BTS5200-4EKA [INFINEON]

BTS5200-4EKA 是一款 200 mΩ 智能四通道高边电源开关,嵌入 PG-DSO-14-48 -EP,散热焊盘封装,提供保护功能和诊断。功率晶体管由带电荷泵的 N 通道垂直功率 MOSFET 构成。该设备被集成到 Smart6 技术中。专门设计用于驱动高达 R5W 的灯以及恶劣汽车环境中的 LED。;
BTS5200-4EKA
型号: BTS5200-4EKA
厂家: Infineon    Infineon
描述:

BTS5200-4EKA 是一款 200 mΩ 智能四通道高边电源开关,嵌入 PG-DSO-14-48 -EP,散热焊盘封装,提供保护功能和诊断。功率晶体管由带电荷泵的 N 通道垂直功率 MOSFET 构成。该设备被集成到 Smart6 技术中。专门设计用于驱动高达 R5W 的灯以及恶劣汽车环境中的 LED。

开关 驱动 泵 电源开关 晶体管
文件: 总49页 (文件大小:2123K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PROFET™+ 12V  
BTS5200-4EKA  
Smart High-Side Power Switch  
Quad Channel, 200mΩ  
Data Sheet  
PROFET™+ 12V  
Rev. 1.0, 2014-02-06  
Automotive Power  
BTS5200-4EKA  
Table of Contents  
Table of Contents  
1
2
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
3
Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin Definitions and Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Voltage and Current Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.1  
3.2  
3.3  
4
4.1  
4.2  
4.3  
4.3.1  
4.3.2  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Functional Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
PCB set up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Thermal Impedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
5
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Output ON-state Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Turn ON/OFF Characteristics with Resistive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Inductive Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Output Clamping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Maximum Load Inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Inverse Current Capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Electrical Characteristics Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
5.1  
5.2  
5.3  
5.3.1  
5.3.2  
5.4  
5.5  
6
6.1  
6.2  
6.3  
6.4  
6.5  
6.5.1  
6.5.2  
6.5.3  
6.6  
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Loss of Ground Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Undervoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Overvoltage Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Reverse Polarity Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Overload Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Current Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Temperature Limitation in the Power DMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Short Circuit Appearance with Channels in Parallel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Electrical Characteristics for the Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
7
7.1  
7.2  
7.3  
Diagnostic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
IS Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
SENSE Signal in Different Operating Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SENSE Signal in the Nominal Current Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
SENSE Signal Variation as a Function of Temperature and Load Current . . . . . . . . . . . . . . . . . . . 28  
SENSE Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
SENSE Signal in Open Load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Open Load in ON Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Open Load in OFF Diagnostic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Open Load Diagnostic Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
SENSE Signal in Short Circuit to VS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
SENSE Signal in Case of Overload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
SENSE Signal in Case of Inverse Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Electrical Characteristics Diagnostic Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
7.3.1  
7.3.2  
7.3.3  
7.3.3.1  
7.3.3.2  
7.3.3.3  
7.3.4  
7.3.5  
7.3.6  
7.4  
8
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
8.1  
Input Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Data Sheet  
PROFET™+ 12V  
2
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Table of Contents  
8.2  
8.3  
8.4  
DEN / DSEL0,1 Pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Input Pin Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
9
Characterization Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
General Product Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Power Stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Protection Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Diagnostic Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Input Pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
9.1  
9.2  
9.3  
9.4  
9.5  
10  
Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
10.1  
Further Application Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
11  
12  
Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Data Sheet  
PROFET™+ 12V  
3
Rev. 1.0, 2014-02-06  
Smart High-Side Power Switch  
BTS5200-4EKA  
1
Overview  
Application  
Suitable for resistive, inductive and capacitive loads  
Replaces electromechanical relays, fuses and discrete circuits  
Most suitable for loads with high inrush current, such as lamps  
Basic Features  
Quad channel device  
Very low stand-by current  
PG-DSO-14-48-EP  
3.3 V and 5 V compatible logic inputs  
Electrostatic discharge protection (ESD)  
Optimized electromagnetic compatibility  
Logic ground independent from load ground  
Very low power DMOS leakage current in OFF state  
Green product (RoHS compliant)  
AEC qualified  
Description  
The BTS5200-4EKA is a 200 mquad channel Smart High-Side Power Switch, embedded in a PG-DSO-14-48-  
EP, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an  
N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 technology. It is specially  
designed to drive lamps up to R5W, as well as LEDs in the harsh automotive environment.  
Table 1  
Product Summary  
Parameter  
Symbol  
VS(OP)  
VS(LD)  
Value  
5 V ... 28 V  
41 V  
Operating voltage range  
Maximum supply voltage  
Maximum ON state resistance at TJ = 150 °C per channel  
Nominal load current (one channel active)  
Nominal load current (all channels active)  
Typical current sense ratio  
RDS(ON)  
IL(NOM)1  
IL(NOM)2  
kILIS  
400 mΩ  
1 A  
0.8 A  
300  
Minimum current limitation  
IL5(SC)  
IS(OFF)  
5.6 A  
Maximum standby current with load at TJ = 25 °C  
500 nA  
Type  
Package  
Marking  
BTS5200-4EKA  
BTS5200-4EKA  
PG-DSO-14-48-EP  
Data Sheet  
PROFET™+ 12V  
4
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Overview  
Diagnostic Functions  
Proportional load current sense multiplexed for the 4 channels  
Open load detection in ON and OFF  
Short circuit to battery and ground indication  
Overtemperature switch off detection  
Stable diagnostic signal during short circuit  
Enhanced kILIS dependency with temperature and load current  
Protection Functions  
Stable behavior during undervoltage  
Reverse polarity protection with external components  
Secure load turn-off during logic ground disconnection with external components  
Overtemperature protection with restart  
Overvoltage protection with external components  
Enhanced short circuit operation  
Voltage dependent current limitation  
Data Sheet  
PROFET™+ 12V  
5
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Block Diagram  
2
Block Diagram  
Channel 0  
VS  
voltage sensor  
internal  
power  
supply  
over  
temperature  
T
clamp for  
inductive load  
gate control  
&
charge pump  
IN0  
driver  
logic  
over current  
switch limit  
DEN  
ESD  
protection  
load current sense and  
OUT 0  
open load detection  
IS  
forward voltage drop detection  
VS  
Channel 1  
T
IN1  
Control and protection circuit equivalent to channel 0  
DSEL0  
DSEL1  
OUT 1  
Channel 2  
T
Control and protection circuit equivalent to channel0  
IN2  
OUT 2  
Channel 3  
T
Control and protection circuit equivalent to channel0  
IN3  
OUT 3  
GND  
Block diagram DxS.vsd  
Figure 1  
Block Diagram for the BTS5200-4EKA  
Data Sheet  
PROFET™+ 12V  
6
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Pin Configuration  
3
Pin Configuration  
3.1  
Pin Assignment  
OUT0  
1
2
3
14  
13  
12  
OUT2  
OUT3  
IS  
OUT1  
NC  
DSEL1  
4
11  
GND  
DSEL0  
IN1  
5
6
7
10  
9
DEN  
IN3  
IN0  
8
IN2  
Pinout quad SO14.vsd  
Figure 2  
Pin Configuration  
3.2  
Pin Definitions and Functions  
Pin  
Symbol  
OUT0  
OUT1  
NC  
Function  
1
OUTput 0; Protected high side power output channel 01)  
OUTput 1; Protected high side power output channel 1 1)  
Not Connected; No internal connection to the chip  
2
3
4
DSEL1  
DSEL0  
IN1  
Diagnostic SELection; Digital signal to select the channel to be diagnosed  
