise  
specified). All parameters are specified for BTC50010-1TAA drive BTC30010-1TAA in parallel or anti serial  
(unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
2
Unit  
Note /  
Test Condition  
Number  
Min.  
Max.  
Input current in ON state  
IN pins Low  
IIN_ON  
3
mA  
VS = 18 V  
P_5.8.8  
Data Sheet  
Connect FET & Companion  
22  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Functional Description  
Table 9  
Electrical Characteristics: Charge Pump  
VS = 13.5 V, TJ = 25 °C, all voltages and currents refer to definitions in Figure 4 and Figure 5 (unless otherwise  
specified). All parameters are specified for BTC50010-1TAA (unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
2.2  
Unit  
Note /  
Test Condition  
Number  
Min.  
Max.  
Charge pump current during ICP_SW_ON 0.7  
SWITCH ON  
mA  
µA  
VIN = 0 V  
P_5.8.9  
V
CP = 0 V  
Charge pump current during ICP_SW_OFF 350  
SWITCH OFF  
850  
7
VIN = VS = 8 V  
P_5.8.10  
V
V
CP =VCP_ON  
OUT = VS  
Charge pump voltage  
VCP_ON  
5
V
VIN = 0 V  
P_5.8.11  
Figure 30  
Table 10  
Electrical Characteristics: Timing  
VS = 13.5 V, TJ = 25 °C, all voltages and currents refer to definitions in Figure 4 and Figure 5 (unless otherwise  
specified). All parameters are specified for BTC50010-1TAA alone (unless otherwise specified).  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note /  
Test Condition  
Number  
Min.  
Max.  
Turn ON time  
tON  
200  
500  
µs  
µs  
µs  
µs  
See timing Figure 13 P_5.8.12  
CP pin open  
Turn OFF time  
tOFF  
200  
80  
500  
150  
300  
See timing Figure 13 P_5.8.13  
CP pin open  
Turn ON delay time  
Turn OFF delay time  
tON_delay  
tOFF_delay  
See timing Figure 13 P_5.8.14  
CP pin open  
180  
See timing Figure 13 P_5.8.15  
CP pin open  
Data Sheet  
Connect FET & Companion  
23  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Functional Description  
2.5  
2
150°C  
25°C  
-40°C  
1.5  
1
0.5  
0
4.5  
9.5  
14.5  
19.5  
24.5  
VS [V]  
Figure 18  
RDS(ON) vs. VS of BTC50010-1TAA or BTC30010-1TAA  
30  
25  
20  
15  
10  
5
150 °C  
25 °C  
-40 °C  
0
6.0  
6.5  
7.0  
7.5  
8.0  
VS(REV) [V]  
Figure 19 Typical RDS(ON)_REV of BTC50010-1TAA or BTC30010-1TAA vs. VS(REV) with VIN = 0V in Reverse  
Mode for lower values of VS(REV)  
Data Sheet  
Connect FET & Companion  
24  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Functional Description  
1.5  
1.4  
1.3  
1.2  
1.1  
1.0  
0.9  
0.8  
0.7  
0.6  
150 °C  
25 °C  
-40 °C  
8
9
10  
11  
12  
13  
14  
15  
16  
VS(REV) [V]  
Figure 20 Typical RDS(ON)_REV of BTC50010-1TAA or BTC30010-1TAA vs. VS(REV) with VIN = 0V in Reverse  
Mode for higher values of VS(REV)  
Typical TON of BTC50010-1TAA with/witout BTC30010-1TAA  
6.00E-04  
150°C  
25°C  
5.00E-04  
-40  
4.00E-04  
3.00E-04  
2.00E-04  
1.00E-04  
0.00E+00  
0
1
Number of Companion (BTC30010-1TAA)  
Figure 21  
TON of BTC50010-1TAA with/without BTC30010-1TAA  
Data Sheet  
Connect FET & Companion  
25  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Functional Description  
Typical TOFF of BTC50010-1TAA with/witout BTC30010-1TAA  
1.20E-03  
1.00E-03  
8.00E-04  
6.00E-04  
4.00E-04  
2.00E-04  
0.00E+00  
150°C  
25°C  
-40°C  
0
1
Number of Companion (BTC30010-1TAA)  
Figure 22  
TOFF of BTC50010-1TAA with/without BTC30010-1TAA  
Typical TON_delay of BTC50010-1TAA with/witout BTC30010-1TAA  
2.00E-04  
1.80E-04  
1.60E-04  
1.40E-04  
1.20E-04  
1.00E-04  
8.00E-05  
6.00E-05  
4.00E-05  
2.00E-05  
0.00E+00  
150°C  
25°C  
-40°C  
0
1
Number of Companion (BTC30010-1TAA)  
Figure 23  
TON_delay of BTC50010-1TAA with/without BTC30010-1TAA  
Data Sheet  
Connect FET & Companion  
26  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Functional Description  
Typical TOFF_delay of BTC50010-1TAA with/witout BTC30010-1TAA  
1.00E-03  
9.00E-04  
8.00E-04  
7.00E-04  
6.00E-04  
5.00E-04  
4.00E-04  
3.00E-04  
2.00E-04  
1.00E-04  
0.00E+00  
150°C  
25°C  
-40°C  
0
1
Number of Companion (BTC30010-1TAA)  
Figure 24  
TOFF_delay of BTC50010-1TAA with/without BTC30010-1TAA  
Typical VOUT_on_slewrate of BTC50010-1TAA with/witout BTC30010-1TAA  
4.50E-01  
25°C  
4.00E-01  
3.50E-01  
3.00E-01  
2.50E-01  
2.00E-01  
1.50E-01  
1.00E-01  
5.00E-02  
0.00E+00  
-40°C  
150°C  
0
1
Number of Companion (BTC300101-1TAA)  
Figure 25  
VOUT_ON_slewrate of BTC50010-1TAA with/without BTC30010-1TAA  
Data Sheet  
Connect FET & Companion  
27  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Functional Description  
Typical VOUT_OFF_slewrate of BTC50010-1TAA with/witout BTC30010-1TAA  
4.00E+00  
3.50E+00  
3.00E+00  
2.50E+00  
2.00E+00  
1.50E+00  
1.00E+00  
5.00E-01  
0.00E+00  
150°C  
25°C  
-40°C  
0
1
Number of Companion (BTC30010-1TAA)  
Figure 26  
VOUT_OFF_slewrate of BTC50010-1TAA with/without BTC30010-1TAA  
