BTF6070-2ERV [INFINEON]

The BTF6070-2ERV is especially designed for applications with higher safety requirements, such as braking systems (ABS, ESP) and therefore ISO26262 qualified (ASIL B, Safety manual  is available).;
BTF6070-2ERV
型号: BTF6070-2ERV
厂家: Infineon    Infineon
描述:

The BTF6070-2ERV is especially designed for applications with higher safety requirements, such as braking systems (ABS, ESP) and therefore ISO26262 qualified (ASIL B, Safety manual  is available).

文件: 总42页 (文件大小:1340K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PROFET™+ 24V  
BTF6070-2ERV  
Smart High-Side Power Switch Dual Channel, 60 m  
Package PG-TDSO-14  
Marking 6070-2ERV  
1
Overview  
Application  
Suitable for 12 V and 24 V Trucks and Transportation Systems  
Specially designed to drive Valve Applications  
Can be used for PWM frequencies up to 1.5 kHz  
Suitable for resistive, inductive and capacitive loads  
Replaces electromechanical relays, fuses and discrete circuits  
VBAT  
Voltage Regulator  
T1  
OUT  
VS  
GND  
DZ  
CVDD  
CVS  
VS  
VDD  
GPIO  
GPIO  
RDEN  
DEN  
IN0  
RIN  
OUT0  
IN1  
IS0  
GPIO  
RIN  
COUT  
Valve  
ADC IN  
RSENSE  
Micro-  
controller  
CSENSE  
OUT1  
COUT  
IS1  
RSENSE  
ADC IN  
GND  
GND  
Bulb  
CSENSE  
D
Page-1.emf  
Application Diagram with BTF6070-2ERV  
Datasheet  
www.infineon.com  
1
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Overview  
Basic Features  
Dual channel device  
Fast switching device  
For 12 V and 24 V grounded loads  
Very low stand-by current  
3.3 V and 5 V compatible logic inputs  
Electrostatic discharge protection (ESD)  
Optimized electromagnetic compatibility  
Logic ground independent from load ground  
Very low power DMOS leakage current in OFF state  
Green product (RoHS compliant)  
AEC qualified  
Description  
The BTF6070-2ERV is a 60 mdual channel Smart High-Side Power Switch, embedded in a PG-TDSO-14,  
Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by a  
N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is  
specially designed to drive Valve Applications in the harsh automotive environment. For lighting applications  
the nominal bulb load of P10W+P5W 24 V or P10W 12 V is considered.  
Table 1  
Product Summary  
Parameter  
Symbol  
VS(OP)  
Value  
5 V ... 36 V  
65 V  
Operating voltage range  
Maximum supply voltage  
VS(LD)  
Maximum ON state resistance at TJ = 150°C per channel  
Nominal load current (one channel active)  
Nominal load current (all channels active)  
Typical current sense ratio  
RDS(ON)  
IL(NOM)1  
IL(NOM)2  
kILIS  
135 mΩ  
3 A  
2.3 A  
1730  
Minimum current limitation  
IL5(SC)  
9 A  
Maximum standby current with load at TJ = 25°C  
IS(OFF)  
500 nA  
Diagnostic Functions  
Proportional load current sense for the 2 channels  
Open load detection in ON and OFF  
Short circuit to battery and ground indication  
Overtemperature switch off detection  
Stable diagnostic signal during short circuit  
Enhanced kILIS dependency with temperature and load current  
Protection Functions  
Stable behavior during undervoltage  
Reverse polarity protection with external components  
Secure load turn-off during logic ground disconnection with external components  
Datasheet  
2
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Overview  
Overtemperature protection with latch  
Overvoltage protection with external components  
Enhanced short circuit operation  
Datasheet  
3
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Block Diagram  
2
Block Diagram  
Channel 0  
VS  
voltage sen sor  
int ern al  
power  
supply  
over  
temperatu re  
T
clamp for  
ind uctive load  
gate control  
&
charge p ump  
IN 0  
driver  
logic  
over current  
switch limit  
DEN  
ESD  
protection  
load current sense and  
open load detection  
OUT 0  
IS0  
forward voltage drop detection  
VS  
Channel 1  
T
IN1  
IS1  
Cont rol and pro tec tion ci rcuit equi valent to channel 0  
OUT 1  
Block diagramDxS.emf  
GND  
Figure 1  
Block Diagram for the BTF6070-2ERV  
Datasheet  
4
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
GND  
1
2
14  
13  
OUT0  
OUT0  
IN0  
DEN  
IS0  
3
4
5
12  
11  
10  
OUT0  
NC  
NC  
OUT1  
6
7
9
8
OUT1  
OUT1  
IN1  
IS1  
Pinout dual SO14.vsd  
Figure 2  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Table 2  
Pin Definition and Functions  
Pin  
Symbol  
GND  
IN0  
Function  
1
GrouND; Ground connection  
2
INput channel 0; Input signal for channel 0 activation  
Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device  
Sense 0; Sense current of the channel 0  
3
DEN  
IS0  
4
5, 11  
NC  
Not Connected; No internal connection to the chip  
INput channel 1; Input signal for channel 1 activation  
Sense 1; Sense current of the channel 1  
6
IN1  
7
IS1  
8, 9, 10  
12, 13, 14  
OUT1  
OUT0  
OUTput 1; Protected high side power output channel 11)  
OUTput 0; Protected high side power output channel 01)  
Voltage Supply; Battery voltage  
Cooling Tab VS  
1) All output pins of a given channel must be connected together on the PCB. All pins of an output are internally  
connected together. PCB traces have to be designed to withstand the maximum current which can flow.  
Datasheet  
5
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Pin Configuration  
3.3  
Voltage and Current Definition  
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.  
IVS  
VS  
VDS0  
VS  
IIN0  
IOUT0  
IN0  
IN1  
OUT0  
OUT1  
VIN0  
VDS1  
VOUT0  
VIN1  
IDEN  
DEN  
IS0  
IOUT1  
VDEN  
VIS0  
IIS1  
VOUT1  
IS1  
GND  
VIS1  
IGND  
voltage and current convention.vsd  
Figure 3  
Voltage and Current Definition  
Datasheet  
6
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 3  
Absolute Maximum Ratings 1)  
TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
Supply Voltages  
Supply voltage  
VS  
-0.3  
0
-
-
48  
28  
V
V
-
P_4.1.1  
P_4.1.2  
Reverse polarity voltage  
-VS(REV)  
t < 2 min  
TA = 25°C  
RL 25 Ω  
Supply voltage for short circuit VBAT(SC)  
0
-
36  
V
RECU = 30 mΩ  
P_4.1.3  
protection  
R
Supply = 10 mΩ  
LSupply = 5 µH  
Cable= 7 m/m  
Cable= 1 µH/m,  
R
L
l = 0 to 40 m  
See Chapter 6  
and Figure 29  
Supply voltage for Load dump  
protection  
VS(LD)  
-
-
-
-
65  
V
2)RI = 2 Ω  
RL = 25 Ω  
P_4.1.12  
P_4.1.4  
Short Circuit Capability  
3)  
Permanent short circuit  
IN pin toggles  
nRSC1  
100  
k cycles  
V
= 28 V  
Supply  
R
R
ECU = 20 mΩ  
Supply = 10 mΩ  
LSupply= 5 µΗ  
R
Cable = 0 mΩLCable  
= < 1 µΗ  
3)  
Permanent short circuit  
IN pin toggles  
nRSC_highL  
-
-
100  
k cycles  
V
= 28 V  
P_4.1.5  
Supply  
RECU = 30 mΩ  
Supply = 10 mΩ  
Supply = 5 µΗ  
RCable = 280 mΩ  
R
L
LCable = 40 µΗ  
Input Pins  
Voltage at INPUT pins  
Voltage at INPUT pins  