Diagnostic SELection; Digital signal to select the channel to be diagnosed  
INput channel 1; Input signal for channel 1 activation  
INput channel 0; Input signal for channel 0 activation  
INput channel 2; Input signal for channel 2 activation  
INput channel 3; Input signal for channel 3 activation  
Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device  
GrouND; Ground connection  
5
6
7
IN0  
8
IN2  
9
IN3  
10  
DEN  
GND  
IS  
11  
12  
Sense; Sense current of the selected channel  
13  
OUT3  
OUT2  
VS  
OUTput 3; Protected high side power output channel 3 1)  
OUTput 2; Protected high side power output channel 2 1)  
Voltage Supply; Battery voltage  
14  
Cooling Tab  
1) All PCB traces that are connected to the ouput pin have to be designed to withstand the maximum current which can flow.  
Data Sheet  
PROFET™+ 12V  
7
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Pin Configuration  
3.3  
Voltage and Current Definition  
Figure 3 shows all terms used in this data sheet, with associated convention for positive values.  
VDS3  
VDS0  
VDS1  
VDS2  
I S  
VS  
VS  
IIN0  
IN0  
IN1  
IOUT0  
VIN0  
OUT0  
OUT1  
OUT2  
OUT3  
IIN1  
VIN1  
IIN2  
IOUT 1  
IOUT2  
IOUT3  
IN2  
IN3  
VIN2  
IIN3  
VIN3  
IDEN  
DEN  
VDEN  
IDSEL0  
DSEL0  
DSEL1  
IDSEL1  
I
VDSEL0  
VDSEL1  
IS  
IS  
VIS  
GND  
VOUT0  
VOUT 1  
VOUT 2  
VOUT3  
IGND  
voltage and current convention.vsd  
Figure 3  
Voltage and Current Definition  
Data Sheet  
PROFET™+ 12V  
8
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
General Product Characteristics  
4
General Product Characteristics  
4.1  
Absolute Maximum Ratings  
Table 2  
Absolute Maximum Ratings 1)  
TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Number  
Test Condition  
Min.  
Max.  
Supply Voltages  
Supply voltage  
VS  
-0.3  
0
28  
16  
V
V
P_4.1.1  
P_4.1.2  
Reverse polarity voltage  
-VS(REV)  
t < 2 min  
TA = 25 °C  
RL25 Ω  
R
GND = 150 Ω  
2) RECU = 20 mP_4.1.3  
Cable= 16 m/m  
Cable= 1 μH/m,  
Supply voltage for short  
circuit protection  
VBAT(SC)  
0
24  
V
R
L
l = 0 or 5 m  
See Chapter 6  
and Figure 28  
Supply voltage for Load dump VS(LD)  
protection  
41  
V
k
3)RI = 2 Ω  
RL = 25 Ω  
P_4.1.12  
P_4.1.4  
Short Circuit Capability  
4)  
Permanent short circuit  
IN pin toggles  
nRSC1  
100  
cycles tON = 300ms  
Input Pins  
Voltage at INPUT pins  
VIN  
-0.3  
6
7
V
P_4.1.13  
t < 2 min  
Current through INPUT pins IIN  
-2  
2
mA  
V
P_4.1.14  
P_4.1.15  
Voltage at DEN pin  
VDEN  
-0.3  
6
7
t < 2 min  
Current through DEN pin  
Voltage at DSEL pin  
IDEN  
-2  
2
mA  
V
P_4.1.16  
P_4.1.17  
VDSEL  
-0.3  
6
7
t < 2 min  
Current through DSEL pin  
Sense Pin  
IDSEL  
-2  
2
mA  
P_4.1.18  
Voltage at IS pin  
Current through IS pin  
Power Stage  
VIS  
IIS  
-0.3  
-25  
VS  
V
P_4.1.19  
P_4.1.20  
50  
mA  
Load current  
| IL |  
IL(LIM)  
A
P_4.1.21  
P_4.1.22  
Power dissipation (DC)  
PTOT  
1.4  
W
TA = 85 °C  
TJ < 150 °C  
Data Sheet  
PROFET™+ 12V  
9
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
General Product Characteristics  
Table 2  
TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter Symbol  
Absolute Maximum Ratings (cont’d)1)  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Maximum energy dissipation EAS  
50  
mJ  
I
L(0) = 0.5 A  
P_4.1.23  
Single pulse (one channel)  
TJ(0) = 150 °C  
VS = 13.5 V  
Maximum Energy dissipation EAR  
repetitive pulse  
20  
mJ  
1Mio cycles  
TA < 105 °C  
VS = 13.5 V  
P_4.1.25  
I
L(0) = 350 mA  
Voltage at power transistor  
Currents  
VDS  
41  
V
P_4.1.26  
P_4.1.27  
Current through ground pin  
I GND  
-10  
-150  
10  
20  
mA  
t < 2 min  
Temperatures  
Junction temperature  
Storage temperature  
ESD Susceptibility  
ESD susceptibility (all pins)  
TJ  
-40  
-55  
150  
150  
°C  
°C  
P_4.1.28  
P_4.1.30  
TSTG  
VESD  
-2  
-4  
2
4
kV  
kV  
5) HBM  
5) HBM  
P_4.1.31  
P_4.1.32  
ESD susceptibility OUT Pin VESD  
vs. GND and VS connected  
ESD susceptibility  
VESD  
VESD  
-500  
-750  
500  
750  
V
V
6) CDM  
6) CDM  
P_4.1.33  
P_4.1.34  
ESD susceptibility pin  
(corner pins)  
1) Not subject to production test. Specified by design.  
2) Hardware set-up in accordance to AEC Q100-012 and AEC Q101-006.  
3) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1.  
4) EOL tests according to AECQ100-012. Threshold limit for short circuit failures: 100 ppm. Please refer to the legal disclaimer  
for short-circuit capability at the end of this document.  
5) ESD susceptibility HBM according to ANSI/ESDA/JEDEC JS-001  
6) “CDM” ESDA STM5.3.1 or ANSI/ESD S.5.3.1  
Notes  
1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute  
maximum rating conditions for extended periods may affect device reliability.  
2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the  
data sheet. Fault conditions are considered as “outside” normal operating range. Protection functions are not  
designed for continuous repetitive operation.  
Data Sheet  
PROFET™+ 12V  
10  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
General Product Characteristics  
4.2  
Functional Range  
Table 3  
Functional Range TJ = -40°C to 150°C; (unless otherwise specified)  
Parameter  
Symbol  
Values  
Typ.  
13.5  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
18  
Nominal operating voltage  
VNOM  
8
5
V
V
2)  
P_4.2.1  
P_4.2.2  
Extended operating voltage VS(OP)  
28  
V = 4.5 V  
IN  
RL = 25 Ω  
V
DS < 0.5 V  
1)  
Minimum functional supply  
voltage  
VS(OP)_MIN  
3.5  
2.6  
4.3  
3.5  
5
V
V
V = 4.5 V  
P_4.2.3  
P_4.2.4  
IN  
RL = 25 Ω  
From IOUT = 0 A  
to VDS < 0.5 V;  
1)  
Undervoltage shutdown  
VS(UV)  
4.1  
V = 4.5 V  
IN  
VDEN = 0 V  
RL = 25 Ω  
From VDS < 1 V;  
to IOUT = 0 A  
See Chapter 9.1  
2)  
Undervoltage shutdown  
hysteresis  
VS(UV)_HYS  
IGND_4  
850  
4
mV  
mA  
P_4.2.13  
P_4.2.6  
Operating current  
All channels active  
11  
VIN = 5.5 V  
V
DEN = 5.5 V  
Device in RDS(ON)  
VS = 18 V  
See Chapter 9.1  
Standby current for whole  
device with load (ambiente)  
IS(OFF)  
0.1  
0.5  
10  
µA  
µA  
mA  
1) VS = 18 V  
P_4.2.7  
P_4.2.10  
P_4.2.8  
V
OUT = 0 V  
VIN floating  
DEN floating  
V
TJ 85 °C  
Maximum standby current for IS(OFF)_150  
whole device with load  
VS = 18 V  
V
OUT = 0 V  
VIN floating  
DEN floating  
V
TJ = 150 °C  
2) VS = 18 V  
Standby current for whole  
device with load, diagnostic  
active  
IS(OFF_DEN)  
1.2  
V
OUT = 0 V  
VIN floating  
DEN = 5.5 V  
V
1) Test at TJ = -40°C only  
2) Not subject to production test. Specified by design.  
Note:Within the functional range the IC operates as described in the circuit description. The electrical  
characteristics are specified within the conditions given in the related electrical characteristics table.  
Data Sheet  
PROFET™+ 12V  
11  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
General Product Characteristics  
4.3  
Thermal Resistance  
Table 4  
Thermal Resistance  
Symbol  
Parameter  
Values  
Typ.  
5
Unit Note /  
Number  
Test Condition  
Min.  
Max.  
1)  
Junction to soldering point  
RthJS  
RthJA  
K/W  
K/W  
P_4.3.1  
P_4.3.2  
1)2)  
Junction to ambient  
All channels active  
40  
1) Not subject to production test. Specified by design.  
2) Specified Rthja value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product (chip +  
package) was simulated on a 76.4 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 µm Cu, 2 x 35 µm Cu). Where  
applicable, a thermal via array under the exposed pad contacts the first inner copper layer. Please refer to Figure 4.  
4.3.1  
PCB set up  
70µm  
35µm  
1.5mm  
0.3mm  
PCB 2s2p.vsd  
Figure 4  
2s2p PCB Cross Section  
Data Sheet  
PROFET™+ 12V  
12  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
General Product Characteristics  
4.3.2  
Thermal Impedence  
Figure 5  
Typical Thermal Impedance. 2s2p PCB set up according Figure 4  
110  
100  
90  
80  
70  
1s0p  
60  
50  
40  
0
100  
200  
300  
400  
500  
600  
700  
Area [mm2]  
footprint  
Figure 6  
Typical Thermal Resistance. PCB set-up 1s0p  
Data Sheet  
PROFET™+ 12V  
13  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Power Stage  
5
Power Stage  
The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump.  
5.1  
Output ON-state Resistance  
The ON-state resistance RDS(ON) depends on the supply voltage as well as the junction temperature TJ. Figure 7  
shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The  
behavior in reverse polarity is described in Chapter 6.4.  
400  
350  
350  
300  
300  
250  
250  
200  
200  
150  
150  
100  
-50  
0
50  
100  
150  
0
5
10  
15  
20  
25  
30  
35  
Junction Temperature TJ [°C]  