Data Sheet  
Connect FET & Companion  
28  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Application Information  
6
Application Information  
This chapter describes especially how BTC50010-1TAA & BTC30010-1TAA can be combined and used together  
in application environment.  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
VBAT  
R/L cable  
Depending on application requirement, either  
fuse A or fuse B will be placed  
Fuse B  
Module  
BTC30010-1TAA  
D
S
G
RIN  
Vs  
Options for free wheeling path  
of inductive load  
IN1  
IN2  
T1  
Option  
A
Option  
B
Fuse A  
OUT  
Z2  
VZ2  
Za  
Zb  
Za  
R/L cable  
CP  
VZ1  
BTC50010-1TAA  
Control  
signal  
from  
Z1  
T2  
Optional:  
MOSFET to block  
reverse current  
Load  
control  
unit  
Module Ground  
Ground  
Figure 27 Application Diagram with BTC50010-1TAA & BTC30010-1TAA  
Data Sheet  
Connect FET & Companion  
29  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Application Information  
VBAT  
R/L cable  
Depending on application requirement, either  
fuse A or fuse B will be placed  
Fuse B  
Module  
RIN  
Vs  
Options for free wheeling path  
of inductive load  
IN1  
BTC30010-1TAA  
T1  
Option  
A
Option  
B
Fuse A  
OUT  
CP  
IN2  
S
D
Z2  
VZ2  
Za  
Zb  
Za  
G
R/L cable  
VZ1  
BTC50010-1TAA  
Z1  
Load  
Module Ground  
Ground  
Figure 28 Application Diagram with BTC50010-1TAA and BTC30010-1TAA for Reverse Blocking.  
Table 11  
Bill of material  
Reference Value  
Purpose  
NPN or MOSFET NPN (e.g. BCR133) or MOSFET (e.g. BSS123) transistor suitable for 5V voltage  
T1  
transistor  
range controlled by control unit for driving the BTC50010-1TAA  
RIN  
100 Ω  
Protection of BTC50010-1TAA and the microcontroller or control unit during  
over voltage and reverse polarity, which could be created by huge negative  
pulse (like ISO pulse 1)  
Z1 and Z2 Zener diodes  
Protection of the BTC50010-1TAA & BTC30010-1TAA during loss of load  
(correspond to fuse blow on fuse A) or loss of battery (correspond to fuse blow  
on fuse B) or against huge negative pulse (like ISO pulse 1), please refer to  
Figure 14 and Figure 15.  
Data Sheet  
Connect FET & Companion  
30  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Application Information  
Table 11 Bill of material (cont’d)  
Reference Value Purpose  
Za  
Schottky diode  
Protection of BTC50010-1TAA & BTC30010-1TAA when driving an inductive  
load, stand alone (option B) or together with Zb (option A).  
and/or  
Zb  
Zener transient  
suppressor  
Protection of BTC50010-1TAA & BTC30010-1TAA when driving an inductive  
load, to be used together with Za in option A to accelerate the demagnetization  
process.  
T2  
MOSFET  
transistor  
Added optionally only for blocking the reverse current in free wheeling path,  
needed only for option A or B.  
FUSE  
e.g.  
Protection of the BTC50010-1TAA & BTC30010-1TAA, wire harness and the  
40A ATO FUSE1) load during short circuit. Depending on application requirement, either fuse A or  
fuse B will be placed.  
CVS  
100 nF  
10 nF  
Improve EMC behavior (in layout, please place it close to the pin)  
Improve EMC behavior (in layout, please place it close to the pins)  
COUT  
1) or 30A ATO see Figure 28)  
6.1  
Information for Application Combining PWM Mode with Fuse  
When the Connect FET (BTC50010-1TAA) is driving a Companion (BTC30010-1TAA) with its CP pin, the switch  
ON/OFF time will increase significantly compare to Connect FET (BTC50010-1TAA) alone (please refer to  
Figure 21, Figure 22 and BTC50010-1TAA data sheet), therefore the PWM frequency will decrease clearly  
1)  
compare to Connect FET (BTC50010-1TAA) alone. The maximum of average power dissipation  
P
is not  
loss  
allowed to be exceeded. Above all, the condition of tDC > tfuseblow_max must be fulfilled. The tfuseblow_max is the  
maximum fuse blow time at certain fuse blow current on the I/t curve of the selected fuse for certain application.  
During short circuit, the load current could rise up to multiple of the nominal current value until fuse blow. The tDC  
is defined in Figure 29.  
P
loss = (switching_ON_energy + switching_OFF_energy + IL2 * RDS(ON) * tDC) / tperiod  
IIN  
IIN_ON  
IIN_OFF  
t
t
tperiod  
P
PLoss  
tDC  
Figure 29 Definition of Average Power Dissipation of BTC50010-1TAA & BTC30010-1TAA  
1) In real application with Rthj,a and Tamb the maximum allowed average power dissipation is defined: Ploss=(150°C - Tamb) /  
Rthj,a  
Data Sheet  
Connect FET & Companion  
31  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Application Information  
6.2  
Information for Driving Capability of Charge Pump Pin after Switch ON  
Curves below show that the driving capability of BTC50010-1TAA’s charge pump has a dependency on its gate  
