BTF3050TE [INFINEON]

BTF3050TE 是一款 50mOhm 智能单通道低边电源开关,采用 PG-TO252-5 封装,提供嵌入式保护功能。功率晶体管由 N 通道垂直功率 MOSFET 构成。该设备是单片集成的。BTF3050TE 符合汽车标准,针对12V 汽车和工业应用进行了优化。;
BTF3050TE
型号: BTF3050TE
厂家: Infineon    Infineon
描述:

BTF3050TE 是一款 50mOhm 智能单通道低边电源开关,采用 PG-TO252-5 封装,提供嵌入式保护功能。功率晶体管由 N 通道垂直功率 MOSFET 构成。该设备是单片集成的。BTF3050TE 符合汽车标准,针对12V 汽车和工业应用进行了优化。

开关 驱动 电源开关 接口集成电路 晶体管
文件: 总48页 (文件大小:1113K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
HITFET - BTF3050TE  
BTF3050TE  
Smart Low-Side Power Switch  
1
Overview  
Application  
Suitable for resistive, inductive and capacitive loads  
Replaces electromechanical relays, fuses and discrete circuits  
Most suitable for inductive loads as well as loads with inrush currents  
Features  
Single channel device  
Very low power DMOS leakage current in OFF state  
3.3 V and 5 V compatible logic inputs  
Electrostatic discharge protection (ESD)  
Adjustable switching speed  
Digital Feedback  
Green Product (RoHS compliant)  
AEC Qualified  
PG-TO252-5  
Description  
The BTF3050TE is a 50 mΩ single channel Smart Low-Side Power Switch in a PG-TO252-5 package providing  
embedded protective functions. The power transistor is built by a N-channel vertical power MOSFET.  
The device is monolithically integrated. The BTF3050TE is automotive qualified and is optimized for 12V  
automotive and industrial applications.  
Table 1  
Product Summary  
Operating voltage range  
VOUT  
3 .. 28 V  
40 V  
Maximum load voltage  
VBAT(LD)  
VDD  
Operating supply voltage range  
Maximum input voltage  
3.0 .. 5.5 V  
5.5 V  
VIN  
Maximum On-State resistance at TJ = 150°C, VDD = 5V  
Nominal load current  
RDS(ON)  
IL(NOM)  
IL(LIM)_TRIGGER  
IL(OFF)  
100 mΩ  
3.0 A  
Minimum current limitation trigger level  
Maximum OFF state load current at TJ ≤ 85 °C  
Maximum stand-by supply current at TJ = 25 °C  
30 A  
2 µA  
IDD(OFF)  
6 µA  
Type  
Package  
Marking  
BTF3050TE  
PG-TO252-5  
Datasheet  
1
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Overview  
Diagnostic Functions  
Short circuit to battery  
Over temperature  
Stable latching diagnostic signal  
Protection Functions  
Over temperature shutdown with auto-restart  
Active clamp over voltage protection of the output  
Current limitation  
Enhanced short circuit protection  
Detailed Description  
The device is able to switch all kind of resistive, inductive and capacitive loads, limited by clamping energy (EAS)  
and maximum current capabilities.  
The BTF3050TE offers dedicated ESD protection on the IN, VDD and SRP pins which refers to the Ground pin,  
as well as an over voltage clamping of the output to Source/GND.  
The over voltage protection gets activated during inductive turn off conditions or other over voltage events (e.g.  
load dump). The power MOSFET is limiting the drain-source voltage, if it rises above the VOUT(CLAMP).  
The over temperature protection prevents the device from overheating due to overload and/or bad cooling  
conditions.  
The BTF3050TE has a thermal-restart function. The device will turn on again, if input is still high, after the  
measured temperature has dropped below the thermal hysteresis.  
Datasheet  
2
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Table of Contents  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Assignment BTF3050TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1  
3.2  
3.3  
4
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Transient Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
5
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output On-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Resistive Load Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Reverse/Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Adjustable Swtiching Speed / Slew Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.1  
5.2  
5.3  
5.3.1  
5.3.2  
5.4  
5.5  
5.6  
6
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Over Voltage Clamping on OUTput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Thermal Protection with Latched Fault Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Overcurrent Limitation / Short Circuit Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
6.1  
6.2  
6.3  
6.4  
7
7.1  
7.2  
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Functional Description of the SRP Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
8
Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Supply Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Undervoltage Shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Input Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
8.1  
8.1.1  
8.2  
8.3  
9
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
9.1  
9.2  
9.3  
9.4  
10  
Characterisation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Dynamic charactersitics: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Supply and Input Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
10.1  
10.2  
10.3  
10.4  
11  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Datasheet  
3
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Table of Contents  
11.1  
12  
Design and Layout Recommendations/Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Package Outlines BTF3050TE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
13  
Datasheet  
4
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Block Diagram  
2
Block Diagram  
VDD  
OUT  
Supply  
Unit  
Over  
Voltage  
Protection  
Over-  
temperature  
Protection  
Gate  
Driving  
Unit  
IN  
Status  
Feedback  
Slewrate  
SRP  
adjustment  
Unit  
Short circuit  
detection /  
Current  
ESD  
Protection  
limitation  
GND  
BlockDiagram_5pin.emf  
Figure 1  
Block Diagram  
Datasheet  
5
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment BTF3050TE  
(top view)  
5
4
3
2
1
GND  
SRP  
OUT  
VDD  
IN  
6 (Tab)  
OUT  
PinConfig_DPAK5.emf  
Figure 2  
Pin Configuration PG-TO252-5  
3.2  
Pin Definitions and Functions  
Pin Symbol  
Function  
1
IN  
Input pin  
2
VDD  
OUT  
SRP  
GND  
5V supply pin  
3,6  
4
Drain, Load connection for power DMOS  
Slew rate adjustment and digital status feedback  
Ground, Source of power DMOS  
5
3.3  
Voltage and Current Definition  
Figure 3 shows all external terms used in this data sheet, with associated convention for positive values.  
VBAT  
VBAT  
VDD  
VDD  
IDD  
ZL  
RIN  
VDD  
IIN  
IN  
VIN  
IL, ID  
OUT  
ISRP  
SRP  
VOUT,  
VDS  
VSRP  
GND  
RSRP  
GND  
Terms_5pin.emf  
Figure 3  
Naming Definition of electrical parameters  