Supply Voltage VS [V]  
Figure 7  
Typical ON-state Resistance  
A high signal at the input pin (see Chapter 8) causes the power DMOS to switch ON with a dedicated slope, which  
is optimized in terms of EMC emission.  
5.2  
Turn ON/OFF Characteristics with Resistive Load  
Figure 8 shows the typical timing when switching a resistive load.  
IN  
VIN_H  
VIN_L  
t
VOUT  
dV/dt ON  
dV/dt OFF  
tON  
90% VS  
tOFF_delay  
70% VS  
30% VS  
10% VS  
tON_delay  
tOFF  
t
Switching times.vsd  
Figure 8  
Switching a Resistive Load Timing  
Data Sheet  
PROFET™+ 12V  
14  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Power Stage  
5.3  
Inductive Load  
5.3.1  
Output Clamping  
When switching OFF inductive loads with high side switches, the voltage VOUT drops below ground potential,  
because the inductance intends to continue driving the current. To prevent the destruction of the device by  
avalanche due to high voltages, there is a voltage clamp mechanism ZDS(AZ) implemented that limits negative  
output voltage to a certain level (VS - VDS(AZ)). Please refer to Figure 9 and Figure 10 for details. Nevertheless,  
the maximum allowed load inductance is limited.  
VS  
ZDS(AZ)  
VDS  
INx  
LOGIC  
IL  
VBAT  
OUTx  
GND  
VIN  
L, RL  
VOUT  
ZGND  
Output clamp.vsd  
Figure 9  
Output Clamp  
IN  
t
VOUT  
VS  
t
VS-VDS(AZ)  
IL  
t
Switching an inductance.vsd  
Figure 10 Switching an Inductive Load Timing  
5.3.2  
Maximum Load Inductance  
During demagnetization of inductive loads, energy has to be dissipated in the BTS5200-4EKA. This energy can  
be calculated with following equation:  
VS VDS(AZ)  
--------------------------------  
RL  
RL × IL  
L
RL  
------  
E = VDS(AZ)  
×
×
× ln 1 –  
+ IL  
(1)  
--------------------------------  
VS VDS(AZ)  
Data Sheet  
PROFET™+ 12V  
15  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Power Stage  
Following equation simplifies under the assumption of RL = 0 .  
VS  
1
2
2
--  
E = × L × I × 1 –  
(2)  
--------------------------------  
VS VDS(AZ)  
The energy, which is converted into heat, is limited by the thermal design of the component. See Figure 11 for the  
maximum allowed energy dissipation as a function of the load current.  
100  
10  
1
0
0.5  
1
1.5  
2
2.5  
3
3.5  
4
IL(A)  
Figure 11 Maximum Energy Dissipation Single Pulse, TJ_START = 150 °C; VS = 13.5V  
5.4  
Inverse Current Capability  
In case of inverse current, meaning a voltage VINV at the OUTput higher than the supply voltage VS, a current IINV  
will flow from output to VS pin via the body diode of the power transistor (please refer to Figure 12). The output  
stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that particular  
case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current IINV should not  
be higher than IL(INV). If the channel is OFF, the diagnostic will detect an open load at OFF. If the affected channel  
is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance of  
VINV, a parasitic diagnostic can be observed. After, the diagnosis is valid and reflects the output state. At VINV  
vanishing, the diagnosis is valid and reflects the output state. During inverse current, no protection functions are  
available.  
Data Sheet  
PROFET™+ 12V  
16  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Power Stage  
VBAT  
VS  
Gate driver  
VINV  
IL(INV)  
Device  
logic  
INV  
Comp.  
OUT  
GND  
IS  
ZGND  
inverse current.vsd  
Figure 12 Inverse Current Circuitry  
Data Sheet  
PROFET™+ 12V  
17  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Power Stage  
5.5  
Electrical Characteristics Power Stage  
Table 5  
Electrical Characteristics: Power Stage  
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
RDS(ON)_150 300  
Max.  
ON-state resistance per  
channel  
360  
400  
mΩ  
IL = IL4 = 0.5 A  
P_5.5.1  
VIN = 4.5 V  
TJ = 150 °C  
See Figure 7  
ON-state resistance per  
channel  
RDS(ON)_25  
IL(NOM)1  
200  
1
mΩ  
A
1) TJ = 25 °C  
P_5.5.21  
P_5.5.2  
P_5.5.3  
Nominal load current  
One channel active  
1) TA=85 °C  
TJ < 150 °C  
Nominal load current  
All channels active  
IL(NOM)2  
0.8  
10  
47  
A
Output voltage drop limitation VDS(NL)  
at small load currents  
25  
53  
mV  
V
IL = IL0 = 25 mA P_5.5.4  
See Chapter 9.3  
Drain to source clamping  
voltage  
VDS(AZ)  
41  
I
DS = 20 mA  
P_5.5.5  
P_5.5.6  
P_5.5.8  
See Figure 10  
See Chapter 9.1  
VDS(AZ) = [VS - VOUT]  
2)  
Output leakage current TJ IL(OFF)  
85 °C per channel  
0.1  
0.5  
2.5  
μA  
μA  
A
V floating  
IN  
VOUT = 0 V  
TJ 85 °C  
Output leakage current TJ = IL(OFF)_150  
150 °C per channel  
VIN floating  
VOUT = 0 V  
TJ = 150 °C  
1) VS< VOUTX  
Inverse current capability  
IL(NV)  
0.8  
P_5.5.9  
Slew rate  
30% to 70% VS  
dV/dtON  
0.1  
0.25  
0.5  
V/μs RL = 25 Ω  
VS = 13.5 V  
P_5.5.11  
See Figure 8  
Slew rate  
70% to 30% VS  
-dV/dtOFF  
dV/dt  
0.1  
-0.15  
30  
0.25  
0
0.5  
V/μs  
P_5.5.12  
P_5.5.13  
P_5.5.14  
P_5.5.15  
P_5.5.16  
P_5.5.17  
P_5.5.18  
See Chapter 9.1  
V/μs  
Slew rate matching  
dV/dtON - dV/dtOFF  
0.15  
230  
230  
50  
Turn-ON time to VOUT = 90% tON  
VS  
90  
90  
5
μs  
μs  
μs  
μs  
μs  
Turn-OFF time to VOUT = 10% tOFF  
VS  
30  
Turn-ON / OFF matching  
OFF - tON  
tSW  
-50  
10  
t
Turn-ON time to VOUT = 10% tON_delay  
VS  
35  
35  
100  
100  
Turn-OFF time to VOUT = 90% tOFF_delay  
10  
VS  
Data Sheet  
PROFET™+ 12V  
18  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Power Stage  
Table 5  
Electrical Characteristics: Power Stage (cont’d)  
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Switch ON energy  
EON  
210  
µJ  
1) RL = 25 Ω  
OUT = 90% VS  
P_5.5.19  
V
VS = 18 V  
See Chapter 9.1  
Switch OFF energy  
EOFF  
140  
µJ  
1) RL = 25 Ω  
P_5.5.20  
VOUT = 10% VS  
VS = 18 V  
See Chapter 9.1  
1) Not subject to production test, specified by design.  
2) Test at TJ = -40°C only  
Data Sheet  
PROFET™+ 12V  
19  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Protection Functions  
6
Protection Functions  
The device provides integrated protection functions. These functions are designed to prevent the destruction of  
the IC from fault conditions described in the data sheet. Fault conditions are considered as “outside” normal  
operating range. Protection functions are designed for neither continuous nor repetitive operation.  
6.1  
Loss of Ground Protection  
In case of loss of the module ground and the load remains connected to ground, the device protects itself by  
automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN  
pins.  
In case of loss of device ground, it’s recommended to use input resistors between the microcontroller and the  
BTS5200-4EKA to ensure switching OFF of channels.  
In case of loss of module or device ground, a current (IOUT(GND)) can flow out of the DMOS. Figure 13 sketches  
the situation.  
ZGND is recommended to be a diode in parallel to a resistor (1 kΩ).  
ZIS(AZ)  
VS  
ZD(AZ)  
VBAT  
ZDS(AZ)  
IS  
RSENSE  
DSEL0  
RDSEL  
DSEL1  
RDSEL  
DEN  
LOGIC  
RDEN  
INx  
RIN  
IOUT(GND)  
OUTx  
ZDESD  
GND  
RIS  
IS  
ZGND  
Loss of ground protection.vsd  
Figure 13 Loss of Ground Protection with External Components  
6.2  
Undervoltage Protection  
Between VS(UV) and VS(OP), the undervoltage mechanism is triggered. VS(OP) represents the minimum voltage  
where the switching ON and OFF can takes place. VS(UV) represents the minimum voltage the switch can hold ON.  
If the supply voltage is below the undervoltage mechanism VS(UV), the device is OFF (turns OFF). As soon as the  
supply voltage is above the undervoltage mechanism VS(OP), then the device can be switched ON. When the switch  
is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until VS is in the VNOM  
range. Figure 14 sketches the undervoltage mechanism.  
Data Sheet  
PROFET™+ 12V  
20  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Protection Functions  
VOUT  
undervoltage behavio.rvsd  
VS  
VS(UV)  
VS(OP)  
Figure 14 Undervoltage Behavior  
6.3  
Overvoltage Protection  
There is an integrated clamp mechanism for overvoltage protection (ZD(AZ)). To guarantee this mechanism  
operates properly in the application, the current in the Zener diode has to be limited by a ground resistor. Figure 15  
shows a typical application to withstand overvoltage issues. In case of supply voltage higher than VS(AZ), the power  
transistor switches ON and the voltage across the logic section is clamped. As a result, the internal ground  
potential rises to VS - VS(AZ). Due to the ESD Zener diodes, the potential at pin INx, DSELx, and DEN rises almost  