voltage and battery voltage. It defines the relevant range of charge pump current for driving the gate capacity of  
BTC30010-1TAA.  
250  
Vout = Vs = 13.5V  
T = 150°C  
T = 85°C  
T = 25°C  
T = -40°C  
200  
150  
100  
50  
0
0
1
2
3
4
5
6
7
V
CP [V]  
Figure 30 Typical Charge Pump Driving Capability of BTC50010-1TAA vs. its Gate-Source Voltage  
6.3  
Further Application Information  
Please contact us for information regarding the pin FMEA  
For further information you may contact http://www.infineon.com/  
Data Sheet  
Connect FET & Companion  
32  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Package Outlines  
7
Package Outlines  
4.4  
±0.2  
10  
±0.1  
1.27  
B
0...0.3  
8.5 1)  
A
0.05  
2.4  
0.1  
0...0.15  
±0.1  
6 x 0.6  
0.5 ±0.1  
6 x 1.27  
M
0.25  
A B  
8˚ MAX.  
0.1 B  
1) Typical  
Metal surface min. X = 7.25, Y = 6.9  
All metal surfaces tin plated, except area of cut.  
Dimension in mm  
Figure 31 PG-TO-263-7-8 (RoHS compliant)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
BTC50010-1TAA & BTC30010-1TAA meet the MSL 1 (Moisture Sensitivity Level 1) according to IPC/JEDEC  
J-STD-020D and can withstand until 245°C peak reflow process.  
For further information on alternative packages, please visit our website:  
http://www.infineon.com/packages.  
Dimensions in mm  
Data Sheet  
Connect FET & Companion  
33  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Revision History  
8
Revision History  
Revision  
1.0  
Date  
Changes  
Data Sheet released  
2011-12-21  
2012-06-15  
1.1  
Page 3, Application: in the first bullet point, “inductive” removed  
Page 4, Product Summary: in the 11th row, rename “Continuous drain current  
ID _C” to “Nominal load current IL(NOM) _C”  
Page 4, Product Summary: in the 16th row, rename “ID _C” to “IL(NOM) _C”  
Page 8, Figure 5 modified, rename “ID _C” to “IL _C”  
Page 10, parameter NIND (P_4.1.11) removed  
Page 10, parameter N0 (P_4.1.10) renamed as P_4.1.12  
Page 10, parameter ID (P_4.1.10) and ID _C(P_4.1.11) added  
Page 10, parameter EAR (P_4.1.13) removed  
Page 11, Figure 6 modified, EAR curve removed  
Page 11, Figure 7 removed  
Page 15, Chapter 5.1.2 title modified, note added  
Page 20 ~ 21, Chapter 5.5 description modified  
Page 20 ~ 21, Figure 15 and Figure 16 modified  
Page 21, Figure 17 modified  
Page 22, Figure 18 modified  
Page 24, Table 11 first row, seventh column, rename “IDS” to “IL _C”  
Page 24, Table 11 seventh row, seventh column, rename “IDs” to “IL _C”  
Page 29, Figure 27 modified  
Page 30, Figure 28 modified  
Page 33, Figure 31 modified  
Page 33 ~ 34, Figure 32 and Table 12 added  
Page 34, Note “The following application information represents only as a  
recommendation for switching an inductive load. The function must be verified in  
the real application” added  
1.2  
2012-11-16  
Page 9, Note “When driving resistive loads with remaining wire or parasitic  
inductances it must be ensured, that the device will not enter clamping mode  
during normal operating” added  
Data Sheet  
Connect FET & Companion  
34  
1.3, 2015-02-06  
BTC50010-1TAA & BTC30010-1TAA  
Revision History  
Revision  
Date  
Changes  
1.3  
2015-01-26  
Comprehensive rework of rev. 1.2; several figures have been renumbered  
Chapter 1: Overview  
Table 1 removed wording “over life time”, updated various symbols  
Applications: first, third and fourth bullet: changed wording  
Features: Change of wording  
Description: Change of wording  
Chapter 3.2: Updated Footnote 2  
Chapter 3.3:Figure 4 Change VOUTIN to VOUT-IN  
Chapter 4: Removed Note  
Chapter 4.1: P_4.1.6: Change VOUTIN to VOUT-IN  
P_4.1.12: removed from table  
P_4.1.13: removed from table  
Table 4: Correction within footnote 5  
Page 11: Footnote 1 modified  
Removed figure about Total Energy Capability for Switch Off Inductive Loads  
Reduced figures about Current Robustness  
Chapter 4.3 Page 14: modified text  
Chapter 5.1.2: Completely reworked subchapter  
Chapter 5.2: Change of wording, removed remarks about energy capability.  
Chapter 5.5: modified Figure 14, Figure 15  
Chapter 5.6: modified text about negative load current, new footnote (1) about  
definition of LOW and HIGH state  
Chapter 5.7: modified Figure 17  
Chapter 5.8  
P_5.8.11 add max. value  
P_5.8.12, P_5.8.13, P_5.8.14, P_5.8.15: add typical value  
Figure 19, Figure 20 new generated out of former figure  
Chapter 6: Reworked text and note; removed figure 27,28 list of required external  
components  
New Figure 27, Figure 28, updated Table 11  
Removed former chapter 6.3 (now within Chapter 6)  
Chapter 6.1: and text modified  
Data Sheet  
Connect FET & Companion  
35  
1.3, 2015-02-06  
Edition 2015-02-06  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2012 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

