BTS50025-1TEA [INFINEON]

It features Reverse ON functionality protecting the device in reverse polarity condition (reverse battery). The power transistor is built by an N-channel MOSFET with charge pump. It is specially designed to drive high current nominal loads up to 24 A, for application like heaters, glow plugs, fan and pump in the harsh automotive environment.;
BTS50025-1TEA
型号: BTS50025-1TEA
厂家: Infineon    Infineon
描述:

It features Reverse ON functionality protecting the device in reverse polarity condition (reverse battery). The power transistor is built by an N-channel MOSFET with charge pump. It is specially designed to drive high current nominal loads up to 24 A, for application like heaters, glow plugs, fan and pump in the harsh automotive environment.

驱动 接口集成电路
文件: 总44页 (文件大小:1309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BTS50025-1TEA  
Smart High-Side Power Switch  
1
Overview  
Features  
One channel device  
Low Stand-by current  
Current controlled input  
Reverse battery protection  
Electrostatic discharge protection (ESD)  
Optimized Electromagnetic Compatibility (EMC)  
Compatible to cranking pulses (Severe cold start E11 in LV124)  
Embedded diagnostic functions  
Embedded protection functions  
Green Product (RoHS compliant)  
Applications  
Suitable for resistive, inductive and capacitive loads  
Replaces electromechanical relays, fuses and discrete circuits  
Most suitable for application with high current loads, such heating system, fan and pump  
PWM applications with low frequency  
Product validation  
Qualified for automotive applications. Product validation according to AEC-Q100.  
Description  
The BTS50025-1TEA is a 2.5msingle channel Smart High-Side Power Switch, embedded in a PG-TO-252-5-11  
package, providing protective functions and diagnosis. It contains Infineon® ReverSave™ functionality. The  
power transistor is built by an N-channel MOSFET with charge pump. It is specially designed to drive high  
current loads up to 65A, for application like heaters, glow plugs, fan and pump in the harsh automotive  
environment.  
Data Sheet  
www.infineon.com  
1
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Overview  
Table 1  
Product Summary  
Parameter  
Symbol  
VS(OP)  
Values  
5.8 V … 18 V  
3.1 V ...27 V  
5 mΩ  
Operating Voltage  
Extended supply voltage range  
VS(EXT)  
RDS(ON)  
IL(NOM)  
dkILIS  
Maximum ON-State Resistance (Tj = 150 °C)  
Nominal Load Current (TA = 85°C)  
Typical current sense differential ratio  
Minimum short circuit current threshold  
Maximum reverse battery voltage  
Maximum Stand-by Current at Tj = 25 °C  
24 A  
18000  
65 A  
ICL(0)  
-VS(REV)  
Ivs(off)  
-16 V  
4 µA  
Embedded Diagnostic Functions  
Proportional load current sense  
Short circuit / Overtemperature detection  
Latched status signal after short circuit or overtemperature detection  
Embedded Protection Functions  
Infineon® ReverSave™: Reverse battery protection by self turn ON of power MOSFET  
Short circuit protection with latch  
Overtemperature protection with latch  
Enhanced short circuit operation  
Infineon® SMART CLAMPING  
Type  
Package  
Marking  
BTS50025-1TEA  
PG-TO-252-5-11  
S50025A  
Data Sheet  
2
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Table of Contents  
1
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Product validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
2
3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1  
3.2  
3.3  
Pin Assignment 8  
Pin Definitions and Functions 8  
Voltage and Current Definition 9  
4
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.1  
4.2  
4.3  
Absolute Maximum Ratings 10  
Functional Range 13  
Thermal Resistance 14  
5
5.1  
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Power Stage 15  
5.1.1  
5.1.2  
5.1.3  
5.1.3.1  
5.1.3.2  
5.1.4  
5.1.5  
5.2  
Output ON-State Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Switching Resistive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Switching Inductive Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
PWM Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Advanced switch-off behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Input Pins 19  
5.2.1  
5.3  
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Protection Functions 19  
5.3.1  
5.3.1.1  
5.3.1.2  
5.3.1.3  
5.3.2  
5.4  
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Activation of the Switch into Short Circuit (Short Circuit Type 1) . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Short Circuit Appearance when the Device is already ON (Short Circuit Type 2) . . . . . . . . . . . . 20  
Over-power shutdown (PSD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Diagnostic Functions 22  
5.4.1  
5.4.2  
5.4.3  
5.4.3.1  
5.4.3.2  
5.4.3.3  
5.4.3.4  
IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
SENSE Signal in Different Operation Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
SENSE Signal Variation and Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SENSE Signal in Case of Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SENSE Signal in Case of Over Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Data Sheet  
3
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
6
Electrical Characteristics BTS50025-1TEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
6.1  
6.2  
Electrical Characteristics Table 29  
Typical Performance Characteristics 35  
7
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
7.1  
Further Application Information 41  
8
9
Package Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Data Sheet  
4
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
List of Tables  
Table 1  
Table 2  
Table 3  
Table 4  
Product Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Table 5-1 Sense Signal, Function of Operation Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Table 6-1 Electrical Characteristics: BTS50025-1TEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Table 7-1 Bill of material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Data Sheet  
5
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
List of Figures  
Figure 2-1 Block Diagram for the BTS50025-1TEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 2-2 Internal diode diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Figure 3-1 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Figure 3-2 Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Figure 1  
Figure 2  
Figure 3  
Maximum Energy Dissipation for Inductive Switch OFF, EAS/AR vs. IL at VS = 13.5 V . . . . . . . . . . . . 12  
Maximum Energy Dissipation Repetitive Pulse temperature derating. . . . . . . . . . . . . . . . . . . . . . . 12  
Typical Transient Thermal Impedance Zth(JA) = f(time) for Different PCB Conditions . . . . . . . . . . 14  