Datasheet  
6
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 2  
Absolute Maximum Ratings1)  
TJ = -40 °C to +150 °C; all voltages with respect to ground, positive current flowing into pin  
(unless otherwise specified)  
Pos.  
Parameter  
Symbol Limit Values Unit Note /  
Test Condition  
Min.  
Max.  
Voltages  
4.1.1  
Supply voltage  
Output voltage  
VDD  
-0.3  
-0.3  
5.5  
40  
28  
V
V
V
4.1.2  
VOUT  
internally clamped  
1)  
4.1.3  
Battery voltage for short circuit  
protection  
VBAT(SC)  
l = 0 ... 5m  
R
R
SC = 30 mΩ + RCABLE  
CABLE = l * 16 mΩ/m  
L
SC = 5 µH + LCABLE  
L
2)  
CABLE = l * 1 µH/m  
4.1.4  
Battery voltage for load dump protection VBAT(LD)  
(VBAT(LD) = VA + VS with VA = 13.5V)  
40  
V
RI = 2 Ω,  
RL = 4.5 Ω,  
tD = 400 ms,  
suppressed pulse  
Input and SRP Pins  
4.1.5  
4.1.6  
Input Voltage  
VIN  
-0.3  
-0.3  
5.5  
5.5  
V
V
SRP pin Voltage  
VSRP  
V
SRP < VDD  
Power Stage  
4.1.7  
Load current  
|IL|  
IL(LIM)_  
A
TJ < 150 °C  
TRIGGER  
Energies  
4.1.8  
Unclamped single inductive energy  
single pulse  
EAS  
120  
80  
mJ  
mJ  
I
V
T
L(0) = IL(NOM)  
BAT = 13.5 V  
J(0) = 150 °C  
L(0) = 4.5A  
BAT = 13.5 V  
J(0) = 105 °C  
4.1.9  
Unclamped repetitive inductive energy EAR(100k)  
pulse with 100k cycles  
I
V
T
Temperatures  
4.1.10 Operating temperature  
4.1.11 Storage temperature  
ESD Susceptibility  
TJ  
-40  
-55  
+150  
+150  
°C  
°C  
TSTG  
4.1.12 ESD susceptibility (all pins)  
VESD  
VESD  
VESD  
-2  
2
kV  
kV  
V
HBM3)  
HBM3)  
CDM4)  
4.1.13 ESD susceptibility OUT pin vs. GND  
4.1.14 ESD susceptibility  
-4  
4
-750  
750  
1) Not subject to production test, specified by design.  
Datasheet  
7
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
General Product Characteristics  
2) VBAT(LD) is setup without the DUT connected to the generator per ISO7637-1;  
RI is the internal resistance of the load dump test pulse generator;  
tD is the pulse duration time for load dump pulse (pulse 5) according ISO 7637-1, -2.  
3) ESD susceptibility, HBM according to ANSI/ESDA/JEDEC JS-001 (1.5 kΩ, 100 pF)  
4) ESD susceptibility, Charged Device Model “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1  
Note:Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Note:Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation  
4.2  
Functional Range  
Table 3  
Functional Range1)  
Pos. Parameter  
Symbol  
Limit Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
4.2.1 Supply Voltage Range for Normal  
Operation  
VDD(NOR)  
3.0  
5.0  
5.5  
V
4.2.2 Supply current continuous ON operation  
4.2.3 Standby supply current (ambient)  
IDD  
8
2.5  
1.5  
6
6
mA  
µA  
µA  
V
IDD(OFF)_25  
IDD(OFF)_150  
VBAT(NOR)  
6
TJ = 25 °C  
TJ = 150°C  
4.2.4 Maximum standby supply current (hot)  
14  
4.2.5 Battery Voltage Range for Nominal  
Operation  
13.5 18  
4.2.6 Extended Battery Voltage Range for  
Operation  
VBAT(EXT)  
3
28  
V
parameter deviations  
possible  
4.2.7 SRP pin resistor for normal operation  
4.2.8 SRP pin resistor for extended operation  
RSRP(NOR)  
RSRP(EXT)  
5
0
70  
kΩ  
600  
Ω
no latched fault  
available  
1) Not subject to production test, specified by design.  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
Datasheet  
8
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
General Product Characteristics  
4.3  
Thermal Resistance  
Note:This thermal data was generated in accordance with JEDEC JESD51 standards.  
For more information, go to www.jedec.org.  
Table 4  
Thermal resistance  
Pos.  
Parameter  
Symbol  
Limit Values  
Unit  
Note /  
Test Condition  
1) 2)  
Min.  
Typ.  
1.9  
25  
Max.  
4.3.1  
4.3.2  
4.3.3  
Junction to Case  
RthJC  
K/W  
K/W  
K/W  
1) 3)  
1) 4)  
Junction to Ambient (2s2p)  
RthJA(2s2p)  
RthJA(1s0p)  
Junction to Ambient  
(1s0p+600mm2 Cu)  
38  
1) Not subject to production test, specified by design  
2) Specified RthJC value is simulated at natural convection on a cold plate setup (all pins are fixed to ambient temperature).  
TC = 85 °C. Device is loaded with 1W power.  
3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board;  
The product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70µm Cu, 2  
x 35µm Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer.  
Ta = 85 °C, Device is loaded with 1W power.  
4) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 1s0p board;  
The product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm board with additional heatspreading copper area  
of 600mm2 and 70 μm thickness. Ta = 85°C, Device is loaded with 1W power.  
4.3.1  
PCB set up  
The following PCB set up was implemented to determine the transient thermal impedance.  
70μm modelled (traces)  
35μm, 100% metalization*  
70μm, 5% metalization*  
Figure 4  
Cross section JEDEC2s2p.  
70μm modelled (traces, cooling area)  
70μm; 5% metalization*  
Figure 5  
Cross section JEDEC1s0p.  
Datasheet  
9
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
General Product Characteristics  
JEDEC 1s0p / Footprint  
JEDEC 2s2p  
JEDEC 1s0p / 600 mm²  
Detail: Solder area  
Figure 6  
PCB layout  
4.3.2  
Transient Thermal Impedance  
30  
25  
20  
15  
10  
5
0
0,00001  
0,0001  
0,001  
0,01  
0,1  
1
10  
100  
1000  
10000  
tp. [s]  
Figure 7  
Typical transient thermal impedance ZthJA = f(tp), Ta = 85 °C  
Value is according to Jedec JESD51-2,-7 at natural convection on FR4 2s2p board; The  
product (Chip+Package) was simulated on a 76.2 x 114.3 x 1.5 mm³ board with 2 inner copper  
layers (2 x 70 mm Cu, 2 x 35 mm Cu). Where applicable a thermal via array under the ex posed  
pad contacted the first inner copper layer. Device is dissipating 1 W power.  
Datasheet  
10  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
General Product Characteristics  
110  
100  
90  
80  
70  
60  
50  
40  
30  
20  
10  
0
600mm  
300mm  
Footprint  
0,00001 0,0001  
0,001  
0,01  
0,1  
1
10  
100  
1000  
10000  
tp. [s]  
Figure 8  
Typical transient thermal impedance ZthJA = f(tp), Ta = 85 °C  
Value is according to Jedec JESD51-3 at natural convection on FR4 1s0p board. Device is  
dissipating 1 W power.  
Datasheet  
11  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Power Stage  
5
Power Stage  
5.1  
Output On-state Resistance  
The on-state resistance depends on the supply voltage as well as on the junction temperature TJ. Figure 9 shows  
this dependencies in terms of temperature and voltage for the typical on-state resistance RDS(ON). The behavior in  