to that potential, depending on the impedance of the connected circuitry. In the case the device was ON, prior to  
overvoltage, the BTS5200-4EKA remains ON. In the case the BTS5200-4EKA was OFF, prior to overvoltage, the  
power transistor can be activated. In the case the supply voltage is in above VBAT(SC) and below VDS(AZ), the output  
transistor is still operational and follows the input. If at least one channel is in the ON state, parameters are no  
longer guaranteed and lifetime is reduced compared to the nominal supply voltage range. This especially impacts  
the short circuit robustness, as well as the maximum energy EAS capability. ZGND with a resistor (27 Ω) in series to  
the diode will offer better results.  
ISOV  
ZIS(AZ)  
VS  
ZD(AZ)  
VBAT  
ZDS(AZ)  
IS  
RSENSE  
DSEL0  
DSEL1  
DEN  
RDSEL  
RDSEL  
RDEN  
LOGIC  
INx  
RIN  
OUTx  
ZDESD  
GND  
RIS  
ZGND  
Overvoltage protection.vsd  
Figure 15 Overvoltage Protection with External Components  
Data Sheet  
PROFET™+ 12V  
21  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Protection Functions  
6.4  
Reverse Polarity Protection  
In case of reverse polarity, the intrinsic body diodes of the power DMOS causes power dissipation. The current in  
this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the logic pins  
has to be limited to the maximum current described in Chapter 4.1 with an external resistor. Figure 16 shows a  
typical application. RGND resistor is used to limit the current in the Zener protection of the device. Resistors RDSEL  
,
RDEN, and RIN are used to limit the current in the logic of the device and in the ESD protection stage. RSENSE is used  
to limit the current in the sense transistor which behaves as a diode. The recommended value for RDEN = RDSEL  
RIN = RSENSE = 4.7 k. ZGND is recommended to be a 1 kresistor in parallel to a diode.  
=
During reverse polarity, no protection functions are available.  
Micro controller  
protection diodes  
ZIS(AZ)  
VS  
ZD(AZ)  
ZDS(AZ)  
IS  
RSENSE  
VDS(REV)  
DSEL0  
DSEL1  
RDSEL0  
RDSEL1  
RDEN  
RIN  
DEN  
INx  
LOGIC  
-VS(REV)  
OUTx  
ZDESD  
GND  
IS  
ZGND  
RIS  
Reverse Polarity.vsd  
Figure 16 Reverse Polarity Protection with External Components  
6.5  
Overload Protection  
In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTS5200-4EKA offers  
several protection mechanisms.  
6.5.1  
Current Limitation  
At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the  
maximum current allowed in the switch IL(SC). During this time, the DMOS temperature is increasing, which affects  
the current flowing in the DMOS. The current limitation value is VDS dependent. Figure 17 shows the behavior of  
the current limitation as a function of the drain to source voltage.  
Data Sheet  
PROFET™+ 12V  
22  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Protection Functions  
8
7
6
5
4
3
2
1
0
IL5(SC)  
typical  
IL28(SC)  
2
7
12  
17  
22  
27  
Drain Source Voltage VDS (V)  
current limitation_200m.vsd  
Figure 17 Current Limitation (typical behavior)  
6.5.2  
Temperature Limitation in the Power DMOS  
Each channel incorporates an absolute (TJ(SC)) temperature sensor and a switch OFF timer that is started by an  
overcurrent event. The activation of these protection mechanisms will cause an overheated channel to switch OFF  
to prevent destruction. A temperature limitation switch OFF latches the output until the temperature has reached  
an acceptable value. Figure 18 gives a sketch of the situation.  
A retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch is  
switched ON again, if the IN pin signal is still high (restart behavior).  
Data Sheet  
PROFET™+ 12V  
23  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Protection Functions  
IN  
t
IL  
LOAD CURRENT BELOW  
LIMITATION PHASE  
LOAD CURRENT LIMITATION PHASE  
IL(x)SC  
IL(NOM)  
t
TDMOS  
ΔTJ(SW)  
TJ(SC)  
ΔTJ(SW)  
ΔTJ(SW)  
TA  
tsIS(FAULT)  
t
t
ΔTSTEP  
tsIS(OT_blank)  
IIS  
IIS(FAULT)  
IL(NOM) / kILIS  
0A  
tsIS(OFF )  
VDEN  
0V  
t
Hard start.vsd  
Figure 18 Overload Protection  
Note:For better understanding, the time scale is not linear. The real timing of this drawing is application dependant  
and cannot be described.  
6.5.3  
Short Circuit Appearance with Channels in Parallel  
The four channels are not synchronised in the restart event. When the channels are in temperature limitation, the  
channel which has cooled down the fastest doesn’t wait for the other to be cooled down as well to restart. Thus,  
it is not recommended to use the device with channels in parallel.  
Data Sheet  
PROFET™+ 12V  
24  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Protection Functions  
6.6  
Electrical Characteristics for the Protection Functions  
Table 6  
Electrical Characteristics: Protection  
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Loss of Ground  
Output leakage current while IOUT(GND)  
GND disconnected  
0.1  
mA  
mV  
1)2) VS = 28 V  
See Figure 13  
P_6.6.1  
P_6.6.2  
Reverse Polarity  
Drain source diode voltage  
during reverse polarity  
VDS(REV)  
200  
41  
650  
700  
53  
3) IL = - 0.5 A  
TJ = 150 °C  
See Figure 16  
Overvoltage  
Overvoltage protection  
VS(AZ)  
47  
V
I
SOV = 5 mA  
P_6.6.3  
See Figure 15  
Overload Condition  
4)  
Load current limitation  
IL5(SC)  
5.6  
7.3  
3
9
A
A
A
V
= 5 V  
P_6.6.4  
P_6.6.7  
P_6.6.12  
DS  
See Figure 17 and  
Chapter 9.3  
2) VDS = 28 V  
See Figure 17 and  
Load current limitation  
IL28(SC)  
Chapter 9.3  
2)  
Short circuit average current IL(RMS)  
after several minutes of  
thermal toggling  
1
V = 4.5 V  
IN  
R
L
SHORT = 100 mΩ  
SHORT = 5 µH  
3) 5) See Figure 18 P_6.6.10  
Thermal shutdown  
temperature  
TJ(SC)  
150  
170  
20  
200  
°C  
K
Thermal shutdown hysteresis ΔTJ(SC)  
2) See Figure 18  
P_6.6.11  
1) All pins are disconnected except VS and OUT.  
2) Not Subject to production test, specified by design  
3) Test at TJ = +150°C only  
4) Test at TJ = -40°C only  
5) Functional test only  
Data Sheet  
PROFET™+ 12V  
25  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Diagnostic Functions  
7
Diagnostic Functions  
For diagnosis purpose, the BTS5200-4EKA provides a combination of digital and analog signals at pin IS. In case  
the diagnostic is disabled via DEN, pin IS becomes high impedance. In case DEN is activated, the sense current  
of the channel X is enabled/disabled via associated pins DSEL0 and DSEL1. Table 7 gives the truth table.  
Table 7  
Diagnostic Truth Table  
DEN  
DSEL1  
DSEL0  
IS0  
Z
IS1  
Z
IS2  
Z
IS3  
Z
0
1
1
1
1
don’t care  
don’t care  
0
0
1
1
0
1
0
1
IIS0  
0
0
0
0
IIS1  
0
0
0
0
IIS2  
0
0
0
0
IIS3  
7.1  
IS Pin  
The BTS5200-4EKA provides a sense signal called IIS at pin IS. As long as no “hard” failure mode occurs (short  
circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load at  
OFF) a proportional signal to the load current (ratio kILIS = IL / IIS) is provided. The complete IS pin and diagnostic  
mechanism is described on Figure 19. The accuracy of the sense current depends on temperature and load  
current. The sense pin multiplexes the currents IIS(0), IIS(1), IIS(2) and IIS(3) via the pins DSEL0 and DSEL1. Thanks  
to this multiplexing, the matching between kILISCHANNEL0, kILISCHANNEL1, kILISCHANNEL2 and kILISCHANNEL3 is optimized.  
Due to the ESD protection, in connection to VS, it is not recommended to share the IS pin with other devices if  
these devices are using another battery feed. The consequence is that the unsupplied device would be fed via the  
IS pin of the supplied device.  
VS  
IIS 3  
=
IIS1  
=
IIS0  
=
IIS2  
=
IIS(FAULT)  
IL3 / kILIS  
I
L1 / kILIS  
I
L0 / kILIS  
I
L2 / kILIS  
ZIS(AZ)  
0
1
0
1
FAULT  
1
0
IS  
DEN  
0
1
FAULT  
DSEL1  
Sense schematic.vsd  
DSEL0  
Figure 19 Diagnostic Block Diagram  
Data Sheet  
PROFET™+ 12V  
26  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Diagnostic Functions  
7.2  
SENSE Signal in Different Operating Modes  
Table 8 gives a quick reference for the state of the IS pin during device operation.  
Table 8 Sense Signal, Function of Operation Mode  
Operation Mode  
Normal operation  
Short circuit to GND  
Overtemperature  
Short circuit to VS  
Open Load  
Input level Channel X  
DEN1)  
Output Level Diagnostic Output  
OFF  
H
Z
Z
Z
Z
~ GND  
Z
VS  
IIS(FAULT)  
< VOL(OFF)  
> VOL(OFF)  
Z
2)  
IIS(FAULT)  
Inverse current  
~ VINV  
~ VS  
< VS  
~ GND  
Z
IIS(FAULT)  
Normal operation  
Current limitation  
Short circuit to GND  
ON  
IIS = IL / kILIS  
IIS(FAULT)  
IIS(FAULT)  
Overtemperature TJ(SW  
)
IIS(FAULT)  
event  
Short circuit to VS  
Open Load  
VS  
IIS < IL / kILIS  
IIS < IIS(OL)  
3)  
~ VS  
4)  
Inverse current  
Underload  