Figure 5-1 Switching a Resistive Load: Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Figure 5-2 Output Clamp. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 5-3 Switching an Inductance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Figure 5-4 Switching in PWM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Figure 5-5 Input Pin Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Figure 5-6 Diagram of Diagnosis & Protection Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Figure 5-7 Over Power Shutdown behavior at low voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Figure 5-8 Behavior of the BTS50025-1TEA during PWM operation above FIN max . . . . . . . . . . . . . . . . . . . . . 21  
Figure 5-9 Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Figure 5-10 Diagnostic Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Figure 5-11 Current Sense for Nominal and Overload Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Figure 5-12 IIL0 and IISO definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Figure 5-13 Improved Current Sense Accuracy after 2-Point Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Figure 5-14 Fault Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Figure 7-1 Application Diagram with BTS50025-1TEA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 8-1 PG-TO-252-5-11 (RoHS-Compliant) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Data Sheet  
6
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Block Diagram  
2
Block Diagram  
VS  
voltage sensor  
over  
temperature  
Smart clamp  
gate control  
&
charge  
pump  
driver  
logic  
over current  
switch OFF  
IN  
ESD  
protection  
OUT  
load current sense  
IS  
Figure 2-1 Block Diagram for the BTS50025-1TEA  
VCC  
2mA  
75V  
75V  
35V  
OUT  
IFB  
IN  
Figure 2-2 Internal diode diagram  
Data Sheet  
7
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
3
1 2  
4 5  
Figure 3-1 Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin  
1
Symbol Function  
OUT  
IN  
OUTput; Protected high side power output channel1)  
INput; Digital signal to switch ON channel with Bipolar or Mosfet (active “low”)  
Supply Voltage; Battery voltage  
2
3, Cooling tab VS  
4
5
IS  
Sense; Analog/Digital signal for diagnosis, if not used: left open  
OUTput; Protected high side power output channel1)  
OUT  
1) All output pins are internally connected and they also have to be connected together on the PCB. Not shorting all  
outputs on PCB will considerably increase the ON-state resistance and decrease the current sense / overcurrent  
tripping accuracy. PCB traces have to be designed to withstand the maximum current.  
Exact path resistance matching on both outputs to common point is needed also for short circuit robustness and  
reliability at high current.  
Data Sheet  
8
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Pin Configuration  
3.3  
Voltage and Current Definition  
Figure 3-2 shows all terms used in this data sheet, with associated convention for positive values.  
I VS  
VS  
VS  
I IN  
IN  
V DS  
IOUT  
OUT  
VIN  
VOUT  
IIS  
V IS  
IS  
Figure 3-2 Voltage and Current Definition  
Data Sheet  
9
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 2  
Absolute Maximum Ratings1)  
Tj = -40°C to +150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Supply Voltages  
Supply Voltage  
VS  
-0.3  
0
35  
18  
V
V
2)  
P_4.1.1  
P_4.1.2  
Reverse Polarity Voltage  
-VS(REV)  
V =0 V  
in  
TA = 25°C  
RL 0.68 Ω  
t < 5 min.  
Load Dump Voltage  
VS(LD)  
45  
V
Suppressed  
Load Dump acc.  
to ISO16750-2  
RI = 2 Ω  
P_4.1.3  
td=200ms  
Us=100V  
RL = 0.68 Ω  
RIS = 1 kΩ  
V
S(LD) = US*  
Short Circuit Capability  
Supply Voltage for Short Circuit VS(SC)  
Protection  
3.1  
27  
V
In accordance to P_4.1.4  
AEC Q100-012,  
Figure-1 Test  
Circuit.  
Input Pin  
Voltage at IN pin  
Vs - Vin  
IIN  
-16  
-50  
75  
V
P_4.1.6  
Current through IN pin  
Maximum Input Frequency  
50  
mA  
Hz  
Hz  
P_4.1.20  
Fin  
200  
200  
5.8V<VS - VIN<27V P_4.1.7  
P_4.1.8  
Maximum Retry Cycle Rate in  
Fault Condition  
Ffault  
Data Sheet  
10  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
General Product Characteristics  
Table 2  
Absolute Maximum Ratings1) (cont’d)  
Tj = -40°C to +150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Sense Pin  
Voltage at IS pin  
Current through IS Pin  
Power Stage  
Vs - Vis  
-0.3  
-50  
75  
50  
V
P_4.1.9  
IIS  
mA  
P_4.1.10  
Maximum Energy Dissipation by EAS  
Switching Off Inductive Load  
Single Pulse over Lifetime  
600  
130  
80  
mJ  
mJ  
mJ  
V
VS = 13.5 V  
IL = 19 A  
TJ(0) 150°C  
See Figure 1  
3)VS = 13.5 V  
IL = 19A  
P_4.1.11  
P_4.1.12  
P_4.1.13  
P_4.1.14  
Maximum Energy Dissipation  
Repetitive Pulse  
EAR  
TJ(0) 105°C  
See Figure 1  
3)VS = 13.5 V  
IL =40 A  
Maximum Energy Dissipation  
Repetitive Pulse  
EAR  
TJ(0) 105°C  
See Figure 1  
Voltage at OUT Pin  
Temperatures  
VS - VOUT -0.3  
35  
Junction Temperature  
TJ  
-40  
150  
60  
°C  
K
P_4.1.15  
P_4.1.16  
Dynamic Temperature Increase TJ  
while Switching  
Storage Temperature  
ESD Susceptibility  
TSTG  
-55  
150  
°C  
P_4.1.17  
ESD Susceptibility (all Pins)  
VESD(HBM) -2  
2
kV  
kV  
V
HBM4)  
HBM4)  
CDM5)  
CDM5)  
P_4.1.18  
P_4.1.19  
P_4.1.21  
P_4.1.22  
ESD Susceptibility OUT Pin vs. VS VESD(HBM) -4  
ESD Susceptibility (all Pins) VESD(CDM) -500  
ESD Susceptibility (corner Pins) VESD(CD -750  
4
500  
750  
V
1) Not subject to production test, specified by design.  
2) The device is mounted on a FR4 2s2p board according to Jedec JESD51-2,-5,-7 at natural convection.  
3) Setup with repetitive EAR and superimposed TC conditions (like AEC-Q100-PTC, 106 pulses with E EAR, 103 passive  
temperature cycles), parameter drift within datasheet limits possible  
4) ESD susceptibility, Human Body Model “HBM” according to AEC Q100-002.  
5) ESD susceptibility, Charged Device Model “CDM” according to AEC Q100-011.  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are  
not designed for continuous repetitive operation.  
Data Sheet  
11  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
General Product Characteristics  
2.0  
1.5  
1.0  
0.5  
0.0  
Eas - TJ(0)<150°C  
Ear - TJ(0)<105°C  
0
10  
20  
IL(0) [A]  
30  
40  
50  
60  
Figure 1  
Maximum Energy Dissipation for Inductive Switch OFF, EAS/AR vs. IL at VS = 13.5 V  
100%  
80%  
60%  
40%  
20%  
0%  
100  
110  
120  
130  
140  
150  
Tj(0) [°C]  
Figure 2  
Maximum Energy Dissipation Repetitive Pulse temperature derating  
Data Sheet  
12  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
General Product Characteristics  
4.2  
Functional Range  
Table 3  
Functional Range  
Parameter  
Symbol  
VS(NOM)  
VS(EXT)  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Supply Voltage Range for  
Nominal Operation  
5.8  
18  
V
P_4.2.1  
P_4.2.2  
Supply Voltage Range for  
Extended Operation  
3.1  
27  
V
1)Parameter  
deviation possible  
1) Protection functions still operative  
Note:  
Within the functional or operating range, the IC operates as described in the circuit description. The  
electrical characteristics are specified within the conditions given in the Electrical Characteristics  
table.  
Data Sheet  
13  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
General Product Characteristics  
4.3  
Thermal Resistance  
Note:  