reverse polarity is described in chapter“Reverse/Inverse Current Capability” on Page 14.  
130  
110  
3V  
90  
5V  
70  
50  
30  
10  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
Tj [⁰C]  
Figure 9  
Typical On-State Resistance,  
DS(ON) = f(TJ), VDD = 5 V, VDD = 3V, VIN = high  
R
A high signal at the input pin causes the power DMOS to switch ON with a dedicated slope.  
To achieve a reasonable RDS(ON) and the specified switching speed a 5V supply is required.  
5.2  
Resistive Load Output Timing  
Figure 10 shows the typical timing when switching a resistive load.  
VIN  
VIN(H)  
VIN(L)  
t
VOUT  
VBAT  
90 %  
-(ΔV/Δt)ON  
(ΔV/Δt)OFF  
50 %  
10 %  
tDON  
tF  
tDOFF  
tR  
tOFF  
t
Switching.emf  
tON  
Figure 10 Definition of Power Output Timing for Resistive Load  
Datasheet  
12  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Power Stage  
5.3  
Inductive Load  
5.3.1  
Output Clamping  
When switching off inductive loads with low side switches, the drain-source voltage VOUT rises above battery  
potential, because the inductance intends to continue driving the current. To prevent unwanted high voltages the  
device has a voltage clamping mechanism to keep the voltage at VOUT(CLAMP). During this clamping operation mode  
the device heats up as it dissipates the energy from the inductance. Therefore the maximum allowed load  
inductance is limited. See Figure 11 and Figure 12 for more details.  
VBAT  
ZL  
IL  
OUT (DMOS Drain)  
VOUT  
GND ( DMOS Source)  
IGND  
Figure 11 Output Clamp Circuitry  
.
VIN  
t
IOUT  
t
VOUT  
VOUT(CLAMP)  
VBAT  
t
Figure 12 Switching an Inductive Load  
Datasheet  
13  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Power Stage  
Note:Repetitive switching of inductive load by VDD instead of using the input is a not recommended operation and  
may affect the device reliability and reduce the lifetime.  
5.3.2  
Maximum Load Inductance  
While demagnetization of inductive loads, energy has to be dissipated in the BTF3050TE.  
This energy can be calculated by the following equation:  
V
BAT VOUT(CLAMP)  
RL IL  
----------------------------------------------------  
L
RL  
----------------------------------------------------  
------  
E = VOUT(CLAMP)  
ln 1 –  
+ IL  
RL  
V
BAT VOUT(CLAMP)  
Following equation simplifies under assumption of RL = 0  
VBAT  
----------------------------------------------------  
2
1
2
--  
E = LIL  
1 –  
V
BAT VOUT(CLAMP)  
Figure 13 shows the inductance / current combination the BTF3050TE can handle.  
For maximum single avalanche energy please also refer to EAS value in “Energies” on Page 7  
1000000  
100000  
10000  
1000  
100  
10  
1
0,1  
1
10  
IL [A]  
Figure 13 Maximum load inductance for single pulse  
L = f(IL), TJ,start = 150 °C, VBAT = 13.5 V  
5.4  
Reverse/Inverse Current Capability  
A reverse battery situation means the OUT pin is pulled below GND potential to -VBAT via the load ZL.  
In this situation the load is driven by a current through the intrinsic body diode of the BTF3050TE and all protection,  
such as current limitation, over temperature or over voltage clamping, are inactive.  
In certain application cases (for example, usage in a bridge or half-bridge configuration) the intrinsic reverse body  
diode is used for freewheeling of an inductive load. In this case the device is still supplied but an inverse current  
is flowing from GND to OUT(drain) and the OUT will be pulled below GND.  
Datasheet  
14  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Power Stage  
In inverse or reverse operation via the reverse body diode, the device is dissipating a power loss which is defined  
by the driven current and the voltage drop on the body diode -VDS.  
During inverse current, an increased supply current IDD flowing into VDD needs to be considered . The device might  
be reset by inverse current.  
5.5  
Adjustable Swtiching Speed / Slew Rate  
In order to optimize electromagnetic emission, the switching speed of the MOSFET can be adjusted by connecting  
an external resistor between SRP pin and GND. This allows for balancing between electromagnetic emissions and  
power dissipation. Shorting the SRP pin to GND represents the fastest switching speed. Open SRP pin represents  
the slowest switching speed. It is recommended to put a high ohmic resistor like 200kΩ on this SRP pin to GND.  
The accuracy of the switching speed adjustment is dependent on the precision of the external resistor used. It’s  
recommended to use accurate resistors.  
Figure 14 shows the simplified relation between the resistor value and the switching times.  
undefined range  
(not recommended for  
operation)  
tON  
,
tOFF  
Undefined  
range for  
fault  
feedback  
0
5.8k  
58k  
600  
5k  
70k  
160k RSRP [Ω]  
Figure 14 Typical simplified relation between switching time and RSRP resistor values used on SRP pin  
(VBAT = 13.5V)  
It is not recommended to change the slew rate resistance during switching (supplied device, VDD > VDD(UV_ON)).  
Otherwise undefined switching behavior can occur.  
Slew Rate in Fault mode (fault signal set):  
Beside the normal slew rate function the SRP pin is also used as fault feedback output. In case of a latched fault  
caused by over temperature detection the SRP pin will be internally pulled to VDD. For details please refer to  
“Functional Description of the SRP Pin” on Page 21. In this operation mode (latched fault signal) the slew rate  
control by RSRP will be ignored and the switching speed (dynamic characteristics) will be set to fault mode default  
values . As long as the fault signal is set and the SRP-pin is not shorted to GND a fast default slew rate adjustment  
(like for RSRP = 5.8kΩ) will be applied to the device.  
Datasheet  
15  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Power Stage  
If the SRP pin will be externally pulled up above the normal SRP pin voltage VSRP(NOR) (e.g. to VDD) the slowest  
slew rate settings will be applied.  
5.6  
Characteristics  
Please see “Power Stage” on Page 25 for electrical characteristic table.  
Datasheet  
16  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Protection Functions  
6
Protection Functions  
The device provides embedded protection functions. Integrated protection functions are designed to prevent IC  
destruction under fault conditions described in the datasheet. Fault conditions are considered as “outside” normal  
operating range. Protection functions are not to be used for continuous or repetitive operation. Over temperature  