Current through INPUT pins  
Voltage at DEN pin  
VIN  
-0.3  
-
-
-
-
-
6
7
2
6
7
2
V
-
P_4.1.13  
P_4.1.6  
VIN  
V
t < 2 min  
IIN  
-2  
mA  
V
-
P_4.1.14  
P_4.1.15  
P_4.1.50  
P_4.1.16  
VDEN  
VDEN  
IDEN  
-0.3  
-
-
Voltage at DEN pin  
V
t < 2 min  
Current through DEN pin  
-2  
-
mA  
-
Datasheet  
7
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
General Product Characteristics  
Table 3  
Absolute Maximum Ratings 1)  
TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit  
Note or  
Test Condition  
Number  
Min.  
Max.  
Sense Pin  
Voltage at IS pin  
Current through IS pin  
Power Stage  
VIS  
IIS  
-0.3  
-25  
-
-
VS  
V
-
-
P_4.1.19  
P_4.1.20  
50  
mA  
Load current  
| IL |  
-
-
-
-
IL(LIM)  
A
-
P_4.1.21  
P_4.1.22  
Power dissipation (DC)  
PTOT  
1.8  
W
TA = 85°C  
TJ < 150°C  
Maximum energy dissipation  
repetitive pulse (one channel)  
EAR_2A  
-
-
-
-
40  
mJ  
20 Mio. cycles  
P_4.1.24  
P_4.1.35  
IL(0) = 2 A  
T
J(0) = 105°C  
1)  
Negative voltage slope at output -dVOUT/dt  
-20  
V/µs  
V
= 28 V  
OUT  
(inductive clamping)  
to 28 V - VDS(AZ) VIN  
= 0 V  
1)  
Positive voltage slope at output dVOUT/dt  
-
-
-
-
20  
65  
V/µs  
V
V
= 0 V to 28 V P_4.1.36  
OUT  
VIN = 0 V  
Voltage at power transistor  
Currents  
VDS  
-
P_4.1.26  
Current through ground pin  
Current through ground pin  
Temperatures  
I GND  
I GND  
-20  
-
-
20  
20  
mA  
mA  
-
P_4.1.27  
P_4.1.7  
-150  
t < 2 min  
Junction temperature  
Storage temperature  
ESD Susceptibility  
TJ  
-40  
-55  
-
-
150  
150  
°C  
°C  
-
-
P_4.1.28  
P_4.1.30  
TSTG  
ESD susceptibility (all pins)  
VESD  
VESD  
-2  
-5  
-
-
2
5
kV  
kV  
4) HBM  
4) HBM  
P_4.1.31  
P_4.1.32  
ESD susceptibility OUT Pin vs.  
GND and VS connected  
ESD susceptibility  
VESD  
VESD  
-500  
-750  
-
-
500  
750  
V
V
5) CDM  
5) CDM  
P_4.1.33  
P_4.1.34  
ESD susceptibility pin (corner  
pins)  
1) Not subject to production test. Specified by design  
2) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1  
3) Threshold limit for short circuit failures: 100 ppm. Please refer to the legal disclaimer for short-circuit capability on  
the Back Cover of this document  
4) ESD susceptibility, Human Body Model “HBM” according to AEC Q100-002  
5) ESD susceptibility, Charged Device Model “CDM” according to AEC Q100-011  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
Datasheet  
8
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
General Product Characteristics  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
4.2  
Functional Range  
Table 4  
Functional Range TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
28  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
36  
Nominal operating voltage  
Extended operating voltage  
VNOM  
8
5
V
V
-
1)3)  
P_4.2.1  
P_4.2.2  
VS(OP)  
-
48  
VIN = 4.5 V  
RL = 25 Ω  
VDS < 0.5 V  
2)  
Minimum functional supply  
voltage  
VS(OP)_MIN  
3.8  
3
4.3  
3.5  
5
V
V
V
= 4.5 V  
P_4.2.3  
P_4.2.4  
IN  
RL = 25 Ω  
From IOUT = 0 A  
to VDS < 0.5 V;  
see Figure 16  
2)  
Undervoltage shutdown  
VS(UV)  
4.1  
V = 4.5 V  
IN  
VDEN = 0 V  
RL = 25 Ω  
From VDS < 1 V  
to IOUT = 0 A  
See Figure 16  
3)  
Undervoltage shutdown  
hysteresis  
VS(UV)_HYS  
IGND_1  
-
-
850  
5
-
mV  
mA  
-
P_4.2.13  
P_4.2.5  
Operating current  
One channel active  
7
VIN = 5.5 V  
V
DEN = 5.5 V  
Device in RDS(ON)  
VS = 36 V  
Operating current  
All channels active  
IGND_2  
-
-
8.3  
0.1  
12  
mA  
µA  
VIN = 5.5 V  
P_4.2.6  
P_4.2.7  
VDEN = 5.5 V  
Device in RDS(ON)  
VS = 36 V  
2) VS = 36 V  
VOUT = 0 V  
Standby current for whole device IS(OFF)  
with load (ambient)  
0.5  
V
V
IN floating  
DEN floating  
TJ 85°C  
Datasheet  
9
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
General Product Characteristics  
Table 4  
Functional Range TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
-
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Maximum standby current for  
whole device with load  
IS(OFF)_150  
-
10  
µA  
VS = 36 V  
OUT = 0 V  
VIN floating  
DEN floating  
P_4.2.10  
V
V
TJ = 150°C  
Standby current for whole device IS(OFF_DEN)  
-
1.15  
-
mA  
3) VS = 36 V  
P_4.2.8  
with load, diagnostic active  
V
OUT = 0 V  
VIN floating  
DEN = 5.5 V  
V
1) Parameter deviation possible: RDSON, IIS(FAULT) & timing parameters. Protection functions are working.  
2) Test at TJ = -40°C only  
3) Not subject to production test. Specified by design.  
Note:  
Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics  
table.  
4.3  
Thermal Resistance  
Table 5  
Thermal Resistance  
Parameter  
Symbol  
Values  
Typ.  
2
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
1)  
Junction to case  
RthJC  
RthJA  
-
-
-
-
K/W  
K/W  
P_4.3.1  
P_4.3.2  
1)2)  
Junction to ambient  
All channels active  
27  
1) Not subject to production test. Specified by design.  
2) Specified RthJA value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board with 1 W power  
dissipation equally dissipated for both channels at TA=105°C ; The product (chip + package) was simulated on a 76.4  
x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 µm Cu, 2 x 35 µm Cu). Where applicable, a thermal via array  
under the exposed pad contacts the first inner copper layer. Please refer to Figure 4.  
Datasheet  
10  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
General Product Characteristics  
4.3.1  
PCB Set-up  
70µm  
1.5mm  
35µm  
PCB 2s2p.emf  
0.3mm  
Figure 4  
2s2p PCB Cross Section  
Figure 5  
1s0p PCB Cross Section  
PCB bottom view  
PCB top view  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
COOLIN  
G
TAB  
VS  
8
PCBcooling.emf  
Figure 6  
PC Board Top and Bottom View for Thermal Simulation with 600 mm2 Cooling Area  
Datasheet  
11  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
General Product Characteristics  
4.3.2  
Thermal Impedance  
BTF6070-2ERV  
100  
10  
1
2s2p  
1s0p - 600 mm²  
1s0p - 300 mm²  
1s0p - footprint  
0,1  
0,0001  
0,001  
0,01  
0,1  
1
10  
100  
1000  
Time (s)  
Figure 7  
Typical Thermal Impedance. Both channels active. TA= 85°C.  
PCB set-up according Figure 4 / Figure 5  
BTT6070-2ERV  
100  
1s0p - Tambient = 105°C  
90  
80  
70  
60  
50  
40  
30  
0
100  
200  
300  
400  
500  
600  
Cooling area (mm²)  
Figure 8  
Typical Thermal Resistance. Both channels active. TA=85°C. PCB set-up 1s0p  
Datasheet  
12  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Power Stage  
5
Power Stage  
The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump.  
5.1  
Output ON-State Resistance  
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 9  
shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The  