This thermal data was generated in accordance with JEDEC JESD51 standards. For more  
information, go to www.jedec.org.  
Table 4  
Thermal Resistance  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
0.8  
1)  
Junction to Case  
RthJC  
K/W  
K/W  
K/W  
P_4.3.1  
P_4.3.2  
P_4.3.3  
1)2)  
1)3)  
Junction to Ambient  
Junction to Ambient  
RthJA(2s2p)  
RthJA(1s0p/600  
mm2)  
22  
35  
1) Not subject to production test, specified by design.  
2) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The Product  
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with 2 inner copper layers (2 × 70 µm Cu, 2 × 35 µm  
Cu). Where applicable a thermal via array under the exposed pad contacted the first inner copper layer. TA = 25°C.  
Device is dissipating 2 W power.  
3) Specified RthJA value is according to Jedec JESD51-2,-5,-7 at natural convection on FR4 1s0p board; the Product  
(Chip+Package) was simulated on a 76.2 × 114.3 × 1.5 mm board with only one top copper layer 1 × 70 µm. TA = 25°C.  
Device is dissipating 2 W power.  
Figure 3 is showing the typical thermal impedance of BTS50025-1TEA mounted according to JEDEC JESD51-  
2,-5,-7 at natural convection on FR4 1s0p and 2s2p boards.  
100  
JEDEC 1s0p / 600mm²  
JEDEC 1s0p / 300mm²  
JEDEC 1s0p / footprint  
10  
JEDEC 2s2p  
1
0.1  
0.01  
0.0001  
0.001  
0.01  
0.1  
time [sec]  
1
10  
100  
1000  
Figure 3  
Typical Transient Thermal Impedance Zth(JA) = f(time) for Different PCB Conditions  
Data Sheet  
14  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Functional Description  
5
Functional Description  
5.1  
Power Stage  
The power stage is built by a N-channel power MOSFET (DMOS) with a charge pump.  
5.1.1  
Output ON-State Resistance  
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Page 35  
shows the dependencies in terms of temperature and supply voltage, for the typical ON-state resistance. The  
behavior in reverse polarity is described in Chapter 5.2.1.  
A LOW signal (see Chapter 5.1.2) at the input pin causes the power DMOS to switch ON with a dedicated slope,  
which is optimized in terms of EMC emission.  
5.1.2  
Switching Resistive Loads  
Figure 5-1 shows the typical timing when switching a resistive load. The power stage has a defined switching  
behavior. Defined slew rates results in lowest EMC emission at minimum switching losses.  
VOUT  
VOUT  
80%VS  
50  
V
%
S
dVOFF/dt  
dVON/dt  
V
IN  
25%VS  
V
S
20%  
tOFF( DELAY)  
t F  
V
IN  
tON DELAY)  
t R  
(
Figure 5-1 Switching a Resistive Load: Timing  
5.1.3  
Switching Inductive Loads  
5.1.3.1 Output Clamping  
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,  
because the inductance intends to continue driving the current. To prevent the destruction of the device due  
to high voltages, there is a Infineon® SMART CLAMPING mechanism implemented that keeps negative output  
voltage to a certain level (VS - VDS(CL)). Please refer to Figure 5-2 and Figure 5-3 for details. Nevertheless, the  
maximum allowed load inductance remains limited.  
Data Sheet  
15  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Functional Description  
VS  
VIN  
Smart  
Clamp  
VDS  
IN  
LOGIC  
IL  
VS  
OUT  
VOUT  
L, RL  
Figure 5-2 Output Clamp  
V
IN  
t
t
VOUT  
VS  
Gnd  
VS - VDS(Fast off)  
VS-VDS(CL)  
IOUT  
t
t
T
j
TJ0  
Figure 5-3 Switching an Inductance  
The BTS50025-1TEA provides Infineon® SMART CLAMPING functionality. To increase the energy capability, the  
clamp voltage VDS(CL) increases with junction temperature TJ and with load current IL. Refer to Page 37.  
Data Sheet  
16  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Functional Description  
5.1.3.2 Maximum Load Inductance  
During demagnetization of inductive loads, energy must be dissipated in the BTS50025-1TEA. This energy can  
be calculated with following equation:  
L
RL  
VS VDS(CL)  
RL × IL  
E = VDS(CL)  
×
×
[
× ln  
(
1 −  
) + IL]  
RL  
VS VDS(CL)  
(5.1)  
Following equation simplifies under the assumption of RL = 0 .  
1
VS  
E = × L × IL2 ×  
2
(
1 −  
)
VS VDS(CL)  
(5.2)  
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 1 for  
the maximum allowed energy dissipation as function of the load current.  
Data Sheet  
17  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Functional Description  
5.1.4  
PWM Switching  
The switching losses during this operation should be properly considered (see following equation):  
PTOTAL = (switching_ON_energy + switching_OFF_energy + IL2 × RDS(ON) × tDC) / period  
In the event of a fault condition it has to be ensured, that the PWM frequency will not exceed a maximum retry  
frequency of fFAULT (parameter P_4.1.9). With this measure the short circuit robustness nRSC1 (parameter  
P_4.1.4) can be utilized. Operation at nominal PWM frequency can only be restored, once the fault condition  
is overcome.  
VS -V IN  
VIN_H  
VIN_L  
t
P
PTOT  
t
tDC  
Figure 5-4 Switching in PWM  
5.1.5  
Advanced switch-off behavior  
In order to reduce device stress when switching OFF Inductive and critical loads, the device provides an  
advanced switch off functionality which results in a faster switch off behavior. This fast switch off functionality  
is triggered by one the following conditions:  
The device is commanded off by applying VIN(L) at the IN pin. During the switch OFF operation the OUT pins’  
voltage in respect to VS pin drops below Vds(fast off). See Figure 5-3.  
The device is commanded on or is already in on-state. The device then detects a short circuit condition  
(IL ICL(0)) and initiates a protective switch off. Please refer to Chapter 5.3.1.1 and Chapter 5.3.1.2 for  
details.  
The device is commanded on or is already in on-state. The device then detects an over-temperature  
condition.  
Data Sheet  
18  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Functional Description  
5.2  
Input Pins  
5.2.1  
Input Circuitry  
The input circuitry is referenced to VS. To turn on the device VS - VIN must be higher than VIN(H) and lower than  
VIN(L) to turn off the device. The most common way is to use a bipolar transistor to connect the input pin to the  
ground. When the device is latched in protection mode VS - VIN must be lower than VIN(L) and Iin lower than IIN(L)  
in order to reset the latch. The device provides Infineon® ReverSave™ functionality which turns on the power  
mosfet in reverse polarity. This functionality required to have a diode in parallel of the bipolar transistor.  
Figure 5-5 shows the electrical equivalent input circuitry.  
VS  
2mA  
75V  
IN  
RIN  
Figure 5-5 Input Pin Circuitry  
5.3  
Protection Functions  
The device provides embedded protective functions. Integrated protection functions are designed to prevent  
the destruction of the IC from fault conditions described in the data sheet. Fault conditions are considered as  
“outside” normal operating range. Protection functions are designed neither for continuous nor for repetitive  
operation.  
Figure 5-6 describes the typical functionality of the diagnosis and protection block.  
Data Sheet  
19  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Functional Description  
VS  
VDS  