is indicated by a high-logic active fault signal on the SRP pin.  
6.1  
Over Voltage Clamping on OUTput  
The BTF3050TE is equipped with a voltage clamp circuitry that keeps the drain-source voltage VDS at a certain  
level VOUT(CLAMP). The over voltage clamping is overruling the other protection functions. Power dissipation has to  
be limited to keep the maximum allowed junction temperature.  
This function is also used in terms of inductive clamping. Please see also “Output Clamping” on Page 13 for  
more details.  
6.2  
Thermal Protection with Latched Fault Signal  
The device is protected against over temperature due to overload and/or bad cooling conditions by an integrated  
temperature sensor. The thermal protection is available if the device is active. .  
The device incorporates an absolute (TJ(SD)) and a dynamic temperature limitation (ΔTJ(SW)). Triggering one of  
them will cause the output to switch off.  
The switch off will be done with the fastest possible slew rate. The BTF3050TE has a thermal-restart function. If  
input (IN) is still high the device will turn on again after the junction temperature has dropped below the thermal  
hysteresis.  
In case of detected over temperature the fault signal will be set and the SRP pin will be internally pulled up to VDD.  
This state is latched independent on the IN signal, providing a stable fault signal to be read out by a micro  
controller. The latched fault signal needs to be reset by low signal (VSRP < VSRP(RESET)_MIN) at the SRP pin, provided  
that the junction temperature has decreased at least below the thermal hysteresis in the meantime. To reliably  
reset the latch the SRP pin needs to be pulled down with a minimum length of tRESET  
.
As long as the fault signal is set and the SRP-pin is not shorted to GND a fast default slew rate adjustment (like  
for RSRP = 5.8kΩ) will be applied to the device.  
If the latched fault signal is not reset, the device logic stays active (also if IN = low) not entering the quiescent  
current mode and therefore reaching upper limits of normal supply current IDD.  
Please see “Diagnostics” on Page 21 for details on the feedback and reset function.  
Datasheet  
17  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Protection Functions  
Dynamic  
thermal shutdown  
Auto restart  
Absolute over  
temperature shutdown  
Auto restart  
no overload  
IN  
VIN(H)  
0
Tj(DM OS )  
t
Tj(SD)  
ΔTj (SD)_HY  
ΔT  
j (SW )  
ΔTj(SW)  
T
a
t
VSRP  
VSRP(FAULT)  
VSRP (RESET )  
VSRP (NOR)  
ISRP  
ISPR (FAULT )  
t
0
t
Error Status Latch ;  
(SRP pulled up internal )  
Status Latched  
also at IN =low  
Status Latch reset  
(by external pull  
down of SRP )  
Thermal _fault_autorestart.emf  
Figure 15 Thermal protective switch OFF scenario for case of overload or short circuit  
Note:For better understanding, the time scale is not linear. The real timing of this drawing is application  
dependant.  
6.3  
Overcurrent Limitation / Short Circuit Behavior  
This device is providing a smart overcurrent limitation which provides protection against short circuit conditions  
while allowing also load inrush currents higher than the current limitation level. To achieve this the device has a  
current limitation level IL(LIM) which is triggered by a higher trigger level IL(LIM)_TRIGGER  
.
The condition short circuit is an overload condition to the device.  
If the load current IL reaches the current limitation trigger level IL(LIM)_TRIGGER the internal current limitation will be  
activated and the device limits the current to a lower value IL(LIM). The device starts heating up. When the thermal  
shutdown temperature TJ(SD) is reached, the device turns off. The time from the beginning of current limitation until  
the over temperature switch off depends strongly on the cooling conditions.  
If input is still high the device will turn on again after the measured temperature has dropped below the thermal  
hysteresis. The current limitation trigger is a latched signal. It will be only reset by input (IN) pin low and resetting  
the fault latch (SRP-pin = low (below reset threshold)) at the same time. This means if the input stays high all the  
time during short circuit the current will be limited to IL(LIM) the following pulses (during thermal restart). It also  
means that the output current is limited to the current limitation level IL(LIM) until the current limitation trigger is not  
reset.  
Figure 16 shows this behavior.  
Datasheet  
18  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Protection Functions  
Occurrence of low-ohmic short circuit  
Reset fault and current limit by  
fault latch reset by SRP=low(external  
pulled down)“ and  
Drain current triggering LI(LIM )_T RIGGER ->current limit to IL( LIM )  
Thermal shut-down(dynamic); setting fault latch  
„IN=low“ and  
„DMOS off (ID=0A)“  
Thermal restart after thermal shut dow;n  
limited to current limitation level  
Restart into  
normal load condition  
Restart into short  
circuit  
Thermal shut-down(over temp.)  
IN  
VIN(H)  
0
ID  
t
VBAT /Zsc  
IL(LIM )_TRIGGER  
IL(LIM)  
t
t
Tj( DM OS)  
Tj(SD)  
ΔTj(SD)_HY  
ΔTj(SW )  
Ta  
VSRP  
VSRP(FAULT )  
VSRP (NOR)  
0
t
tRESET  
S hort_c irc uit.emf  
Figure 16 Short circuit protection via current limitation and thermal switch off , with latched fault signal  
on SRP (valid for RSRP = 5...70 kΩ)  
Note:For better understanding, the time scale is not linear. The real timing of this drawing is application  
dependant.  
Behavior with overload current below current limitation trigger level  
The lower current limitation level IL(LIM) will be also triggered by an thermal shutdown. This could be the case in  
terms of overload with a current still below the overcurrent limitation trigger level (IL < IL(LIM)_TRIGGER).  
Datasheet  
19  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Protection Functions  
Occurrence of overload(below current limitation trigger level)  
Reset fault and current limit by  
„IN=low“ and  
fault latch reset by  
Thermal shut-down(e.g. dynamic);  
setting fault latch and current limitation trigger  
SRP=low(external pulled down)“  
Thermal restart;  
limited to current limitation level IL (LIM  
)
Thermal restart into  
normal load condition  
Thermal shut-down(over temp.)  
IN  
VIN(H)  
0
t
ID  
IL(LIM )_TRIGGER  
VBAT /Zsc  
IL(LIM)  
Tj(DM OS )  
Tj(SD)  
ΔTj(SD)_HY  
ΔTj(SW)  
Ta  
VSRP  
t
VSRP(FAULT )  
VSRP (NOR)  
0
external pull -down  
(VSR P < VSR P(R  
t
tRESET  
ESET  
)
Overload.emf  