~ VINV  
IIS < IIS(OL)  
5)  
~ VS  
IS(OL) < IIS < IL / kILIS  
Don’t care  
Don’t care  
L
Don’t care  
Z
1) The table doesn’t indicate but it is assumed that the appropriate channel is selected via the DSEL pins.  
2) Stable with additional pull-up resistor.  
3) The output current has to be smaller than IL(OL)  
4) After maximum tINV  
5) The output current has to be higher than IL(OL)  
.
.
.
7.3  
SENSE Signal in the Nominal Current Range  
Figure 20 and Figure 21 show the current sense as a function of the load current in the power DMOS. Usually, a  
pull-down resistor RIS is connected to the current sense IS pin. This resistor has to be higher than 560 to limit  
the power losses in the sense circuitry. A typical value is 1.2 k. The blue curve represents the ideal sense  
current, assuming an ideal kILIS factor value. The red curves shows the accuracy the device provides across full  
temperature range at a defined current.  
Data Sheet  
PROFET™+ 12V  
27  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Diagnostic Functions  
IL  
kILIS  
3
2.5  
2
IIS  
=
kILIS4  
1.5  
1
kILIS3  
kILIS2  
kILIS1  
0.5  
min/max Sense Current  
typical Sense Current  
0
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
IL [A]  
BTS5200-4EKA  
Figure 20 Current Sense for Nominal Load  
7.3.1  
SENSE Signal Variation as a Function of Temperature and Load Current  
In some applications a better accuracy is required at smaller currents. To achieve this accuracy requirement, a  
calibration on the application is possible. To avoid multiple calibration points at different load and temperature  
conditions, the BTS5200-4EKA allows limited derating of the kILIS value, at a given point (IL3; TJ = +25 °C). This  
derating is described by the parameter kILIS. Figure 21 shows the behavior of the sense current, assuming one  
calibration point at nominal load at +25 °C.  
The blue line indicates the ideal kILIS ratio.  
The green lines indicate the derating on the parameter across temperature and voltage, assuming one calibration  
point at nominal temperature and nominal battery voltage.  
The red lines indicate the kILIS accuracy without calibration.  
Data Sheet  
PROFET™+ 12V  
28  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Diagnostic Functions  
550  
500  
450  
400  
350  
300  
250  
200  
150  
calibrated kILIS  
min/max kILIS  
typical kILIS  
Calibration Point  
0
0.05  
0.1  
0.15  
0.2  
0.25  
0.3  
0.35  
0.4  
0.45  
0.5  
IL [A]  
BTS5200-4EKA  
Figure 21 Improved Current Sense Accuracy with One Calibration Point  
7.3.2  
SENSE Signal Timing  
Figure 22 shows the timing during settling and disabling of the SENSE.  
VINx  
t
ILx  
tONx  
tOFFx  
tONx  
90% of  
L static  
I
t
VDEN  
t
IIS  
tsIS(LC)  
tsIS(chC)  
tsIS(OFF)  
tsIS(ON)  
tsIS(ON_DEN)  
90% of  
IS static  
I
t
t
VDSEL  
VINy  
t
ILy  
tONy  
t
current sense settling disabling time .vsd  
Figure 22 Current Sense Settling / Disabling Timing  
Data Sheet  
PROFET™+ 12V  
29  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Diagnostic Functions  
7.3.3  
SENSE Signal in Open Load  
Open Load in ON Diagnostic  
7.3.3.1  
If the channel is ON, a leakage current can still flow through an open load, for example due to humidity. The  
parameter IL(OL) gives the threshold of recognition for this leakage current. If the current IL flowing out the power  
DMOS is below this value, the device recognizes a failure, if the DEN (and DSEL) is selected. In that case, the  
SENSE current is below IIS(OL). Otherwise, the minimum SENSE current is given above parameter IIS(OL)  
.
Figure 23 shows the SENSE current behavior in this area. The red curve shows a typical product curve. The blue  
curve shows the ideal current sense.  
IIS  
IIS(OL)  
IL  
IL(OL)  
Sense for OL .vsd  
Figure 23 Current Sense Ratio for Low Currents  
7.3.3.2  
Open Load in OFF Diagnostic  
For open load diagnosis in OFF-state, an external output pull-up resistor (ROL) is recommended. For the  
calculation of pull-up resistor value, the leakage currents and the open load threshold voltage VOL(OFF) have to be  
taken into account. Figure 24 gives a sketch of the situation. Ileakage defines the leakage current in the complete  
system, including IL(OFF) (see Chapter 5.5) and external leakages, e.g, due to humidity, corrosion, etc... in the  
application.  
To reduce the stand-by current of the system, an open load resistor switch SOL is recommended. If the channel x  
is OFF, the output is no longer pulled down by the load and VOUT voltage rises to nearly VS. This is recognized by  
the device as an open load. The voltage threshold is given by VOL(OFF). In that case, the SENSE signal is switched  
to the IIS(FAULT)  
.
An additional RPD resistor can be used to pull VOUT to 0V. Otherwise, the OUT pin is floating. This resistor can be  
used as well for short circuit to battery detection, see Chapter 7.3.4.  
Data Sheet  
PROFET™+ 12V  
30  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Diagnostic Functions  
Vbat  
SOL  
VS  
IIS(FAULT)  
OL  
comp.  
OUT  
IS  
ILOFF  
Ileakage  
GND  
ZGND  
VOL(OFF)  
Open Load in OFF.vsd  
Figure 24 Open Load Detection in OFF Electrical Equivalent Circuit  
7.3.3.3  
Open Load Diagnostic Timing  
Figure 25 shows the timing during either Open Load in ON or OFF condition when the DEN pin is HIGH. Please  
note that a delay tsIS(FAULT_OL_OFF) has to be respected after the falling edge of the input, when applying an open  
load in OFF diagnosis request, otherwise the diagnosis can be wrong.  
Load is present  
Open load  
VIN  
VOUT  
t
VS-VOL(OFF)  
shutdown with load  
RDS(ON) x IL  
t
t
IOUT  
tsIS(FAULT_OL_OFF)  
IIS  
tsIS(LC)  
90% of IIIS(FAULT) static  
t
Error Settling Disabling Time.vsd  
Figure 25 Sense Signal in Open Load Timing  
Data Sheet  
PROFET™+ 12V  
31  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Diagnostic Functions  
7.3.4  
SENSE Signal in Short Circuit to VS  
In case of a short circuit between the OUTput-pin and the VS pin, all or portion (depending on the short circuit  
impedance) of the load current will flow through the short circuit. As a result, a lower current compared to the  
normal operation will flow through the DMOS of the BTS5200-4EKA, which can be recognized at the current sense  
signal. The open load at OFF detection circuitry can also be used to distinguish a short circuit to VS. In that case,  
an external resistor to ground RSC_VS is required. Figure 26 gives a sketch of the situation.  
Vbat  
VS  
IIS(FAULT)  
VBAT  
OL  
comp.  
IS  
OUT  
VOL(OFF)  
GND  
IS  
ZGND  
RIS  
RSC_VS  
Short circuit to Vs.vsd  
Figure 26 Short Circuit to Battery Detection in OFF Electrical Equivalent Circuit  
7.3.5  
SENSE Signal in Case of Overload  
An overload condition is defined by a current flowing out of the DMOS reaching the current limitation and / or the  
absolute dynamic temperature swing TJ(SW) is reached, and / or the junction temperature reaches the thermal  
shutdown temperature TJ(SC). Please refer to Chapter 6.5 for details.  
In that case, the SENSE signal given is by IIS(FAULT) when the diagnostic is selected.  
The device has an thermal restart behavior, such that when the overtemperature or the exceed dynamic  
temperature condition has disappeared, the DMOS is reactivated if the IN is still at logical level one. If the DEN  
pin is activated, and DSEL pin is selected to the correct channel, the IS pin is not toggling with the restart  
mechanism and remains to IIS(FAULT)  
.
7.3.6  
SENSE Signal in Case of Inverse Current  
In the case of inverse current, the sense signal of the affected channel will indicate open load in OFF state and  
indicate open load in ON state. The unaffected channels indicate normal behavior as long as the IINV current is not  
exceeding the maximum value specified in Chapter 5.4.  
Data Sheet  
PROFET™+ 12V  
32  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Diagnostic Functions  
7.4  
Electrical Characteristics Diagnostic Function  
Measurement setup used for kILIS (unless otherwise specified):  
All channels are ON at the same time with equal IL.  
Table 9  
Electrical Characteristics: Diagnostics  
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
Load Condition Threshold for Diagnostic  
1)  
Open load detection  
threshold in OFF state  
VS - VOL(OFF)  
4
6
V
V = 0 V  
DEN = 4.5 V  
P_7.5.1  
IN  
V
See Figure 25  
Open load detection  
threshold in ON state  
IL(OL)  
2
9
mA VIN = VDEN = 4.5 V  
IIS(OL) = 15 µA  
P_7.5.2  
See Figure 23  
See Chapter 9.4  
Sense Pin  
1)  
IS pin leakage current when IIS_(DIS)  
sense is disabled  
1
1
3
μA  
V = 4.5 V  
DEN = 0 V  
P_7.5.4  