behavior in reverse polarity is described in Chapter 6.4.  
240  
220  
200  
180  
160  
140  
120  
100  
80  
120  
110  
100  
90  
T
= 150°C  
= 25°C  
= -40°C  
J
T
J
T
J
80  
70  
60  
50  
60  
40  
40  
30  
-40  
-20  
0
20  
40  
60  
80  
100  
120  
140  
160  
0
5
10  
15  
20  
25  
30  
35  
Junction Temperature T [°C]  
Supply Voltage V [V]  
J
S
Figure 9  
Typical ON-State Resistance  
A high signal at the input pin (see Chapter 8) causes the power DMOS to switch ON with a dedicated slope,  
which is optimized in terms of EMC emission.  
5.2  
Turn ON/OFF Characteristics with Resistive Load  
Figure 10 shows the typical timing when switching a resistive load.  
IN  
VIN_H  
VIN_L  
t
VOUT  
dV/dt ON  
dV/dt OFF  
tON  
90% VS  
tOFF_delay  
70% VS  
30% VS  
10% VS  
tON_delay  
tOFF  
t
Switchingtimes.emf  
Figure 10 Switching a Resistive Load Timing  
Datasheet  
13  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Power Stage  
5.3  
Inductive Load  
5.3.1  
Output Clamping  
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,  
because the inductance intends to continue driving the current. To prevent the destruction of the device by  
avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative  
output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 11 and Figure 12 for details. Nevertheless,  
the maximum allowed load inductance is limited.  
VS  
ZDS(AZ)  
VDS  
INx  
LOGIC  
IL  
VBAT  
GND  
ZGND  
OUTx  
VOUT  
VINx  
L, RL  
Output_clamp.vsd  
Figure 11 Output Clamp  
IN  
t
VOUT  
VS  
VDS(AZ)  
t
VS-VDS(AZ)  
IL  
t
Switchingan inductance.emf  
Figure 12 Switching an Inductive Load Timing  
Datasheet  
14  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Power Stage  
5.3.2  
Maximum Load Inductance  
During demagnetization of inductive loads, energy has to be dissipated in the BTF6070-2ERV. This energy can  
be calculated with following equation:  
RL IL  
VS VDS(AZ)  
----- ------------------------------  
L
RL  
------------------------------  
VS VDS(AZ)  
E = VDS(AZ)  
ln 1 –  
+ IL  
(5.1)  
RL  
Following equation simplifies under the assumption of RL = 0 .  
VS  
L I2 1 –  
(5.2)  
1
--  
------------------------------  
VS VDS(AZ)  
E =  
2
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 13 for  
the maximum allowed energy dissipation as a function of the load current.  
1000  
100  
10  
1
0
1
2
3
4
5
6
7
IL(A)  
Figure 13 Maximum Energy Dissipation Single Pulse, TJ_START = 150°C  
Datasheet  
15  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Power Stage  
5.4  
Inverse Current Capability  
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current  
IINV will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 14). The  
output stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse.In that  
particular case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV  
should not be higher than IL(INV). IL(INV) can be considered as 3 A.  
If the channel is OFF, the diagnostic will detect an open load at OFF. If the affected channel is ON, the  
diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance of VINV, a  
parasitic diagnostic can be observed. After, the diagnosis is valid and reflects the output state. At VINV  
vanishing, the diagnosis is valid and reflects the output state. During inverse current, no protection functions  
are available.  
VBAT  
VS  
Gate  
driver  
Device  
logic  
VINV  
INV  
Comp.  
IL(INV)  
OUT  
GND  
ZGND  
inverse current.vsd  
Figure 14 Inverse Current Circuitry  
Datasheet  
16  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Power Stage  
5.5  
Electrical Characteristics Power Stage  
Table 6  
Electrical Characteristics: Power Stage  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
120  
Unit Note or  
Test Condition  
Number  
Min.  
RDS(ON)_150 90  
Max.  
ON-state resistance per  
channel  
135  
mIL = IL4 = 4 A  
VIN = 4.5 V  
P_5.5.1  
TJ = 150°C  
See Figure 9  
ON-state resistance per  
channel  
RDS(ON)_25  
IL(NOM)1  
-
60  
3
-
m1) TJ = 25°C  
P_5.5.21  
P_5.5.2  
P_5.5.3  
Nominal load current  
One channel active  
-
-
A
1) TA = 85°C  
TJ < 150°C  
Nominal load current  
All channels active  
IL(NOM)2  
-
2.3  
10  
70  
0.1  
-
A
Output voltage drop limitation VDS(NL)  
at small load currents  
-
22  
75  
0.5  
mV  
V
IL = IL0 = 50 mA P_5.5.4  
Drain to source clamping  
voltage VDS(AZ) = (VS - VOUT  
VDS(AZ)  
IL(OFF)  
65  
-
IDS = 20 mA  
See Figure 12  
2)  
P_5.5.5  
P_5.5.6  
)
Output leakage current per  
µA  
V floating  
IN  
channel TJ 85°C  
VOUT = 0 V  
TJ 85°C  
Output leakage current per  
channel TJ = 150°C  
IL(OFF)_150  
-
1
8
µA  
VIN floating  
VOUT = 0 V  
TJ = 150°C  
P_5.5.8  
Slew rate  
30% to 70% VS  
dV/dtON  
-dV/dtOFF  
ΔdV/dt  
1
2.4  
2.4  
0
4.5  
4.5  
0.5  
V/µs RL = 25 Ω  
VS = 28 V  
P_5.5.11  
P_5.5.12  
P_5.5.13  
See Figure 10  
Slew rate  
70% to 30% VS  
1
V/µs  
Slew rate matching  
-0.5  
V/µs  
dV/dtON - dV/dtOFF  
Turn-ON time to VOUT = 90% VS tON  
Turn-OFF time to VOUT = 10% VS tOFF  
5
28  
28  
5
70  
70  
20  
µs  
µs  
µs  
P_5.5.14  
P_5.5.15  
P_5.5.16  
5
Turn-ON / OFF matching  
ΔtSW  
-20  
tOFF - tON  
Turn-ON time to VOUT = 10% VS tON_delay  
Turn-OFF time to VOUT = 90% VS tOFF_delay  
-
-
17  
17  
40  
40  
µs  
µs  
P_5.5.17  
P_5.5.18  
Datasheet  
17  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Power Stage  
Table 6  
Electrical Characteristics: Power Stage (cont’d)  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
115  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Switch ON energy  
EON  
-
-
µJ  
1) RL = 25 Ω  
OUT = 90% VS  
P_5.5.19  
V
VS = 36 V  
Switch OFF energy  
EOFF  
-
173  
-
µJ  
1) RL = 25 Ω  
P_5.5.20  
V
OUT = 10% VS  
VS = 36 V  
1) Not subject to production test, specified by design.  
2) Test at TJ = -40°C only  
Datasheet  
18  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Protection Functions  
6
Protection Functions  
The device provides integrated protection functions. These functions are designed to prevent the destruction  
of the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside”  
normal operating range. Protection functions are designed for neither continuous nor repetitive operation.  
6.1  
Loss of Ground Protection  
In case of loss of the module ground and the load remains connected to ground, the device protects itself by  
automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN  
pins.  
In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the  
BTF6070-2ERV to ensure switching OFF of channels.  
In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 15 sketches  
the situation.  
ZGND is recommended to be a resistor in series to a diode.  
ZIS(AZ)  
VS  
ZD(AZ)  
VBAT  
ZDS(AZ)  