Figure 17 Example of overload behavior with thermal shutdown  
Note:For better understanding, the time scale is not linear. The real timing of this drawing is application  
dependant.  
6.4  
Characteristics  
Figure 18 Please see “Protection” on Page 26 for electrical characteristic table.  
Datasheet  
20  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Diagnostics  
7
Diagnostics  
The BTF3050TE provides a latching digital fault feedback signal on the SRP pin triggered by an over temperature  
shutdown.  
Additionally the device features an adjustable slew rate via the SRP pin.  
7.1  
Functional Description of the SRP Pin  
The BTF3050TE provides digital status information via the combined status and Slew-Rate-Preset pin (SRP). This  
pin has three modes of operation:  
Normal operation mode (slew rate mode; low signal)  
The pin is used to define the switching speed of the BTF3050TE.  
A resistor to ground defines the strength of the gate driver stage used to switch the power DMOS. The SRP pin  
works as a controlled low voltage output with a normal voltage up to VSRP(NOR), driving from VDD a current out of  
the SRP-pin through the slew rate adjustment resistor.  
For details on this function please refer to “Adjustable Swtiching Speed / Slew Rate” on Page 15.  
The voltage on the SRP pin in normal operation mode is VSRP(NOR), signaling a low signal to the micro controller.  
Latched Feedback mode (internal pull-up to VDD; high signal)  
The pin is used to give an alarming feedback to the micro controller after an over temperature shut down.  
The SRP pin is pulled to VDD by an active internal pull-up source providing typical a current ISRP(FAULT), intend to  
signal a logic high to the micro controller. This mode stays active independent from the input pin state or internal  
restarts until it will be reset (see below).  
During this mode the slew rate of the device is set to a fast “fault” mode slew rate (similar to the switching times  
at RSRP = 5.8kΩ.)The latched fault/feedback mode and signal is available at slew rate resistors of 5kΩ < RSRP  
<
70kΩ. (please see also Figure 21 “Availability of latched fault/feedback mode in dependency of slew rate  
resistor RSRP” on Page 22)  
Reset Latch (external pull-down)  
The pin is used as an input pin to set the device back to normal mode and reset the fault latch.  
To reset the device the voltage on the SRP pin needs to be forced below the reset threshold VSRP(RESET) by an  
external pull down (e.g. using the micro controller I/O as pull-down).  
If the SRP pin will be pulled down below VSRP(RESET) for a minimum time of tRESET the logic resets the feedback  
latch, provided that its temperature has decreased at least the thermal hysteresis ΔTj(SW)_HYS in the meantime.  
If INput is pulled down as well the current limitation trigger level will be also reset (enabling high peak currents  
again).  
Figure 19 is showing the simplified circuitry used.  
As long as the latched fault signal is not reset, the device logic stays active (also if IN = low) not entering the  
quiescent current mode.  
Datasheet  
21  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Diagnostics  
.
VDD  
VBAT  
IDD  
ZL  
R
IN  
VDD  
IN  
I/O  
IL  
Micro  
controller  
RIO  
OUT  
ISRP  
SRP  
I/O  
VOUT  
GND  
RSLEWRATE  
IGND  
GND  
SRP.emf  
Figure 19 Feedback and control of BTF3050TE  
Alternatively to a bidirectional pin, the micro controller can use a input and a output in parallel to drive the SRP pin.  
.
VDD  
Fault  
latch  
RIO  
ISRP  
Slew  
rate  
Gate  
driver  
I/O  
Micro  
controller  
ZD  
RSLEWRATE  
Reset  
Fault Latch  
VSRP (RESET )  
GND  
GND  
SRP_detail.emf  
Figure 20 Simplified functional block diagram of SRP pin  
No  
latched fault  
feedback  
Latched fault feedback  
available  
undefined  
undefined  
0
600  
5k  
70k  
RSRP [Ω]  
Figure 21 Availability of latched fault/feedback mode in dependency of slew rate resistor RSRP  
7.2  
Characteristics  
Please see “Diagnostics” on Page 27 for electrical characteristic table.  
Datasheet  
22  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Supply and Input Stage  
8
Supply and Input Stage  
8.1  
Supply Circuit  
The supply pin VDD is protected against ESD pulses as shown in Figure 22.  
The device supply is not internal regulated but directly taken from a external supply. Therefore a reverse polarity  
protected and buffered 5V (or 3.3V) voltage supply is required. To achieve a reasonable RDS(ON) and the specified  
switching speed, a 5V (or 3.3V) supply is required.  
3.0V .. 5.5V  
VDD  
Logic &  
Driver  
ESD  
protection  
GND  
Supply_Stage.emf  
Figure 22 Supply Circuit  
8.1.1  
Undervoltage Shutdown  
In order to ensure a stable and defined device behavior under all allowed conditions the supply voltage VDD is  
monitored.  
The output switches off, if the supply voltage VDD drops below the switch-off threshold VDD(TH). In this case also all  
latches will be reset. The device functions are only given for supply voltages above the supply voltage threshold  
VDD(TH). There is no failure feedback ensured for VDD < VDD(TH).  
8.2  
Input Circuit  
Figure 23 shows the input circuit of the BTF3050TE. Due to an internal pull-down it is ensured that the device  
switches off in case of open input pin. A Zener structure protects the input circuit against ESD pulses. As the  
BTF3050TE has a supply pin, the RDS(ON) of the power MOS is independent of the voltage on the IN pin (assumed  
VDD is sufficient).  
Datasheet  
23  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Supply and Input Stage  
Logic  
ON/OFF  
RIN  
IN  
IIN  
ESD  
RIN(GND)  
VuC  
VIN  
GND  
Input.emf  
Figure 23 Simplified input circuitry  
8.3  
Characteristics  
Please see “Supply and Input Stage” on Page 29 for electrical characteristic table.  
Datasheet  
24  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Electrical Characteristics  
9
Electrical Characteristics  
Note:Characteristics show the deviation of parameter at given input voltage and junction temperature.  
Typical values show the typical parameters expected from manufacturing and in typical application  
condition.  
All voltages and currents naming and polarity in accordance to  
Figure 3 “Naming Definition of electrical parameters” on Page 6  
9.1  
Power Stage  
Please see Chapter “Power Stage” on Page 12 for parameter description and further details.  
Table 5  
Electrical Characteristics: Power Stage  
TJ = -40 °C to +150 °C, VDD = 3.0 V to 5.5 V, VBAT = 8 V to 18 V, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Pos. Parameter  