Vb,IS  
VS  
ESD  
protection  
IN  
current  
sense  
Driver  
IIS(fault)  
Over-  
current  
IL  
IS  
1
0
(IL/dkILIS  
)
IIS0  
OUT  
VIS  
tIN(RESET  
DELAY)  
IIS  
&
R
S
Q
RIS  
IL>ICL  
1
&
FAULT  
Q
TJ >TJ(TRIP)  
driver logic Power Shutdown (PSD)  
GND  
Figure 5-6 Diagram of Diagnosis & Protection Block  
5.3.1  
Overload Protection  
In case of overload, high inrush current or short circuit to ground, the BTS50025-1TEA offers several protection  
mechanisms. Any protective switch OFF latches the output. To restart the device, it is necessary to set Vs - Vin  
< Vin(l) and Iin lower than IIN(L) for t > tIN(RESETDELAY). This is a latch behavior. Figure 5-9 gives a sketch of the  
situation.  
5.3.1.1 Activation of the Switch into Short Circuit (Short Circuit Type 1)  
When the switch is activated into short circuit, the current will raise. When the output current reaches ICL(0)  
value, the device is latched and will turn off after tOFF(TRIP) regardless the output current value. For overload  
(short circuit or overtemperature), the maximum retry cycle (ffault) under fault condition must be considered.  
5.3.1.2 Short Circuit Appearance when the Device is already ON (Short Circuit Type 2)  
When the device is in ON state and a short circuit to ground appears at the output (SC2) with an overcurrent  
higher than ICL(0), the device automatically turns OFF and latches the device.  
5.3.1.3 Over-power shutdown (PSD)  
The BTS50025-1TEA integrates an over-power shutdown protection in order to limit the power dissipation.  
This protection intends to limit the maximum junction temperaturee in case of soft short circuit(IL < ICL(0)),  
repetitive short circuit or short circuit at low voltage.  
In case of a short circuit at low voltage with high resistor or inductor in the battery line, Vs can drop below VVS-  
VIN(PSD) and the load current will not reach the ICL(0) . In such condition the over-power shutdown protection will  
be activated and will latch the device after tPSD(UV)  
.
Data Sheet  
20  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Functional Description  
VIN  
VS  
t
VVS-VIN(PSD  
)
VINL  
ICL(0)  
IOUT  
VDS  
VDS(PSD)  
tPSD(UV)  
Figure 5-7 Over Power Shutdown behavior at low voltage  
It also limits the maximum PWM frequency below FIN. See Figure 5-8  
Input frequency < Fin max  
Input frequency < Fin max  
Input frequency > Fin max  
Vin-Gnd  
t
t
Vout-Gnd  
Vifb  
t
Missing pulses – Part is latched  
Normal operation  
Normal operation  
Figure 5-8 Behavior of the BTS50025-1TEA during PWM operation above FIN max  
5.3.2  
Temperature Limitation in the Power DMOS  
The BTS50025-1TEA incorporates a temperature sensor. Triggering the over-temperature (TJ(TRIP)) will switch  
OFF the Power Mosfet to prevent destruction and latches the device.  
Data Sheet  
21  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Functional Description  
tIN (RESETDELAY)  
IN  
IL  
t
t
tOFF( TRIP)  
tOFF( TRIP)  
ICL(1)  
ICL(0)  
T
J
TJ( TRIP)  
TA  
t
t
IIS  
IIS(  
FAULT)  
0
Figure 5-9 Overload Protection  
The current sense exact signal timing can be found in the Chapter 5.4.3.2. It is represented here only for  
device’s behavior understanding.  
5.4  
Diagnostic Functions  
For diagnosis purposes, the BTS50025-1TEA provides a combination of digital and analog signal at pin IS.  
5.4.1  
IS Pin  
The BTS50025-1TEA provides an enhanced current sense signal called IIS at pin IS. As long as no “hard” failure  
mode occurs (short circuit to GND / overcurrent / overtemperature) and the condition VIS VOUT - 3.5 V is  
fulfilled, a proportional signal to the load current is provided. The complete IS pin and diagnostic mechanism  
is described in Figure 5-10. The accuracy of the sense current depends on temperature and load current. In  
case of failure, a fixed IIS(FAULT) is provided. In order to get the fault current in the specified range, the condition  
VS - VIS 3.5 V must be fulfilled.  
Data Sheet  
22  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Functional Description  
VS  
IIS( FAULT)  
(IL /dk ILIS ) IIS(0)  
Z
IS(AZ)  
FAULT  
1
0
IS  
Figure 5-10 Diagnostic Block Diagram  
5.4.2  
SENSE Signal in Different Operation Modes  
Table 5-1 Sense Signal, Function of Operation Mode1)  
Operation mode  
Input Level  
Output Level VOUT Diagnostic Output (IS)2)  
Normal operation  
Short circuit to GND  
Overtemperature  
Short circuit to VS  
Open Load  
HIGH (OFF)  
GND  
GND  
GND  
VS  
IIS(OFF)  
IIS(OFF)  
IIS(OFF)  
IIS(OFF)  
Z
IIS(OFF)  
Normal operation  
Short circuit to GND  
Overtemperature (after the event)  
Short circuit to VS  
LOW (ON)  
~ VS  
GND  
GND  
VS  
IIS = (IL / dkILIS) ± IIS0  
IIS(FAULT)  
IIS(FAULT)  
IIS < IL / dkILIS ± IIS0  
IIS0  
Open Load  
VS  
1) Z = High Impedance  
2) See Chapter 5.4.3 for Current Sense Range and Improved Current Sense Accuracy.  
5.4.3  
SENSE Signal in the Nominal Current Range  
Figure 5-11 and Figure 5-13 show the current sense as function of the load current in the power DMOS.  
Usually, a pull-down resistor RIS is connected to the current sense pin IS. A typical value is 1 k. The dotted  
curve represents the typical sense current, assuming a typical dkILIS factor value. The range between the two  
solid curves shows the sense accuracy range that the device is able to provide, at a defined current.  
IL  
dkILIS  
IIS  
=
+ IIS0 with (IIS ≥ 0)  
(5.3)  
Data Sheet  
23  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Functional Description  
where the definition of dkILIS is:  
IL3  
-
-
IL1  
IIS1  
dkILIS  
=
IIS3  
(5.4)  
(5.5)  
(5.6)  
the definition of IIS0 is:  
IL1  
dkILIS  
IIS0 = IIS1  
and the definition of IL0 is:  
IIL0 = IIL1
IS1 × dkILIS  
5
4.5  
4
dKILIS min.  
dKILIS typ.  
dKILIS max.  
3.5  
3
2.5  
2
1.5  
1
0.5  
0
0
20  
40  
60  
80  
IL[A]  
Figure 5-11 Current Sense for Nominal and Overload Condition  
Data Sheet  
24  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Functional Description  
0.02  
0.015  
0.01  
dkILIS(min)  
dkILIS(typ)  
IIS0(max)  
dkILIS(max)  
0.005  
0
IIL0(min)  
IIL0(max)  
-0.005  
-0.01  
-0.015  
-0.02  
IIS0(min)  
-0.5  
-0.4  
-0.3  
-0.2  
-0.1  
0
0.1  
0.2  
0.3  
0.4  
0.5  
IL[A]  
Figure 5-12 IIL0 and IISO definition  
5.4.3.1 SENSE Signal Variation and Calibration  
In some applications, an enhanced accuracy is required around the device nominal current range IL(NOM). To  
achieve this accuracy requirement, a calibration on the application is possible. After two point calibration, the  
BTS50025-1TEA will have a limited IIS value spread at different load currents and temperature conditions. The  
IIS variation can be described with the parameters (dkILIS(cal)) and the IIS0(cal). The blue solid line in  
Figure 5-13 is the current sense ratio after the two point calibration at a given temperature. The slope of this  
line is defined as follows:  
IIS(cal)2 IIS(cal)1  
1
=
dkILIS(cal) IL(cal)2 IL(cal)1  
(5.7)  
The offset is defined as follows:  
IL(cal)1  
dkILIS(cal)  
IL(cal)2  
dkILIS(cal)  
IIS0(cal) = IIS(cal)1  
= IIS(cal)2  
(5.8)  