ISx  
RSENSE  
DEN  
INx  
LOGIC  
RDEN  
RIN  
IOUT(GND)  
OUTx  
Loss of ground protection.emf  
Valve  
ZDESD  
GND  
RIS  
ZGND  
Figure 15 Loss of Ground Protection with External Components  
6.2  
Undervoltage Protection  
Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage  
where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold  
ON. If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as  
the supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the  
switch is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in  
the VNOM range. Figure 16 sketches the undervoltage mechanism.  
Datasheet  
19  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Protection Functions  
VOUT  
VS  
VS(UV)  
VS(OP)  
Undervoltage behavior.emf  
Figure 16 Undervoltage Behavior  
6.3  
Overvoltage Protection  
There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism  
operates properly in the application, the current in the Zener diode has to be limited by a ground resistor.  
Figure 17 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than  
VS(AZ), the power transistor switches ON and in addition the voltage across the logic section is clamped. As a  
result, the internal ground potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin INx and  
DEN rises almost to that potential, depending on the impedance of the connected circuitry. In the case the  
device was ON, prior to overvoltage, the BTF6070-2ERV remains ON. In the case the BTF6070-2ERV was OFF,  
prior to overvoltage, the power transistor can be activated. In the case the supply voltage is in above VBAT(SC)  
and below VDS(AZ), the output transistor is still operational and follows the input. If at least one channel is in the  
ON state, parameters are no longer guaranteed and lifetime is reduced compared to the nominal supply  
voltage range. This especially impacts the short circuit robustness, as well as the maximum energy EAS  
capability. The values for ZIS(A), ZD(AZ) and ZDS(AZ) are included in the parameter P_6.6.3. ZGND is recommended  
to be a resistor in series to a diode.  
ISOV  
ZIS(AZ)  
VS  
ZD(AZ)  
VBAT  
ZDS(AZ)  
ISx  
RSENSE  
DEN  
INx  
LOGIC  
RDEN  
RIN  
OUTx  
ZDESD  
Overvoltage protection.emf  
Valve  
GND  
RIS  
ZGND  
Figure 17 Overvoltage Protection with External Components  
Datasheet  
20  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Protection Functions  
6.4  
Reverse Polarity Protection  
In case of reverse polarity, the intrinsic body diodes of the power DMOS causes power dissipation. The current  
in this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the  
logic pins has to be limited to the maximum current described in Chapter 4.1 with an external resistor.  
Figure 18 shows a typical application. RGND resistor is used to limit the current in the Zener protection of the  
device. Resistors RDEN, and RIN are used to limit the current in the logic of the device and in the ESD protection  
stage. RSENSE is used to limit the current in the sense transistor which behaves as a diode. The recommended  
value for RDEN = RIN = 10 k. ZGND is recommended to be a resistor in series to a diode.  
During reverse polarity, no protection functions are available.  
Microcontroller  
protection diodes  
ZIS(AZ)  
VS  
ZD(AZ)  
ZDS(AZ)  
ISx  
RSENSE  
VDS(REV)  
DEN  
INx  
RDEN  
LOGIC  
-VS(REV)  
RIN  
OUTx  
ZDESD  
Reversepolarity.emf  
GND  
Valve  
IS  
ZGND  
RIS  
Figure 18 Reverse Polarity Protection with External Components  
6.5  
Overload Protection  
In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTF6070-2ERV  
offers several protection mechanisms.  
6.5.1  
Current Limitation  
At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the  
maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which  
affects the current flowing in the DMOS.  
6.5.2  
Temperature Limitation in the Power DMOS  
Each channel incorporates both an absolute (TJ(SC)) and a dynamic (TJ(SW)) temperature sensor. Activation of  
either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch  
OFF latches the output until the temperature has reached an acceptable value. Figure 19 gives a sketch of the  
situation.  
No retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch  
is switched ON again. Only the IN pin signal toggling can re-activate the power stage (latch behavior).  
Datasheet  
21  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Protection Functions  
INx  
t
ILx  
LOAD CURRENT BELOW  
LIMITATION PHASE  
LOAD CURRENT LIMITATION PHASE  
IL(x)SC  
IL(NOM)  
t
TDMOSx  
TJ(SC)  
Cool DownPhase  
ΔTJ(SW)  
TA  
t
tsIS(FAULT)  
tsIS(OC_blank)  
IISx  
IIS(FAULT)  
IL(NOM) / kILIS  
0A  
VDEN  
t
t
tsIS(OF F)  
0V  
Hard start.emf  
Figure 19 Overload Protection  
Note:  
For better understanding, the time scale is not linear. The real timing of this drawing is application  
dependant and cannot be described.  
Datasheet  
22  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Protection Functions  
6.6  
Electrical Characteristics for the Protection Functions  
Table 7  
Electrical Characteristics: Protection  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Unit Note or  
Test Condition  
Number  
Min. Typ. Max.  
Loss of Ground  
Output leakage current while IOUT(GND)  
-
0.1  
-
µA  
1)2) VS = 45 V  
P_6.6.1  
P_6.6.2  
GND disconnected  
See Figure 15  
Reverse Polarity  
Drain source diode voltage  
during reverse polarity  
VDS(REV)  
400  
650  
700  
mV  
IL = - 2 A  
TJ = 150°C  
See Figure 18  
Overvoltage  
Overvoltage protection  
VS(AZ)  
65  
70  
75  
V
ISOV = 5 mA  
See Figure 17  
P_6.6.3  
P_6.6.4  
Overload Condition  
3)  
Load current limitation  
IL5(SC)  
TJ(SW)  
TJ(SC)  
9
11  
80  
14  
-
A
K
V = 10 V  
DS  
See Figure 19  
4) 3) See Figure 19 P_6.6.8  
Dynamic temperature  
increase while switching  
-
Thermal shutdown  
temperature  
150  
-
170 4) 200 4) °C  
30  
5) See Figure 19  
2) See Figure 19  
P_6.6.10  
P_6.6.11  
Thermal shutdown hysteresis TJ(SC)  
-
K
1) All pins are disconnected except VS and OUT.  
2) Not Subject to production test, specified by design  
3) Test at TJ = -40°C only  
4) Functional test only  
5) Test at TJ = +150°C only  
Datasheet  
23  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Diagnostic Functions  
7
Diagnostic Functions  
For diagnosis purpose, the BTF6070-2ERV provides a combination of digital and analog signals at the IS Pins  
(IS0 and IS1). These signals are called SENSE. In case the diagnostic is disabled via DEN, pins IS become high  
impedance. In case DEN is activated, the sense current of both channels is enabled. Table 8 gives the truth  
table.  
Table 8  
Diagnostic Truth Table  
DEN  
IS0  
IS1  
0
1
Z
Z
Sense output 0 IIS(0)  