BTC30010-1TAA_15

High-Side Power Connector
INFINEON

BTC32C1

HC-49/US Microprocessor Crystals
CALIBER

BTC32C1-15.000MHZ-SP

Parallel - Fundamental Quartz Crystal, 15MHz Nom, HC49/US, 2 PIN
CALIBER

BTC32C1-15.999MHZ-I

Parallel - Fundamental Quartz Crystal, 15.999MHz Nom, HC49/US, 2 PIN
CALIBER

BTC32C1-16.000MHZ-G1

Parallel - Fundamental Quartz Crystal, 16MHz Nom, HC49/US, 2 PIN
CALIBER

BTC32C1-16.000MHZ-TR

Parallel - Fundamental Quartz Crystal, 16MHz Nom, HC49/US, 2 PIN
CALIBER

BTC32C1-16.000MHZ-V

Parallel - Fundamental Quartz Crystal, 16MHz Nom, HC49/US, 2 PIN
CALIBER

BTC32C1-24.000MHZ-G-BT

Parallel - Fundamental Quartz Crystal, 24MHz Nom, HC49/US, 2 PIN
CALIBER

BTC32C1-24.000MHZ-L-AT

Parallel - Fundamental Quartz Crystal, 24MHz Nom, HC49/US, 3 PIN
CALIBER

BTC32C1-24.000MHZ-L-BT

Parallel - Fundamental Quartz Crystal, 24MHz Nom, HC49/US, 3 PIN
CALIBER

BTC32C1-3.579545MHZ-L3

Parallel - Fundamental Quartz Crystal, 3.579545MHz Nom, HC49/US, 3 PIN
CALIBER

BTC32C1-4.999MHZ-L

Parallel - Fundamental Quartz Crystal, 4.999MHz Nom, HC49/US, 3 PIN
CALIBER