Symbol  
Limit Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
Power Stage - Static Characteristics  
9.1.1 On-State resistance  
RDS(ON)  
40  
80  
3.0  
mΩ IL = IL(NOM)  
DD = 5V;  
Tj = 25 °C  
100 mΩ IL = IL(NOM)  
DD = 5V;  
;
V
;
V
Tj = 150 °C  
1)  
9.1.2 Nominal load current  
IL(NOM)  
2
A
TJ < 150 °C;  
V
2)  
DD = 5 V;  
9.1.3 OFF state load current, Output leakage IL(OFF)  
μA  
current  
VOUT = VBAT= 13.5 V;  
VIN = 0 V;  
V
DD = 5 V;  
TJ ≤ 85 °C  
OFF state load current, Output leakage IL(OFF)  
current  
1
4
μA  
μA  
VOUT = VBAT = 13.5 V;  
VIN = 0 V;  
V
DD = 5 V;  
TJ = 25 °C  
OFF state load current, Output leakage IL(OFF)  
1.5  
VOUT = VBAT;  
current  
VIN = 0 V;  
V
DD = 5 V;  
TJ = 150 °C  
Reverse Diode  
9.1.4 Reverse diode forward voltage  
-VDS  
1.0  
0.8  
V
TJ = -40°C  
ID = - IL(NOM); VIN = 0 V  
TJ = 25°C  
ID = - IL(NOM); VIN = 0 V  
0.7 1.0  
TJ = 150°C  
ID = - IL(NOM); VIN = 0 V  
Datasheet  
25  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Electrical Characteristics  
Table 5  
Electrical Characteristics: Power Stage (cont’d)  
TJ = -40 °C to +150 °C, VDD = 3.0 V to 5.5 V, VBAT = 8 V to 18 V, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Pos. Parameter  
Symbol  
Limit Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
Power Stage - Dynamic characteristics - switching time adjustment  
BAT = 13.5 V; VDD = 5 V; resistive load: RL = 4.7 Ω;CSRP-GND < 100 pF;  
see Figure 10 “Definition of Power Output Timing for Resistive Load” on Page 12 for definition details  
V
9.1.5 Turn-on delay time  
9.1.6 Turn-off delay time  
9.1.7 Turn-on output fall time  
9.1.8 Turn-off output rise time  
9.1.9 Turn-on Slew rate 3)  
9.1.10 Turn-off Slew rate 3)  
tDON  
2
4
7.5 μs  
8.5 μs  
RSRP = 0 Ω  
2.5  
5
5
R
R
SRP = 5.8 kΩ  
SRP = 58 kΩ  
10  
4
15  
μs  
tDOFF  
2
7.5 μs  
8.5 μs  
RSRP = 0 Ω  
2.5  
10  
5
R
R
SRP = 5.8 kΩ  
SRP = 58 kΩ  
20  
30  
μs  
tF  
0.65 1.3 2.0 μs  
RSRP = 0 Ω  
1
2
3
μs  
μs  
R
R
SRP = 5.8 kΩ  
SRP = 58 kΩ  
10  
20  
30  
tR  
0.65 1.3 2.0 μs  
RSRP = 0 Ω  
1
2
3
μs  
μs  
R
R
SRP = 5.8 kΩ  
SRP = 58 kΩ  
10  
11  
7
20  
22  
13  
30  
33  
21  
2
-(ΔV/Δt)ON  
(ΔV/Δt)OFF  
V/µs RSRP = 0 Ω  
V/µs RSRP = 5.8 kΩ  
V/µs RSRP = 58 kΩ  
V/µs RSRP = 0 Ω  
0.7 1.4  
11  
7
22  
13  
33  
21  
2
V/µs RSRP = 5.8 kΩ  
0.7 1.4  
V/µs RSRP = 58 kΩ  
Power Stage - Dynamic characteristics - Failure mode (latched fault signal set) 4); 5)  
VBAT = 13.5V; VDD = 5V; resistive load: RL = 4.7 Ω;latched fault set;  
see Figure 10 “Definition of Power Output Timing for Resistive Load” on Page 12 for definition details;  
please refer to the Power Stage - Dynamic characteristics - switching time adjustment at RSRP = 5.8 kΩ (see  
above)  
1) Not subject to production test, calculated by RthJA and RDS(ON)  
.
2) Not subject to production test, specified by design; tested at 25°C  
3) Not subject to production test, calculated slew rate between 90% and 50%; ΔV/Δt = (VOUT(90%) - VOUT(50%)) / |(t90% - t50%)|  
4) Not subject to production test, specified by design.  
5) In case of over temperature switch-off the fast slew rate like RSRP = 5.8 kΩ will be applied.  
9.2  
Protection  
Please see Chapter “Protection Functions” on Page 17 for parameter description and further details.  
Note:Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation  
Datasheet  
26  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Electrical Characteristics  
Table 6  
Electrical characteristics: Protection  
TJ = -40 °C to +150 °C, VDD = 3.0 V to 5.5 V, VBAT = 8 V to 18 V, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Pos. Parameter  
Symbol  
Limit Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
Thermal shut down 1)  
1)  
9.2.1 Thermal shut down  
junction temperature  
TJ(SD)  
150 175 200 °C  
1)  
1)  
9.2.2 Thermal hysteresis  
ΔTJ(SD)_HYS  
ΔTJ(SW)  
15  
70  
K
K
9.2.3 Dynamic temperature limitation  
Over Voltage Protection / Clamping  
9.2.4 Drain clamp voltage  
VOUT(CLAMP)  
40  
V
VIN = 0 V; ID = 10 mA;  
VDD = 5V  
Current limitation  
9.2.5 Current limitation trigger level  
IL(LIM)_TRIGGER 30  
45  
15  
60  
20  
A
A
VIN = 5 V;  
V
V
DD = 5V;  
DS = VBAT  
9.2.6 Current limitation level  
IL(LIM)  
8
VIN = 5 V;  
DD = 5V;  
settled value;  
DS = VBAT  
V
V
1) Not subject to production test, specified by design.  
9.3  
Diagnostics  
Please see Chapter “Diagnostics” on Page 21 for description and further details.  
Table 7 Electrical Characteristics: Diagnostics  
TJ = -40 °C to +150 °C, VDD = 3.0 V to 5.5 V, VBAT = 8 V to 18 V, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Pos. Parameter  
Symbol  
Limit Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
Feedback pin  
9.3.1 allowed SRP pin voltage operation  
range  
VSRP  
-0.3  
5.5  
0.8  
1
V
V
SRP < VDD  
9.3.2 SRP voltage in normal operation  
during slew rate adjustment mode  
VSRP(NOR)  
VSRP(FAULT)  
0.6  
V
9.3.3 SRP voltage in fault feedback mode  
(latched)  
0.7  
xVDD RSRP > 5 kΩ;  
see also 9.3.4  
fault feedback latched  
9.3.4 SRP pull-up current in fault feedback  
mode  
ISRP(FAULT)  
5
1.8  
mA VDD = 5 V;  
V
BAT > 13.5 V  
internal limited  
1)  
9.3.5 Slew rate resistor range for normal  
operation,  
RSRP(NOR)  
70  
kΩ  
latched fault available  
Rev. 1.1, 2018-08-28  
latched fault feedback available  
Datasheet  
27  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Electrical Characteristics  
Table 7  
Electrical Characteristics: Diagnostics (cont’d)  
TJ = -40 °C to +150 °C, VDD = 3.0 V to 5.5 V, VBAT = 8 V to 18 V, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Pos. Parameter  
Symbol  
Limit Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
1)  
9.3.6 Slew rate resistor range for extended  
operation,  
RSRP(EXT)  
0
600  
Ω
no latched fault  
available  
no latched fault feedback available  
9.3.7 Fault feedback reset threshold  
9.3.8 Fault feedback reset time  
VSRP(RESET)  
tRESET  
1.8  
V
1)  
100  
µs  
VSRP < VSRP(RESET)  
;
no over temperature  
1) Not subject to production test, specified by design.  
Datasheet  
28  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Electrical Characteristics  
9.4  
Supply and Input Stage  
Please see Chapter “Supply and Input Stage” on Page 23 for description and further details.  
Table 8  
Electrical Characteristics: Supply and Input  
TJ = -40 °C to +150 °C, VDD = 3.0 V to 5.5 V, VBAT = 8 V to 18 V, all voltages with respect to ground, positive current  
flowing into pin (unless otherwise specified)  