Sense output 1 IIS(1)  
7.1  
IS Pins  
The BTF6070-2ERV provides a sense signal called IIS at pins ISx. As long as no “hard” failure mode occurs (short  
circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load  
at OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pins and  
diagnostic mechanism is described on Figure 20. The accuracy of the sense current depends on temperature  
and load current. Due to the ESD protection, in connection to VS, it is not recommended to share the IS pins  
with other devices if these devices are using another battery feed. The consequence is that the unsupplied  
device would be fed via the IS pin of the supplied device.  
VS  
IIS(FAULT)  
IIS0 = IL0 / kILIS  
ZIS(AZ)  
ZIS(AZ)  
IIS(FAULT)  
IIS1  
IL1 / kILIS  
=
1
0
0
1
IS0  
DEN  
IS1  
1
0
1
0
Sense schematics.emf  
Figure 20 Diagnostic Block Diagram  
Datasheet  
24  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Diagnostic Functions  
7.2  
SENSE Signal in Different Operating Modes  
Table 9 gives a quick reference for the state of the IS pins during device operation.  
Table 9  
Sense Signal, Function of Operation Mode  
Operation Mode  
Normal operation  
Short circuit to GND  
Overtemperature  
Short circuit to VS  
Open Load  
Input level Channel X DEN  
OFF H  
Output Level Diagnostic Output at ISx  
Z
Z
~ GND  
Z
Z
Z
VS  
IIS(FAULT)  
< VOL(OFF)  
> VOL(OFF)  
Z
1)  
IIS(FAULT)  
Inverse current  
~ VINV  
~ VS  
< VS  
~ GND  
Z
IIS(FAULT)  
IIS = IL / kILIS  
IIS(FAULT)  
IIS(FAULT)  
IIS(FAULT)  
Normal operation  
Current limitation  
Short circuit to GND  
ON  
Overtemperature TJ(SW)  
event  
Short circuit to VS  
Open Load  
VS  
IIS < IL / kILIS  
IIS < IIS(OL)  
2)  
~ VS  
3)  
Inverse current  
Underload  
~ VINV  
IIS < IIS(OL)  
4)  
~ VS  
IIS(OL) < IIS < IL / kILIS  
Don’t care  
Don’t care  
L
Don’t care  
Z
1) Stable with additional pull-up resistor.  
2) The output current has to be smaller than IL(OL)  
.
3) After maximum tINV  
.
4) The output current has to be higher than IL(OL)  
.
Datasheet  
25  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Diagnostic Functions  
7.3  
SENSE Signal in the Nominal Current Range  
Figure 21 and Figure 22 show the current sense as a function of the load current in the power DMOS. Usually  
a pull-down resistor RIS is connected to the current sense IS pin. This resistor has to be higher than 560 to  
limit the power losses in the sense circuitry. A typical value is 1.8 k. The blue curve represents the ideal sense  
current, assuming an ideal kILIS factor value. The red curves shows the accuracy the device provides across full  
temperature range at a defined current.  
4
3.5  
3
2.5  
2
1.5  
1
0.5  
min/max Sense Current  
typical Sense Current  
0
0
1
2
3
4
5
6
IL [A]  
BTF6070-2ERV  
Figure 21 Current Sense for Nominal Load  
7.3.1  
SENSE Signal Variation as a Function of Temperature and Load Current  
In some applications a better accuracy is required at smaller currents. To achieve this accuracy requirement,  
a calibration on the application is possible. To avoid multiple calibration points at different load and  
temperature conditions, the BTF6070-2ERV allows limited derating of the kILIS value, at a given point  
(TJ= +25°C). This derating is described by the parameter ΔkILIS. Figure 22 shows the behavior of the sense  
current, assuming one calibration point at nominal load at +25°C.  
The blue line indicates the ideal kILIS ratio.  
The red lines indicate the derating on the parameter across temperature and voltage, assuming one  
calibration point at nominal temperature and nominal battery voltage.  
The black lines indicate the kILIS accuracy without calibration.  
Datasheet  
26  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Diagnostic Functions  
3000  
2500  
2000  
1500  
1000  
calibrated k ILIS  
min/max kILIS  
typical kILIS  
500  
0
1
2
3
4
5
6
IL [A]  
BTF6070-2ERV  
Figure 22 Improved Current Sense Accuracy with One Calibration Point  
7.3.2  
SENSE Signal Timing  
Figure 23 shows the timing during settling and disabling of the SENSE.  
VINx  
t
ILx  
tON  
tOFF  
tON  
90% of  
IL static  
t
VDEN  
t
t
IISx  
tsIS(LC)  
tsIS(ON)  
tsIS(OFF)  
tsIS(ON_DEN)  
90% of  
IS static  
I
current sensesettlingdisablingtime.emf  
Figure 23 Current Sense Settling / Disabling Timing  
Datasheet  
27  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Diagnostic Functions  
7.3.3  
SENSE Signal in Open Load  
7.3.3.1 Open Load in ON Diagnostic  
If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The  
parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the  
power DMOS is below this value, the device recognizes a failure, if the DEN is selected. In that case, the SENSE  
current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL). Figure 24  
shows the SENSE current behavior in this area. The red curve shows a typical product curve. The blue curve  
shows the ideal current sense.  
IISx  
IIS(OL)  
Sense for OL.emf  
ILx  
IL(OL)  
Figure 24 Current Sense Ratio for Low Currents  
7.3.3.2 Open Load in OFF Diagnostic  
For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the  
calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to  
be taken into account. Figure 25 gives a sketch of the situation. Ileakage defines the leakage current in the  
complete system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion,  
etc... in the application.  
To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel  
x is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized  
by the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is  
switched to the IIS(FAULT)  
.
An additional RPD resistor can be used to pull VOUT to 0 V. Otherwise, the OUT pin is floating. This resistor can  
be used as well for short circuit to battery detection, see Chapter 7.3.4.  
Datasheet  
28  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Diagnostic Functions  
Vbat  
SOL  
VS  
IIS(FAULT)  
OL  
comp.  
OUTx  
ISx  
ILOFF  
Ileakage  
GND  
Valve  
VOL(OFF)  
ZGND  
Open Load in OFF.emf  
Figure 25 Open Load Detection in OFF Electrical Equivalent Circuit  
7.3.3.3 Open Load Diagnostic Timing  
Figure 26 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please  
note that a delay tsIS(FAULT_OL_OFF) has to be respected after the falling edge of the input, when applying an open  
load in OFF diagnosis request, otherwise the diagnosis can be wrong.  
Load is present  
Open load  
VIN  
VOUT  
t
VS-VOL(OFF)  
RDS(ON) x IL  
shutdown with load  
t
t
IOUT  
tsIS(FAULT_OL_ON_OFF)  
IIS  
tsIS(LC)  
Error Settling Disabling Time.emf  
t
Figure 26 Sense Signal in Open Load Timing  
7.3.4  
SENSE Signal with OUT in Short Circuit to VS  