The bluish area in Figure 5-13 is the range where the current sense ratio can vary across temperature and load  
current after performing the calibration. The accuracy of the load current sensing is improved and, given a  
sense current value IIS (measured in the application), the load current can be calculated as follow, using the  
absolute value for (dkILIS(cal)) instead of % values:  
IL = dkILIS(cal)  
×
(1 + ∆(dkILIS(cal)  
)
)
×
(
IIS IIS0(cal) ∆IIS0(cal)  
)
(5.9)  
Data Sheet  
25  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Functional Description  
where dkILIS(cal) is the current sense ratio measured after two-points calibration (defined in Equation (5.7)),  
IIS0(cal) is the current sense offset (calculated after two points calibration, see Equation (5.8)), and IIS0(cal) is  
the additional variation of the individual offset over life time and temperature. For a calibration at 25°C IIS0(cal)  
varies over temperature and life time for all positive IIS0(cal) within the differences of the temperature  
dependent Max. limits. All negative IIS0(cal) vary within the differences of the temperature dependent Min.  
limits.  
For positive IIS0(cal) values (IIS0(cal) > 0):  
Max IIS0 (@TJ = 150°C)
Max IIS0 (@TJ = 25°C) ≤ ∆IIS0(cal) ≤ Max IIS0 (@TJ = -40°C)
Max IIS0 (@TJ = 25°C)  
(5.10)  
For negative IIS0(cal) values (IIS0(cal) < 0):  
Min IIS0 (@TJ = 150°C)
Min IIS0 (@TJ = 25°C) ≥ ∆IIS0(cal) ≥ Min IIS0 (@TJ = -40°C)
Min IIS0 (@TJ = 25°C)  
(5.11)  
Equation (5.9) actually provides four solutions for load current, considering that (dkILIS(cal)) and IIS0(cal) can  
be both positive and negative. The load current IL for any sense current IIS will spread between a minimum IL  
value resulting from the combination of lowest (dkILIS(cal)) value and highest IIS0(cal) and a maximum IL value  
resulting from the combination of highest (dkILIS(cal)) value and lowest IIS0(cal)  
.
IIS  
1/dkILIS(min)  
ΔdkILIS(cal)  
1/dkILIS(cal)  
ΔdkILIS(cal)  
1/dkILIS(max)  
IIS(cal)2  
IIS  
IIS(cal)1  
ΔIIS0(cal)  
IIS0(cal)  
Max IL  
Min IL Typ IL  
IL  
IL(cal)1  
IL(cal)2  
ΔIIS0(cal)  
Figure 5-13 Improved Current Sense Accuracy after 2-Point Calibration  
Data Sheet  
26  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Functional Description  
5.4.3.2 SENSE Signal Timing  
Figure 5-14 shows the timing during settling and disabling of the sense.  
tOFF<tIN( RESETDELAY)  
V
IN  
tOFF>t  
IN( RESETDELAY)  
Short/  
t
t
Overtemp./  
PSD  
VOUT  
IIS  
IS(fault)t  
I
IIS  
t
latch  
no  
reset  
reset  
V
IN  
V
IN  
t
t
t
Short  
circuit  
t
tON  
IL  
80 % of  
IL static  
t
VOUT  
VOUT  
tsIS(ON)  
tsIS(ON)_90  
t
IIS  
90 % of  
IS static  
IIS  
IIS( fault)  
IIS  
tsIS(LC)  
t
t
tpIS( FAULT)  
Figure 5-14 Fault Acknowledgement  
5.4.3.3 SENSE Signal in Case of Short Circuit to VS  
In case of a short circuit between OUT and VS, a major part of the load current will flow through the short  
circuit. As a result, a lower current compared to the nominal operation will flow through the DMOS of the  
BTS50025-1TEA, which can be recognized at the current sense signal.  
5.4.3.4 SENSE Signal in Case of Over Load  
An over load condition is defined by a current flowing out of the DMOS reaching the current over load ICL or the  
junction temperature reaches the thermal shutdown temperature TJ(TRIP). Please refer to Chapter 5.3.1 for  
details. In that case, the SENSE signal will be IIS(FAULT) when the IN pin stays LOW.  
Data Sheet  
27  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Functional Description  
This is a device with latch functionality. The state of the device will remain and the sense signal will remain on  
IIS(FAULT) until a reset signal comes from the IN pin. For example, when a thermal shutdown occurs, even when  
the over temperature condition has disappeared, the DMOS can only be reactivated when a reset signal is sent  
to the IN pin.  
Data Sheet  
28  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Electrical Characteristics BTS50025-1TEA  
6
Electrical Characteristics BTS50025-1TEA  
6.1  
Electrical Characteristics Table  
Table 6-1 Electrical Characteristics: BTS50025-1TEA  
VS =5.8 V to 18 V, Tj = -40°C to +150°C (unless otherwise specified)  
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Operating and Standby Currents  
Standby Current for Whole IVS(OFF)  
Device with Load  
1
4
µA  
µA  
1)VS = 18 V  
VOUT = 0 V  
Vin = Vs  
TJ 85°C  
See Page 35  
P_6.1.1  
Maximum Standby Current IVS(OFF)  
for Whole Device with Load  
10  
100  
VS = 18 V  
VOUT = 0 V  
Vin = Vs  
TJ 150°C  
See Παγε 35  
P_6.1.2  
P_6.1.3  
Power Stage  
ON-State Resistance in  
Forward Condition  
RDS(ON)  
4.4  
5
mΩ  
IL = 20 A  
Vs - Vin 5.8 V  
TJ = 150°C  
See Παγε 35  
ON-State Resistance in  
Forward Condition  
RDS(ON)  
RDS(ON)  
RDS(ON)  
2.7  
6
mΩ  
mΩ  
mΩ  
1)IL = 20 A  
Vs - Vin 5.8 V  
TJ = 25°C  
P_6.1.4  
P_6.1.5  
P_6.1.6  
ON-State Resistance in  
Forward Condition, Low  
Battery Voltage  
20  
IL = 12 A  
Vs - Vin 3.1 V  
TJ = 150°C  
1)IL = 12 A  
Vs - Vin 3.1 V  
TJ = 25°C  
ON-State Resistance in  
Forward Condition, Low  
Battery Voltage  
3.5  
Nominal Load Current  
IL(NOM)  
VDS(CL)  
24  
30  
26  
35  
A
V
2)TA = 85°C  
TJ 150°C  
P_6.1.7  
P_6.1.8  
Drain to Source Smart  
Clamp Voltage VDS(CL) = VS -  
VOUT  
45  
IDS = 10 mA  
TJ = 25°C  
See Page 37  
Drain to Source Smart  
Clamp Voltage VDS(CL) = VS -  
VOUT  
VDS(CL)  
35  
39  
50  
V
V
IDS = 10 mA  
TJ = 150°C  
See Page 37  
1)See Page 16  
P_6.1.9  
Fast turn off detection  
voltage  
VDS(FAST)  
28  
P_6.1.10  
Data Sheet  
29  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Electrical Characteristics BTS50025-1TEA  
Table 6-1 Electrical Characteristics: BTS50025-1TEA (cont’d)  
VS =5.8 V to 18 V, Tj = -40°C to +150°C (unless otherwise specified)  
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
0.6  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Body diode Forward voltage VF  
0.8  
V
IOUT = -20A  
P_6.1.11  
P_6.1.12  
TJ = 150°C  
Output Leakage Current  
Output Leakage Current  
IL(OFF)  
1
4
µA  
1)VS = 18 V  
VOUT = 0 V  
Vin = Vs  
TJ 85°C  
( 10ms after  
VS = VIN  
)
IL(OFF)  
10  
100  
µA  
VS = 18 V  
VOUT = 0 V  
Vin = Vs  
P_6.1.13  
TJ 150°C  
( 10ms after  
VS = VIN  
)
Turn ON Slew Rate  
VOUT = 25% to 50% VS  
dVON/dt  
-dVOFF/dt  
tr  
0.05  
0.05  
10  
0.25  
0.25  
50  
1
V/µs RL = 0.68 Ω  
VS = 13.5 V  
P_6.1.14  
P_6.1.15  
P_6.1.16  
P_6.1.17  
P_6.1.18  
P_6.1.19  
P_6.1.20  
See Figure 5-1  
See Page 36  
Turn OFF Slew Rate  
VOUT = 50% to 25% VS  
1
V/µs  
Rising time during turn on  
VOUT from 20% to 80% of VS  
150  
150  
250  
450  
µs  
Falling time during turn off tf  
VOUT from 80% to 20% of VS  
10  
50  
µs  
Turn ON Time to  
VOUT = 20% of VS  
tON(DELAY)  
tOFF(DELAY)  
EON  
10  
50  
µs  
Turn OFF Time to  
VOUT = 80% of VS  
50  
150  
5.5  
µs  
Switch ON Energy  
mJ  
1)RL = 0.68 Ω  
VS = 13.5 V  
See Page 37  
Switch OFF Energy  
EOFF  
4
mJ  
1)RL = 0.68 Ω  
VS = 13.5 V  
P_6.1.21  
See Page 37  
Data Sheet  
30  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Electrical Characteristics BTS50025-1TEA  