Pos. Parameter  
Symbol  
Limit Values  
Unit Note /  
Test Condition  
Min. Typ. Max.  
Supply  
9.4.1 Nominal supply voltage  
VDD(NOM)  
VDD(TH)  
3.0 5.0 5.5  
1.3 1.7 3.0  
V
V
9.4.2 Supply Undervoltage Shutdown  
Switch-on/off threshold voltage  
VIN = 5.0 V  
9.4.3 Supply current,  
continuos ON operation  
IDD(ON)  
2.5  
4
mA  
device on-state  
V
R
DD = 5.0 V  
SRP = 0 Ω  
I
L(0) = IL(NOM)  
no fault signal  
mA DC condition,  
DD = 5.0 V  
9.4.4 Supply current,  
continuos on operation  
with latched fault signal  
IDD(FAULT)  
4.5  
6
V
with fault signal  
9.4.5 Supply current,  
IDD(-VOUT)  
IDD(OFF)  
33  
6
mA 1); VOUT < -0.3 V;  
inverse condition on OUT to GND  
9.4.6 Standby supply current  
1.5  
µA  
VIN = 0 V  
V
DD = 5.0 V  
R
SRP = 0 Ω  
Tj < 85 °C  
no fault signal  
9.4.7 Standby supply current,  
maximum at 150°C  
IDD(OFF)_150  
6
14  
µA  
VIN = 0 V  
V
R
DD = 5.0 V  
SRP = 0 Ω  
Tj = 150 °C  
no fault signal  
Input  
9.4.8 Low level input voltage  
9.4.9 High level input voltage  
9.4.10 Input voltage hysteresis  
9.4.11 Input pull down current  
VIN(L)  
VIN(H)  
VIN(HYS)  
IIN  
-0.3  
2.0  
0.8  
VDD  
V
V
200  
mV  
160 µA  
2.7V < VIN < 5.5V  
-0.3V < VDD < 5.5V  
9.4.12 Internal Input pull down resistor  
RIN(GND)  
25  
50  
100 kΩ  
1) Not subject to production test, specified by design.  
Datasheet  
29  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Characterisation Results  
10  
Characterisation Results  
Typical performance characteristics  
10.1  
Power Stage  
160,00  
140,00  
120,00  
100,00  
80,00  
60,00  
40,00  
20,00  
0,00  
150°C  
85°C  
25°C  
-40°C  
2,00  
2,50  
3,00  
3,50  
4,00  
4,50  
5,00  
5,50  
6,00  
VDD [V]  
Figure 24 Typical RDS(ON) vs. VDD @ IL=3A  
1,6E-06  
1,4E-06  
1,2E-06  
1,0E-06  
8,0E-07  
6,0E-07  
4,0E-07  
2,0E-07  
0,0E+00  
18V  
13.5V  
-40 -30 -20 -10  
0
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150  
Tj [°C]  
Figure 25 Typical IL(OFF) vs. Tj @ VIN = 0V, VBAT = 13.5V and 18V  
Datasheet  
30  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Characterisation Results  
10  
1
0,1  
0,01  
1
10  
IL [A]  
Figure 26 Maximum EAS vs. IL @ Tj(0)=150°C, VBAT=13.5V  
Datasheet  
31  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Characterisation Results  
10.2  
Dynamic charactersitics:  
30  
25  
20  
15  
10  
5
delay ON, SRP 58 kOhm  
delay ON, SRP 5.8 kOhm  
delay OFF, SRP 58 kOhm  
delay OFF, 5.8 kOhm  
fall time, SRP 58 kOhm  
fall time, SRP 5.8 kOhm  
rise time, SRP 58 kOhm  
rise time, SRP 5.8 kOhm  
0
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
Tj [C]  
Figure 27 Typical fall time, rise time, delay on time, delay off time vs. Tj (-40..150°C) @ RSRP=5.8kΩ and  
58kΩ) VDD=5V, VBAT=13.5, VIN=5V  
18  
Slew rate ON, SRP 58 kOhm  
Slew rate OFF, SRP 58 kOhm  
Slew rate ON, SRP 5.8 kOhm  
Slew rate OFF, 5.8 kOhm  
16  
14  
12  
10  
8
6
4
2
0
-40  
-30  
-20  
-10  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
110  
120  
130  
140  
150  
Tj [C]  
Figure 28 Typical slew rate vs. Tj (-40..150°C) @ RSRP=5.8kΩ and 58kΩ  
Datasheet  
32  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Characterisation Results  
15  
13  
11  
9
delay ON, -40°C, SRP 5.8 kOhm  
delay OFF, -40°C, SRP 5.8 kOhm  
delay ON, 25°C, SRP 5.8 kOhm  
delay OFF, 25°C, SRP 5.8 kOhm  
delay ON, 150°C, SRP 5.8 kOhm  
delay OFF, 150°C, SRP 5.8 kOhm  
7
5
3
1
0,5  
1,5  
2,5  
3,5  
4,5  
5,5  
6,5  
7,5  
8,5  
9,5  
-1  
IL [A]  
Figure 29 Typical delay on time, delay off time vs. IL @ Tj (-40..150°C) RSRP=5.8kΩ  
5
fall time, -40°C, SRP 5.8 kOhm  
rise time, -40°C, SRP 5.8 kOhm  
fall time, 25°C, SRP 5.8 kOhm  
rise time, 25°C, SRP 5.8 kOhm  
fall time, 150°C, SRP 5.8 kOhm  
rise time, 150°C, SRP 5.8 kOhm  
4
3
2
1
0
0,5  
1,5  
2,5  
3,5  
4,5  
5,5  
6,5  
7,5  
8,5  
9,5  
IL [A]  
Figure 30 Typical fall time, rise time vs. IL @ Tj (-40..150°C) RSRP=5.8kΩ  
Datasheet  
33  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Characterisation Results  
25  
20  
15  
10  
5
slew rate ON, -40°C, SRP 5.8 kOhm  
slew rate OFF, -40°C, SRP 5.8 kOhm  
slew rate ON, 25°C, SRP 5.8 kOhm  
slew rate OFF, 25°C, SRP 5.8 kOhm  
slew rate ON, 150°C, SRP 5.8 kOhm  
slew rate OFF, 150°C, SRP 5.8 kOhm  
0
0,5  
1,5  
2,5  
3,5  
4,5  
5,5  
6,5  
7,5  
8,5  
9,5  
IL [A]  
Figure 31 Typical slew rate vs. IL @ Tj (-40..150°C) RSRP=5.8kΩ  
35  
delay ON, -40°C, SRP 58 kOhm  
delay OFF, -40°C, SRP 58 kOhm  
delay ON, 25°C, SRP 58 kOhm  
delay OFF, 25°C, SRP 58 kOhm  
delay ON, 150°C, SRP 58 kOhm  
delay OFF, 150°C, SRP 58 kOhm  
30  
25  
20  
15  
10  
5
0,5  
1,5  
2,5  
3,5  
4,5  
5,5  
6,5  
7,5  
8,5  
9,5  
IL [A]  
Figure 32 Typical delay on time, delay off time vs. IL @ Tj (-40..150°C) RSRP=58kΩ  
Datasheet  
34  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Characterisation Results  
40  
30  
20  
10  
0
fall time, -40°C, SRP 58 kOhm  
rise time, -40°C, SRP 58 kOhm  
fall time, 25°C, SRP 58 kOhm  
rise time, 25°C, SRP 58 kOhm  
fall time, 150°C, SRP 58 kOhm  
rise time, 150°C, SRP 58 kOhm  
0,5  
1,5  
2,5  
3,5  
4,5  
5,5  
6,5  
7,5  
8,5  
9,5  
IL [A]  
Figure 33 Typical rise time, fall time vs. IL @ Tj (-40..150°C) RSRP=58kΩ  
3
slew rate ON, -40°C, SRP 58 kOhm  
slew rate OFF, -40°C, SRP 58 kOhm  
slew rate ON, 25°C, SRP 58 kOhm  
slew rate OFF, 25°C, SRP 58 kOhm  
slew rate ON, 150°C, SRP 58 kOhm  
slew rate OFF, 150°C, SRP 58 kOhm  
2,5  
2
1,5  
1
0,5  
0
0,5  
1,5  
2,5  
3,5  
4,5  
5,5  
6,5  
7,5  
8,5  
9,5  
IL [A]  
Figure 34 Typical slew rate vs. IL @ Tj (-40..150°C) RSRP=58kΩ  
Datasheet  
35  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Characterisation Results  
delay ON, -40°C  
delay ON, 25°C  
delay ON, 150°C  
delay OFF, -40°C  
delay OFF, 25°C  
delay OFF, 150°C  
40  
35  
30  
25  
20  
15  
10  
5
0
5
10  
15  
20  
25  
30  
35  
40  
VBAT [V]  
Figure 35 Typical delay on time, delay off time vs. VBAT @ Tj (-40..150°C), IL=I(NOM), RSRP=58kΩ  
fall time, -40°C  
fall time, 25°C  
fall time, 150°C  
rise time, -40°C  
rise time, 25°C  
rise time, 150°C  
40  
35  
30  
25  
20  
15  
10  
5
0
0
5
10  
15  
20  
25  
30  
35  
40  
VBAT [V]  
Figure 36 Typical rise time, fall time vs. VBAT @ Tj (-40..150°C), IL=I(NOM), RSRP=58kΩ  
Datasheet  
36  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Characterisation Results  
slew rate ON, -40°C  
slew rate OFF, -40°C  
slew rate ON, 25°C  
slew rate OFF, 25°C  
slew rate ON, 150°C  
slew rate OFF, 150°C  
5,0  
4,5  
4,0  
3,5  
3,0  