In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit  
impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the  
normal operation will flow through the DMOS of the BTF6070-2ERV, which can be recognized at the current  
sense signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In  
that case, an external resistor to ground RSC_VS is required. Figure 27 gives a sketch of the situation.  
Datasheet  
29  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Diagnostic Functions  
Vbat  
VS  
IIS(FAULT)  
VBAT  
OL  
comp.  
ISx  
OUTx  
VOL(OFF)  
GND  
Valve  
IS  
ZGND  
RIS  
RSC_VS  
Sh or t c irc uit to VS .em f  
Figure 27 Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit  
7.3.5  
SENSE Signal in Case of Overload  
An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or  
the absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the  
thermal shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details.  
In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected.  
The device has a thermal latch behavior, such that when the overtemperature or the exceed dynamic  
temperature condition has disappeared, the DMOS is reactivated only when the IN is toggled LOW to HIGH. If  
the DEN pin is activated the SENSE follows the output stage. If no reset of the latch occurs, the device remains  
in the latching phase and IS(FAULT) at the IS pin, even though the DMOS is OFF.  
7.3.6  
SENSE Signal in Case of Inverse Current  
In the case of inverse current, the sense signal of the affected channel will indicate open load in OFF state and  
indicate open load in ON state. The unaffected channels indicate normal behavior as long as the IINV current is  
not exceeding the maximum value specified in Chapter 5.4.  
Datasheet  
30  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Diagnostic Functions  
7.4  
Electrical Characteristics Diagnostic Functions  
Table 10 Electrical Characteristics: Diagnostics  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
Load Condition Threshold for Diagnostic  
Max.  
Open load detection  
threshold in OFF state  
VS - VOL(OFF)  
4
-
-
-
6
V
VIN = 0 V  
DEN = 4.5 V  
See Figure 26  
P_7.5.1  
P_7.5.2  
P_7.5.36  
V
Open load detection  
threshold in ON state  
IL(OL)  
5
35  
50  
mA VIN = VDEN = 4.5 V  
IIS(OL) = 10 µA  
See Figure 24  
Open load detection  
threshold in ON state  
(10 mA)  
IL2(OL)  
10  
mA VIN = VDEN = 4.5 V  
IIS(OL) = 16 µA  
Sense Pin  
IS pin leakage current  
when sense is disabled  
IIS_(DIS)  
-
0.02  
-
1
µA VIN = 4.5 V  
P_7.5.4  
P_7.5.6  
V
DEN = 0 V  
IL = IL4 = 4 A  
Sense signal saturation  
voltage  
VS - VIS(RANGE) 1.5  
3.5  
V
VIN = 0 V  
V
OUT = VS > 10 V  
VDEN = 4.5 V  
IIS = 6 mA  
Sense signal maximum  
current in fault condition  
IIS(FAULT)  
6
12.5  
70  
30  
75  
mA VIS = VIN = 0 V  
P_7.5.7  
P_7.5.3  
V
V
OUT = VS > 10 V  
DEN = 4.5 V  
See Figure 20  
Sense pin maximum  
voltage  
VIS(AZ)  
65  
V
IIS = 5 mA  
See Figure 20  
Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition  
Current sense ratio  
IL0 = 50 mA  
kILIS0  
kILIS1  
kILIS2  
kILIS3  
kILIS4  
-50% 1900  
-22% 1730  
-12% 1730  
+50%  
+22%  
+12%  
+8%  
VIN = 4.5 V  
VDEN = 4.5 V  
See Figure 21  
TJ = -40°C; 150°C  
P_7.5.8  
P_7.5.9  
P_7.5.10  
P_7.5.11  
P_7.5.12  
Current sense ratio  
IL1 = 0.5 A  
Current sense ratio  
IL2 = 1 A  
Current sense ratio  
IL3 = 2 A  
-8%  
-7%  
1730  
1730  
Current sense ratio  
+7%  
IL4 = 4 A  
Datasheet  
31  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Diagnostic Functions  
Table 10 Electrical Characteristics: Diagnostics (cont’d)  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
0
Unit Note or Test Condition Number  
Min.  
Max.  
1)  
kILIS derating with current ΔkILIS  
and temperature  
-5  
+5  
%
%
k
versus kILIS2  
P_7.5.17  
P_7.5.37  
ILIS3  
See Figure 22  
1)  
kILIS derating with current ΔkILIS  
and temperature  
-8  
-
0
+8  
90  
k
versus kILIS1  
ILIS2  
(kILIS2 -kILIS1  
)
Diagnostic Timing in Normal Condition  
2)3)  
Current sense settling to  
90% of IIS static after  
positive input slope on  
both INput and DEN  
tsIS(ON)  
-
µs  
µs  
µs  
VDEN = VIN = 0 to 4.5 V P_7.5.18  
VS = 28 V  
RIS = 1.8 kΩ  
CSENSE < 100 pF  
RL = 25 Ω  
See Figure 23  
Current sense settling time tsIS(ON_DEN)  
with load current stable  
and transition of the DEN  
-
-
-
-
10  
20  
VIN = 4.5 V  
P_7.5.19  
P_7.5.20  
V
DEN = 0 to 4.5 V  
RIS = 1.8 kΩ  
SENSE < 100 pF  
C
IL = IL3 = 2 A  
See Figure 23  
1)  
Current sense settling time tsIS(LC)  
to IIS stable after positive  
input slope on current load  
V = 4.5 V  
IN  
VDEN = 4.5 V  
RIS = 1.8 kΩ  
C
SENSE < 100 pF  
IL = IL3 = 2 A to IL = IL4 = 4 A  
See Figure 23  
Diagnostic Timing in Open Load Condition  
Current sense settling time tsIS(FAULT_OL_  
-
-
90  
µs  
µs  
VIN = 0 V  
P_7.5.22  
P_7.5.23  
for open load detection in  
VDEN = 0 to 4.5 V  
RIS = 1.8 kΩ  
CSENSE < 100 pF  
OFF)  
OFF state  
V
1)  
OUT = VS = 28 V  
Current sense settling time tsIS(FAULT_OL_  
-
200  
350  
V = 4.5 to 0V  
IN  
for open load detection in  
VDEN = 4.5 V  
ON_OFF)  
ON-OFF transition  
RIS = 1.8 kΩ  
CSENSE < 100 pF  
V
OUT = VS = 28 V  
See Figure 26  
Datasheet  
32  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Diagnostic Functions  
Table 10 Electrical Characteristics: Diagnostics (cont’d)  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or Test Condition Number  
Min.  
Diagnostic Timing in Overload Condition  
Max.  
2)3)  
Current sense settling time tsIS(FAULT)  
-
-
90  
µs  
V =VDEN= 0 to 4.5 V P_7.5.24  
IN  
for overload detection  
VS =13.5 V  
RIS = 1.8 kΩ  
C
SENSE< 100 pF  
VDS = 10 V  
See Figure 19  
1)  
Current sense over current tsIS(OC_blank)  
blanking time  
-
-
350  
-
µs  
µs  
V
= VDEN = 4.5 V  
P_7.5.32  
P_7.5.25  
IN  
RIS = 1.8 kΩ  
SENSE < 100 pF  
C
VDS= 5 V to 0 V  
See Figure 19  
1)  
Diagnostic disable time  
DEN transition to  
IIS < 50% IL / kILIS  
tsIS(OFF)  
-
20  
V = 4.5 V  
IN  
V
DEN = 4.5 V to 0 V  
RIS = 1.8 kΩ  
CSENSE < 100 pF  
IL = IL3 = 2 A  
See Figure 23  
1) Not subject to production test, specified by design  
2) Test at TJ = -40°C only  
3) Production test for functionality within parameter limits  
Datasheet  
33  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Input Pins  
8
Input Pins  
8.1  
Input Circuitry  
The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to  
voltage thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin  
is slowly increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state.  
The input circuitry is compatible with PWM applications. Figure 28 shows the electrical equivalent input  
circuitry. In case the pin is not needed, it must be left opened, or must be connected to device ground (and not  