Table 6-1 Electrical Characteristics: BTS50025-1TEA (cont’d)  
VS =5.8 V to 18 V, Tj = -40°C to +150°C (unless otherwise specified)  
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Input Pin  
LOW Level Input Voltage  
HIGH Level Input Voltage  
Input Voltage Hysteresis  
On stage Input Current  
VVS-VIN(L)  
VVS-VIN(H)  
VVS-VIN(HYS)  
IIN(ON)  
2.3  
4
2.7  
4.8  
2.1  
2
3.1  
5.8  
2.5  
4
V
P_6.1.22  
P_6.1.23  
P_6.1.24  
P_6.1.25  
V
1.7  
1
V
mA  
VS - VIN = 18 V,  
VS = 18V  
LOW Level Input Current  
Input resistor  
IIN(L)  
Rin  
100  
115  
µA  
VIN = Vin(L)  
P_6.1.26  
P_6.1.27  
200  
300  
Built-in  
Protection: Reverse Polarity  
ON-State Resistance in  
Reverse Polarity  
RDS(REV)  
5
4
10  
mΩ  
mΩ  
VS = 0 V  
VS - VIN = -16 V  
IL = -20 A  
TJ = 150°C  
1)VS = 0 V  
P_6.1.28  
ON-State Resistance in  
Reverse Polarity  
RDS(REV)  
P_6.1.29  
VS - VIN = -16 V  
IL = -20 A  
TJ = 25°C  
See Page 37  
Protection: Overload  
Current Trip Detection Level ICL(0)  
65  
82  
100  
A
5.8V < VS - VIN<  
27V  
P_6.1.30  
See Figure 5-9  
Current Trip Detection Level ICL(0_UV)  
at low voltage  
12  
65  
82  
120  
140  
A
VS = 3.1V  
P_6.1.32  
P_6.1.33  
Current Trip Maximum Level ICL(1)  
92  
A
dIL/dt = 1 A/µs  
See Figure 5-9  
1)See Figure 5-9 P_6.1.34  
Overload Shutdown Delay  
Time  
tOFF(TRIP)  
TJ(TRIP)  
7
µs  
°C  
Thermal Shutdown  
Temperature  
150  
1751)  
2001)  
See Figure 5-9  
3.1V < VS - VIN<  
27V  
P_6.1.35  
Over Power Shutdown  
Detection Level  
VDS(PSD)  
650  
3.8  
10  
900  
4.3  
50  
1100  
5
mV  
V
1)See Figure 5-7 P_6.1.36  
Over Power Shutdown  
Activation Level  
VVS-VIN(PSD)  
1)See Figure 5-7 P_6.1.37  
Over Power Shutdown Time tPSD(UV)  
300  
µs  
See Figure 5-7  
P_6.1.38  
Data Sheet  
31  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Electrical Characteristics BTS50025-1TEA  
Table 6-1 Electrical Characteristics: BTS50025-1TEA (cont’d)  
VS =5.8 V to 18 V, Tj = -40°C to +150°C (unless otherwise specified)  
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Diagnostic Function: Sense Pin  
Sense Signal Current in Fault IIS(FAULT)  
Condition  
5
12  
18  
mA  
mA  
VS - VIS 3.5 V  
Typ. and Max.  
value: VS -  
VIS 8 V  
1)VS - VIS 3.5 V P_6.1.40  
P_6.1.39  
Sense Signal Saturation  
Current  
IIS(LIM)  
4.4  
6.5  
Data Sheet  
32  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Electrical Characteristics BTS50025-1TEA  
Table 6-1 Electrical Characteristics: BTS50025-1TEA (cont’d)  
VS =5.8 V to 18 V, Tj = -40°C to +150°C (unless otherwise specified)  
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Diagnostic Function: Current Sense Ratio Signal in the Nominal Area, Stable Current Load Condition  
Current Sense Differential  
Ratio  
dkILIS  
15500 18000 20500  
IL3 = 60 A  
P_6.1.41  
IL1 = 0.2 A  
VS - VIS 3.5 V  
See  
Equation (5.4)  
Calculated Sense Offset load IL0  
Current  
IS = 0 A, Tj=-40°C  
-0.15  
-0.13  
-0.105  
-7  
0
0
0
0
0
0
0.15  
0.13  
0.105  
9.7  
A
3)VS - VIS 3.5 V P_6.1.42  
See Figure 5-11  
Calculated Sense Offset load IL0  
Current  
IS = 0 A, Tj=25°C  
A
3)VS - VIS 3.5 V P_6.1.60  
See Figure 5-11  
Calculated Sense Offset load IL0  
Current  
IS = 0 A, Tj=150°C  
A
3)VS - VIS 3.5 V P_6.1.61  
See Figure 5-11  
Calculated Sense Offset  
Current  
IL = IL0 = 0 A, Tj=-40°C  
IIS0  
IIS0  
IIS0  
µA  
µA  
µA  
3)VS - VIS 3.5 V P_6.1.43  
Tj=-40°C  
See Figure 5-11  
3)VS - VIS 3.5 V P_6.1.58  
Tj=25°C  
See Figure 5-11  
Calculated Sense Offset  
Current  
IL = IL0 = 0 A, Tj=25°C  
-5.95  
-4.9  
8.25  
6.8  
Calculated Sense Offset  
Current  
3)VS - VIS 3.5 V P_6.1.59  
Tj=150°C  
IL = IL0 = 0 A, Tj=150°C  
See Figure 5-11  
Sense Current  
IL = IL1 = 0.2 A  
IIS1  
IIS2  
IIS3  
2.3  
10.8  
1.08  
3.24  
0
22.6  
1.3  
µA  
mA  
mA  
%
VS - VIS 3.5 V  
See Figure 5-11  
P_6.1.44  
P_6.1.45  
P_6.1.46  
P_6.1.47  
Sense Current  
IL = IL2 = 20 A  
0.92  
2.78  
VS - VIS 3.5 V  
See Figure 5-11  
Sense Current  
IL = IL3 = 60 A  
3.88  
+1.5  
VS - VIS 3.5 V  
See Figure 5-11  
1)(dkILIS(cal)(­40°C)  
dkILIS(cal)(25°C))/  
dkILIS(cal)(25°C)  
Current Sense Ratio Spread (dkILIS(cal)(- -1.5  
between -40°C and 25°C for  
Repetitive Operation  
-
)
40°C)  
See Figure 5-13  
Current Sense Ratio Spread (dkILIS(cal)(150 -3.5  
-0.8  
+2  
%
1)(dkILIS(cal)(150°C)  
dkILIS(cal)(25°C))/  
dkILIS(cal)(25°C)  
-
P_6.1.48  
between 150°C and 25°C for  
Repetitive Operation  
)
°C)  
See Figure 5-13  
Data Sheet  
33  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Electrical Characteristics BTS50025-1TEA  
Table 6-1 Electrical Characteristics: BTS50025-1TEA (cont’d)  
VS =5.8 V to 18 V, Tj = -40°C to +150°C (unless otherwise specified)  
For a given temperature or voltage range, typical values are specified at VS = 13.5 V, TJ = 25°C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note or  
Test Condition  
Number  
Min.  
Max.  
Diagnostic Function: Diagnostic Timing in Normal Condition  
Current Sense Settling Time tsIS(ON)_90  
until 90% and 110% of IIS  
Stable after turn on  
5
700  
1500  
1
µs  
µs  
µA  
µs  
VS = 13.5 V  
RL = 0.68 Ω  
See Figure 5-14  
P_6.1.49  
P_6.1.50  
P_6.1.51  
P_6.1.52  
Current Sense Settling Time tsIS(ON)  
to IIS Stable after turn on  
VS = 13.5 V  
RL = 0.68 Ω  
See Figure 5-14  
IIS Leakage Current when IN IIS(OFF)  
Disabled  
VIN = VS  
RIS = 1k Ω  
TJ 150°C  
1)IL 0.2 A  
Current Sense Settling Time tsIS(LC)  
after Load Change  
Diagnostic Function: Diagnostic Timing in Overload Condition  
Fault Propagation Time for tpIS(FAULT)  
Short Circuit Detection  
6
3
20  
µs  
µs  
µs  
See Figure 5-14 P_6.1.53  
1)  
Fault Propagation Time for tFAULT(OT)  
Over temperature Detection  
100  
P_6.1.55  
Delay Time to Reset Fault  
tIN(RESETDELAY)  
5000  
See Figure 5-14 P_6.1.54  
Pin after Turning OFF VIN  
1) Not subject to production test, specified by design.  
2) Value is calculated from the parameters typ. RthJA(2s2p), with 65 K temperature increase, typ. and max. RDS(ON)  
.
3) Value is calculated from the parameters dkILIS and IIS1  
.
Data Sheet  
34  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Electrical Characteristics BTS50025-1TEA  
6.2  
Typical Performance Characteristics  
Standby Current for Whole Device with Load,  
Standby Current for Whole Device with Load,  
IVS(OFF) = f(VS, TJ), -40°C, 85°C, 150°C  
IVS(OFF) = f(TJ) at VS = 13.5 V  
10.0  
30.0  
Vs=13,5V  
9.0  
-40°C  
25.0  
8.0  
7.0  
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
85°C  
20.0  
150°C  
15.0  
10.0  
5.0  
0.0  
0
5
10  
15  
20  
25  
30  
-40 -20  
0
20 40 60 80 100 120 140 160  
VS [V]  
Temperature [°C]  
ON State Resistance  
ON State Resistance  
RDS(ON) = f(VS - VIN, TJ), IL = 10 A ... ICL(0) min; -40°C, RDS(ON) = f(TJ),VS - VIN= 13.5 V, IL = 10 A ... ICL(0) min  
25°C, 150°C  
10  
9
8
7
6
5
4
3
2
1
0
6.0  
5.0  
4.0  
3.0  
2.0  
1.0  
0.0  
-40°C  
25°C  
150°C  
3
8
13  
18  
23  
28  
-40 -20  
0
20 40 60 80 100 120 140 160  
VS - VIN [V]  
Temperature [°C]  
Data Sheet  
35  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Electrical Characteristics BTS50025-1TEA  