2,5  
2,0  
1,5  
1,0  
0,5  
0,0  
0
5
10  
15  
20  
25  
30  
35  
40  
VBAT [V]  
Figure 37 Typical slew rate vs. VBAT @ Tj (-40..150°C), IL=I(NOM), RSRP=58kΩ  
delay ON, -40°C  
delay OFF, -40°C  
delay ON, 25°C  
delay OFF, 25°C  
delay ON, 150°C  
delay OFF, 150°C  
25  
20  
15  
10  
5
0
3
3,5  
4
4,5  
5
5,5  
VDD [V]  
Figure 38 Typical delay on time, delay off time vs. VDD @ Tj (-40..150°C), RL=4.5 Ω, RSRP=58kΩ  
Datasheet  
37  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Characterisation Results  
fall time, -40°C  
rise, -40°C  
fall, 25°C  
rise, 25°C  
fall, 150°C  
rise, 150°C  
40  
35  
30  
25  
20  
15  
10  
5
0
3
3,5  
4
4,5  
5
5,5  
VDD [V]  
Figure 39 Typical rise time, fall time vs. VDD @ Tj (-40..150°C), RL=4.5 Ω, RSRP=58kΩ  
Datasheet  
38  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Characterisation Results  
10.3  
Protection  
190  
180  
170  
160  
150  
3
4
5
6
VDD[V]  
Figure 40 Typical Tj(SD) vs VDD @ IL=10mA  
20  
15  
10  
5
0
3
4
5
6
VDD[V]  
Figure 41 Typical Tj(SD)_HYS vs VDD @ IL=10mA  
Datasheet  
39  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Characterisation Results  
60  
55  
50  
45  
40  
35  
30  
10 mA  
1 mA  
-50  
0
50  
100  
150  
Tj [C]  
Figure 42 Typical VOUT(CLAMP) vs Tj  
20  
18  
16  
14  
12  
10  
VDD = 6V  
VDD = 5.5V  
VDD = 5V  
VDD = 4V  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
Tj [C]  
Figure 43 Typical IL(LIM) vs Tj @ VDD=4...6V  
Datasheet  
40  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Characterisation Results  
20  
18  
16  
14  
12  
10  
3
3,5  
4
4,5  
5
5,5  
VDD [V]  
Figure 44 Typical IL(LIM) vs.VDD @ Tj=25°C  
80  
70  
60  
50  
40  
30  
20  
10  
0
-40°C  
25°C  
150°C  
0
2
4
6
8
10  
L [uH]  
Figure 45 Typical IL(LIM)_TRIGGER vs. L @ Tj = (-40, 25, 150°C)  
Datasheet  
41  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Characterisation Results  
10.4  
Supply and Input Stage  
5
4
3
2
1
0
fall  
rise  
-40  
0
40  
80  
120  
160  
Tj [C]  
Figure 46 Typical VDD(TH) vs Tj @ RL=4.5Ω  
1,00  
0,80  
0,60  
0,40  
0,20  
0,00  
150°C  
25°C  
-40°C  
0
1
2
3
4
5
6
VDD [V]  
Figure 47 Typical IDD(ON) vs. VDD @ Tj = (-40, 25, 150°C), VIN=5V  
Datasheet  
42  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Characterisation Results  
14  
12  
10  
8
Vdd=6V  
Vdd=5.5V  
Vdd=5V  
Vdd=4V  
Vdd=3V  
6
4
2
0
-40  
0
40  
80  
120  
160  
Tj [°C]  
Figure 48 Typical IDD(OFF) vs. Tj @ VDD = 3, 4, 5V, RRSP=0Ω  
150  
150°C  
25°C  
-40°C  
120  
90  
60  
30  
0
0
1
2
3
4
5
6
VIN [V]  
Figure 49 Typical IIN vs. VIN @ Tj = (-40, 25, 150°C)  
Datasheet  
43  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Characterisation Results  
50  
48  
46  
44  
42  
40  
-40  
0
40  
80  
120  
160  
Tj [°C]  
Figure 50 Typical RIN(GND) vs. Tj  
3,0  
Vdd=5V, (H)  
Vdd=4V, (H)  
Vdd=3V, (H)  
Vdd=5V, (L)  
Vdd=4V, (L)  
Vdd=3V, (L)  
2,5  
2,0  
1,5  
1,0  
0,5  
0,0  
-40  
0
40  
80  
120  
160  
Tj [°C]  
Figure 51 Typical VIN(TH) vs. Tj @ VDD = 3V, 4V, 5V  
Datasheet  
44  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Application Information  
11  
Application Information  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
Application Diagram  
An application example with the BTF3050TE is shown below.  
VBAT  
Voltage  
Regulator  
IN  
Load  
OUT  
Micro  
controller  
optional:  
e.g. 100nF  
VDD  
VDD  
OUT  
RX  
IN  
I/O  
PWM  
RuC-SRP  
SRP  
I/O  
Status/  
Reset  
< 470R  
GND  
*
GND  
RSRP  
Consider design recomendations for parasitic CSRP-GND  
*
Figure 52 Simplified application diagram  
Note:This is a very simplified example of an application circuit. The function must be verified in the real application.  
11.1  
Design and Layout Recommendations/Considerations  
As consequence of the fast switching times for high currents, special care has to be taken to the PCB layout. Stray  
inductances have to be minimized. The BTF3050TE has no separate pin for power ground and logic ground.  
Therefore it is recommended to assure that the offset between the ground connection of the slew rate resistor and  
ground pin of the device (GND/SOURCE) is minimized. The resistor RSRP should be placed near to the device and  
directly connected to the GND pin of the device to avoid any influence of GND shift to the functionality of the SRP  
pin.  
In order to avoid influence on SRP functionality (e.g. switching times) the maximum parasitic capacitance between  
the SRP line and GND (CSRP-GND) has to be less than 100pF. It is strongly recommended to not let the SRP pin  
floating. A maximum resistor of 200 kohm to GND is recommended.  
Datasheet  
45  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Package Outlines BTF3050TE  
12  
Package Outlines BTF3050TE  
PG-TO252-5 (Transistor Outline Package)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
For further information on alternative packages, please visit our website:  
Dimensions in mm  
http://www.infineon.com/packages.  
Datasheet  
46  
Rev. 1.1, 2018-08-28  
HITFET - BTF3050TE  
Smart Low-Side Power Switch  
Revision History  
13  
Revision History  
Revision  
Date  
Changes  
Figure 24. Typo corrected on “x” axis. RDS(ON) VS VDD  
Rev. 1.1  
2018-08-28  
Figure 25 and 26 duplicated. Figure 26 deleted  
Figure 49. remove 85°C from conditions  
Package Outlines corrected according to PG-TO252-5-11 dimensions  
Added Ω symbol for RSRP and RL unit in characterisation chapter  
Update front cover and back cover page templates  
Rev. 1.0  
2014-07-21  
Datasheet released  
Datasheet  
47  
Rev. 1.1, 2018-08-28  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2018-08-28  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2018 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  

相关型号:

BTF3080EJ

HITFET™ +12V
INFINEON

BTF3125EJ

HITFET™ +12V
INFINEON

BTF32C1

HC-49/US Microprocessor Crystals
CALIBER

BTF32C1-23.999MHZ-TR

Parallel - Fundamental Quartz Crystal, 23.999MHz Nom, HC49/US, 2 PIN
CALIBER

BTF32C1-50.000MHZ-L3-BT

Parallel - Fundamental Quartz Crystal, 50MHz Nom, HC49/US, 3 PIN
CALIBER

BTF32C1-8.999MHZ-V

Parallel - Fundamental Quartz Crystal, 8.999MHz Nom, HC49/US, 2 PIN
CALIBER

BTF32C3

HC-49/US Microprocessor Crystals
CALIBER

BTF32C5

HC-49/US Microprocessor Crystals
CALIBER

BTF32E1

HC-49/US Microprocessor Crystals
CALIBER

BTF32E1-9.000MHZ-V

Parallel - Fundamental Quartz Crystal, 9MHz Nom, HC49/US, 2 PIN
CALIBER

BTF32E3

HC-49/US Microprocessor Crystals
CALIBER

BTF32E5

HC-49/US Microprocessor Crystals
CALIBER