module ground) via an 10 kΩ input resistor.  
IN  
Input circuitry.emf  
GND  
Figure 28 Input Pin Circuitry  
8.2  
DEN Pin  
The DEN pin enable and disable the diagnostic functionality of the device. The pins have the same structure  
as the INput pins, please refer to Figure 28.  
8.3  
Input Pin Voltage  
The IN and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region, set  
by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown and  
depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a  
hysteresis is implemented. This ensures a certain immunity to noise.  
Datasheet  
34  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Input Pins  
8.4  
Electrical Characteristics  
Table 11 Electrical Characteristics: Input Pins  
VS = 8 V to 36 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 28 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
INput Pins Characteristics  
Low level input voltage  
range  
VIN(L)  
VIN(H)  
-0.3  
2
-
-
0.8  
6
V
V
P_8.4.1  
P_8.4.2  
High level input voltage  
range  
1)  
Input voltage hysteresis  
Low level input current  
High level input current  
DEN Pin  
VIN(HYS)  
IIN(L)  
-
250  
10  
-
mV  
µA  
µA  
P_8.4.3  
P_8.4.4  
P_8.4.5  
1
2
25  
25  
VIN = 0.8 V  
VIN = 5.5 V  
IIN(H)  
10  
Low level input voltage  
range  
VDEN(L)  
VDEN(H)  
-0.3  
2
-
-
0.8  
6
V
V
-
P_8.4.6  
P_8.4.7  
High level input voltage  
range  
-
1)  
Input voltage hysteresis  
Low level input current  
High level input current  
VDEN(HYS)  
IDEN(L)  
-
250  
10  
-
mV  
µA  
µA  
P_8.4.8  
P_8.4.9  
P_8.4.10  
1
25  
25  
VDEN = 0.8 V  
VDEN = 5.5 V  
IDEN(H)  
2
10  
1) Not subject to production test, specified by design  
Datasheet  
35  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Application Information  
9
Application Information  
Note:  
The following information is given as a hint for the implementation of the device only and shall not  
be regarded as a description or warranty of a certain functionality, condition or quality of the device.  
VBAT  
Voltage Regulator  
T1  
OUT  
VS  
GND  
DZ  
CVDD  
CVS  
VS  
VDD  
GPIO  
GPIO  
RDEN  
DEN  
IN0  
RIN  
OUT0  
IN1  
IS0  
GPIO  
RIN  
COUT  
Valve  
ADC IN  
RSENSE  
Micro-  
controller  
CSENSE  
OUT1  
COUT  
IS1  
RSENSE  
ADC IN  
GND  
GND  
Bulb  
CSENSE  
D
Page-1.emf  
Figure 29 Application Diagram with BTF6070-2ERV  
Note:  
This is a very simplified example of an application circuit. The function must be verified in the real  
application.  
Table 12 Bill of Material  
Reference Value  
Purpose  
RIN  
10 kΩ  
Protection of the microcontroller during overvoltage, reverse polarity  
Guarantee BTF6070-2ERV channels OFF during loss of ground  
RDEN  
RPD  
10 kΩ  
47 kΩ  
Protection of the microcontroller during overvoltage, reverse polarity  
Polarization of the output for short circuit to VS detection  
Improve BTF6070-2ERV immunity to electromagnetic noise  
ROL  
1.5 kΩ  
Ensures polarization of the BTF6070-2ERV output during open load in OFF  
diagnostic  
Datasheet  
36  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Application Information  
Table 12 Bill of Material (cont’d)  
Reference Value  
Purpose  
RIS  
1.8 kΩ  
4.7 kΩ  
Sense resistor  
RSENSE  
Overvoltage, reverse polarity, loss of ground. Value to be tuned with  
microcontroller specification.  
CSENSE  
COUT  
T1  
100 pF  
Sense signal filtering.  
10 nF  
Protection of the device during ESD and BCI  
Switch the battery voltage for open load in OFF diagnostic  
Protection of the BTF6070-2ERV during overvoltage  
Protection of the BTF6070-2ERV during reverse polarity  
Protection of the device during overvoltage  
Filtering of voltage spikes at the battery line  
Dual NPN/PNP  
27 Ω  
RGND  
D
BAS21  
Z
58 V Zener diode  
100 nF  
CVS  
9.1  
Further Application Information  
Please contact us to get the pin FMEA  
Existing App. Notes  
For further information you may visit www.infineon.com  
Datasheet  
37  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Package Outlines  
10  
Package Outlines  
1)  
3.9 0.1  
1)  
8.65 0.1  
14x  
SEATING COPLANARITY  
PLANE  
0.67 0.25  
6 0.2  
2)  
0.4 0.05  
14x  
BOTTOM VIEW  
14  
8
8
7
14  
1
7
1
INDEX  
MARKING  
6.4 0.1  
1.27  
All dimensions are in units mm  
The drawing is in compliance with ISO 128-30, Projection Method 1[  
]
1)  
2)  
Does not Include plastic or metal protrusion of 0.15 max. per side  
Dambar protrusion shall be maximum 0.1mm total in excess of width lead width  
Figure 30 PG-TDSO-141) (Plastic Dual Small Outline Package) (RoHS-Compliant)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Legal Disclaimer for Short-Circuit Capability  
Infineon disclaims any warranties and liablilities, whether expressed or implied, for any short-circuit failures  
below the threshold limit.  
Further information on packages  
https://www.infineon.com/packages  
1) Dimensions in mm  
Datasheet  
38  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Revision History  
11  
Revision History  
Version  
Date  
Changes  
Rev. 1.00 2019-04-25  
Creation of the document  
Datasheet  
39  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3.1  
3.2  
3.3  
4
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
PCB Set-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Thermal Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
5
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
5.1  
5.2  
5.3  
5.3.1  
5.3.2  
5.4  
5.5  
6
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.1  
6.2  
6.3  
6.4  
6.5  
6.5.1  
6.5.2  
6.6  
7
7.1  
7.2  
7.3  
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
IS Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . . . . 26  
SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SENSE Signal with OUT in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Electrical Characteristics Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
7.3.1  
7.3.2  
7.3.3  
7.3.3.1  
7.3.3.2  
7.3.3.3  
7.3.4  
7.3.5  
7.3.6  
7.4  
8
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Datasheet  
40  
Rev. 1.00  
2019-04-25  
PROFET™+ 24V  
BTF6070-2ERV  
8.1  
8.2  
8.3  
8.4  
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
DEN Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
9
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
9.1  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
10  
11  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Datasheet  
41  
Rev. 1.00  
2019-04-25  
Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2019-04-25  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2019 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  
Document reference  
BTF6070-2ERV  