P_7.5.6  
IN  
V
IL = IL4 = 0.5 A  
3)  
Sense signal saturation  
voltage  
VS -  
VIS(RANGE)  
V
V = 0 V  
IN  
V
V
OUT = VS > 10 V  
DEN = 4.5 V  
IIS = 6 mA  
See Chapter 9.4  
Sense signal maximum  
current in fault condition  
IIS(FAULT)  
6
15  
30  
mA VIS = VIN = VDSEL = 0 V P_7.5.7  
V
V
OUT = VS > 10 V  
DEN = 4.5 V  
See Figure 19  
See Chapter 9.4  
Sense pin maximum voltage VIS(AZ)  
41  
47  
53  
V
IIS = 5 mA  
P_7.5.3  
See Figure 19  
Current Sense Ratio Signal in the Nominal Area, Stable Load Current Condition  
Current sense ratio  
L0 = 10 mA  
Current sense ratio  
L1 = 0.025 A  
Current sense ratio  
L2 = 0.05 A  
Current sense ratio  
L3 = 0.1 A  
Current sense ratio  
kILIS0  
kILIS1  
kILIS2  
kILIS3  
kILIS4  
-50%  
-35%  
-22%  
-18%  
-10%  
-8  
360  
350  
340  
330  
320  
0
+50%  
+35%  
+22%  
+18%  
+10%  
+8  
VIN = 4.5 V  
VDEN = 4.5 V  
See Figure 20  
P_7.5.8  
I
P_7.5.9  
TJ = -40 °C; 150 °C  
I
P_7.5.10  
P_7.5.11  
P_7.5.12  
P_7.5.17  
I
I
I
L4 = 0.5 A  
kILIS derating with current and kILIS  
%
3) kILIS4 versus kILIS3  
See Figure 21  
temperature  
Diagnostic Timing in Normal Condition  
Data Sheet  
PROFET™+ 12V  
33  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Diagnostic Functions  
Table 9  
Electrical Characteristics: Diagnostics (cont’d)  
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
3)  
Current sense settling time to tsIS(ON)  
ILIS function stable after  
0
250  
μs  
μs  
μs  
V
= VIN = 0 to  
P_7.5.18  
P_7.5.19  
P_7.5.20  
DEN  
k
4.5 V  
VS = 13.5 V  
RIS = 1.2 kΩ  
positive input slope on both  
INput and DEN  
C
SENSE < 100 pF  
IL = IL4 = 0.5 A  
1)  
Current sense settling time  
with load current stable and  
transition of the DEN  
tsIS(ON_DEN)  
0
0
20  
20  
V = 4.5 V  
IN  
V
DEN = 0 to 4.5 V  
RIS = 1.2 kΩ  
SENSE < 100 pF  
C
IL = IL4 = 0.5 A  
See Figure 22  
1)  
Current sense settling time to tsIS(LC)  
IIS stable after positive input  
slope on current load  
V = 4.5 V  
IN  
V
DEN = 4.5 V  
RIS = 1.2 kΩ  
SENSE < 100 pF  
IL = IL3 = 0.1 A to IL =  
L4 = 0.5 A  
C
I
See Figure 22  
Diagnostic Timing in Open Load Condition  
1)  
Current sense settling time to tsIS(FAULT_OL_  
0
100  
450  
μs  
μs  
V = 0V  
P_7.5.22  
P_7.5.23  
IN  
IIS stable for open load  
V
DEN = 0 to 4.5 V  
RIS = 1.2 kΩ  
SENSE < 100 pF  
OUT = VS = 13.5 V  
OFF)  
detection in OFF state  
C
V
See Figure 25  
1)  
Current sense settling time to tsIS(FAULT_OL_  
0
200  
V = 4.5V to 0  
IN  
IIS stable for open load  
detection in ON-OFF  
transition  
V
DEN = 4.5 V  
RIS = 1.2 kΩ  
SENSE < 100 pF  
OUT = VS = 13.5 V  
ON_OFF)  
C
V
Diagnostic Timing in Overload Condition  
1)2)  
Current sense settling time to tsIS(FAULT)  
IIS stable for overload  
detection  
0
250  
μs  
μs  
V = VDEN = 0 to  
P_7.5.24  
P_7.5.32  
IN  
4.5 V  
RIS = 1.2 kΩ  
CSENSE < 100 pF  
V
DS = 5 V  
See Figure 18  
3)  
Current sense over  
tsIS(OT_blank)  
350  
V = VDEN = 4.5 V  
IN  
temperature blanking time  
RIS = 1.2 kΩ  
C
SENSE < 100 pF  
DS = 5 V to 0 V  
See Figure 18  
V
Data Sheet  
PROFET™+ 12V  
34  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Diagnostic Functions  
Table 9  
Electrical Characteristics: Diagnostics (cont’d)  
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
1)  
Diagnostic disable time  
DEN transition to  
tsIS(OFF)  
0
30  
μs  
V = 4.5 V  
P_7.5.25  
IN  
V
DEN = 4.5 V to 0 V  
IIS < 50% IL /kILIS  
RIS = 1.2 kΩ  
SENSE < 100 pF  
C
IL = IL4 = 0.5 A  
See Figure 22  
Current sense settling time  
from one channel to another  
tsIS(ChC)  
0
20  
μs  
V
V
V
IN0 = VIN1 = 4.5 V  
DEN = 4.5 V  
DSEL = 0 to 4.5 V  
P_7.5.26  
RIS = 1.2 kΩ  
SENSE < 100 pF  
C
I
I
L(OUT0) = IL4 = 0.5 A  
L(OUT1) == IL3= 0.1 A  
See Figure 22  
1) DSEL pin select channel 0 only.  
2) Test at TJ = -40°C only  
3) Not subject to production test, specified by design  
Data Sheet  
PROFET™+ 12V  
35  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Input Pins  
8
Input Pins  
8.1  
Input Circuitry  
The input circuitry is compatible with 3.3 and 5 V microcontrollers. The concept of the input pin is to react to voltage  
thresholds. An implemented Schmitt trigger avoids any undefined state if the voltage on the input pin is slowly  
increasing or decreasing. The output is either OFF or ON but cannot be in a linear or undefined state. The input  
circuitry is compatible with PWM applications. Figure 27 shows the electrical equivalent input circuitry. In case the  
pin is not needed, it must be left opened, or must be connected to device ground (and not module ground) via an  
input resistor.  
IN  
GND  
Input circuitry .vsd  
Figure 27 Input Pin Circuitry  
8.2  
DEN / DSEL0,1 Pin  
The DEN / DSEL0,1 pins enable and disable the diagnostic functionality of the device. The pins have the same  
structure as the INput pins, please refer to Figure 27.  
8.3  
Input Pin Voltage  
The IN, DSEL and DEN use a comparator with hysteresis. The switching ON / OFF takes place in a defined region,  
set by the thresholds VIN(L) Max. and VIN(H) Min. The exact value where the ON and OFF take place are unknown  
and depends on the process, as well as the temperature. To avoid cross talk and parasitic turn ON and OFF, a  
hysteresis is implemented. This ensures a certain immunity to noise.  
Data Sheet  
PROFET™+ 12V  
36  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Input Pins  
8.4  
Electrical Characteristics  
Table 10  
Electrical Characteristics: Input Pins  
VS = 8 V to 18 V, TJ = -40°C to 150°C (unless otherwise specified).  
Typical values are given at VS = 13.5 V, TJ = 25 °C  
Parameter  
Symbol  
Values  
Typ.  
Unit Note /  
Test Condition  
Number  
Min.  
Max.  
INput Pins Characteristics  
Low level input voltage range VIN(L)  
High level input voltage range VIN(H)  
-0.3  
2
0.8  
6
V
See Chapter 9.5 P_8.4.1  
V
See Chapter 9.5 P_8.4.2  
1)  
Input voltage hysteresis  
VIN(HYS)  
250  
mV  
P_8.4.3  
See Chapter 9.5  
Low level input current  
High level input current  
IIN(L)  
IIN(H)  
1
2
10  
10  
20  
25  
µA  
µA  
VIN = 0.8 V  
P_8.4.4  
P_8.4.5  
VIN = 5.5 V  
See Chapter 9.5  
DEN Pin  
Low level input voltage range VDEN(L)  
High level input voltage range VDEN(H)  
-0.3  
2
0.8  
6
V
P_8.4.6  
P_8.4.7  
P_8.4.8  
P_8.4.9  
P_8.4.10  
V
1)  
Input voltage hysteresis  
Low level input current  
High level input current  
DSEL Pins  
VDEN(HYS)  
IDEN(L)  
250  
10  
10  
mV  
µA  
µA  
1
20  
25  
V
DEN = 0.8V  
DEN = 5.5 V  
IDEN(H)  
2
V
Low level input voltage range VDSEL(L)  
High level input voltage range VDSEL(H)  
-0.3  
2
0.8  
6
V
P_8.4.11  
P_8.4.12  
P_8.4.13  
P_8.4.14  
P_8.4.15  
V
1)  
Input voltage hysteresis  
Low level input current  
High level input current  
VDSEL(HYS)  
IDSEL(L)  
250  
10  
10  
mV  
µA  
µA  
1
20  
25  
V
DSEL = 0.8V  
DSEL = 5.5 V  
IDSEL(H)  
2
V
1) Not subject to production test, specified by design  
Data Sheet  
PROFET™+ 12V  
37  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Characterization Results  
9
Characterization Results  
The characterization have been performed on 3 lots, with 3 devices each. Characterization have been performed  
at 8 V, 13.5 V and 18 V over temperature range. When there is no voltage dependency seen, only a single curve  
is sketched.  
9.1  
General Product Characteristics  
P_4.2.3  
P_4.2.4  
4
3.9  
3.8  
3.7  
3.6  
3.5  
3.4  
3.3  
3.2  
3.1  
3
4.7  
4.65  
4.6  
4.55  
4.5  
4.45  
50 25  
0
25  
50  
75 100 125 150  
50 25  
0
25  
50  
75 100 125 150  
JunctionTemperature[°C]  
JunctionTemperature[°C]  
Minimum Functional Supply Voltage  
S(OP)_MIN = f(TJ)  
Undervoltage Threshold VS(UV) = f(TJ)  
V
P_4.2.6  
P_4.2.7, P_4.2.10  
9
1.8  
1.6  
1.4  
1.2  
1
VS=8V  
8
7
6
5
4
3
2
VS=13.5 V  
VS=18V  
VS=8V  
VS=13.5 V  
VS=18V  
0.8  
0.6  
0.4  
0.2  
0
50 25  
0
25  
50  
75 100 125 150  
50 25  
0
25  
50  
75 100 125 150  
JunctionTemperature[°C]  
JunctionTemperature[°C]  
Current Consumption for Whole Device with Load. All Standby Current for Whole Device with Load.  
Channels Active IGND_4 = f(TJ;VS)  
I
S(OFF) = f(TJ;VS)  
Data Sheet  
PROFET™+ 12V  
38  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Characterization Results  
9.2  
Power Stage  
P_5.5.4  
P_5.5.5  
46.3  
14  
13  
12  
11  
10  
9
VS=8V  
46.2  
46.1  
46  
VS=13.5 V  
VS=18V  
45.9  
45.8  
45.7  
45.6  
45.5  
45.4  
VS=8V  
8
VS=13.5 V  
VS=18V  
7
6
5
4
50 25  
0
25  
50  
75 100 125 150  
50 25  
0
25 50 75 100 125 150  
JunctionTemperature[°C]  
JunctionTemperature[°C]  
Output Voltage Drop Limitation at Low Load Current  
DS(NL) = f(TJ;VS)  
Drain to Source Clamp Voltage VDS(AZ) = f(TJ)  
V
P_5.5.11  