Turn ON Time  
Turn OFF Time  
tON = f(VS, TJ), RL = 0.68  
tOFF = f(VS, TJ), RL = 0.68 Ω  
100  
300  
250  
200  
150  
100  
50  
-40°C  
25°C  
-40°C  
150°C  
25°C  
75  
150°C  
50  
25  
0
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
VS - VIN [V]  
VS - VIN [V]  
Slew Rate at Turn ON  
Slew Rate at Turn OFF  
dVON / dt = f(VS, TJ), RL = 0.68 Ω  
dVOFF / dt = f(VS, TJ), RL = 0.68 Ω  
0.6  
0.6  
-40°C  
25°C  
-40°C  
25°C  
0.5  
0.5  
0.4  
0.3  
0.2  
0.1  
0
150°C  
150°C  
0.4  
0.3  
0.2  
0.1  
0
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
VS - VIN [V]  
VS - VIN [V]  
Data Sheet  
36  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Electrical Characteristics BTS50025-1TEA  
Switch ON Energy  
Switch OFF Energy  
EON = f(VS, TJ), RL = 0.68 Ω  
EOFF = f(VS, TJ), RL = 0.68 Ω  
30.0  
30.0  
-40°C  
-40°C  
25°C  
25°C  
25.0  
25.0  
150°C  
150°C  
20.0  
20.0  
15.0  
10.0  
5.0  
15.0  
10.0  
5.0  
0.0  
0.0  
0
5
10  
15  
20  
25  
30  
0
5
10  
15  
20  
25  
30  
VS - VIN [V]  
VS - VIN [V]  
Drain to Source Clamp Voltage  
Resistance in ReverSave™  
VDS(CL) = f(TJ), IL = 10 mA  
RDS(REV) = f(VS, TJ), IL = -20 A  
40.0  
38.0  
36.0  
34.0  
32.0  
30.0  
20.0  
15.0  
10.0  
5.0  
-40°C  
25°C  
150°C  
0.0  
-40 -20  
0
20 40 60 80 100120140160  
0
5
10  
15  
20  
TJ [°C]  
VS - VIN [V]  
Data Sheet  
37  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Electrical Characteristics BTS50025-1TEA  
Input Current  
Time to Shutdown  
IIN = f(VS, TJ)  
tSHUTDOWN Vs IL , RthJA(2s2p)  
4
100  
10  
1
-40°C  
25°C  
150°C  
3
2
1
0
-40°C  
25°C  
150°C  
0.1  
0
5
10  
15  
20  
25  
30  
0
10 20 30 40 50 60 70 80  
VS - VIN [V]  
IL [A]  
VIS(FAULT) min. Vs VS; RIS = 500, 1 k, 2.2 kΩ  
dKILIS Vs TJ  
25  
18500  
18400  
18300  
18200  
18100  
18000  
17900  
17800  
17700  
17600  
17500  
Ris=500ohm  
Ris=1kohm  
Ris=2.2kohm  
20  
15  
10  
5
0
-40 -20  
0
20 40 60 80 100120140160  
0
5
10  
15  
20  
25  
30  
TJ [°C]  
VS [V]  
Data Sheet  
38  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Electrical Characteristics BTS50025-1TEA  
ICL(0) = f(VS, TJ)  
-40°C  
150°C  
25°C  
112  
102  
92  
82  
72  
62  
52  
42  
32  
22  
12  
0
5
10  
15  
20  
25  
30  
VS - VIN [V]  
Data Sheet  
39  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Application Information  
7
Application Information  
Note: The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.This is  
a very simplified example of an application circuit. The function must be verified in the real application.  
VBAT  
R/L cable  
CVS  
VDD  
VDD  
A/D IN  
VS  
OUT  
R
IS_PROT  
IS  
IN  
R/ L cable  
Micro controller  
R
IS  
CSENSE  
R
IN  
GPIO  
VSS  
D
Load  
Figure 7-1 Application Diagram with BTS50025-1TEA  
Data Sheet  
40  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Application Information  
Table 7-1 Bill of material  
Reference  
Value  
Purpose  
RIN  
4.7 kΩ  
Protection of the microcontroller during reverse polarity and during loss of  
ground  
RIS  
1 kΩ  
Sense resistor  
RIS_PROT  
10 kΩ  
Protection of the microcontroller during fault condition  
Protection of the BTS50025-1TEA and the microcontroller during reverse  
polarity  
CSENSE  
CVS  
10 nF  
Sense signal filtering  
100 nF  
Improved EMC behavior (in layout, pls. place close to the pins)  
To turn on the Power Mosfet during reverse polarity  
D
7.1  
Further Application Information  
Please contact us for information regarding the pin FMEA  
For further information you may contact http://www.infineon.com/  
Data Sheet  
41  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Package Information  
8
Package Information  
Figure 8-1 PG-TO-252-5-11 (RoHS-Compliant)1)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant  
with government regulations the device is available as a green product. Green products are RoHS-Compliant  
(i.e. Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
1) Dimensions in mm  
Data Sheet  
42  
Rev.1.1  
2019-09-30  
BTS50025-1TEA  
Smart High-Side Power Switch  
Revision History  
9
Revision History  
Revision  
Date  
Changes  
1.1  
2019-09-30 Chapter “Electrical Characteristics”  
Change P_6.1.30 and P_6.1.33 minimum limit from 60A to 65A  
Change P_6.1.30 and P_6.1.32 typical value from 80A to 82A  
Change P_6.1.33 typical value from 87A to 92A  
1.0  
2018-08-16 Datasheet created  
Data Sheet  
43  
Rev.1.1  
2019-09-30  
Please read the Important Notice and Warnings at the end of this document  
Trademarks of Infineon Technologies AG  
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,  
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,  
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,  
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,  
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™.  
Trademarks updated November 2015  
Other Trademarks  
All referenced product or service names and trademarks are the property of their respective owners.  
IMPORTANT NOTICE  
The information given in this document shall in no For further information on technology, delivery terms  
Edition 2019-09-30  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
event be regarded as a guarantee of conditions or and conditions and prices, please contact the nearest  
characteristics ("Beschaffenheitsgarantie").  
Infineon Technologies Office (www.infineon.com).  
With respect to any examples, hints or any typical  
values stated herein and/or any information regarding  
the application of the product, Infineon Technologies  
hereby disclaims any and all warranties and liabilities  
of any kind, including without limitation warranties of  
non-infringement of intellectual property rights of any  
third party.  
In addition, any information given in this document is  
subject to customer's compliance with its obligations  
stated in this document and any applicable legal  
requirements, norms and standards concerning  
customer's products and any use of the product of  
Infineon Technologies in customer's applications.  
The data contained in this document is exclusively  
intended for technically trained staff. It is the  
responsibility of customer's technical departments to  
evaluate the suitability of the product for the intended  
application and the completeness of the product  
information given in this document with respect to  
such application.  
WARNINGS  
Due to technical requirements products may contain  
dangerous substances. For information on the types  
in question please contact your nearest Infineon  
Technologies office.  
© 2019 Infineon Technologies AG.  
All Rights Reserved.  
Do you have a question about any  
aspect of this document?  
Email: erratum@infineon.com  
Except as otherwise explicitly approved by Infineon  
Technologies in a written document signed by  
authorized representatives of Infineon Technologies,  
Infineon Technologies’ products may not be used in  
any applications where a failure of the product or any  
consequences of the use thereof can reasonably be  
expected to result in personal injury.  