相关型号:

BTF60702EKVXUMA1

Buffer/Inverter Based Peripheral Driver, 2.3A, PDSO14, DSO-14
INFINEON

BTFN10P-3RD7

DIP Connector, 10 Contact(s), 2 Row(s), Male, Straight, 0.098 inch Pitch, Solder Terminal, Black Insulator, Plug
AMPHENOL

BTFN10P-3RD7LF

DIP Connector, 10 Contact(s), 2 Row(s), Male, Straight, Solder Terminal, Plug, LEAD FREE
AMPHENOL

BTFN10P-3RF7

DIP Connector, 10 Contact(s), 2 Row(s), Male, Straight, Solder Terminal, Plug
AMPHENOL

BTFN10P-3RF7LF

DIP Connector, 10 Contact(s), 2 Row(s), Male, Straight, Solder Terminal, Plug, LEAD FREE
AMPHENOL

BTFN10S-3SB7

DIP Connector, 10 Contact(s), 2 Row(s), Female, Straight, 0.098 inch Pitch, Solder Terminal, Black Insulator, Receptacle
AMPHENOL

BTFN10S-3SB7LF

DIP Connector, 10 Contact(s), 2 Row(s), Female, Straight, Solder Terminal, Receptacle, LEAD FREE
AMPHENOL

BTFN10S-3SHSLF

DIP Connector, 10 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle, LEAD FREE
AMPHENOL

BTFN10S-3SSDLF

DIP Connector, 10 Contact(s), 2 Row(s), Female, Straight, Surface Mount Terminal, Receptacle, LEAD FREE
AMPHENOL

BTFN10S-3SST

Board Connector, 10 Contact(s), 2 Row(s), Female, Straight, 0.098 inch Pitch, Surface Mount Terminal, Black Insulator, Receptacle
AMPHENOL

BTFN10S-3SSTE1

Board Connector, 10 Contact(s), 2 Row(s), Female, Straight, 0.098 inch Pitch, Surface Mount Terminal, Black Insulator, Plug
AMPHENOL

BTFN10S-3SSTLF

DIP Connector, 10 Contact(s), 1 Row(s), Female, Straight, Surface Mount Terminal, Receptacle, LEAD FREE
AMPHENOL