P_5.5.12  
0.24  
0.35  
0.22  
0.2  
0.3  
0.25  
0.2  
0.18  
0.16  
0.14  
0.12  
0.1  
VS=8V  
0.15  
0.1  
VS=13.5 V  
VS=18V  
VS=8V  
VS=13.5 V  
VS=18V  
0.05  
0
50 25  
0
25  
50  
75 100 125 150  
50 25  
0
25  
50  
75 100 125 150  
JunctionTemperature[°C]  
JunctionTemperature[°C]  
Slew Rate at Turn ON  
Slew Rate at Turn OFF  
dV/dtON = f(TJ;VS), RL = 25 Ω  
- dV/dtOFF = f(TJ;VS), RL = 25 Ω  
Data Sheet  
PROFET™+ 12V  
39  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Characterization Results  
P_5.5.14  
P_5.5.15  
180  
160  
140  
120  
100  
80  
130  
VS=8V  
VS=8V  
VS=13.5 V  
VS=18V  
VS=13.5 V  
VS=18V  
120  
110  
100  
90  
60  
40  
80  
20  
70  
0
50 25  
0
25  
50  
75 100 125 150  
50 25  
0
25  
50  
75 100 125 150  
JunctionTemperature[°C]  
JunctionTemperature[°C]  
Turn ON TON = f(TJ;VS), RL = 25 Ω  
Turn OFF TOFF = f(TJ;VS), RL = 25 Ω  
P_5.5.19  
P_5.5.20  
300.00  
250.00  
VS=8V  
VS=8V  
VS=13.5 V  
VS=18V  
VS=13.5 V  
VS=18V  
250.00  
200.00  
150.00  
100.00  
50.00  
200.00  
150.00  
100.00  
50.00  
0.00  
0.00  
50 25  
0
25 50 75 100 125 150  
50 25  
0
25 50 75 100 125 150  
JunctionTemperature[°C]  
JunctionTemperature[°C]  
Switch ON Energy EON = f(TJ;VS), RL = 25 Ω  
Switch OFF Energy EOFF = f(TJ;VS), RL = 25 Ω  
Data Sheet  
PROFET™+ 12V  
40  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Characterization Results  
9.3  
Protection Functions  
P_6.6.4  
P_6.6.7  
5
9
4.5  
4
8.5  
8
3.5  
3
7.5  
7
2.5  
2
6.5  
6
1.5  
1
50 25  
0
25 50 75 100 125 150  
50 25  
0
25 50 75 100 125 150  
JunctionTemperature[°C]  
JunctionTemperature[°C]  
Overload Condition in the Low Voltage Area  
L5(SC) = f(TJ);  
Overload Condition in the High Voltage Area  
IL28(SC) = f(TJ);  
I
Data Sheet  
PROFET™+ 12V  
41  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Characterization Results  
9.4  
Diagnostic Mechanism  
P_7.5.2  
3
2.5  
2
7
VS=8V  
VS=13.5 V  
VS=18V  
6.5  
6
1.5  
1
5.5  
5
VS=8V  
VS=13.5V  
VS=18V  
4.5  
4
0.5  
0
50 25  
0
25  
50  
75 100 125 150  
50 25  
0
25  
50  
75 100 125 150  
JunctionTemperature[°C]  
JunctionTemperature[°C]  
Current Sense at no Load IIS  
= f(TJ), IL = 0  
Open Load Detection ON State Threshold IIL(OL)  
= f(TJ;VS)  
P_7.5.3  
P_7.5.7  
44.6  
44.5  
44.4  
44.3  
44.2  
44.1  
44  
25  
VS=8V  
VS=13.5 V  
VS=18V  
20  
15  
VS=8V  
10  
5
VS=13.5 V  
VS=18V  
43.9  
43.8  
43.7  
43.6  
43.5  
0
50 25  
0
25  
50  
75 100 125 150  
50 25  
0
25  
50  
75 100 125 150  
JunctionTemperature[°C]  
JunctionTemperature[°C]  
Sense Signal Maximum Voltage (Clamping Voltage)  
IS(AZ) = f(TJ)  
Sense Signal Maximum Current in Fault Condition  
S(FAULT) = f(TJ)  
V
I
Data Sheet  
PROFET™+ 12V  
42  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Characterization Results  
9.5  
Input Pins  
P_8.4.1  
P_8.4.2  
1.36  
1.34  
1.32  
1.3  
1.57  
1.56  
1.55  
1.54  
1.53  
1.52  
1.51  
1.5  
VS=8V  
VS=8V  
VS=13.5 V  
VS=18V  
VS=13.5 V  
VS=18V  
1.28  
1.26  
1.24  
1.22  
1.2  
1.49  
1.48  
1.47  
1.18  
1.16  
50 25  
0
25  
50  
75 100 125 150  
50 25  
0
25  
50  
75 100 125 150  
JunctionTemperature[°C]  
JunctionTemperature[°C]  
Input Voltage Threshold  
VIN(L)= f(TJ;VS)  
Input Voltage Threshold  
VIN(H)= f(TJ;VS)  
V
V
P_8.4.3  
P_8.4.5  
16  
350  
14  
12  
10  
8
300  
250  
200  
150  
100  
50  
VS=8V  
VS=8V  
VS=13.5 V  
VS=18V  
VS=13.5 V  
VS=18V  
6
4
2
0
0
50 25  
0
25  
50  
75 100 125 150  
50 25  
0
25  
50  
75 100 125 150  
JunctionTemperature[°C]  
JunctionTemperature[°C]  
Input Voltage Hysteresis  
VIN(HYS) = f(TJ;VS)  
Input Current High Level  
IN(H) = f(TJ)  
I
Data Sheet  
PROFET™+ 12V  
43  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Application Information  
10  
Application Information  
Note:The following information is given as a hint for the implementation of the device only and shall not be  
regarded as a description or warranty of a certain functionality, condition or quality of the device.  
VBAT  
Voltage Regulator  
OUT  
VS  
GND  
Z
CVS  
VDD  
VS  
RDEN  
I/O  
DEN  
OUT0  
OUT1  
Relay  
I/O  
I/O  
RDSEL  
DSEL0  
DSEL1  
86  
85  
30  
87  
RDSEL  
RIN  
RIN  
RIN  
RIN  
I/O  
I/O  
I/O  
I/O  
IN0  
IN1  
IN2  
IN3  
Micro  
controller  
+
-
OUT2  
OUT3  
E.C.U.  
OT3  
OUT4  
RSENSE  
IS  
A/D  
GND  
R5W  
LED  
GND  
CSENSE  
D
Figure 28 Application Diagram with BTS5200-4EKA  
Note:This is a very simplified example of an application circuit. The function must be verified in the real application.  
Table 11  
Bill of Material  
Reference Value  
Purpose  
RIN  
10 kΩ  
Protection of the microcontroller during overvoltage, reverse polarity  
Guarantee BTS5200-4EKA channels OFF during loss of ground  
RDSEL  
RDEN  
RPD  
10 kΩ  
10 kΩ  
47 kΩ  
Protection of the microcontroller during overvoltage, reverse polarity  
Protection of the microcontroller during overvoltage, reverse polarity  
Polarization of the output for short circuit to VS detection  
Improve BTS5200-4EKA immunity to electomagnetic noise  
RIS  
1.2 kΩ  
4.7 kΩ  
Sense resistor  
RSENSE  
Overvoltage, reverse polarity, loss of ground. Value to be tuned with micro  
controller specification.  
Data Sheet  
PROFET™+ 12V  
44  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Application Information  
Table 11  
Bill of Material (cont’d)  
Reference Value  
Purpose  
CSENSE  
RLED  
RGND  
D
100 pF  
680 Ω  
1 kΩ  
Sense signal filtering.  
Overvoltage protection of the LED. Value to be tuned with LED specification.  
Protection of the BTS5200-4EKA during loss of inductive load  
Protection of the BTS5200-4EKA during reverse polarity  
Protection of the device during overvoltage  
BAS21  
Z
36 V Zener  
diode  
CVS  
100 nF  
Filtering of voltage spikes at the battery line  
Data Sheet  
PROFET™+ 12V  
45  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Application Information  
10.1  
Further Application Information  
Please contact us to get  
Existing App. Notes  
For further information you may visit http://www.infineon.com/profet  
Data Sheet  
PROFET™+ 12V  
46  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Package Outlines  
11  
Package Outlines  
0.35 x 45˚  
1)  
0.1  
3.ꢀ  
0.1 C D 2x  
8˚ MAX.  
8˚ MAX.  
0˚...8˚  
0.08  
Seating Plane  
C
C
1.27  
0˚...8˚  
2)  
0.0ꢀ  
0.2  
0.41  
6
M
M
0.2  
D
0.2  
C A-B D 14x  
D
Bottom View  
0.1  
6.4  
A
14  
8
1
7
1
7
14  
8
B
0.1 C A-B 2x  
0.1  
8.65  
Index Marking  
1) Does not include plastic or metal protrusion of 0.15 max. per side  
2) Does not include dambar protrusion of 0.13 max.  
3) JEDEC reference MS-012 variation BB  
GPS01207  
Figure 29 PG-DSO-14-48-EP (Plastic Dual Small Outline Package) (RoHS-Compliant)  
Green Product (RoHS compliant)  
To meet the world-wide customer requirements for environmentally friendly products and to be compliant with  
government regulations the device is available as a green product. Green products are RoHS-Compliant (i.e  
Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).  
Data Sheet  
PROFET™+ 12V  
47  
Rev. 1.0, 2014-02-06  
BTS5200-4EKA  
Revision History  
12  
Revision History  
Revision Date  
Changes  
1.0  
2014-02-06  
Creation of the document  
Data Sheet  
PROFET™+ 12V  
48  
Rev. 1.0, 2014-02-06  
Edition 2014-02-06  
Published by  
Infineon Technologies AG  
81726 Munich, Germany  
© 2014 Infineon Technologies AG  
All Rights Reserved.  
Legal Disclaimer  
The information given in this document shall in no event be regarded as a guarantee of conditions or  
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any  
information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties  
and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights  
of any third party.  
Legal Disclaimer for short-circuit capability  
Infineon disclaims any warranties and liabilities, whether expressed nor implied, for any short-circuit failures below  
the threshold limit.  
Information  
For further information on technology, delivery terms and conditions and prices, please contact the nearest  
Infineon Technologies Office (www.infineon.com).  
Warnings  
Due to technical requirements, components may contain dangerous substances. For information on the types in  
question, please contact the nearest Infineon Technologies Office.  
Infineon Technologies components may be used in life-support devices or systems only with the express written  
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure  
of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support  
devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain  
and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may  
be endangered.  