相关型号:

BTS50040-2SFA

Buffer/Inverter Based Peripheral Driver, 11A, PDSO36, GREEN, PLASTIC, SOP-36
INFINEON

BTS500402SFAXUMA1

Buffer/Inverter Based Peripheral Driver, 11A, PDSO36, GREEN, PLASTIC, SOP-36
INFINEON

BTS50050-1EGA

Smart High-Side Power Switch PROFET™
INFINEON

BTS50050-1EGAXT

暂无描述
INFINEON

BTS500501EGAAUMA1

Buffer/Inverter Based Peripheral Driver, 16A, PDSO12, GREEN, PLASTIC, SOP-12
INFINEON

BTS50055-1TMA

Smart Highside High Current Power Switch
INFINEON

BTS50055-1TMAXT

Buffer/Inverter Based Peripheral Driver, 0.52A, MOS, PSSO7, GREEN, PLASTIC, TO-220, 7 PIN
INFINEON

BTS50055-1TMB

Smart Highside High Current Power Switch
INFINEON

BTS50055-1TMC

Smart Highside High Current Power Switch
INFINEON

BTS500551TMAATMA1

Buffer/Inverter Based Peripheral Driver, 70A, MOS, PSSO7, GREEN, PLASTIC, TO-220, 7 PIN
INFINEON

BTS500551TMCATMA1

Buffer/Inverter Based Peripheral Driver, 17A, PSSO7, GREEN, PLASTIC, TO-220, 7 PIN
INFINEON

BTS50060-1EGA

Smart High-Side Power Switch PROFET™
INFINEON