相关型号:

BTS52001ENAXUMA1

Buffer/Inverter Based Peripheral Driver,
INFINEON

BTS5210G

Smart High-Side Power Switch Two Channels: 2 x 140mз Status Feedback
INFINEON

BTS5210G_09

Smart High-Side Power Switch
INFINEON

BTS5210L

Smart High-Side Power Switch Two Channels: 2 x 140mз Status Feedback
INFINEON

BTS5210L_07

Smart High-Side Power Switch
INFINEON

BTS5215L

Smart High-Side Power Switch Two Channels: 2 x 90mз Status Feedback
INFINEON

BTS5215LAUMA1

Buffer/Inverter Based Peripheral Driver, 7.4A, PDSO12, GREEN, PLASTIC, SOP-12
INFINEON

BTS5215LXT

Buffer/Inverter Based Peripheral Driver, 7.4A, PDSO12, GREEN, PLASTIC, SOP-12
INFINEON

BTS5215L_07

Smart High-Side Power Switch
INFINEON

BTS522

TNC BULKHEAD JACK FOR ECS CABLE 432101 AND 532101
ETC

BTS5230GS

Smart High-Side Power Switch PROFET
INFINEON

BTS5231-2GS

Smart High-Side Power Switch PROFET Two Channels, 140 m Ω
INFINEON